基于MATLAB的图像分块方法
在Matlab中如何进行图像识别与分类

在Matlab中如何进行图像识别与分类在Matlab中进行图像识别与分类随着计算机技术的快速发展,图像识别与分类在各个领域得到了广泛应用。
Matlab作为一种强大的计算工具,提供了丰富的图像处理和机器学习函数,使得图像识别与分类变得更加便捷和高效。
本文将介绍在Matlab中进行图像识别与分类的基本方法和步骤。
一、图像预处理图像预处理是图像识别与分类的第一步,其目的是将原始图像进行降噪、增强和标准化,以便后续的特征提取和分类算法的应用。
在Matlab中,可以使用imread函数读取图像,然后使用imnoise函数添加噪声,使用imadjust函数进行图像增强,使用imresize函数进行图像尺寸调整等操作。
此外,还可以使用图像滤波器进行模糊处理或者边缘增强,以便更好地突出图像的特征。
二、特征提取特征提取是图像识别与分类的核心步骤,其目的是从图像中提取出具有代表性的特征,用于后续的分类算法。
在Matlab中,可以使用各种特征描述子进行特征提取,常用的有颜色直方图、纹理特征、形状特征等。
例如,可以使用RGB颜色直方图函数imhist来提取图像的颜色特征,使用纹理特征提取函数graycomatrix来提取图像的纹理特征,使用边缘检测函数edge来提取图像的形状特征等。
特征提取的关键在于选择合适的特征描述子,以及合理的特征维度和尺度的选择,以充分表达图像的特征。
三、分类算法分类算法是图像识别与分类的关键步骤,其目的是将提取到的特征进行分类,以实现对图像的自动识别和分类。
在Matlab中,可以使用各种经典的分类算法来进行图像分类,常用的有支持向量机(SVM)、最近邻算法(KNN)、神经网络等。
例如,可以使用Matlab中的fitcsvm函数实现SVM分类器的训练和测试,使用fitcknn函数实现KNN分类器的训练和测试,使用Patternnet函数实现神经网络分类器的训练和测试等。
分类算法的关键在于选择合适的模型和算法参数,以及合理的特征选择和特征权重的设计,以提高分类器的准确性和鲁棒性。
如何在Matlab中进行图像分割

如何在Matlab中进行图像分割图像分割是图像处理中十分重要的一项技术,它能够将图像划分为多个具有独立意义的区域,有助于进一步的图像分析和处理。
在Matlab中进行图像分割,我们可以利用许多现成的函数和工具箱,使得整个过程更加高效和便捷。
本文将介绍如何在Matlab中进行图像分割,包括基于阈值的分割方法、基于边缘的分割方法以及基于区域的分割方法。
首先,基于阈值的分割方法是最简单和常用的图像分割方法之一。
它基于图像的亮度或颜色信息,将图像分为不同的区域。
在Matlab中,我们可以使用im2bw 函数将彩色图像转换为二值图像,然后使用graythresh函数或multithresh函数确定适当的阈值。
例如,下面的代码演示了如何使用阈值进行图像分割:```matlabimg = imread('image.jpg');grayImg = rgb2gray(img);threshold = graythresh(grayImg);binaryImg = im2bw(grayImg, threshold);```其次,基于边缘的分割方法是通过检测图像中的边缘信息来实现图像分割。
在Matlab中,我们可以使用一系列边缘检测算法,如Sobel算子、Canny算子等。
这些算法可以提取图像中的边缘信息,并将其转化为二值图像。
下面的代码演示了如何使用Canny算子进行图像分割:```matlabimg = imread('image.jpg');grayImg = rgb2gray(img);edgeImg = edge(grayImg, 'canny');```最后,基于区域的分割方法是将图像分为具有相似纹理、颜色或形状特征的区域。
在Matlab中,我们可以使用基于区域的分割算法,如分水岭算法、区域生长算法等。
这些算法可以通过对图像进行区域合并或区域分裂来实现图像分割。
MATLAB图像分割算法源代码

MATLAB图像分割算法源代码MATLAB图像分割算法源代码 1.图像反转MATLAB程序实现如下:I=imread('xian.bmp'); J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I); subplot(1,2,2),imshow(H); 2.灰度线性变换MATLAB程序实现如下:I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像');axis([50,250,50,200]); axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1); title('灰度图像');axis([50,250,50,200]); axis on; %显示坐标系J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1]subplot(2,2,3),imshow(J); title('线性变换图像[0.1 0.5]');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1]subplot(2,2,4),imshow(K); title('线性变换图像[0.3 0.7]');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系3.非线性变换MATLAB程序实现如下:I=imread('xian.bmp'); I1=rgb2gray(I);subplot(1,2,1),imshow(I1); title('灰度图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系J=double(I1); J=40*(log(J+1)); H=uint8(J);subplot(1,2,2),imshow(H);title('对数变换图像');axis([50,250,50,200]);grid on; %显示网格线 axis on; %显示坐标系 4.直方图均衡化MATLAB程序实现如下:I=imread('xian.bmp');I=rgb2gray(I); figure;subplot(2,2,1); imshow(I);subplot(2,2,2); imhist(I);I1=histeq(I); figure;subplot(2,2,1); imshow(I1);subplot(2,2,2);imhist(I1);5.线性平滑滤波器用MATLAB实现领域平均法抑制噪声程序:I=imread('xian.bmp');subplot(231)imshow(I)title('原始图像')I=rgb2gray(I);I1=imnoise(I,'salt & pepper',0.02);subplot(232)imshow(I1)title('添加椒盐噪声的图像')k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波k4=filter2(fspecial('average',9),I1)/255; %进行9*9模板平滑滤波subplot(233),imshow(k1);title('3*3模板平滑滤波');subplot(234),imshow(k2);title('5*5模板平滑滤波');subplot(235),imshow(k3);title('7*7模板平滑滤波');subplot(236),imshow(k4);title('9*9模板平滑滤波'); 6.中值滤波器用MATLAB实现中值滤波程序如下:I=imread('xian.bmp'); I=rgb2gray(I);J=imnoise(I,'salt&pepper',0.02);subplot(231),imshow(I);title('原图像');subplot(232),imshow(J);title('添加椒盐噪声图像'); k1=medfilt2(J); %进行3*3模板中值滤波 k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波k3=medfilt2(J,[7,7]); %进行7*7模板中值滤波 k4=medfilt2(J,[9,9]); %进行9*9模板中值滤波 subplot(233),imshow(k1);title('3*3模板中值滤波'); subplot(234),imshow(k2);title('5*5模板中值滤波');subplot(235),imshow(k3);title('7*7模板中值滤波');subplot(236),imshow(k4);title('9*9模板中值滤波'); 7.用Sobel算子和拉普拉斯对图像锐化:I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,2,2),imshow(I1); title('二值图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系H=fspecial('sobel'); %选择sobel算子 J=filter2(H,I1); %卷积运算subplot(2,2,3),imshow(J); title('sobel算子锐化图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系h=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子J1=conv2(I1,h,'same'); %卷积运算subplot(2,2,4),imshow(J1);title('拉普拉斯算子锐化图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系8.梯度算子检测边缘用MATLAB实现如下:I=imread('xian.bmp'); subplot(2,3,1);imshow(I);title('原始图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,3,2);imshow(I1);title('二值图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系I2=edge(I1,'roberts'); figure;subplot(2,3,3);imshow(I2);title('roberts算子分割结果');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系I3=edge(I1,'sobel'); subplot(2,3,4); imshow(I3);title('sobel算子分割结果');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系I4=edge(I1,'Prewitt'); subplot(2,3,5); imshow(I4);title('Prewitt算子分割结果');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系9.LOG算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp'); subplot(2,2,1);imshow(I);title('原始图像');I1=rgb2gray(I);subplot(2,2,2); imshow(I1);title('灰度图像');I2=edge(I1,'log'); subplot(2,2,3); imshow(I2);title('log算子分割结果');10.Canny算子检测边缘用MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1); imshow(I);title('原始图像')I1=rgb2gray(I); subplot(2,2,2); imshow(I1);title('灰度图像');I2=edge(I1,'canny');subplot(2,2,3); imshow(I2);title('canny算子分割结果'); 11.边界跟踪(bwtraceboundary函数) clcclear allI=imread('xian.bmp'); figureimshow(I);title('原始图像');I1=rgb2gray(I); %将彩色图像转化灰度图像 threshold=graythresh(I1); %计算将灰度图像转化为二值图像所需的门限BW=im2bw(I1, threshold); %将灰度图像转化为二值图像 figureimshow(BW);title('二值图像');dim=size(BW);col=round(dim(2)/2)-90; %计算起始点列坐标 row=find(BW(:,col),1); %计算起始点行坐标 connectivity=8;num_points=180;contour=bwtraceboundary(BW,[row,col],'N',connectivity,num_points);%提取边界figureimshow(I1);hold on;plot(contour(:,2),contour(:,1), 'g','LineWidth' ,2);title('边界跟踪图像');12.Hough变换I= imread('xian.bmp'); rotI=rgb2gray(I);subplot(2,2,1);imshow(rotI);title('灰度图像');axis([50,250,50,200]); grid on; axis on;BW=edge(rotI,'prewitt'); subplot(2,2,2);imshow(BW);title('prewitt算子边缘检测后图像');axis([50,250,50,200]); grid on; axis on;[H,T,R]=hough(BW);subplot(2,2,3);imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit'); title('霍夫变换图');xlabel('\theta'),ylabel('\rho');axis on , axis normal, hold on;P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));x=T(P(:,2));y=R(P(:,1));plot(x,y,'s','color','white');lines=houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);subplot(2,2,4);,imshow(rotI);title('霍夫变换图像检测');axis([50,250,50,200]);grid on;axis on;hold on;max_len=0;for k=1:length(lines)xy=[lines(k).point1;lines(k).point2];plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');len=norm(lines(k).point1-lines(k).point2);if(len>max_len)max_len=len;xy_long=xy;endendplot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');13.直方图阈值法用MATLAB实现直方图阈值法:I=imread('xian.bmp'); I1=rgb2gray(I);figure;subplot(2,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系[m,n]=size(I1); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255GP(k+1)=length(find(I1==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置endsubplot(2,2,2),bar(0:255,GP,'g') %绘制直方图 title('灰度直方图') xlabel('灰度值')ylabel('出现概率')I2=im2bw(I,150/255); subplot(2,2,3),imshow(I2); title('阈值150的分割图像')axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系I3=im2bw(I,200/255); % subplot(2,2,4),imshow(I3); title('阈值200的分割图像')axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系14. 自动阈值法:Otsu法用MATLAB实现Otsu算法:clcclear allI=imread('xian.bmp');subplot(1,2,1),imshow(I); title('原始图像')axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系level=graythresh(I); %确定灰度阈值BW=im2bw(I,level); subplot(1,2,2),imshow(BW); title('Otsu法阈值分割图像')axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系15.膨胀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素I2=imdilate(I1,se); %用生成的结构元素对图像进行膨胀subplot(1,2,2);imshow(I2);title('膨胀后图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系16.腐蚀操作MATLAB实现腐蚀操作I=imread('xian.bmp'); %载入图像I1=rgb2gray(I);subplot(1,2,1);imshow(I1);title('灰度图像')axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系se=strel('disk',1); %生成圆形结构元素 I2=imerode(I1,se); %用生成的结构元素对图像进行腐蚀 subplot(1,2,2);imshow(I2);title('腐蚀后图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系17.开启和闭合操作用MATLAB实现开启和闭合操作I=imread('xian.bmp'); %载入图像subplot(2,2,1),imshow(I); title('原始图像');axis([50,250,50,200]); axis on; %显示坐标系I1=rgb2gray(I);subplot(2,2,2),imshow(I1); title('灰度图像');axis([50,250,50,200]); axis on; %显示坐标系se=strel('disk',1); %采用半径为1的圆作为结构元素 I2=imopen(I1,se); %开启操作I3=imclose(I1,se); %闭合操作subplot(2,2,3),imshow(I2); title('开启运算后图像');axis([50,250,50,200]); axis on; %显示坐标系subplot(2,2,4),imshow(I3); title('闭合运算后图像');axis([50,250,50,200]); axis on; %显示坐标系18.开启和闭合组合操作I=imread('xian.bmp'); %载入图像subplot(3,2,1),imshow(I); title('原始图像');axis([50,250,50,200]); axis on; %显示坐标系I1=rgb2gray(I);subplot(3,2,2),imshow(I1); title('灰度图像');axis([50,250,50,200]); axis on; %显示坐标系se=strel('disk',1); I2=imopen(I1,se); %开启操作I3=imclose(I1,se); %闭合操作subplot(3,2,3),imshow(I2); title('开启运算后图像');axis([50,250,50,200]); axis on; %显示坐标系subplot(3,2,4),imshow(I3); title('闭合运算后图像');axis([50,250,50,200]); axis on; %显示坐标系se=strel('disk',1); I4=imopen(I1,se);I5=imclose(I4,se);—闭运算图像 subplot(3,2,5),imshow(I5); %开title('开—闭运算图像');axis([50,250,50,200]); axis on; %显示坐标系I6=imclose(I1,se); I7=imopen(I6,se);subplot(3,2,6),imshow(I7); %闭—开运算图像 title('闭—开运算图像'); axis([50,250,50,200]); axis on; %显示坐标系 19.形态学边界提取利用MATLAB实现如下:I=imread('xian.bmp'); %载入图像subplot(1,3,1),imshow(I); title('原始图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(1,3,2),imshow(I1); title('二值化图像');axis([50,250,50,200]); grid on; %显示网格线axis on; %显示坐标系I2=bwperim(I1); %获取区域的周长subplot(1,3,3),imshow(I2); title('边界周长的二值图像');axis([50,250,50,200]); grid on;axis on; 20.形态学骨架提取利用MATLAB实现如下:I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像');axis([50,250,50,200]); axis on;I1=im2bw(I);subplot(2,2,2),imshow(I1); title('二值图像');axis([50,250,50,200]); axis on; I2=bwmorph(I1,'skel',1);subplot(2,2,3),imshow(I2); title('1次骨架提取');axis([50,250,50,200]); axis on; I3=bwmorph(I1,'skel',2);subplot(2,2,4),imshow(I3); title('2次骨架提取');axis([50,250,50,200]); axis on; 21.直接提取四个顶点坐标I = imread('xian.bmp'); I = I(:,:,1);BW=im2bw(I);figureimshow(~BW)[x,y]=getpts。
如何使用MATLAB进行图像分割与识别

如何使用MATLAB进行图像分割与识别图像分割与图像识别是计算机视觉领域中的重要研究方向,其中MATLAB作为一种常用的编程工具,在图像处理和机器学习方面有着广泛的应用。
本文将介绍如何使用MATLAB进行图像分割与识别,并分析其中的关键技术和算法。
一、图像分割图像分割是将一副图像分割成多个具有独立语义的区域的过程。
图像分割可以帮助我们理解图像中的目标和背景,并为图像后续处理提供基础。
在MATLAB中,有许多图像分割算法可供选择,其中比较常用的是基于聚类的方法和基于边缘检测的方法。
聚类方法是将像素点根据它们在颜色、纹理或其他特征空间中的相似度进行分组。
在MATLAB中,可以使用k-means聚类算法进行图像分割。
通过设置合适的聚类中心数量,可以将图像分成不同的区域。
边缘检测方法是通过检测图像中的边缘来进行分割。
MATLAB提供了多种边缘检测算法,如Sobel算子和Canny算子。
这些算法可以帮助我们找到图像中的边缘,并将图像分割成不同的区域。
二、图像识别图像识别是通过计算机算法对图像中的目标进行自动识别和分类的过程。
MATLAB中有多种图像识别算法可供选择,其中比较常用的是基于特征提取和机器学习的方法。
特征提取是图像识别的关键步骤之一。
在MATLAB中,可以使用SIFT、SURF和HOG等算法提取图像的特征。
通过提取图像的关键点和描述子,可以将图像转换成一组可用于识别的特征向量。
机器学习是图像识别的核心技术之一。
在MATLAB中,可以使用支持向量机(SVM)、卷积神经网络(CNN)和深度学习等算法进行图像识别。
这些算法可以对提取的特征进行训练和分类,并实现目标的自动识别和分类。
三、MATLAB图像处理工具箱MATLAB提供了丰富的图像处理工具箱,包含了大量处理图像的函数和工具。
使用MATLAB图像处理工具箱,可以很方便地进行图像处理和分析。
例如,可以使用MATLAB图像处理工具箱中的imread函数读取图像,并使用imresize函数修改图像的尺寸。
matlab目标与背景的分割与提取

matlab目标与背景的分割与提取"Matlab目标与背景的分割与提取"目标与背景的分割与提取是计算机视觉和图像处理中的重要课题,它涉及到将图像中的目标与背景进行有效的分离与提取。
Matlab 作为一种强大的编程工具,为我们提供了丰富多样的图像处理函数和工具箱,可以帮助我们实现目标与背景的分割与提取任务。
本文将一步一步地介绍如何使用Matlab来进行目标与背景的分割与提取。
首先,我们需要加载并显示图像。
在Matlab中,可以使用imread 函数来读取图像数据,并使用imshow函数来显示图像。
例如,下面的代码将加载并显示一张名为"image.jpg"的图像:matlabimage = imread('image.jpg');imshow(image);接下来,我们可以使用Matlab的图像处理函数来对图像进行预处理,以便更好地进行目标与背景的分割与提取。
常见的预处理操作包括图像灰度化、图像平滑和图像增强等。
首先,我们可以使用rgb2gray函数将彩色图像转换为灰度图像。
灰度图像只包含一个亮度通道,而彩色图像包含红、绿、蓝三个通道,因此灰度图像更便于对比度和亮度的调整。
例如,下面的代码将将图像转换为灰度图像:matlabgrayImage = rgb2gray(image);然后,我们可以使用图像平滑操作来减少图像中的噪声,以便更准确地进行目标与背景的分割与提取。
常见的图像平滑算法有高斯滤波和中值滤波。
例如,下面的代码将使用高斯滤波对灰度图像进行平滑处理:matlabsmoothImage = imgaussfilt(grayImage);imshow(smoothImage);最后,我们可以使用图像增强操作来增强图像的对比度和清晰度,以便更好地进行目标与背景的分割与提取。
常见的图像增强算法有直方图均衡化和自适应直方图均衡化等。
例如,下面的代码将使用直方图均衡化对平滑后的图像进行增强处理:matlabenhancedImage = histeq(smoothImage);imshow(enhancedImage);在图像预处理完成后,我们可以使用Matlab的图像分割算法来实现目标与背景的分割与提取。
在Matlab中实现医学图像分割和医学图像配准的方法

在Matlab中实现医学图像分割和医学图像配准的方法医学图像处理在现代医学中起着重要的作用,它可以帮助医生更好地了解人体的结构和病变情况。
其中,医学图像分割和医学图像配准是两个常用的图像处理任务。
本文将介绍如何使用Matlab实现这两个任务的方法。
一、医学图像分割医学图像分割是将医学图像中感兴趣的区域从背景中分离出来的过程。
这对于病灶的检测和定位非常重要。
在Matlab中,有多种方法可以实现医学图像分割,如基于阈值的分割、基于区域的分割和基于边缘的分割等。
1. 基于阈值的分割基于阈值的分割是医学图像分割中最简单的方法之一。
它将图像中的像素根据亮度和颜色等特征进行分类。
在Matlab中,可以使用imbinarize函数实现阈值分割。
通过调整阈值的大小,可以得到不同的分割结果。
然而,这种方法对于复杂的图像可能效果不佳。
2. 基于区域的分割基于区域的分割是将图像中的像素分成若干区域,并根据相似性准则将它们合并或进一步细分的方法。
在Matlab中,可以使用regionprops函数计算各个区域的特征,并根据这些特征对区域进行分类和合并。
这种方法通常适用于异质性较小的图像。
3. 基于边缘的分割基于边缘的分割是通过检测图像中的边缘信息来实现分割的方法。
在Matlab中,可以使用边缘检测算法(如Canny算子)来提取图像中的边缘信息,并通过边缘连接或边缘跟踪来实现分割。
这种方法对于图像中有明显边缘的情况效果较好。
二、医学图像配准医学图像配准是将多个医学图像的位置和方向相对一致的过程。
它在医学影像的比较、融合和后续处理等方面具有重要的应用。
在Matlab中,有多种方法可以实现医学图像配准,如基于特征的配准、基于互信息的配准和基于形变场的配准等。
1. 基于特征的配准基于特征的配准是通过提取图像中的一些特征点或特征区域,并通过计算它们之间的相似性来实现配准的方法。
在Matlab中,可以使用SURF算法或SIFT算法来提取图像的特征,并通过RANSAC算法等方法来计算配准的变换矩阵。
《MATLAB图像处理实例详解》课件Chapter_7a第7章 图像分割技术

7.4.1 区域生长法
区域生长是一种串行区域分割的图像分割方法。区域生长的基本思想是将 具有相似性质的像素集合起来构成区域。区域增长方法根据同一物体区域 内像素的相似性质来聚集象素点的方法,从初始区域(如小邻域或单个象 素)开始,将相邻的具有同样性质的象素或其它区域归并到目前的区域中 从而逐步增长区域,直至没有可以归并的点或其它小区域为止。区域内象 素的相似性度量可以包括平均灰度值、纹理、颜色等信息。
差分来逼近梯度算子,即:
2、Prewitt算子 下面介绍Prewitt算子。 Prewitt算子的大小为3×3,如下所示:
这两个算子分别代表图像的水平梯度和垂直梯度。 3、Sobel算子 Sobel算子的大小和Prewitt算子的大小相同,都是3×3。Soble算子的模板如下所示:
在MATLAB中,函数edge( )可以采用Sobel算子进行边缘检测。
设为图像的位置处的灰度值,灰度级为,则。若灰度级的所有像素个数为, 则第级灰度出现的概率为:
其中
,并且
。
7.3.3 迭代式阈值分割
迭代阈值法是阈值法图像分割中比较有效的方法,通过迭代的方法来求出 分割的最佳阈值,具有一定的自适应性。迭代法阈值分割的步骤如下:
(1)设定参数,并选择一个初始的估计阈值。 (2)用阈值分割图像。将图像分成两部分:是由灰度值大于的像素组成,
对于图像中的间断点,常用的检测模板为:
对于图像中的线段,常用的检测模板为:
2 1 1
1 2 1
1 1 2
7.4ቤተ መጻሕፍቲ ባይዱ2 微分算子
常用的微分算子有Sobel算子、Prewitt算子和Roberts算子。通过这些算子对图像进 行滤波,就可以得到图像的边缘。下面分别进行介绍。
基于MATLAB的图像分割算法研究

摘要本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。
对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。
而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。
区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。
与此同时本文还分析了图像分割技术研究的方向。
关键词:图像处理图像分割AbstractThis article analyses the application effect to the classics image segmentation method like the edge examination, territory value division technology, and the region growth and so on.For comparing the Roberts operator, Sobel operator, Prewitt operator, the operator of Laplacian and the operator of LoG(Laplacian-Gauss),Canny operator in gradient algorithm,the step, the way and the standard of the image segmentation,we can find out the three standard of Canny edge operator the edge detection result of reaching most satisfy. And the key point of threshold segmentation lie in fixing the threshold value, it is good to have only threshold value to determine it then can be effective to divide object and background,but this kind of method is good to those gray scales,the big difference image effect between the background and obiect. The basic idea of area is to form the new region from similar nature.And also, this paper analyses the research direction of image segmentation technology at the same time.Key words: image processing image segmentation operator目录(一般目录要求最多是三级目录,不要出现四级目录)第一章绪论 (1)1.1数字图像处理的基本特点 (1)1.1.1数字图像处理的信息大多是二维信息,处理信息量很大(三级标题有问题)1 1.1.2数字图像处理占用的频带较宽 (2)1.1.3数字图像中各个像素是不独立的,其相关性大 (2)1.1.4作合适的假定或附加新的测量 (2)1.1.5数字图像处理后的图像受人的因素影响较大 (2)1.2数字图像处理的优点 (2)1.2.1再现性好 (2)1.2.2处理精度高 (3)1.2.3适用面宽 (3)1.2.4灵活性高 (3)1.3数字图像处理的应用 (4)1.3.1航天和航空技术方面的应用 (4)1.3.2生物医学工程方面的应用 (5)1.3.3通信工程方面的应用 (5)1.3.4工业和工程方面的应用 (5)1.3.5军事公安方面的应用 (5)1.3.6文化艺术方面的应用 (6)1.4数字图像分割技术的发展概况 (6)1.4.1 基于分形的图像分割技术 (6)1.4.2 基于神经网络的图像分割技术 (7)1.5本文的主要流程图 (8)第二章数字图像处理的处理方式 (9)2.1图像变换 (9)2.2图像编码压缩 (9)2.3图像增强和复原 (9)2.4图像分割 (9)2.5图像描述 (10)2.6图像分类(识别) (10)第三章 MATLAB平台及其开发环境 (11)3.1.MATLAB的组成 (11)3.1.1MATLAB主要有以下几个部分 (11)a.数值计算功能 (12)b.符号计算功能 (12)c.数据分析功能 (12)d.动态仿真功能 (12)e.程序借口功能 (13)f.文字处理功能 (13)3.2MATLAB的特点 (13)3.2.1功能强大,可扩展性强 (13)3.2.2界面友好,编程效率高 (14)3.2.3图像功能,灵活且方便 (14)3.3MATLAB在图像处理中的应用 (14)第四章图像分割概念及算法研究 (16)4.1图像分割的基本概念 (16)4.1.1图像分割定义 (16)4.2边缘检测方法(4.1和4.2之间不是并行关系) (17)4.2.1边缘检测概述 (17)4.2.2边缘检测梯度算法 (19)a.梯度边缘检测算法基本步骤及流程图 (19)b.Robert算子 (20)c.Sobel算子 (21)d.Prewitt算子 (21)4.2.3拉普拉斯(Laplacian)算子 (22)4.2.4LoG(Laplacian-Gauss)算子 (24)4.2.5坎尼(Canny)算子 (25)4.3灰度阈值分割 (27)4.3.1阈值分割介绍 (28)a.阈值化分割原则 (28)b.阈值分割算法分类 (29)4.3.2全局阈值 (30)a.极小值点阈值 (31)b.最优阈值 (31)c.迭代阈值分割 (33)4.3.3动态阈值 (34)a.阈值插值 (35)b.水线阈值算法 (35)4.4区域分割 (37)4.4.1区域生长的基本原理、步骤及流程图 (37)4.4.2生长准则和过程 (40)a.灰度差准则 (40)b.灰度分布统计准则 (41)c.区域形状准则 (42)4.4.3分裂合并 (43)第五章总结 (45)5.1对于图像边缘检测的分析 (45)5.2对于图像阈值分割的分析 (45)5.3对于图像区域分割的分析 (46)5.4改进意见(改进可另外做为一章比如说某某算法等的若干改进等,不要放入总结一章中)(总结是对整篇文章的一个概述,应该是写比如得出些什么结论,一些算法间比较等相关问题。
如何进行图像分割的Matlab实现

如何进行图像分割的Matlab实现引言:图像分割是计算机视觉领域的一项基础技术,它将图像中的像素点分为不同的区域,使得具有相似特征的像素被聚类到一起。
在图像分析、目标检测、图像处理等任务中,图像分割起着至关重要的作用。
本文将介绍如何使用Matlab实现图像分割算法,包括传统的阈值分割、基于区域的分割以及基于深度学习的分割等。
一、传统的阈值分割1.1 简介阈值分割是最简单和常用的图像分割方法之一,它根据像素的灰度值与阈值的比较结果将像素分为两类:前景和背景。
在Matlab中,可以使用函数`im2bw`实现二值化分割任务。
1.2 实现步骤(1)加载图像:使用`imread`函数读取待分割的图像,并将其转换为灰度图像。
(2)确定阈值:根据图像的灰度直方图,可以通过分析波峰和波谷来确定一个适合的阈值。
(3)二值化分割:使用`im2bw`函数将灰度图像二值化,得到分割后的图像。
(4)结果显示:使用`imshow`函数将原图像和分割结果进行显示。
二、基于区域的分割2.1 简介基于区域的分割方法将图像划分为具有一定连续性和相似性质的区域,其基本思想是将图像中相似的像素组成区域,并对区域进行合并或分裂,以达到分割的目的。
2.2 实现步骤(1)加载图像:同样使用`imread`函数读取待分割的图像。
(2)图像预处理:可选的预处理步骤包括噪声去除、图像增强等,以提供更好的分割效果。
(3)区域生长:选择一个适当的种子点作为起始点,在附近的像素中根据一定的准则来判断是否属于同一区域,并逐步生长扩展区域,直至满足停止准则。
(4)结果显示:使用`imshow`函数将原图像和分割结果进行显示。
三、基于深度学习的分割3.1 简介基于深度学习的分割方法是近年来发展起来的一种高效且准确的分割技术,主要基于深度卷积神经网络(CNN)和全卷积网络(FCN)。
深度学习模型通过学习大量标注的图像,能够学习到图像的高级特征,从而实现更准确的图像分割。
数字图像处理与应用(MATLAB版)第6章 图像的分割

是边缘;
➢ 使用双阈值算法检测和连接边缘。即使用直方图计
算两个阈值,凡是大于高阈值的一定是边缘;凡是
小于低阈值的一定不是边缘。如果检测结果大于低
阈值但又小于高阈值,那就要看这个像素的邻接像
素中有没有超过高阈值的边缘像素,如果有,则该
像素就是边缘,否则就不是边缘。
0 -1 0 -1 4 -1 0 -1 0
B A
6.1 图像分割的定义和分类
图像分割:是指根据灰度、彩色、纹理等特征把图像 划分成若干个互不相交的区域,使得这些特征在同一区 域内,表现出一致性或相似性,而在不同区域间表现出 明显的不同。
图像分割的作用
图像分割是图像识别和图像理解的前提,图像分 割质量的好坏直接影响后续图像处理的效果。
图像
具体步骤:
➢ 首先用2D高斯滤波模板进行卷积以平滑图像;
➢ 利 用 微 分 算 子 ( 如 Roberts 算 子 、 Prewitt 算 子 和
Sobel算子等),计算梯度的幅值和方向;
➢ 对梯度幅值进行非极大值抑制。即遍历图像,若某
个像素的灰度值与其梯度方向上前后两个像素的灰
,
度值相比不是最大,那么这个像素值置为0,即不
第六章 图像的分割
内 容 1、图像分割的定义和分类; 提 2、基于边缘的图像分割方法;
要 3、基于区域的分割;
4、基于运动的图像分割 ; 5、图像分割技术的发展。
基
本 要
通过对图像分割技术的学习,掌
求 握基于边缘、区域、运动的图像
重
分割技术。
点
难 点
图像分割的定义、分类 基于边缘的图像分割方法
基于区域、运动的图像分割方法
G(i, j) Px Py
matlab中分块jacobi迭代

分块Jacobi迭代是一种用于求解线性方程组的迭代法,常用于大型稀疏矩阵的求解。
在Matlab中,我们可以通过编写相应的代码来实现分块Jacobi迭代,下面将介绍该方法的理论基础、Matlab代码实现以及实际应用。
一、分块Jacobi迭代的理论基础1. 线性方程组的求解线性方程组是数学中常见的一类问题,形式通常为Ax=b,其中A是一个已知的系数矩阵,b是一个已知的向量,x是一个未知的向量。
求解线性方程组就是要找到向量x的取值,使得等式成立。
2. 分块Jacobi迭代的原理分块Jacobi迭代是一种求解线性方程组的迭代方法,其基本原理是将系数矩阵A分解为主对角线矩阵D和剩余部分R,然后通过迭代的方式求解线性方程组。
具体来说,分块Jacobi迭代的迭代公式为:x(k+1) = D^(-1)(b-Rx(k)),其中D^(-1)表示D的逆矩阵,k表示迭代次数,x(k)表示第k次迭代得到的解向量。
3. 分块Jacobi迭代的收敛性分块Jacobi迭代的收敛性取决于系数矩阵A的性质,通常情况下,系数矩阵A必须是严格对角占优矩阵,或者是对称正定矩阵,才能保证迭代方法收敛。
否则,迭代可能会发散,无法得到满足精度要求的解。
二、Matlab代码实现分块Jacobi迭代在Matlab中,我们可以通过编写相应的代码来实现分块Jacobi迭代,以下是一段简单的Matlab代码示例:```matlabfunction x = block_jacobi(A, b, tol, max_iter)A: 系数矩阵b: 右端向量tol: 迭代精度max_iter: 最大迭代次数n = length(b);x = zeros(n, 1);D = diag(diag(A)); 提取A的主对角线R = A - D; 计算A的剩余部分for k = 1:max_iterx_new = D \ (b - R*x); 计算新的解向量if norm(x_new - x) < tol 判断是否满足精度要求x = x_new;break;endx = x_new; 更新解向量end```以上的Matlab代码实现了分块Jacobi迭代的基本步骤,包括提取系数矩阵A的主对角线、计算剩余部分R、设置迭代终止条件等。
Matlab中的图像分割与轮廓提取技巧

Matlab中的图像分割与轮廓提取技巧在数字图像处理中,图像分割是一个基本且关键的任务。
通过将图像划分为不同的区域或对象,图像分割可以帮助我们更好地理解图像中的内容,并提取出我们所需的信息。
而图像分割的一个重要部分就是轮廓提取,它可以帮助我们准确地描述图像中感兴趣对象的形状和边缘。
在本文中,将介绍Matlab中常用的图像分割与轮廓提取技巧。
一、基于阈值的图像分割方法阈值分割是一种常用的简单而有效的图像分割方法。
它基于图像中像素的灰度值,将图像分割成具有不同灰度的区域。
在Matlab中,可以使用im2bw函数将图像转换为二值图像,并提供一个阈值参数。
通过调整阈值值,我们可以得到不同的分割结果。
此外,Matlab还提供了一些自动阈值选择方法,如Otsu方法和基于最大类间方差的方法。
二、基于区域的图像分割方法基于区域的图像分割方法是一种将图像分割为不同区域的方法。
它通常基于一些与像素相关的特征,如颜色、纹理和形状。
在Matlab中,可以使用regionprops函数计算图像的区域属性,如面积、中心位置等。
然后,可以根据这些区域属性将图像分割成不同的区域。
此外,还可以使用图像均值漂移算法和超像素分割算法等进行基于区域的图像分割。
三、基于边缘的图像分割方法基于边缘的图像分割方法是一种通过提取图像中的边缘信息来进行分割的方法。
它通常基于边缘检测算法,如Canny算子和Sobel算子。
在Matlab中,可以使用edge函数实现边缘检测,并提供一些参数来调整边缘检测的结果。
通过检测图像中的边缘,我们可以得到图像的轮廓信息,并将图像分割成不同的部分。
四、轮廓提取技巧在图像分割中,轮廓提取是一个重要且常用的步骤。
它可以帮助我们准确地描述和表示感兴趣对象的形状和边界。
在Matlab中,可以使用一些函数来提取图像的轮廓,如bwboundaries函数和imcontour函数。
这些函数可以将二值图像或灰度图像中的轮廓提取出来,并可视化或保存为具有不同宽度和颜色的图像。
Matlab图像处理工具箱中部分函数用法

1. blkproc( )用法blkproc功能:对图像进行分块处理调用形式: B = blkproc(A,[m n],fun, parameter1, parameter2, ...)B = blkproc(A,[m n],[mborder nborder],fun,...)B = blkproc(A,'indexed',...)参数解释:[m n] :图像以m*n为分块单位,对图像进行处理(如8像素*8像素)Fun:应用此函数对分别对每个m*n分块的像素进行处理parameter1, parameter2:要传给fun函数的参数mborder nborder:对每个m*n块上下进行mborder个单位的扩充,左右进行nborder个单位的扩充,扩充的像素值为0,fun函数对整个扩充后的分块进行处理。
这里:fun='P1*x*P2',fun的参数P1,P2,将T,T'传递给fun的参数,即:P1= T,P2=T'.2.dwt2( )用法d wt2功能:单级二维离散小波变换调用格式: [cA,cH,cV,cD] = dwt2(X,'wname')[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D)其意义为使用指定的小波基函数'wname'对二维信号X进行二维离散小波变换。
cA,cH,cV,cD分别为近似细节分量、水平细节分量、垂直细节分量和对角细节分量。
3.wavedec2( )用法waveder2功能:二维信号的多层小波分解调用格式:[C,S] = wavedec2(X,N,'wname')[C,S] = wavedec2(X,N,Lo_D,Hi_D)其意义为使用小波基函数'wname'对二维信号X进行N层分解。
4.idwt2( )用法idwt2功能:单级二维离散小波反变换调用格式:X = idwt2(cA,cH,cV,cD,'wname')X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R)X = idwt2(cA,cH,cV,cD,'wname',S)X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)X = idwt2(...,'mode',MODE)其意义为由信号小波分解的近似信号cA和细节信号cH,cV,cD经小波反变换重构原信号X。
MATLAB中的分形数学方法介绍

MATLAB中的分形数学方法介绍分形是一种迷人且富有挑战性的数学领域,在现代科学和工程中有着广泛的应用。
MATLAB作为一种出色的计算工具,提供了丰富的分形数学方法和相关函数,使得研究者能够更方便地探索和实现分形数学的各种应用。
本文将介绍一些常见的MATLAB中的分形数学方法以及它们的应用。
首先,让我们从最经典的分形图像开始,即“分形树”。
分形树是一种具有自相似性质的图形,它的分支结构在各个层次上都呈现出类似的形状。
在MATLAB中,我们可以使用递归算法来生成分形树。
首先定义一个起始点,然后在每一个分支处分别生成更小的分支,直到达到指定的层数。
接下来,我们介绍分形图像中的另一个重要概念:分形维度。
分形维度是描述分形图像复杂性的一个重要指标,它可以帮助我们量化和比较不同分形图像的特征。
在MATLAB中,我们可以使用盒计数法来计算一个图像的分形维度。
该方法通过在图像上放置越来越小的盒子,并统计图像中相应位置包含的点的个数,从而得到一个关于盒子尺寸的函数。
通过对这个函数进行线性拟合,我们可以得到图像的分形维度。
除了生成图像和计算分形维度外,MATLAB还提供了其他一些强大的分形数学方法。
例如,通过MATLAB的迭代函数系统,我们可以构建一些令人惊叹的分形图案。
迭代函数系统是指由一系列函数和相应的权重所构成的系统,通过重复应用这些函数,并根据权重分配概率来生成图像。
通过调整函数和权重的选择,我们可以创造出各种各样的分形图案。
此外,MATLAB还提供了许多用于分形分析和建模的工具。
例如,我们可以使用MATLAB的分形相关函数来计算一个时间序列数据的分形维度,从而分析其复杂性和变化规律。
此外,MATLAB还提供了一些用于生成分形地形模型的函数,这对于地理信息系统和仿真研究非常有用。
综上所述,MATLAB为分形数学提供了丰富的工具和函数,使得研究者能够更方便地探索和实现分形数学的各种应用。
无论是生成分形图像、计算分形维度还是进行分形分析和建模,MATLAB都能够提供强大的支持。
bm3d matlab代码

bm3d matlab代码BM3D是一种基于图像处理的算法,它能够有效地去除图像中的噪声,并提取出清晰而细节丰富的图像。
本文将详细介绍BM3D算法的原理、流程和实现过程,并通过实例演示其在图像去噪中的应用。
一、BM3D算法原理BM3D算法的全称是Block Matching 3D,它利用图像中的块匹配和三维变换来消除噪声。
其原理可以分为以下几个步骤:1. 分块:将待处理的图像分成多个块状区域,每个区域包含一定数量的像素点。
2. 相似性匹配:对每个块状区域进行相似性匹配,即在图像的整个区域中寻找与当前块状区域相似的块。
这一步骤的目的是找到与当前块状区域具有相近特征的块,以便于后续的噪声估计和去噪处理。
3. 三维变换:对匹配到的相似块进行三维变换,将其转换为一个三维频域表示。
这个变换过程可以提取出块状区域中的结构信息,并将其划分为平坦信号和纹理信号。
4. 噪声估计:通过计算平坦信号的方差来估计块状区域中的噪声水平。
这一步骤的目的是准确估计出噪声的分布,并作为后续去噪处理的依据。
5. 非线性滤波:对纹理信号进行非线性滤波处理,以降低噪声的影响。
BM3D算法通过分阶段的修复方法来提高图像的质量,其中包括去除噪声和恢复细节。
二、BM3D算法流程BM3D算法的流程可以总结为以下几个步骤:1. 图像预处理:对待处理图像进行预处理,例如灰度化处理和归一化处理,以便于后续操作的进行。
2. 分块和相似性匹配:将预处理后的图像分成多个块状区域,并对每个区域进行相似性匹配,以找到与之相似的块。
3. 三维变换:对匹配到的相似块进行三维变换,将其转换为频域表示,并提取出频谱信息。
4. 噪声估计:通过计算平坦信号的方差来估计每个块状区域中的噪声水平。
5. 非线性滤波:对纹理信号进行非线性滤波处理,以降低噪声的影响,并恢复图像的细节。
6. 后处理:对滤波后的图像进行后处理操作,例如反变换、色彩空间转换等,以得到最终的去噪图像。
Matlab设置Legend横排、分块

Matlab设置Legend横排、分块⾼级⽤法1:指定legend显⽰的位置:legend({'str1','str2','strn'},'Location','SouthEast');⽐较鸡肋,画好图后树⼿动拖动就好了⾼级⽤法2:指定显⽰某⼏条曲线的legend:例如你有25条曲线,想显⽰其中1,6,11,16,21的legendH = plot(data);legend(H([1 6 11 16 21],'1,'6','11’,'16','21');⾼级⽤法3:legend横排hl = legend(H([1 6 11 16 21],'1,'6','11’,'16','21');set(hl,'Orientation','horizon')⾼级⽤法4:不显⽰⽅框:hl = legend(H([1 6 11 16 21],'1,'6','11’,'16','21');set(hl,'Box','off'); 查看这个的初衷是因为四条曲线的对⽐图,但是有些曲线差别太⼤,⽐如A在[1.8,1.82],B在[0.9,1.1],CD曲线在中间这样的话,因为A曲线的存在,中坐标最⼤值是1.82但是变化很不明显,所以该曲线在图的最上⽅,⽽且紧挨着图的上边界,因为图例在右上⽅,这样肯定会覆盖曲线,所以想着横排。
但是这种⽅法也不好做好的事拆开。
Matlab提供的legend函数,给出的legend经常覆盖了某些曲线(尤其是⽤IEEE模板的时候,⼀般图⽚宽度不超过315px).a=linspace(0,2*pi,100);y1=100*sin(a);y2=50*cos(a);y3=tan(a);y4=log(a);y=[y1;y2;y3;y4];figurep=plot(a,y)legend('sin','cos','tan','log') 如下图所⽰: Matlab画图实现两个或多个legend,不同排版 这显然不是你想要的,你的reviewers也会肯定让你修改的! 原因是Matlab的Legend函数,只能⽔平或者竖直排版! 解决⽅法:把legend分成⼏个,相对独⽴,这样可以使⽤⿏标随意移动,确保不遮挡曲线。
matlab自动对焦的算法

matlab自动对焦的算法
自动对焦算法是基于图像处理的一种技术,它可以实现对数字图像的质量评估、清晰度评测、对焦调节等功能,大大提高了图像的清晰度,从而保证了图像的质量和可读性。
在matlab中,有多种自动对焦算法可供选择,如灰度变换法、分块求方差法、频率域法等。
以下是部分算法介绍:
- 灰度变换法:通过计算图像灰度值的变化来实现对焦。
首先需要采集一张模糊的图像,然后利用imadjust函数调节灰度值的分布范围,找到最大灰度值和最小灰度值,再通过计算灰度值的标准差和均值来确定最佳的对焦位置。
- 分块求方差法:将图像分成若干个块,计算每个块的灰度值方差,然后选择方差最大的块作为最佳对焦位置。
这种算法实现简单,对噪声和光照变化具有较强的鲁棒性。
- 频率域法:通过傅里叶变换将图像转换到频域,然后计算频域上的图像清晰度。
常用的指标有细节能量、能量谱和调制传递函数等,根据这些指标可以选择最佳的对焦位置。
在实际应用中,可以根据具体需求和场景选择合适的自动对焦算法,并进行相应的调整和优化。
如果你想要了解更多matlab自动对焦算法的信息,可以继续向我提问。
基于MATLAB的图像分块方法

基于MATLAB的图像分块方法lyqmath0 引言通常我们对图像要求按指定块数或者指定长宽来做图像规则分块。
这就要求对图像的长宽信息按指定方式做处理。
这里给出按照规则分割方法得到的分割结果。
参数要求为分块的个数或者图像块的大小信息。
1 区域分割输入图像,要求分割成X*Y的图像块,然后做出矩形框标记。
代码clc; clear all; close all;I = imread('c:\\ceshi.jpg');rs = size(I, 1); % 行数cs = size(I, 2); % 列数% ch为列间隔 cw为行间隔% numr为间隔块个数 numc为间隔块个数ch = 41;cw = 40;numr = round(rs/ch);numc = round(cs/cw);% 区域块分割t1 = (0:numr-1)*ch + 1; t2 = (1:numr)*ch;t3 = (0:numc-1)*cw + 1; t4 = (1:numc)*cw;figure; imshow(I); hold on;for i = 1 : numrfor j = 1 : numcx = t1(i):t2(i);y = t3(j):t4(j);% 绘制矩形块rectangle('Position', [t3(j) t1(i) length(x) length(y)], ...'EdgeColor', 'r', 'LineWidth', 3);endend结果2 结论根据输入参数做图像分块处理,注意到图像矩阵的行列特性,可以做进一步提取。
欢迎访问我的博客:/lyqmath。
图像分块matlab程序

图像分块matlab程序看到不少⽹友,浏览了之前写读的图像分块简单版,现在将之前写的复杂版也贡献与⼤家⼀起学习、讨论。
clear,clc;[filename,filepath] = uigetfile('*.*','Select the image');if isequal(filename,0)||isequal(filepath,0)return;elsefilefullpath=[filepath,filename];end%得到⽂件名,以便建⽴⼀个⽂件夹保存分块图像[pathstr,name,ext] = fileparts(filename);Im=imread(filefullpath);% imshow(Im)L = size(Im);%分块⼤⼩height=300;width=400;%重叠x=0.25;h_val=height*(1-x);w_val=width*(1-x);max_row = (L(1)-height)/h_val+1;max_col = (L(2)-width)/w_val+1;%判断能否完整分块if max_row==fix(max_row)%判断是否能够整分max_row=max_row;elsemax_row=fix(max_row+1);endif max_col==fix(max_col)%判断是否能够整分max_col=max_col;elsemax_col=fix(max_col+1);endseg = cell(max_row,max_col);for row = 1:max_rowfor col = 1:max_colif ((width+(col-1)*w_val)>L(2)&&((row-1)*h_val+height)<=L(1))%判断最右边不完整的部分seg(row,col)= {Im((row-1)*h_val+1:height+(row-1)*h_val,(col-1)*w_val+1:L(2),:)};elseif((height+(row-1)*h_val)>L(1)&&((col-1)*w_val+width)<=L(2))%判断最下边不完整的部分seg(row,col)= {Im((row-1)*h_val+1:L(1),(col-1)*w_val+1:width+(col-1)*w_val,:)};elseif((width+(col-1)*w_val)>L(2)&&((row-1)*h_val+height)>L(1))%判断最后⼀张seg(row,col)={Im((row-1)*h_val+1:L(1),(col-1)*w_val+1:L(2),:)};elseseg(row,col)= {Im((row-1)*h_val+1:height+(row-1)*h_val,(col-1)*w_val+1:width+(col-1)*w_val,:)}; %其余完整部分 endendendimshow(Im);hold onsystem(['mkdir ',name]);%创建与图⽚名相同的⽂件⽤来保存图⽚paths=[pwd,'\',name]; %获取指定⽂件夹⽬录%保存⼦图for i=1:max_rowfor j=1:max_colimwrite(seg{i,j},[paths,'\',strcat(int2str(i),'⾏',int2str(j),'列','.bmp')]); %把第i帧的图⽚写为'mi.bmp'endend% 画框显⽰for row = 1:max_rowfor col = 1:max_colc=rand(1,3);%随机颜⾊rectangle('Position',[w_val*(col-1),h_val*(row-1),width,height],...'LineWidth',2,'LineStyle','-','EdgeColor',c);end end。
matlab程序画几何图形并进行网格划分

编写程序,对下图几何区域按有限元法进行网格划分,确定单元中结点数目及位置,并对单元和结点分别进行编号。
二、程序思路基于MATLAB软件平台,首先画出几何图形,然后对几何区域按照有限元法思想进行三角形网格剖分,最后按顺序依次输出单元及结点编号和坐标。
三、编写源程序:clear;%第一步:画出几何区域%为按逆时针顺序绘制几何区域x_up=[3.5,0];y_up=[2,2];%上固体边界数组x_l=[0,0];y_l=[2,0];%入流左边界数组x_low=[0,2.5];y_low=[0,0];%下固体边界数组n=9;%圆弧等分变量nc=linspace(pi,pi/2,n);r=1;%圆弧半径变量rx_c=r*cos(c)+3.5;y_c=r*sin(c);%三角函数表示圆柱左上部分x_r=[3.5,3.5];y_r=[1,2];%出流右边界数组x=[x_low,x_c,x_r,x_up,x_l];%整体边界X坐标数组y=[y_low,y_c,y_r,y_up,y_l];%整体边界Y坐标数组plot(x,y,'m');%绘制几何区域xlabel('x轴');ylabel('y轴');title('几何区域');hold onl=k*(pi/2)*r;x_up(3)=3.5-l;y_up(3)=2;cut_point=[x_up(3),y_up(3)];x_up(3)=x_up(2);y_up(3)=y_up(2);x_up(2)=cut_point(1);y_up(2)=cut_point(2);%将上边界点坐标按顺序重排x_cutline=[x_up(2),x_low(2)];y_cutline=[y_up(2),y_low(2)];%分割线数组plot(x_cutline,y_cutline);%绘制分割线n1=6;%上边界左半部分n1等分变量x_upcp1=linspace(x_up(2),x_up(3),n1+1);%上边界左半部分n1等分y_upcp1=linspace(y_up(2),y_up(3),n1+1);x_lowcp1=linspace(x_low(2),x_low(1),n1+1);%下边界n1等分y_lowcp1=linspace(y_low(2),y_low(1),n1+1);x_upcp2=linspace(x_up(1),x_up(2),n+1);%上边界右半部分n等分y_upcp2=linspace(y_up(1),y_up(2),n+1);x_upper=[x_upcp2,x_upcp1];%上固体边界坐标数组y_upper=[y_upcp2,y_upcp1];c1=linspace(pi*3/2,pi,n+1);x_c1=cos(c1)+3.5;y_c1=abs(sin(c1));x_lower=[x_c1,x_lowcp1];y_lower=[y_c1,y_lowcp1];for i=1:n1+n+2%画竖线plot([x_upper(i)x_lower(i)],[y_upper(i)y_lower(i)],'m');endm=7;for i=n+n1+2:-1:1plot([x_upper(i)x_lower(i)],[y_upper(i)y_lower(i)],'m');%绘制竖线x1(i,:)=linspace(x_upper(i),x_lower(i),m+1);%竖线m等分y1(i,:)=linspace(y_upper(i),y_lower(i),m+1);endfor i=1:mfor j=n+n1+2:-1:2plot([x1(j,i)x1(j-1,i)],[y1(j,i)y1(j-1,i)],'m');%plot([x1(j,i)x1(j-1,i+1)],[y1(j,i)y1(j-1,i+1)],'m');endendfor j=1:n+n1for i=1:mp1=i+(j-1)*(m+1);p2=i+1+j*(m+1);p3=i+j*(m+1);t=2*i+2*(j-1)*m;p4=i+(j-1)*(m+1);p5=i+1+(j-1)*(m+1);p6=i+1+j*(m+1);e(t-1,:)=[p1,p2,p3];%整体编号与局部编号关系e(t,:)=[p4,p5,p6];endend四、程序各步运行结果:具体程序如上所写第一步:画出几何区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB的图像分块方法
lyqmath
0 引言
通常我们对图像要求按指定块数或者指定长宽来做图像规则分块。
这就要求对图像的长宽信息按指定方式做处理。
这里给出按照规则分割方法得到的分割结果。
参数要求为分块的个数或者图像块的大小信息。
1 区域分割
输入图像,要求分割成X*Y的图像块,然后做出矩形框标记。
代码
clc; clear all; close all;
I = imread('c:\\ceshi.jpg');
rs = size(I, 1); % 行数
cs = size(I, 2); % 列数
% ch为列间隔 cw为行间隔
% numr为间隔块个数 numc为间隔块个数
ch = 41;
cw = 40;
numr = round(rs/ch);
numc = round(cs/cw);
% 区域块分割
t1 = (0:numr-1)*ch + 1; t2 = (1:numr)*ch;
t3 = (0:numc-1)*cw + 1; t4 = (1:numc)*cw;
figure; imshow(I); hold on;
for i = 1 : numr
for j = 1 : numc
x = t1(i):t2(i);
y = t3(j):t4(j);
% 绘制矩形块
rectangle('Position', [t3(j) t1(i) length(x) length(y)], ...
'EdgeColor', 'r', 'LineWidth', 3);
end
end
结果
2 结论
根据输入参数做图像分块处理,注意到图像矩阵的行列特性,可以做进一步提取。
欢迎访问我的博客:/lyqmath。