高中力学综合专题(经典)

合集下载

高中物理高考基础复习《力学综合问题的分析》专题PPT

高中物理高考基础复习《力学综合问题的分析》专题PPT

例6、 AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道, AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的 物体(可以看做质点)从直轨道上的P点由静止释放.已知P点 与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求: (1)物体做往返运动的整个过程中在AB轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力; (3)为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的 距离L′应满足什么条件?
例4、山谷中有三块石头和一根不可伸长的轻质青藤,其示意图 如下。图中A、B、C、D均为石头的边缘点,O为青藤的固定 点,h1=1.8m,h2=4.0m,x1=4.8m,x2=8.0m。开始时,质量分别为 M=10kg和m=2kg的大、小两只滇金丝猴分别位于左边和中间 的石头上,当大猴发现小猴将受到伤害时,迅速从左边石头的A 点水平跳至中间石头。大猴抱起小猴跑到C点,抓住青藤下端, 荡到右边石头上的D点,此时速度恰好为零。运动过程中猴子均 可看成质点,空气阻力不计,重力加速度g=10m/s2。求: (1)大猴从A点水平跳离 时速度的最小值; (2)猴子抓住青藤荡起时 的速度大小; (3)猴子荡起时,青藤对猴 子的拉力大小。
直击高考
例1、一质量m=0.4 kg的滑块(可视为质点)静止于动摩擦因 数μ=0.1的水平轨道上的A点。现对滑块施加一水平外力, 使其向右运动,外力的功率恒为P=10W。经过一段时间后撤 去外力,滑块继续滑行至B点后水平飞出,恰好在C点沿切线 方向进入固定在竖直平面内的光滑圆弧形轨道,轨道的最低 点D处装有压力传感器,当滑块到达传感器上方时,传感器的 示数为25.6 N。已知轨道AB的长度L=2m,半径OC和竖直 方向的夹角α=37o,圆形轨道的半径R=0.5 m。(空气阻力可 忽略)求: (1)滑块运动到C点时速度vc的大小; (2)B、C两点的高度差h及水平距离x; (3)水平外力作用在滑块上的时间t。

高中物理必修一力学经典题型总结(高分必备)

高中物理必修一力学经典题型总结(高分必备)

高中物理必修一力学经典题型总结(高分必备)经典力学是高中物理的一部分,是物理学中最基础也最重要的部分之一。

掌握力学的经典题型能够帮助我们更好地理解物理规律和解决实际问题。

本文将总结高中物理必修一力学中的经典题型,以帮助同学们在研究和应试中取得高分。

1. 直线运动直线运动是力学中最简单的运动形式之一。

在直线运动中,物体沿着一条直线运动,速度、位移和时间是基本的物理量。

1.1. 速度和位移相关题型- 速度、位移和时间之间的关系:根据速度和位移的定义,我们可以用物体的位移和运动时间计算其速度。

- 平均速度和瞬时速度:平均速度是指物体在某段时间内的总位移与时间的比值,而瞬时速度是指物体在某一瞬时的速度。

- 速度和加速度相关题型:当物体在直线上做匀加速运动时,加速度的变化率可以用速度的变化率来表示。

1.2. 加速度相关题型- 匀加速直线运动:物体在直线上做匀加速运动时,速度的变化量与时间的关系可以通过一些基本的公式来计算,如位移公式、速度公式和加速度公式。

- 自由落体运动:当物体在重力作用下自由落体时,其加速度为重力加速度,在垂直上抛运动和自由下落运动中经常涉及。

2. 牛顿第二定律牛顿第二定律描述了物体的运动与作用力的关系,它是经典力学中最基本的定律之一。

2.1. 力的平衡和力的叠加- 力的平衡:当物体所受合力为零时,称物体处于力的平衡状态。

力的平衡条件可以用于解决静力学题目。

- 两力平衡和三力平衡:当物体受到两个或三个力作用时,可以利用力的平衡条件解题。

2.2. 动力学题型- 牛顿第二定律:牛顿第二定律描述了物体的加速度与作用力之间的关系,可以用公式 F = ma 表示。

- 加速度和质量相关题型:当给定物体的质量和作用力,可以通过牛顿第二定律计算物体的加速度。

3. 万有引力和力的合成3.1. 万有引力- 万有引力公式:根据万有引力定律,两个物体之间的引力与它们的质量和距离相关。

可以用公式 F = G * (m₁ * m₂)/ r²计算引力。

高中物理力学综合题解析

高中物理力学综合题解析

高中物理力学综合题解析在高中物理学习中,力学是一个重要的部分,也是学生们常常遇到的难点。

力学综合题是力学知识的综合运用,考察学生对力学概念的理解和应用能力。

本文将通过具体的题目举例,分析解题思路和考点,并给出解题技巧和指导,帮助高中学生更好地应对力学综合题。

题目一:一个质量为m的物体以速度v沿水平面内的x轴正方向运动,与它相碰的质量为M的物体开始静止。

两物体碰撞后,质量为m的物体以速度V1沿原来的方向运动,质量为M的物体以速度V2运动,且V1>V2。

求碰撞前后两物体的动量变化。

解析:这是一个碰撞问题,考察动量守恒定律的应用。

碰撞前后两物体的动量变化可以用动量变化定理表示,即Δp = p2 - p1。

根据动量守恒定律,碰撞前后两物体的总动量保持不变,即p1 + p2 = p'1 + p'2,其中p1和p2分别表示碰撞前两物体的动量,p'1和p'2表示碰撞后两物体的动量。

由于碰撞前质量为m的物体以速度v运动,碰撞后以速度V1运动,动量变化为Δp1 = m(V1 - v);碰撞前质量为M的物体静止,碰撞后以速度V2运动,动量变化为Δp2 = MV2。

因此,碰撞前后两物体的动量变化为Δp= Δp1 + Δp2 = m(V1 - v) + MV2。

题目二:一个质量为m的物体以速度v沿水平面内的x轴正方向运动,与一个质量为M的物体碰撞后,两物体分别以速度V1和V2运动,且V1>V2。

求碰撞前后两物体的动能变化。

解析:这是一个动能变化问题,考察动能守恒定律的应用。

碰撞前后两物体的动能变化可以用动能变化定理表示,即ΔE = E2 - E1。

根据动能守恒定律,碰撞前后两物体的总动能保持不变,即E1 + E2 = E'1 + E'2,其中E1和E2分别表示碰撞前两物体的动能,E'1和E'2表示碰撞后两物体的动能。

由于碰撞前质量为m的物体以速度v运动,碰撞后以速度V1运动,动能变化为ΔE1 = 0.5m(V1^2 - v^2);碰撞前质量为M的物体静止,碰撞后以速度V2运动,动能变化为ΔE2 = 0.5MV2^2。

高考物理力学综合训练

高考物理力学综合训练

专题一:重力、弹力、摩擦力三大基础力第一节、弹力问题1、(单选)体育课上一学生将足球踢向墙壁,如图所示,下列关于足球与墙壁作用时墙壁给足球的弹力方向的说法中,正确的是( )A.沿v1的方向B.沿v2的方向C.先沿v1的方向后沿v2的方向D.沿垂直于墙壁(斜向左上方)的方向解析足球与墙壁的作用是球面与平面接触,足球所受弹力方向垂直于墙壁指向足球球心,即斜向左上方的方向,故选项D正确。

答案 D2、(单选)如图所示,水平地面上堆放着原木,关于原木P在支撑点M、N处受力的方向,下列说法正确的是( ) A.M处受到的支持力竖直向上B.N处受到的支持力竖直向上C.M处受到的静摩擦力沿MN方向D.N处受到的静摩擦力沿水平方向解析:选A.用支持力、静摩擦力方向的判断方法解题.M处支持力方向与支持面(地面)垂直,即竖直向上,选项A 正确;N处支持力方向与支持面(原木接触面)垂直,即垂直MN向上,故选项B错误;摩擦力方向与接触面平行,故选项C、D错误.3、(单选)如图所示,在一个正方体的盒子中放有一个质量分布均匀的小球,小球的直径恰好和盒子内表面正方体的棱长相等,盒子沿倾角为α的固定斜面滑动,不计一切摩擦,下列说法中正确的是( ) A.无论盒子沿斜面上滑还是下滑,球都仅对盒子的下底面有压力B.盒子沿斜面下滑时,球对盒子的下底面和右侧面有压力C.盒子沿斜面下滑时,球对盒子的下底面和左侧面有压力D.盒子沿斜面上滑时,球对盒子的下底面和左侧面有压力解析:选A.先以盒子和小球组成的系统为研究对象,无论上滑还是下滑,用牛顿第二定律均可求得系统的加速度大小为a=g sin α,方向沿斜面向下,由于盒子和小球始终保持相对静止,所以小球的加速度大小也是a=g sin α,方向沿斜面向下,小球重力沿斜面向下的分力大小恰好等于所需的合外力,因此不需要盒子的左、右侧面提供弹力.故选项A正确.4、(单选)如图所示,一位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球。

力学综合题(附答案)——高中高考物理

力学综合题(附答案)——高中高考物理

力学综合题(三大观点解力学问题)1.如图所示,质量为14m kg =和质量为22m kg =可视为质点的两物块相距d 一起静止在足够长且质量为2M kg =的木板上,已知1m 、2m 与木板之间的动摩擦因数均为10.4μ=,木板与水平面的动摩擦因数为20.2μ=.某时刻同时让1m 、2m 以初速度速度16/v m s =,24/v m s =的速度沿木板向右运动。

取210/g m s =,求:(1)若1m 与2m 不相碰,1m 与2m 间距d 的最小值; (2)M 在水平面滑行的位移x 。

2.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平;II 上CD 为倾角为30︒的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R .质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上。

求: (1)极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差。

3.某电动机工作时输出功率P 与拉动物体的速度v 之间的关系如图(a )所示。

现用该电动机在水平地面拉动一物体(可视为质点),运动过程中轻绳始终处在拉直状态,且不可伸长,如图(b )所示。

已知物体质量1m kg =,与地面的动摩擦因数10.35μ=,离出发点C 左侧S 距离处另有动摩擦因数为20.45μ=、长为0.5d m =的粗糙材料铺设的地面AB 段。

(g 取210/)m s(1)若S 足够长,电动机功率为2W 时,物体在地面能达到的最大速度是多少? (2)若启动电动机,物体在C 点从静止开始运动,到达B 点时速度恰好达到0.5/m s ,则BC 间的距离S 是多少?物体能通过AB 段吗?如果不能停在何处?4.如图所示,光滑水平地面上放置一质量3M kg =的长木板,长木板右端固定一轻质弹簧,其劲度系数300/k N m =,弹簧的自由端到长木板左端的距离0.8L m =。

高中物理力学经典的题

高中物理力学经典的题

高中物理力学经典的题高中物理力学经典题解析力学是高中物理学科的重要内容之一,掌握力学知识对于理解物理学原理和解决实际问题都具有重要意义。

本文将通过解析经典题目,帮助读者更好地掌握高中物理力学相关知识。

题目:一物体从光滑斜面由静止开始下滑,在滑动过程中受到平行于斜面的恒定合力,其下滑距离与时间的关系式是什么?解析:此题考察的是牛顿第二定律的应用。

由于物体在光滑斜面上滑动时受到平行于斜面的恒定合力,因此可以将其视为一个简单的匀加速直线运动。

根据牛顿第二定律,物体所受合力F等于其质量m与加速度a的乘积,即F=ma。

由于物体在斜面上滑动时受到重力作用和斜面对其的支持力的作用,因此物体所受合力F等于其重力的下滑分力减去斜面对其的支持力。

根据题意,物体从静止开始下滑,因此其初速度为0。

设斜面的倾角为θ,则物体所受重力的大小为mg,重力的下滑分力为mgsinθ,斜面对其的支持力为mgcosθ。

因此,物体所受合力F 等于mgsinθ-mgcosθ。

由于物体做匀加速直线运动,因此其加速度a等于合力F除以质量m,即mgsinθ-mgcosθ=ma。

将式子化简得a=gsinθ-gcosθ。

由于物体下滑的距离与时间的关系满足匀加速直线运动的公式s=at2/2,因此我们可以将加速度a代入该公式中,得到s=at2/2=(gsinθ-gcosθ)t2/2。

综上所述,物体在光滑斜面上由静止开始下滑,其下滑距离与时间的关系式为s=(gsinθ-gcosθ)t2/2。

高中物理力学经典的题库标题:高中物理力学经典题库高中物理是许多学生感到困难的科目之一,尤其是在力学部分。

为了帮助大家更好地掌握力学知识,本文将介绍一些经典的高中物理力学题目,并提供详细的解答。

一、质点运动1、题目:一个质点在x轴上从原点开始,以恒定加速度a向正方向移动。

在时间t时,求质点的位置和速度。

答案:根据题意,可以列出以下方程:x = (1/2)at^2v = at将时间t代入方程,得到:x = (1/2)at^2v = at解得:x = (1/2)at^2,v = at2、题目:一质点从原点开始,以恒定速度v向正方向移动。

高中物理力学综合习题

高中物理力学综合习题

高中物理力学综合习题力学综合习题一.选择题(共8小题)1.从斜面上某一位置,每隔0.1s释放一个小球,在连续释放几颗小球后,对在斜面上滚动的小球拍下照片,如图所示,测得xAB =15cm,xBC=20cm,则下列说法正确的是()A.小球的加速度为500m/s2B.拍摄时B球的速度为3.5m/sC.拍摄时xCD的大小为0.35mD.A球上方滚动的小球还有2颗2.已知地球的半径为R,地球的自转周期为T,地表的重力加速度为g,要在地球赤道上发射一颗近地的人造地球卫星,使其轨道在赤道的正上方,若不计空气的阻力,那么()A.向东发射与向西发射耗能相同,均为mgR﹣m()2B.向东发射耗能为m(﹣)2,比向西发射耗能多C.向东发射与向西发射耗能相同,均为m(﹣)2D.向西发射耗能为m(+)2,比向东发射耗能多3.长L的轻杆两端分别固定有质量为m的小铁球,杆的三等分点O处有光滑的水平转动轴.用手将该装置固定在杆恰好水平的位置,然后由静止释放,当杆到达竖直位置时,求轴对杆的作用力F的大小和方向为()A.2.4mg 竖直向上B.2.4mg 竖直向下C.6mg 竖直向上D.4mg 竖直向上4.做匀变速直线运动的物体的速度v随位移x的变化规律为v2﹣4=2x,v与x 的单位分别为m/s和m,据此可知()A.初速度v0=4m/s B.初速度v=1m/sC.加速度 a=2 m/s2D.加速度a=1 m/s25.将一个小球从光滑水平地面上一点抛出,小球的初始水平速度为u,竖直方向速度为v,忽略空气阻力,小球第一次到达最高点时离地面的距离为h。

小球和地面发生第一次碰撞后,反弹至离地面的高度。

以后每一次碰撞后反弹的高度都是前一次的(每次碰撞前后小球的水平速度不变),小球在停止弹跳时所移动的总水平距离的极限是()A.B.C.D.6.假设地球可视为质量均匀分布的球体,已知一颗人造地球卫星绕地球做匀速圆周运动的半径为R,周期为T;地球的半径为R0,自转周期为T.则地球表面赤道处的重力加速度大小与两极处重力加速度大小的比值为()A.B.C.D.7.工地上的箱子在起重机钢绳的作用下由静止开始竖直向上运动,运动过程中箱子的机械能E与其位移x关系的图象如图所示,其中O~x1过程的图线为曲线,x1~x2过程的图线为直线,根据图线可知()A.O~x1过程中钢绳的拉力逐渐增多B.O~x1过程中箱子的动能一直增加C.x1~x2过程中钢绳的拉力一直不变D.x1~x2过程中起重机的输出功率保持不变8.如图所示,在一粗糙水平面上有两个质量分别为m1和m2的木块中间用一原长为L、劲度系数为K的轻弹簧连接起来,木块与地面间的滑动摩擦因数均为μ,现用一与水平方向成θ的力F作用在m1上如图所示,问两木块一起向左沿地面匀速运动时(弹簧形变在弹性限度内),它们之间的距离是()A.B.C.D.9.关于质点的位移和路程,下列说法中正确的是()A.位移是矢量,位移的方向即质点运动的方向B.位移的大小不会比路程大C.路程是标量,即位移的大小D.当质点作运动方向不变的直线运动时,路程等于位移的大小10.重150N的光滑球A悬空靠在竖直墙和三角形木块B之间,木块B的重力为1500N,且静止在水平地面上,如图所示,则()A.地面所受压力的大小为1650NB.地面所受压力的大小为1500NC.木块B所受水平地面摩擦力大小为150ND.木块B所受水平地面摩擦力大小为N11.如图所示,在倾角为θ=53°的足够长固定斜面底端,一质量m=lkg的小物块以某一初速度沿斜面上滑,一段时间后返回出发点.物块上滑所用时间t1和下滑所用时间t2大小之比为t1:t2=:,则()A.物块由斜面底端上滑时初速度vl 与下滑到底端时速度v2的大小之比为:B.物块上滑时的初速度α1与下滑的加速度的α2大小之比为:C.物块和斜面之间的动摩擦因数为0.5D.物块沿斜面上滑和下滑的过程中,系统机械能的改变量相同三.解答题(共7小题)12.如图所示,一辆平板小车静止在水平地面上,小车的质量M=3.0kg,平板车长度L=l.0m,平板车的上表面距离店面的高度H=0.8m.某时刻,一个质量m=1.0kg 的小物块(可视为质点)以v=3.0m/s的水平速度滑上小车的左端,与此同时相对小车施加一个F=15N的水平向右的恒力.物块与小车之间的动摩擦因数μ=0.30,不计小车与地面间的摩擦.重力加速度g取10m/s2.求:(1)物块相对小车滑行的最大距离;(2)物块落地时,物块与小车左端之间的水平距离.14.如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平方向,AB管内有一原长为R、下端固定的轻质弹簧,投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去,设质量为m的鱼饵到达管口C时,对管壁的作用力恰好为零.不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能,已知重力加速度为g.求:;(1)质量为m的鱼饵到达管口C时的速度大小v1(2)弹簧压缩到0.5R时的弹性势能Ep;(3)已知地面与水面相距1.5R,若使该投饵管绕AB管的中轴线OO′在90°角的范围内来回缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在m到m之间变化,且均能落到水面.持续投放足够长时间后,鱼饵能够落到水面的最大面积S是多少?15.一探险队在探险时遇到一山沟,山沟的一侧OA竖直,另一侧的坡面OB呈抛物线形状,与一平台BC相连,如图所示.已知山沟竖直一侧OA的高度为2h,平台离沟底h高处,C点离竖直OA的水平距离为2h.以沟底的O点为原点建立坐标系xOy,坡面的抛物线方程为y=.质量为m的探险队员从山沟的竖直一侧,沿水平方向跳向平台.人视为质点,忽略空气阻力,重力加速度为g.求:水平跳出时,掉在坡面OB的某处,则他在空中运动(1)若探险队员以速度v的时间为多少?(2)为了能跳在平台上,他的初速度应满足什么条件?请计算说明.=1.55mgh,则他跳出时(3)若已知探险队员水平跳出,刚到达OBC面的动能Ek的水平速度可能为多大?16.如图,与水平面成θ=25°角的倾斜的绷紧传送带,AB长为S=6m,在电动机带动下,始终以v=m/s顺时针匀速转动;台面BC与传送带平滑连接于B 点,BC长L=2.2m;半圆形光滑轨道半径R=1.0m,与水平台面相切于C点.一个质量为m=0.1kg的待加工小工件(可以视为质点),从A点无初速释放,小工件与传送带的动摩擦因数μ1=0.5,小工件与台面的动摩擦因数μ2=0.01.(注意:小工件能够以相同速率在台面与传送带间的B点相互平稳滑动;已知sin25°=0.4;cos25°=0.9;重力加速度取g=10m/s2).求:(1)小工件从A点第一次运动到B点所用的时间;(2)小工件最后停留在何处;(3)若小工件从A点无初速释放,三次经过B点,因传送工件电动机要多消耗多少的电能.(本小题计算中,取=7.3,=1.7)17.如图所示,光滑杆AB长为L,B端固定一根劲度系数为k,原长为l的轻弹簧,质量为m的小球套在光滑杆上并与弹簧的上端连接,OO′为过B点的竖直轴,杆与水平面间的夹角始终为θ.(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的;加速度大小a及小球速度最大时弹簧的压缩量△l1(2)当球随杆一起绕OO′轴匀速转动时,弹簧伸长量为△l,求匀速转动的角2速度ω;=匀速转动时,小球(3)若θ=30°,移去弹簧,当杆绕OO′轴以角速度ω恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,,求小球从开始滑动到离开杆过程中,到最高点A时求沿杆方向的速度大小为v杆对球所做的功W.=10m/s的初速度从水平面的某点向右运18.如图甲,质量m=1.0kg的物体以v动并冲上半径R=1.0m的竖直光滑半圆环,物体与水平面间的动摩擦因数μ=0.5.(1)物体能从M点飞出,落到水平面时落点到N点的距离的最小值为多大?(2)如果物体从某点出发后在半圆轨道运动过程途中离开轨道,求出发点到N 点的距离x的取值范围.(3)设出发点到N点的距离为x,物体从M点飞出后,落到水平面时落点到N 点的距离为y,通过计算在乙图中画出y2随x变化的关系图象.。

高中物理力学专题经典练习题(附答案)

高中物理力学专题经典练习题(附答案)

高中物理力学专题经典练习题(附答案)以下是一些经典的高中物理力学专题练题,每个问题都附有详细的答案。

这些练题覆盖了力学中的不同概念和应用,旨在帮助你巩固你的物理研究。

请仔细阅读每个问题,并尝试独立解答。

如果你遇到困难,可以参考答案来帮助你理解解题思路和方法。

1. 力与运动题目:一个小球以4 m/s的速度以水平方向投出,落地的时间为2 s。

求小球的水平位移以及竖直位移。

答案:小球的水平位移为8 m,竖直位移为-19.6 m。

2. 动能与功题目:一辆质量为1000 kg的汽车以10 m/s的速度行驶,求汽车的动能。

如果汽车行驶的过程中受到总共2000 N的摩擦力,求摩擦力所做的功。

答案:汽车的动能为 J,摩擦力所做的功为 J。

3. 万有引力题目:太阳的质量约为2 × 10^30 kg,地球的质量约为6 × 10^24 kg,太阳与地球之间的距离约为1.5 × 10^11 m。

求地球受到的太阳引力大小。

答案:地球受到的太阳引力大小约为3.53 × 10^22 N。

4. 动量守恒题目:一个质量为2 kg的小球以5 m/s的速度水平碰撞到一个静止的质量为3 kg的小球,碰撞后两个小球分别以2 m/s和4 m/s的速度分别向左和向右运动。

求碰撞前后两个小球的总动量是否守恒。

答案:碰撞前后两个小球的总动量守恒。

以上是一部分高中物理力学专题的经典练习题及答案。

希望通过这些练习题的练习,你能更好地理解与掌握物理力学的基本概念和应用。

保持坚持和刻苦学习的态度,相信你能取得优秀的成绩!。

高中物理力学经典题

高中物理力学经典题

高中物理力学经典题力学是物理学的一个重要分支,研究物体的运动和受力情况。

在高中物理中,力学是一个重要的考点,经典题目经常出现在考试中。

下面将介绍几个高中物理力学的经典题目。

题目一:平抛运动问题题目描述:一个小球以速度v0水平抛出,从抛出点到达地面所用的时间是t,求小球的水平位移和竖直位移。

解析:平抛运动是指在重力的作用下,物体的竖直速度不断增加,水平速度不变的运动。

根据题目,我们知道水平位移和竖直位移的关系可以由以下公式计算:水平位移 = 水平速度 ×时间竖直位移 = 初速度 ×时间 + 0.5 ×加速度 ×时间的平方在平抛运动中,竖直方向的加速度为重力加速度g,水平方向的加速度为0。

因此,水平位移为v0 × t,竖直位移为0.5 × g × t的平方。

题目二:动量守恒问题题目描述:一个质量为m的物体以速度v0碰撞一个质量为M的静止物体,碰撞后两个物体的速度分别是v1和v2,求质量为m的物体的速度v1和质量为M的物体的速度v2。

解析:动量守恒是指在一个封闭系统中,总动量守恒,即系统的初动量等于系统的末动量。

根据题目,我们可以利用动量守恒定律来求解速度。

物体的动量可以表示为质量乘以速度,即动量 = 质量 ×速度。

由于碰撞前后的系统是封闭的,所以碰撞前后的总动量应该相等。

在碰撞前,质量为m的物体的动量为m × v0,质量为M的物体的动量为0(静止)。

在碰撞后,质量为m的物体的动量为m × v1,质量为M的物体的动量为M ×v2。

根据动量守恒定律,m × v0 = m × v1 + M × v2。

利用这个方程,我们可以解得速度v1 = (m × v0 - M × v2) / m,速度v2 = (m ×v0 - m × v1) / M。

高中物理力学经典的题库(含答案)

高中物理力学经典的题库(含答案)

高中物理力学计算题汇总经典精解(50题)1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2)图1-732.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算:(1)飞机在竖直方向上产生的加速度多大?方向怎样?(2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2)(3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位?(注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体)3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少?4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求(1)2秒末物块的即时速度.(2)此后物块在水平面上还能滑行的最大距离.5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求图1-74(1)推力F的大小.(2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离?6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m.(1)若网球在网上0.1m处越过,求网球的初速度.(2)若按上述初速度发球,求该网球落地点到网的距离.取g=10/m·s2,不考虑空气阻力.7.在光滑的水平面内,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求:图1-70(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度.8.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F.图1-719.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少?10.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度)图1-7211.地球质量为M,半径为R,万有引力常量为G,发射一颗绕地球表面附近做圆周运动的人造卫星,卫星的速度称为第一宇宙速度.(1)试推导由上述各量表达的第一宇宙速度的计算式,要求写出推导依据.(2)若已知第一宇宙速度的大小为v=7.9km/s,地球半径R=6.4×103km,万有引力常量G=(2/3)×10-10N·m2/kg2,求地球质量(结果要求保留二位有效数字).12.如图1-75所示,质量2.0kg的小车放在光滑水平面上,在小车右端放一质量为1.0kg的物块,物块与小车之间的动摩擦因数为0.5,当物块与小车同时分别受到水平向左F1=6.0N的拉力和水平向右F2=9.0N的拉力,经0.4s同时撤去两力,为使物块不从小车上滑下,求小车最少要多长.(g取10m/s2)图1-7513.如图1-76所示,带弧形轨道的小车放在上表面光滑的静止浮于水面的船上,车左端被固定在船上的物体挡住,小车的弧形轨道和水平部分在B点相切,且AB段光滑,BC段粗糙.现有一个离车的BC面高为h的木块由A点自静止滑下,最终停在车面上BC段的某处.已知木块、车、船的质量分别为m1=m,m2=2m,m3=3m;木块与车表面间的动摩擦因数μ=0.4,水对船的阻力不计,求木块在BC面上滑行的距离s是多少?(设船足够长)图1-7614.如图1-77所示,一条不可伸长的轻绳长为L,一端用手握住,另一端系一质量为m的小球,今使手握的一端在水平桌面上做半径为R、角速度为ω的匀速圆周运动,且使绳始终与半径R的圆相切,小球也将在同一水平面内做匀速圆周运动,若人手做功的功率为P,求:图1-77(1)小球做匀速圆周运动的线速度大小.(2)小球在运动过程中所受到的摩擦阻力的大小.15.如图1-78所示,长为L=0.50m的木板AB静止、固定在水平面上,在AB的左端面有一质量为M=0.48kg的小木块C(可视为质点),现有一质量为m=20g的子弹以v0=75m/s的速度射向小木块C并留在小木块中.已知小木块C与木板AB之间的动摩擦因数为μ=0.1.(g取10m/s2)图1-78(1)求小木块C运动至AB右端面时的速度大小v2.(2)若将木板AB固定在以u=1.0m/s恒定速度向右运动的小车上(小车质量远大于小木块C的质量),小木块C仍放在木板AB的A端,子弹以v0′=76m/s的速度射向小木块C并留在小木块中,求小木块C运动至AB右端面的过程中小车向右运动的距离s.16.如图1-79所示,一质量M=2kg的长木板B静止于光滑水平面上,B的右边放有竖直挡板.现有一小物体A(可视为质点)质量m=1kg,以速度v0=6m/s从B的左端水平滑上B,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞时无机械能损失.图1-79(1)若B的右端距挡板s=4m,要使A最终不脱离B,则木板B的长度至少多长?(2)若B的右端距挡板s=0.5m,要使A最终不脱离B,则木板B的长度至少多长?17.如图1-80所示,长木板A右边固定着一个挡板,包括挡板在内的总质量为1.5M,静止在光滑的水平地面上.小木块B质量为M,从A的左端开始以初速度v0在A上滑动,滑到右端与挡板发生碰撞,已知碰撞过程时间极短,碰后木块B恰好滑到A的左端就停止滑动.已知B与A间的动摩擦因数为μ,B在A板上单程滑行长度为l.求:图1-80(1)若μl=3v02/160g,在B与挡板碰撞后的运动过程中,摩擦力对木板A做正功还是负功?做多少功?(2)讨论A和B在整个运动过程中,是否有可能在某一段时间里运动方向是向左的.如果不可能,说明理由;如果可能,求出发生这种情况的条件.18.在某市区内,一辆小汽车在平直的公路上以速度vA向东匀速行驶,一位观光游客正由南向北从班马线上横过马路.汽车司机发现前方有危险(游客正在D处)经0.7s作出反应,紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下.为了清晰了解事故现场.现以图1-81示之:为了判断汽车司机是否超速行驶,警方派一警车以法定最高速度vm=14.0m/s行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经31.5m后停下来.在事故现场测得AB=17.5m、BC=14.0m、BD=2.6m.问图1-81①该肇事汽车的初速度vA是多大?②游客横过马路的速度大小?(g取10m/s2)19.如图1-82所示,质量mA=10kg的物块A与质量mB=2kg的物块B放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数k=400N/m.现给物块A施加一个平行于斜面向上的力F,使物块A沿斜面向上做匀加速运动,已知力F在前0.2s内为变力,0.2s后为恒力,求(g取10m/s2)图1-82(1)力F的最大值与最小值;(2)力F由最小值达到最大值的过程中,物块A所增加的重力势能.20.如图1-83所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接,置于水平的气垫导轨上.用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧.两滑块一起以恒定的速度v0向右滑动.突然,轻绳断开.当弹簧伸长至本身的自然长度时,滑块A的速度正好为零.问在以后的运动过程中,滑块B是否会有速度等于零的时刻?试通过定量分析,证明你的结论.图1-8321.如图1-84所示,表面粗糙的圆盘以恒定角速度ω匀速转动,质量为m的物体与转轴间系有一轻质弹簧,已知弹簧的原长大于圆盘半径.弹簧的劲度系数为k,物体在距转轴R处恰好能随圆盘一起转动而无相对滑动,现将物体沿半径方向移动一小段距离,若移动后,物体仍能与圆盘一起转动,且保持相对静止,则需要的条件是什么?图1-8422.设人造地球卫星绕地球作匀速圆周运动,根据万有引力定律、牛顿运动定律及周期的概念,论述人造地球卫星随着轨道半径的增加,它的线速度变小,周期变大.23.一质点做匀加速直线运动,其加速度为a,某时刻通过A点,经时间T通过B点,发生的位移为s1,再经过时间T通过C点,又经过第三个时间T通过D点,在第三个时间T内发生的位移为s3,试利用匀变速直线运动公式证明:a=(s3-s1)/2T2.24.小车拖着纸带做直线运动,打点计时器在纸带上打下了一系列的点.如何根据纸带上的点证明小车在做匀变速运动?说出判断依据并作出相应的证明.25.如图1-80所示,质量为1kg的小物块以5m/s的初速度滑上一块原来静止在水平面上的木板,木板的质量为4kg.经过时间2s以后,物块从木板的另一端以1m/s相对地的速度滑出,在这一过程中木板的位移为0.5m,求木板与水平面间的动摩擦因数.图1-80图1-8126.如图1-81所示,在光滑地面上并排放两个相同的木块,长度皆为l=1.00m,在左边木块的最左端放一小金属块,它的质量等于一个木块的质量,开始小金属块以初速度v0=2.00m/s向右滑动,金属块与木块之间的滑动摩擦因数μ=0.10,g取10m/s2,求:木块的最后速度.27.如图1-82所示,A、B两个物体靠在一起,放在光滑水平面上,它们的质量分别为mA=3kg、mB=6kg,今用水平力FA推A,用水平力FB拉B,FA和FB随时间变化的关系是FA=9-2t(N),FB=3+2t(N).求从t=0到A、B脱离,它们的位移是多少?图1-82图1-8328.如图1-83所示,木块A、B靠拢置于光滑的水平地面上.A、B的质量分别是2kg、3kg,A的长度是0.5m,另一质量是1kg、可视为质点的滑块C以速度v0=3m/s沿水平方向滑到A上,C与A、B间的动摩擦因数都相等,已知C由A滑向B的速度是v=2m/s,求:(1)C与A、B之间的动摩擦因数;(2)C在B上相对B滑行多大距离?(3)C在B上滑行过程中,B滑行了多远?(4)C在A、B上共滑行了多长时间?29.如图1-84所示,一质量为m的滑块能在倾角为θ的斜面上以a=(gsinθ)/2匀加速下滑,若用一水平推力F作用于滑块,使之能静止在斜面上.求推力F的大小.图1-84图1-8530.如图1-85所示,AB和CD为两个对称斜面,其上部足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R=2.0m,一个质量为m=1kg的物体在离弧高度为h=3.0m处,以初速度4.0m/s沿斜面运动,若物体与两斜面间的动摩擦因数μ=0.2,重力加速度g=10m/s2,则(1)物体在斜面上(不包括圆弧部分)走过路程的最大值为多少?(2)试描述物体最终的运动情况.(3)物体对圆弧最低点的最大压力和最小压力分别为多少?31.如图1-86所示,一质量为500kg的木箱放在质量为2000kg的平板车的后部,木箱到驾驶室的距离L=1.6m,已知木箱与车板间的动摩擦因数μ=0.484,平板车在运动过程中所受阻力是车和箱总重的0.20倍,平板车以v0=22.0m/s恒定速度行驶,突然驾驶员刹车使车做匀减速运动,为使木箱不撞击驾驶室.g取1m/s2,试求:(1)从刹车开始到平板车完全停止至少要经过多长时间.(2)驾驶员刹车时的制动力不能超过多大.图1-86图1-8732.如图1-87所示,1、2两木块用绷直的细绳连接,放在水平面上,其质量分别为m1=1.0kg、m2=2.0kg,它们与水平面间的动摩擦因数均为μ=0.10.在t=0时开始用向右的水平拉力F=6.0N拉木块2和木块1同时开始运动,过一段时间细绳断开,到t=6.0s时1、2两木块相距Δs=22.0m(细绳长度可忽略),木块1早已停止.求此时木块2的动能.(g取10m/s2)33.如图1-88甲所示,质量为M、长L=1.0m、右端带有竖直挡板的木板B静止在光滑水平面上,一个质量为m的小木块(可视为质点)A以水平速度v0=4.0m/s滑上B的左端,之后与右端挡板碰撞,最后恰好滑到木板B的左端,已知M/m=3,并设A与挡板碰撞时无机械能损失,碰撞时间可以忽略不计,g取10m/s2.求(1)A、B最后速度;(2)木块A与木板B之间的动摩擦因数.(3)木块A与木板B相碰前后木板B的速度,再在图1-88乙所给坐标中画出此过程中B相对地的v-t图线.图1-8834.两个物体质量分别为m1和m2,m1原来静止,m2以速度v0向右运动,如图1-89所示,它们同时开始受到大小相等、方向与v0相同的恒力F的作用,它们能不能在某一时刻达到相同的速度?说明判断的理由.图1-89图1-90图1-9135.如图1-90所示,ABC是光滑半圆形轨道,其直径AOC处于竖直方向,长为0.8m.半径OB处于水平方向.质量为m的小球自A点以初速度v水平射入,求:(1)欲使小球沿轨道运动,其水平初速度v的最小值是多少?(2)若小球的水平初速度v小于(1)中的最小值,小球有无可能经过B点?若能,求出水平初速度大小满足的条件,若不能,请说明理由.(g取10m/s2,小球和轨道相碰时无能量损失而不反弹)36.试证明太空中任何天体表面附近卫星的运动周期与该天体密度的平方根成反比.37.在光滑水平面上有一质量为0.2kg的小球,以5.0m/s的速度向前运动,与一个质量为0.3kg的静止的木块发生碰撞,假设碰撞后木块的速度为4.2m/s,试论证这种假设是否合理.38.如图1-91所示在光滑水平地面上,停着一辆玩具汽车,小车上的平台A是粗糙的,并靠在光滑的水平桌面旁,现有一质量为m的小物体C以速度v0沿水平桌面自左向右运动,滑过平台A后,恰能落在小车底面的前端B处,并粘合在一起,已知小车的质量为M,平台A离车底平面的高度OA=h,又OB=s,求:(1)物体C刚离开平台时,小车获得的速度;(2)物体与小车相互作用的过程中,系统损失的机械能.39.一质量M=2kg的长木板B静止于光滑水平面上,B的右端离竖直挡板0.5m,现有一小物体A(可视为质点)质量m=1kg,以一定速度v0从B的左端水平滑上B,如图1-92所示,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞前后速度大小不变.①若v0=2m/s,要使A最终不脱离B,则木板B的长度至少多长?②若v0=4m/s,要使A最终不脱离B,则木板B又至少有多长?(g取10m/s2)图1-92图1-9340.在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,动摩擦因数为μ,滑块CD上表面为光滑的1/4圆弧,它们紧靠在一起,如图1-93所示.一可视为质点的物块P质量也为m,它从木板AB右端以初速v0滑入,过B点时速度为v0/2,后又滑上滑块,最终恰好滑到最高点C处,求:(1)物块滑到B处时,木板的速度vAB;(2)木板的长度L;(3)物块滑到C处时滑块CD的动能.41.一平直长木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同一直线从长木板C两端相向水平地滑上长木板,如图1-94所示.设A、B两小物块与长木板C间的动摩擦因数均为μ,A、B、C三者质量相等.①若A、B两小物块不发生碰撞,则由开始滑上C到静止在C上止,B通过的总路程是多大?经过的时间多长?②为使A、B两小物块不发生碰撞,长木板C的长度至少多大?图1-94图1-9542.在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与一轻弹簧固定相连,弹簧的另一端与小车左端固定连接,将弹簧压缩后用细线将m栓住,m静止在小车上的A点,如图1-95所示.设m与M间的动摩擦因数为μ,O点为弹簧原长位置,将细线烧断后,m、M开始运动.(1)当物体m位于O点左侧还是右侧,物体m的速度最大?简要说明理由.(2)若物体m达到最大速度v1时,物体m已相对小车移动了距离s.求此时M的速度v2和这一过程中弹簧释放的弹性势能Ep?(3)判断m与M的最终运动状态是静止、匀速运动还是相对往复运动?并简要说明理由.43.如图1-96所示,AOB是光滑水平轨道,BC是半径为R的光滑1/4圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一质量为m的小子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,恰能到达圆弧最高点C(小木块和子弹均可看成质点).问:(1)子弹入射前的速度?(2)若每当小木块返回或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧能上升的最大高度为多少?图1-96图1-9744.如图1-97所示,一辆质量m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车间的动摩擦因数μ=0.4.开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反,平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)求:(1)平板车第一次与墙壁碰撞后向左运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度v.(3)为使滑块始终不会从平板车右端滑下,平板车至少多长?(M可当作质点处理)45.如图1-98所示,质量为0.3kg的小车静止在光滑轨道上,在它的下面挂一个质量为0.1kg的小球B,车旁有一支架被固定在轨道上,支架上O点悬挂一个质量仍为0.1kg的小球A,两球的球心至悬挂点的距离均为0.2m.当两球静止时刚好相切,两球心位于同一水平线上,两条悬线竖直并相互平行.若将A球向左拉到图中的虚线所示的位置后从静止释放,与B球发生碰撞,如果碰撞过程中无机械能损失,求碰撞后B球上升的最大高度和小车所能获得的最大速度.图1-98图1-9946.如图1-99所示,一条不可伸缩的轻绳长为l,一端用手握着,另一端系一个小球,今使手握的一端在水平桌面上做半径为r、角速度为ω的匀速圆周运动,且使绳始终与半径为r的圆相切,小球也将在同一水平面内做匀速圆周运动.若人手提供的功率恒为P,求:(1)小球做圆周运动的线速度大小;(2)小球在运动过程中所受到的摩擦阻力的大小.47.如图1-100所示,一个框架质量m1=200g,通过定滑轮用绳子挂在轻弹簧的一端,弹簧的另一端固定在墙上,当系统静止时,弹簧伸长了10cm,另有一粘性物体质量m2=200g,从距框架底板H=30cm的上方由静止开始自由下落,并用很短时间粘在底板上.g取10m/s2,设弹簧右端一直没有碰到滑轮,不计滑轮摩擦,求框架向下移动的最大距离h多大?图1-100图1-101图1-10248.如图1-101所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之间用轻质弹簧相连,它们以共同的速度v0向右运动,另有一质量为m=M/2的粘性物体,从高处自由落下,正好落在A车上,并与之粘合在一起,求这以后的运动过程中,弹簧获得的最大弹性势能E.49.一轻弹簧直立在地面上,其劲度系数为k=400N/m,在弹簧的上端与盒子A连接在一起,盒子内装物体B,B的上下表面恰与盒子接触,如图1-102所示,A和B的质量mA=mB=1kg,g=10m/s2,不计阻力,先将A向上抬高使弹簧伸长5cm后从静止释放,A和B一起做上下方向的简谐运动,已知弹簧的弹性势能决定于弹簧的形变大小.(1)试求A的振幅;(2)试求B的最大速率;(3)试求在最高点和最低点A对B的作用力.参考解题过程与答案1.解:由匀加速运动的公式v2=v02+2as得物块沿斜面下滑的加速度为a=v2/2s=1.42/(2×1.4)=0.7ms-2,由于a<gsinθ=5ms-2,可知物块受到摩擦力的作用.图3分析物块受力,它受3个力,如图3.对于沿斜面的方向和垂直于斜面的方向,由牛顿定律有mgsinθ-f1=ma,mgcosθ-N1=0,分析木楔受力,它受5个力作用,如图3所示.对于水平方向,由牛顿定律有f2+f1cosθ-N1sinθ=0,由此可解得地面的作用于木楔的摩擦力f2=mgcosθsinθ-(mgsinθ-ma)cosθ=macosθ=1×0.7×(/2)=0.61N.此力的方向与图中所设的一致(由指向).2.解:(1)飞机原先是水平飞行的,由于垂直气流的作用,飞机在竖直方向上的运动可看成初速度为零的匀加速直线运动,根据h=(1/2)at2,得a=2h/t2,代入h=1700m,t=10s,得a=(2×1700/102)(m/s2)=34m/s2,方向竖直向下.(2)飞机在向下做加速运动的过程中,若乘客已系好安全带,使机上乘客产生加速度的力是向下重力和安全带拉力的合力.设乘客质量为m,安全带提供的竖直向下拉力为F,根据牛顿第二定律F+mg=ma,得安全带拉力F=m(a-g)=m(34-10)N=24m(N),∴安全带提供的拉力相当于乘客体重的倍数n=F/mg=24mN/m·10N=2.4(倍).(3)若乘客未系安全带,飞机向下的加速度为34m/s2,人向下加速度为10m/s2,飞机向下的加速度大于人的加速度,所以人对飞机将向上运动,会使头部受到严重伤害.3.解:设月球表面重力加速度为g,根据平抛运动规律,有h=(1/2)gt2,①水平射程为L=v0t,②联立①②得g=2hv02/L2.③根据牛顿第二定律,得mg=m(2π/T)2R,④联立③④得T=(πL/v0h).⑤4.解:前2秒内,有F-f=ma1,f=μN,N=mg,则a1=(F-μmg)/m=4m/s2,vt=a1t=8m/s,撤去F以后a2=f/m=2m/s,s=v12/2a2=16m.5.解:(1)用力斜向下推时,箱子匀速运动,则有Fcosθ=f,f=μN,N=G+Fsinθ,联立以上三式代数据,得F=1.2×102N.(2)若水平用力推箱子时,据牛顿第二定律,得F合=ma,则有F-μN=ma,N=G,联立解得a=2.0m/s2.v=at=2.0×3.0m/s=6.0m/s,s=(1/2)at2=(1/2)×2.0×3.02m/s=9.0m,推力停止作用后a′=f/m=4.0m/s2(方向向左),s′=v2/2a′=4.5m,则s总=s+s′=13.5m.6.解:根据题中说明,该运动员发球后,网球做平抛运动.以v表示初速度,H表示网球开始运动时离地面的高度(即发球高度),s1表示网球开始运动时与网的水平距离(即运动员离开网的距离),t1表示网球通过网上的时刻,h表示网球通过网上时离地面的高度,由平抛运动规律得到s1=vt1,H-h=(1/2)gt12,消去t1,得v=m/s,v≈23m/s.以t2表示网球落地的时刻,s2表示网球开始运动的地点与落地点的水平距离,s表示网球落地点与网的水平距离,由平抛运动规律得到H=(1/2)gt22,s2=vt2,消去t2,得s2=v2Hg≈16m,网球落地点到网的距离s=s2-s1≈4m. 7.解:设经过时间t,物体到达P点(1)xP=v0t,yP=(1/2)(F/m)t2,xP/yP=ctg37°,联解得t=3s,x=30m,y=22.5m,坐标(30m,22.5m)(2)vy=(F/m)t=15m/s,∴v=220yv v += 513m/s,tgα=vy/v0=15/10=3/2,∴α=arctg(3/2),α为v与水平方向的夹角. 8.解:在0~1s内,由v-t图象,知a1=12m/s2,由牛顿第二定律,得F-μmgcosθ-mgsinθ=ma1,①在0~2s内,由v-t图象,知a2=-6m/s2,因为此时物体具有斜向上的初速度,故由牛顿第二定律,得 -μmgcosθ-mgsinθ=ma2,②②式代入①式,得F=18N.9.解:在传送带的运行速率较小、传送时间较长时,物体从A到B需经历匀加速运动和匀速运动两个过程,设物体匀加速运动的时间为t1,则(v/2)t1+v(t-t1)=L,所以t1=2(vt-L)/v=(2×(2×6-10)/2)s=2s.为使物体从A至B所用时间最短,物体必须始终处于加速状态,由于物体与传送带之间的滑动摩擦力不变,所以其加速度也不变.而a=v/t=1m/s2.设物体从A至B所用最短的时间为t2,则 (1/2)at22=L,t2=2L a =2101⨯=25s.vmin=at2=1×25m/s=25m/s. 传送带速度再增大1倍,物体仍做加速度为1m/s2的匀加速运动,从A至B的传送时间为4.5.10.解:启动前N1=mg,升到某高度时N2=(17/18)N1=(17/18)mg,对测试仪N2-mg′=ma=m(g/2), ∴g′=(8/18)g=(4/9)g,GmM/R2=mg,GmM/(R+h)2=mg′,解得:h=(1/2)R.11.解:(1)设卫星质量为m,它在地球附近做圆周运动,半径可取为地球半径R,运动速度为v,有 GMm/R2=mv2/R得v=GM R.(2)由(1)得:M=v2R/G==6.0×1024kg. 12.解:对物块:F1-μmg=ma1,6-0.5×1×10=1·a1,a1=1.0m/s2,s1=(1/2)a1t2=(1/2)×1×0.42=0.08m,v1=a1t=1×0.4=0.4m/s,对小车:F2-μmg=Ma2,9-0.5×1×10=2a2,a2=2.0m/s2,s2=(1/2)a2t2=(1/2)×2×0.42=0.16m,v2=a2t=2×0.4=0.8m/s,撤去两力后,动量守恒,有Mv2-mv1=(M+m)v,v=0.4m/s(向右), ∵((1/2)mv12+(1/2)Mv22)-(1/2)(m+M)v2=μmgs3,s3=0.096m,∴l=s1+s2+s3=0.336m.13.解:设木块到B时速度为v0,车与船的速度为v1,对木块、车、船系统,有 m1gh=(m1v02/2)+((m2+m3)v12/2),m1v0=(m2+m3)v1, 解得v0=5gh 15,v1=gh15. 木块到B后,船以v1继续向左匀速运动,木块和车最终以共同速度v2向右运动,对木块和车系统,有m1v0-m2v1=(m1+m2)v2,μm1gs=((m1v02/2)+(m2v12/2))-((m1+m2)v22/2), 得v2=v1=gh15,s=2h. 14.解:(1)小球的角速度与手转动的角速度必定相等均为ω.设小球做圆周运动的半径为r,线速度为v.由几何关系得r=22L R +,v=ω·r,解得v=ω22L R +.(2)设手对绳的拉力为F,手的线速度为v,由功率公式得P=Fv=F·ωR,∴F=P/ωR.小球的受力情况如图4所示,因为小球做匀速圆周运动,所以切向合力为零,即Fsinθ=f,其中sinθ=R/22L R +,联立解得f=P/ω22L R +.15.解:(1)用v1表示子弹射入木块C后两者的共同速度,由于子弹射入木块C时间极短,系统动量守恒,有 mv0=(m+M)v1,∴v1=mv0/(m+M)=3m/s,子弹和木块C在AB木板上滑动,由动能定理得:(1/2)(m+M)v22-(1/2)(m+M)v12=-μ(m+M)gL,解得v2=21v 2gL -μ=22m/s.(2)用v′表示子弹射入木块C后两者的共同速度,由动量守恒定律,得mv0′+Mu=(m+M)v1′,解得v1′=4m/s.木块C及子弹在AB木板表面上做匀减速运动a=μg.设木块C和子弹滑至AB板右端的时间为t,则木块C和子弹的位移s1=v1′t-(1/2)at2,由于m车≥(m+M),故小车及木块AB仍做匀速直线运动,小车及木板AB的位移s=ut,由图5可知:s1=s+L, 联立以上四式并代入数据得:t2-6t+1=0,解得:t=(3-22)s,(t=(3+22)s不合题意舍去),(11)∴s=ut=0.18m.16.解:(1)设A滑上B后达到共同速度前并未碰到档板,则根据动量守恒定律得它们的共同速度为v,有图5mv0=(M+m)v,解得v=2m/s,在这一过程中,B的位移为sB=vB2/2aB且aB=μmg/M,解得sB=Mv2/2μmg=2×22/2×0.2×1×10=2m.设这一过程中,A、B的相对位移为s1,根据系统的动能定理,得μmgs1=(1/2)mv02-(1/2)(M+m)v2,解得s1=6m.当s=4m时,A、B达到共同速度v=2m/s后再匀速向前运动2m碰到挡板,B碰到竖直挡板后,根据动量守恒定律得A、B最后相对静止时的速度为v′,则Mv-mv=(M+m)v′,解得v′=(2/3)m/s. 在这一过程中,A、B的相对位移为s2,根据系统的动能定理,得 μmgs2=(1/2)(M+m)v2-(1/2)(M+m)v′2,。

高中物理力学综合题举例与分析

高中物理力学综合题举例与分析

高中物理力学综合题举例与分析在高中物理中,力学是一个重要的模块,也是学生们普遍感到困惑的一个部分。

力学综合题是考察学生对力学知识的理解和应用能力的重要手段之一。

本文将通过举例与分析,帮助学生们更好地理解力学综合题的解题技巧。

一、动力学题目题目:一个质量为m的物体以初速度v0沿着水平方向运动,在水平方向上受到一个恒力F,经过t时间后速度变为v。

求恒力F的大小。

解析:这是一个典型的动力学题目,考察学生对牛顿第二定律的理解和运用。

根据牛顿第二定律,力的大小等于物体质量乘以加速度。

在本题中,物体受到的恒力F在水平方向上产生加速度a,由于速度的变化满足v-v0=at,我们可以得到a=(v-v0)/t。

根据牛顿第二定律,F=ma=(mv-mv0)/t。

这个题目的考点是对牛顿第二定律的理解和运用,以及对速度变化公式的应用。

学生在解答这类题目时,需要注意将速度变化公式与牛顿第二定律相结合,正确计算出恒力F的大小。

二、静力学题目题目:如图所示,一根长为L的均质杆在距离一端x处有一个质量为m1的物体,距离另一端L-x处有一个质量为m2的物体。

杆的质量可以忽略不计。

在杆的中点O处,杆被一个力F垂直向上拉扯,使得杆保持平衡。

求力F的大小。

解析:这是一个典型的静力学题目,考察学生对平衡条件的理解和应用。

根据平衡条件,物体受到的合力为零,即ΣF=0。

在本题中,物体m1受到重力向下的作用力mg1,物体m2受到重力向下的作用力mg2,杆在中点O处受到力F向上的作用力,根据平衡条件我们可以得到F=mg1+mg2。

这个题目的考点是对平衡条件的理解和应用,以及对力的合成的应用。

学生在解答这类题目时,需要注意将物体受到的力合成,得到平衡条件的表达式,并正确计算出力F的大小。

三、万有引力题目题目:地球的质量为M,半径为R,一个质量为m的物体在地球表面上受到的重力为F。

如果将这个物体从地球表面抛射到高度为2R的位置,求抛射速度。

解析:这是一个典型的万有引力题目,考察学生对万有引力定律的理解和应用。

高中物理力学综合测试题(附答案)

高中物理力学综合测试题(附答案)

力学综合测试题一、选择题(每小题4分,共40分。

每小题至少有一个选项是正确的)1.根据牛顿运动定律,以下选项中正确的是( )A .人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位置B .人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方C .人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方D .人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方2.如图所示,三个木块A 、B 、C 在水平推力F 的作用下靠在竖直墙上,且处于静止状态,则下列说法中正确的是( )A .A 与墙的接触面可能是光滑的B .B 受到A 作用的摩擦力,方向可能竖直向下C .B 受到A 作用的静摩擦力,方向与C 作用的静摩擦力方向一定相反D .当力F 增大时,A 受到墙作用的静摩擦力一定不增大3.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢4.如图所示,在粗糙水平面上放一三角形木块a ,当b 按下列四种不同方式运动时,a 三角形物体始终对地静止,试问,在哪种或哪几种情形下,a 三角形物体对地面有向右的静摩擦力.( ) A .b 物体沿斜面加速下滑 B .b 物体沿斜面减速下滑 C .b 物体沿斜面匀速下滑D .b 物体受到一次冲击后沿斜面减速上滑 5 题 5.如图所示,一物体分别从3个不同高度,但同底的光滑斜面的顶端由静止开始滑下,斜面与水平面夹角分别为30°、45°、60°,滑到底端所用的时间t 1、t 2、t 3的关系是( ) A .t 1=t 2=t 3 B .t 1=t 3>t 2 C .t 1>t 2>t 3 D .t 1<t 2<t 36.如图所示,不计重力的轻杆OP 能以O 为轴在竖直平面内自由转动,P 端悬挂一重物,另用一根轻绳通过定滑轮系在P 端。

高中力学综合练习题及讲解

高中力学综合练习题及讲解

高中力学综合练习题及讲解一、选择题1. 一个物体在水平面上做匀速直线运动,其受到的摩擦力大小与以下哪个因素无关?A. 物体的质量B. 物体与地面的接触面积C. 物体的运动速度D. 物体与地面间的摩擦系数2. 根据牛顿第二定律,一个物体的加速度与作用力成正比,与物体的质量成反比。

如果一个物体受到两个力的共同作用,这两个力的合力与物体的加速度的关系是:A. 合力越大,加速度越大B. 合力越小,加速度越小C. 合力与加速度成正比D. 合力与加速度成反比3. 一个物体从静止开始自由下落,其下落过程中重力势能转化为:A. 动能B. 内能C. 弹性势能D. 电能二、填空题1. 牛顿第三定律指出,作用力与反作用力大小相等、方向相反、作用在______的物体上。

2. 一个物体在斜面上下滑时,除了重力外,还受到______力的作用。

3. 根据能量守恒定律,一个物体在没有外力作用的情况下,其机械能______。

三、计算题1. 一个质量为2kg的物体在水平面上以5m/s²的加速度加速运动。

如果物体与地面间的摩擦系数为0.2,求物体受到的摩擦力大小。

2. 一个物体从高度为10m的悬崖上自由下落,忽略空气阻力,求物体落地时的速度。

四、实验题1. 描述如何使用弹簧秤测量物体的重力,并说明实验中可能出现的误差来源。

2. 设计一个实验来验证牛顿第二定律,并说明实验的步骤和预期结果。

五、解答题1. 解释为什么在没有外力作用的情况下,物体会保持匀速直线运动或静止状态。

2. 讨论在日常生活中,我们如何利用摩擦力来完成各种活动,并举例说明。

以上练习题涵盖了高中力学的基本概念和原理,通过这些练习,学生可以更好地理解和掌握力学知识。

在解答这些问题时,重要的是要理解物理定律的基本原理,并能够将这些原理应用到具体的物理问题中。

高中物理期末复习专题:力学问题经典例题解析

高中物理期末复习专题:力学问题经典例题解析

高中物理期末复习专题:力学问题经典例题解析引言力学是物理学中的一个重要分支,涉及到物体的运动和力的相互作用。

在高中物理课程中,力学问题常常出现,因此复力学问题经典例题对于期末考试非常重要。

本文将对一些常见的力学问题进行解析,帮助学生更好地理解和掌握力学知识。

例题解析1. 平抛运动问题题目:一个小球以水平初速度$v_0$平抛,求小球在飞行过程中的最大高度和飞行的时间。

解析:在平抛运动中,小球在水平方向上的速度恒定不变,而在竖直方向上受重力的作用逐渐减速,直至达到最高点后再加速下落。

因此,通过分析水平和竖直方向上的运动,可以得出以下结论:- 最大高度:在最高点时,小球的竖直速度为零,利用运动学公式$v^2 = u^2 + 2as$可以求得最大高度。

- 飞行时间:利用运动学公式$s = ut + \frac{1}{2}at^2$可以求得飞行时间。

2. 牛顿第二定律问题题目:一个质量为$m$的物体受到作用力$F$,求物体的加速度。

解析:根据牛顿第二定律$F = ma$,可以得出加速度$a =\frac{F}{m}$。

根据题目给出的质量和作用力,带入公式即可求得加速度。

3. 弹簧振子问题题目:一个质点挂在一个劲度系数为$k$的弹簧上,求其振动周期。

解析:弹簧振子的振动周期可通过劲度系数和质量来表示。

振动周期$T$满足公式$T = 2\pi\sqrt{\frac{m}{k}}$,其中$m$为质点的质量,$k$为弹簧的劲度系数。

带入题目给出的数值即可计算出振动周期。

结论本文对高中物理力学问题中的几类经典例题进行了解析,包括平抛运动问题、牛顿第二定律问题和弹簧振子问题。

通过对这些例题的分析和求解,可帮助学生加深对力学知识的理解,并在期末复习中提升解题能力。

希望本文对学生们的高中物理期末复习有所帮助。

专题一:力学经典问题

专题一:力学经典问题

2017年自主招生寒假特训营专题一:力学经典问题例1.在光滑的水平面上有一质量为M、倾角为θ的光滑斜面,其上有一质量为m的物块从静止释放。

试求物块在下滑的过程中(1)物体对斜面压力的大小;(2)斜面对地的加速度大小;(3)物体对地的加速度大小。

点评:(1)相对运动;接触面约束;(2)非惯性系下牛顿运动定律的应用例2.如图所示,三个质量均为m的弹性小球用两根长均为l的轻绳连成一条直线而静止在光滑水平面上。

现给中间的小球B一个水平初速度v0,方向与绳垂直。

小球相互碰撞时无机械能损失,轻绳不可伸长。

求:(1)当小球A、C第一次相碰时,小球A的速度;(2)当三个小球再次处在同一直线上时,小球B的速度和此时绳子的张力;(3)运动过程中小球A的最大动能E KA和此时两根绳的夹角θ以及绳子的张力。

v0点评:(1)两大守恒定律的应用;(2)惯性力;(3)圆周运动等。

例3.一只老鼠从老鼠洞沿直线爬出,已知爬出速率v与距老鼠洞中心的距离s 成反比,当老鼠到达距老鼠洞中心距离s1=1m的A点时,速度大小为v1=20cm/s,问当老鼠到达距老鼠洞中心s2=2m的B点时,其速度大小v2=?,老鼠从A点到达B点所用的时间t=?点评:(1)思维性难题(2)五种方法;四个小专题例4.一人拉着绳子的一端在水平地面上以速度v0匀速前进,求绳子与水平面夹角为θ时重物的速度与加速度。

点评:运动的合成与分解例5.如图所示,合页构件由三个菱形组成,其边长之比为3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶点B2的速度v B2.点评:运动的合成与分解例6.一只狐狸以不变的速度v1沿着直线AB逃跑,一猎犬以不变的速率v2追击,其运动方向始终对准狐狸。

某时刻狐狸在F处,猎犬在D处,FD AB,且FD =L,如图所示。

(1)试求猎犬此时的加速度大小;(2)从此时开始,猎犬还需多长时间追上狐狸?点评:化曲为直与化曲为圆例7.如图所示,一人从离地平面高为h处以速率v0斜向上抛出一个石子,求抛射角为多少时,水平射程最远?最远射程为多少?点评:非标准斜抛运动例8.一礼花竖直向上发射,达到最高点爆炸。

高中力学经典例题总结

高中力学经典例题总结

高中力学经典例题总结
嘿,朋友们!今天咱就来好好唠唠高中力学那些经典例题!就拿小球从高处掉落这个例子来说吧,你说这小小一个球咋就有那么多学问呢?
还记得有个题目是这样的,一个物块在斜面上静止,问摩擦力的方向。

哎呀呀,这可真是让人得好好琢磨琢磨!这不就像你在人生路上遇到的那些选择嘛,得仔细分析才能找到正确的路。

咱得通过受力分析,才能搞清楚摩擦力到底朝哪儿。

再说说那个用绳子拉物体的例题,就好像有人拉着你往一个方向走,你得知道自己会怎么动一样。

这里面的力的分解和合成,可太有意思啦!
还有那个碰撞的例题,两个物体撞在一起,会发生啥变化。

天哪,这多像我们在生活中和别人产生交集,会互相影响啊!比如你和好朋友一起做一件事,不也是会互相作用嘛。

高中力学的这些例题就像是一个个小宝藏,等着我们去挖掘!它们让我们看到了物理世界的奇妙,让我们对周围的一切都有了更深的理解。

你难道不想去好好探索一番吗?力学的世界真的超精彩的呀!不需要那些复杂的过
渡词啥的,咱直接就进入主题,因为这些例题本身就足够吸引人啦!它们就是我们理解世界的钥匙,让我们能更好地解释和应对生活中的各种现象。

所以呀,千万别小看了它们,一定要认真去琢磨哦!我的观点就是,这些高中力学经典例题是我们探索物理奥秘的重要途径,一定要重视起来呀!。

高中力学综合专题(经典)

高中力学综合专题(经典)

专题一:力学综合1、力和运动之间的关系2、解决动力学问题的三大基本定律①牛顿运动定律;②动量定理、动量守恒定律;③动能定律、能量守恒定律。

★三大规律选用的一般原则是:①对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。

②若是多个物体组成的系统,优先考虑两个守恒定律。

③若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。

一般说来,解力学题的思路是:首先考虑是否可用守恒定律处理;其次考虑是否可用定理处理;最后再考虑用动力学方程和运动学方程处理。

(1)牛顿运动定律的应用(力和运动的观点)牛顿第二定律:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

F=ma牛顿运动定律适用于宏观低速物体在惯性参考系中的运动。

一般适用于恒力作用。

所选取的研究对象可以是一个物体,也可以是几个物体组成的整体。

当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。

注意牛顿第二定律的正交表示:F x =ma x ; F y =ma y ; (2)动量定理和动量守恒定律(动量的观点)动量定理:物体所受合外力的冲量等于物体的动量变化。

即:I =Δp动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。

即:22112211v m v m v m v m '+'=+(p 1+p 2=p 1/+p 2/) 或者:Δp 1+Δp 2=0,Δp 1= -Δp 2 和1221v v m m ∆∆-=★动量守恒定律成立的条件:① 系统不受外力或者所受外力之和为零;② 系统受外力,但外力远小于内力,可以忽略不计;③ 系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

④ 全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

★碰撞过程遵守的规律① 碰撞过程遵从动量守恒定律:22112211v m v m v m v m '+'=+ ② 碰撞后系统动能不增原则:碰撞过程中系统内各物体的动能将发生变化,对于弹性碰撞,总动能守恒;而非弹性碰撞过程中系统内物体相互作用时有一部分动能将转化为系统的内能,系统的总动能将减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、在如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短。

现将子弹、木块和弹簧合在一起作为研究对象(系统),则系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中 ( )
A .动量守恒,机械能守恒
B .动量不守恒,机械能不守恒
C .动量守恒,机械能不守恒
D .动量不守恒,机械能守恒
2、(2010·荆州模拟)用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图。

现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,下列判断正确的是 ( )
A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒
B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共
同速度为m v 0M +m
C .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,
其机械能等于子弹射入木块前的动能
D .子弹和木块一起上升的最大高度为m 2v 02
2g (M +m )2
3、 (2010·河北省衡水中学调研)如图所示,一长为2L 的轻杆中央有一光滑的小孔O ,两端各固定质量分别为m 和2m 的两小球,光滑的铁钉穿过小孔垂直钉在竖直的墙壁上,将轻杆由水平位置静止释放,转到竖直位置,在转动的过程中,忽略空气的阻力。

下列说法正确的是 ( )
A .在竖直位置两球的速度大小均为2gL
B .杆竖直位置时对m 球的作用力向上,大小为23
mg C .杆竖直位置时铁钉对杆的作用力向上,大小为113
mg D .由于忽略一切摩擦阻力,根据机械能守恒,杆一定能绕铁钉做完整的圆周运动
4、甲乙两球在光滑水平轨道上同向运动,已知他们的动量分别是p 甲为5kg ·m/s,p 乙为7kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙'为10kg ·m/s ,则两球的质量m 甲与m 乙的关系可能是( )
A .m 甲=m 乙
B .m 乙=2m 甲
C .m 乙=4m 甲
D .m 乙=6m 甲
6、如图所示,甲、乙两小孩各坐一辆冰车在摩擦不计的冰面上相向运动,已知甲连同冰车的总质量M =30kg ,
乙连同冰车的总质量也是M =30kg ,甲还推着一只质量m =15kg 的箱子。

甲、乙滑行的速度大小均为2m/s ,为了避免相撞,在某时刻甲将箱子沿冰面推给乙,箱子滑到乙处时被乙接住,求:
(1)甲至少用多大的速度(相对于地面)将箱子推出,才可避免和乙相撞?
(2)甲在推出时对箱子做了多少功?
9、如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相接,导轨半径为R.一个质量为m的物体
将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C点。

试求:
(1) 弹簧开始时的弹性势能;
(2) 物体从B点运动至C点克服阻力做的功;
(3) 物体离开C点后落回水平面时的动能。

12、(2010·济南模拟)如图所示,AB为半径R=0.8 m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接。

小车质量M=3 kg,车长L=2.06 m,车上表面距地面的高度h=0.2 m。

现有一质量m=1 kg的小滑块,由轨道顶端无初速释放,滑到B端后冲上小车。

已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s时,车被地面装置锁定。

(g=10 m/s2)
试求:(1)滑块到达B端时,轨道对它支持力的大小;
(2)车被锁定时,车右端距轨道B端的距离;
(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;
(4)滑块落地点离车左端的水平距离。

15、如图所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m 的小木块A和B,它们与木板间的动摩擦因数均为μ。

最初木板静止,A、B两木块同时以方向水平向右的初速度v0和2v0在木板上滑动,木板足够长,A、B始终未滑离木板。

求:
(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;
(2)木块A在整个过程中的最小速度;
(3)整个过程中,A、B两木块相对于木板滑动的总路程是多少?
18、(2009·广东高考)如图所示,水平地面上静止放置着物块B和C,相距l=1.0 m。

物块A以速度v0=10 m/s沿水平方向与B正碰。

碰撞后A和B牢固地粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度v=2.0 m/s。

已知A和B的质量均为m,C的质量为A质量的k倍,物块与地面间的动摩擦因数μ=0.45。

(设碰撞时间很短,g取10 m/s2)
(1)计算与C碰撞前瞬间AB的速度;
(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向。

相关文档
最新文档