高中数学必修一教材分析1

合集下载

人教a版高中数学必修第一册教师教学用书

人教a版高中数学必修第一册教师教学用书

人教a版高中数学必修第一册教师教学用书引言概述:人教A版高中数学必修第一册教师教学用书是一本专为高中数学教师编写的教学辅助资料。

本教材内容全面、结构清晰,旨在帮助教师更好地进行教学活动。

本文将从五个大点出发,详细阐述该教材的优势和特点。

正文内容:1. 教材内容丰富多样1.1 课程设置全面人教A版高中数学必修第一册教师教学用书根据国家课程标准,全面设置了必修一的内容,包括数学的基本概念、函数与方程、平面向量等。

这些内容涵盖了高中数学的基础知识和重要概念,有助于学生全面理解和掌握数学知识。

1.2 知识点详细讲解教材中对每个知识点都进行了详细的讲解,包括定义、性质、定理等。

教师可以根据教材的指导,有针对性地进行教学,帮助学生深入理解数学知识,提高解题能力。

2. 教学方法灵活多样2.1 启发式教学人教A版高中数学必修第一册教师教学用书提倡启发式教学方法,通过提问、引导等方式,激发学生的思维,培养他们的问题解决能力和创新思维。

教师可以根据教材的指导,设计各种启发式的教学活动,使学生在实践中掌握数学知识。

2.2 探究式学习教材中还提供了一些探究性学习的活动,让学生通过实际操作、观察、实验等方式主动探索数学问题,培养他们的观察力和动手能力。

教师可以结合教材中的示例,引导学生进行探究式学习,提高他们的学习兴趣和学习效果。

3. 教材结构清晰3.1 章节划分合理人教A版高中数学必修第一册教师教学用书的章节划分合理,每个章节都围绕一个主题展开,内容之间有着明确的逻辑关系。

教师可以根据章节划分,有目的地进行教学,帮助学生理解和掌握数学知识。

3.2 知识点层次清晰教材中的知识点层次清晰,从基础知识到深入应用,逐步展开。

教师可以根据知识点的层次,有条理地进行教学,帮助学生逐步提高数学水平。

总结:人教A版高中数学必修第一册教师教学用书是一本内容丰富、教学方法灵活、结构清晰的教材。

它能够帮助教师更好地进行教学活动,提高学生的数学水平和解题能力。

高中数学必修第一册人教A版(2019)《等式性质与不等式性质》教材分析

高中数学必修第一册人教A版(2019)《等式性质与不等式性质》教材分析

高中数学必修第一册人教A版(2019)《等式性质与不等式性质》教材分析2.1等式性质与不等式性质一、本节知识结构框图二、重点、难点重点:不等式的基本性质,等式与不等式的共性与差异.难点:类比等式的基本性质及其蕴含的思想方法,研究不等式的基本性质;等式与不等式的共性与差异.三、教科书编写意图及教学建议在初中,学生学习了用含有未知数的等式(方程)表示问题中的相等关系,为了解方程研究了等式的一些基本性质,本节在初中等式学习的基础上,类比等式的学习内容和方法,展开不等式的研究,首先类比用等式表示相等关系,用不等式表示问题中的不等关系;然后在对等式的基本性质进行梳理,归纳其中蕴含的数学思想方法的基础上,研究不等式的性质,并用不等式的性质证明简单命题,通过本节的学习,掌握不等式的性质,提高对等式和不等式的共性与差异的理解,加深对“代数性质”的认识,提高提出问题和解决问题的能力.1.相等关系与不等关系教科书从现实世界和日常生活中存在的相等关系、不等关系讲起,类比用等式表示相等关系,用问题1的4个例题说明了如何用不等式或不等式组表示实际问题或数学问题中蕴含的不等关系.与用等式表示相等关系类似,用不等式表示不等关系的关键也是确定问题中涉及的量及其满足的不等关系,然后用未知数表示量,把不等关系“翻译”成不等式.与用等式表示相等关系不同的是,有时用自然语言表达的不等关系不够明确,例如“不少于”“不低于”“至多”“至少”等,需要先把它们翻译成大于或小于的关系,再用不等式表示.关于问题2,要解决这个问题,需要用不等式表示其中的不等关系,还需要求不等式的解集.而如何解这个不等式呢,教科书提出“与解方程要用等式的性质一样,解不等式要用不等式的性质”,这就引出了对不等式性质的研究.接下来,教科书没有立即开始研究不等式的性质,而是先讨论了确定两个实数大小关系的方法.在初中,学生学过了实数的大小关系是由这两个实数在数轴上的点的位置关系规定的,这可以看成确定实数之间大小关系的几何规则.这个规则尽管直观,但在比较两个实数的大小关系时并不实用,因此这里介绍了一种代数方法——两个实数大小关系的基本事实.这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而使实数的运算能够参与到实数的大小比较中,为不等式的论证提供了运算工具,也为研究不等式的性质奠定了基础.在本部分内容的最后,作为对相等关系和不等关系的总结,也为了引出基本不等式,教科书设计了一个探究栏目,让学生在第24届国际数学家大会的会标中发现相等关系和不等关系.这个会标实际上就是“赵爽弦图”——由4个全等的直角三角形围成一个大正方形,中空的部分是一个小正方形,由于大正方形的面积大于4个直角三角形的面积和,即(设直角三角形的两条直角边的长为,()),而当直角三角形变为等腰直角三角形,即时,中空部分缩为一个点,这时有相等关系.这样,就引出了基本不等式的一种变形形式.在上述过程中,学生的困难在于想不到从面积的角度发现不等关系,教学中应加强引导.接下来,教科书利用完全平方公式和两个实数大小关系的基本事实证明了上述不等式,这既体现了数学知识之间的联系,又再一次说明了两个实数大小关系的基本事实在解决不等式问题中的应用价值.2,等式性质与不等式性质教科书类比等式的基本性质,研究了不等式的基本性质及其证明和应用.为了帮助学生从等式的性质及其研究方法中获得启发,去研究不等式的性质,教科书设计了两个问题(教科书第40页的思考栏目和探究栏目).通过这两个问题,让学生在梳理并观察等式的基本性质的基础上认识到,这些性质包括在数学推理和运算中经常用到的“对称性”和“传递性”,还包括解方程所需要的等式对四则运算的不变性,而这两个方面反映了“式的大小关系”的本质属性,这些基本属性为探究不等式的基本性质指明了方向.学生在猜想不等式的基本性质的过程中会发现,不等式的基本性质与等式的基本性质存在差异:就不等式自身的特性而言,不等式不具有“对称性”,而是具有“相反性”,即,;就不等式与四则运算的关系而言,当乘一个负数时,不等号要调换方向,即,.不等式的这种特殊性是由实数的基本性质决定的,在对不等式进行论证时,除了要用到实数大小关系的基本事实,还需要用到关于实数的其他一些基本事实,例如:(1)正数大于0,也大于一切负数;负数小于0,也小于一切正数.(2)正数的相反数是负数,负数的相反数是正数.(3)两个正数的和仍是正数,两个负数的和仍是负数.(4)同号两数相乘,其积为正数;异号两数相乘,其积为负数.利用这些基本事实,可以对猜想出的不等式的基本性质进行证明.在表述不等式的基本性质时,教科书也做了一些改变.不等式的性质3是类比等式的性质3得到的,性质4是类比等式的性质4,5得到的,在表述它们时,教科书把加法和减法合并为“加法”,把乘法和除法合并为“乘法”,这也表明高中数学对运算的认识更趋于一般性.此外,考虑到对于同一个数学对象的多元联系表示,有利于加深学生对它的理解,教科书从不同角度表述了不等式的性质,例如对于性质3和性质4使用了自然语言叙述,对于性质3还用数轴上的实数点展现了不等式包含的动态过程及结果.教学中可以让学生用自然语言或图形语言表述其他不等式的性质.在得到并证明了不等式的基本性质之后,教科书用这些基本性质,推导出了其他一些常用的不等式的性质(性质5~7),这些性质可以作为结论在今后的推理中使用.另外,证明这些性质的过程可以看作不等式的性质在代数证明中的初步应用.证明的关键是利用不等式的基本性质,对给定的不等式进行结构上的变形,例如“不等式两边同加一个数”“不等式两边同乘一个数”等,逐步把给定的不等式变形为要证明的不等式.正确地运用不等式的性质对不等式进行变形对学生来说有一定的难度,教学中可以通过让学生多练习、纠正其典型错误等方式逐步帮助学生掌握正确的方法.在本部分内容的最后,教科书安排了一道例题(例2),向学生示范了应用不等式的性质证明命题的一般思路,这个命题的证明比不等式的性质5~7的证明要复杂一些,因为已知条件与结论之间的联系不够明显,证明中需要对已知不等式做什么变形不太明确,对于这样的问题,教科书在“分析”中给出了证明的一般思路:从结论出发,结合已知条件,寻求使当前命题成立的充分条件,而这个充分条件是容易由已知条件证明的,这实际上是综合运用“综合法”和“分析法”证明命题的思路,但因为教科书没有专门介绍证明方法,所以本例的证明过程采用了学生更熟悉的“综合法”的格式,教师在教学中可以补充一些典型题目,引导学生领会这种“发展条件、转化结论、寻求联系”的证明较复杂命题的一般思路.。

人教版高一数学必修一

人教版高一数学必修一

人教版高一数学必修一人教版高一数学必修一是高中数学课程中的一门必修课,下面将为大家介绍该教材的内容和特点。

人教版高一数学必修一主要包括以下六个单元:数学语言与证明、函数与方程、立体几何、数列与数学归纳法、三角函数、概率与统计。

这些单元内容涵盖了高一数学学科的基本知识,旨在培养学生的数学思维能力和解决问题的能力。

首先,数学语言与证明单元主要介绍了数学中常用的语言和符号,以及数学证明的基本方法和技巧。

通过学习这个单元,学生能够正确理解并运用数学语言,有效地进行数学推理和证明,提高自己的逻辑思维和表达能力。

其次,函数与方程单元主要介绍了函数的概念、性质和表示方法,以及方程的解法和应用。

学生将学习到如何分析和解决实际问题中的函数和方程,并通过实际例题来提高自己的理解和应用能力。

第三,立体几何单元主要介绍了立体几何中的基本概念和相关定理,学生将学习如何运用这些概念和定理进行几何证明和计算。

通过学习这个单元,学生将加深对空间几何性质的理解,培养自己的几何思维和空间想象力。

第四,数列与数学归纳法单元主要介绍了数列的概念、性质和相关方法,以及数学归纳法的基本原理和应用。

学生将学习如何分析和计算数列,运用数学归纳法进行证明和解题。

通过学习这个单元,学生将提高自己的数学思维和分析问题的能力。

第五,三角函数单元主要介绍了三角函数的基本概念、性质和运算规则,以及三角函数在实际问题中的应用。

学生将学习如何计算和应用三角函数,提高自己的三角计算和解决实际问题的能力。

最后,概率与统计单元主要介绍了概率和统计的基本概念、方法和应用。

学生将学习如何计算和分析概率、统计样本,运用统计方法解决实际问题。

通过学习这个单元,学生将加深对概率和统计的理解,培养自己的数据分析和问题解决能力。

总的来说,人教版高一数学必修一是一本基础性很强的教材,以数学的基本概念和方法为主线,通过实际例题和问题来培养学生的数学思维和解决问题的能力。

学生通过学习这本教材,不仅能够掌握高一数学知识的基本要点,还能够培养自己的逻辑思维、分析问题和解决问题的能力,为学习和考试打下坚实的基础。

数学必修1教材分析

数学必修1教材分析

数学必修1教材分析数学必修1教材分析一、教材概述数学必修1是高中数学教材的一部分,主要内容包括函数的概念、性质和图像,以及函数的单调性和奇偶性。

此外,还包括了集合、不等式、数列和算法初步等知识。

这一册教材旨在让学生掌握函数的基础知识和基本技能,以及与函数相关的数学思想,为学生后续的数学学习和应用打下坚实的基础。

二、教材特点1.注重基础知识数学必修1教材注重基础知识的讲解和传授,通过对函数的概念、性质和图像的详细介绍,让学生逐渐理解和掌握函数的基本概念和性质。

同时,教材也强调对基本技能的训练,例如函数的运算、图像的绘制等,为学生后续的学习和应用打下坚实的基础。

2.突出数学思想数学必修1教材不仅注重基础知识的讲解,同时也突出了数学思想的传授。

例如,通过函数单调性和奇偶性的讲解,让学生深入理解函数的图像和性质之间的联系。

此外,教材还介绍了集合、不等式等数学思想,帮助学生掌握数学基础知识,并为后续的学习和应用提供重要的思想支撑。

3.强调实践应用数学必修1教材不仅注重基础知识和数学思想的讲解,同时也强调实践应用。

例如,教材中介绍了如何利用函数知识解决实际问题,例如如何利用函数模型解决最优化问题等。

此外,教材还设计了大量的实际问题,让学生通过分析和解决实际问题来提高数学应用能力。

三、教学内容及学时安排数学必修1教材的教学内容主要包括以下几个方面:1.函数的概念和性质(4学时)这部分内容主要介绍函数的概念、性质和图像,包括函数的定义域、值域、单调性、奇偶性等。

学生需要通过学习这些内容,理解和掌握函数的基本概念和性质,为后续的学习打下基础。

2.函数的图像(4学时)这部分内容主要介绍如何绘制函数的图像,以及图像的平移、伸缩等变换。

学生需要通过学习这些内容,掌握函数的图像表示方法和图像变换的基本技能。

3.集合与不等式(4学时)这部分内容主要介绍集合的基本概念、集合之间的关系和运算,以及不等式的性质和证明方法。

学生需要通过学习这些内容,掌握集合的基本概念和不等式的性质及证明方法。

人教版高中数学必修一2.1.2《指数函数及其性质》word教材分析1

人教版高中数学必修一2.1.2《指数函数及其性质》word教材分析1

《指数函数及其性质》一、教材分析(一)教材的地位和作用人民教育出版社《普通高中课程标准实验教科书••数学(1)》(人教A版)$2.1.2“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。

作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用, 又对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,也为今后研究其他函数提供了方法和模式。

指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究。

(二)课时划分指数函数的教学在中共分三个课时完成。

指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)。

这是第一课时“指数函数的图象及其性质”。

“指数函数”第一课时是在学习了指数与指数幂的运算基础上学习指数函数的概念和性质,通过学习指数函数的定义,图象及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

二、学情分析(一)有利因素通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个层面:知识层面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能层面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

情感层面:学生对数学新内容的学习有相当的兴趣和积极性。

(二)不利因素本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度。

高中数学必修第一册人教A版(2019)第四章 《指数函数与对数函数》本章教材分析

高中数学必修第一册人教A版(2019)第四章 《指数函数与对数函数》本章教材分析

《指数函数与对数函数》本章教材分析一、本章知能对标二、本章教学规划本章在研究指数幂和对数的基础上,以研究函数概念与性质的一般方法为指导,借鉴研究幂函数的过程与方法,学习指数函数和对数函数,帮助学生学会用函数图象和代数运算的方法研究它们的性质,理解这两类函数中蕴含的变化规律;运用函数思想和方法,探索用二分法求方程的近似解;通过建立指数函数、对数函数模型解决简单的实际问题,体会指数函数、对数函数在解决实际问题中的作用,从而进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具,提升数学抽象、数学建模、数学运算、直观想象和逻辑推理等数学核心素养.三、本章教学目标1.指数函数:通过了解指数的拓展过程,让学生掌握指数幂的运算性质;了解指数函数的实际意义,理解指数函数的概念.能借助描点法、信息技术画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.2.对数函数:通过具体事例,让学生理解对数的概念和运算性质,掌握换底公式;了解对数函数的概念,能画对数函数的图象,了解对数函数的单调性与特殊点;知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).3.二分法与求方程近似解:结合指数函数和对数函数的图象,让学生了解函数的零点与方程解的关系、函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.4.函数与数学模型:利用计算工具,比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律.四、本章教学重点难点重点:实数指数幂及其运算,对数及其运算,指数函数和对数函数的概念、图象、性质及其应用. 难点:抽象概括指数函数和对数函数的概念及性质.五、课时安排建议本章教学约需11课时,具体安排如下:六、本章教学建议1.注重引导学生按研究函数的基本思路展开研究本章教学要注重让学生再次经历研究函数的基本过程:背景—概念—图象和性质—应用.要注意引导学生通过计算分析具体实例的数据中蕴含的变化规律抽象形成相应的函数概念,利用教科书中的问题引导学生思考和总结.2.用函数的观点联系相关内容,培养学生的数学整体观本章的核心内容是指数函数和对数函数,全章都应该围绕核心内容展开教学,以更好地帮助学生形成函数观点和思想方法.指数幂的运算、对数的概念及其运算性质和公式、指数和对数的关系,是学习指数函数、对数函数必备的基础,运用这些运算性质,通过运算,解决具体的问题教学中要从整体上把握上述运算性质、函数概念、图象、性质以及应用的关系.3.加强“形”与“数”的融合,循序渐进地研究指数函数和对数函数为了能选择合适的函数类型构建数学模型,刻画现实问题的变化规律,教学时可以依据教科书,从两个方面帮助学生体会不同函数模型增长的差异:一是通过观察函数图象,利用图象直观比较指数函数与线性函数、对数函数与线性函数增长速度的差异;二是通过教科书中的实例,结合具体问题情境理解不同函数增长的差异,教学的关键是从局部到整体,从不同角度观察、比较不同函数图象增长变化的差异,从而直观体会直线的增长、指数爆炸、对数增长的含义4.加强背景和应用,发展学生数学建模素养数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养.教学中,应注意参考教科书,结合这些素材,引导学生从数学的视角发现问题、提出问题,构建指数函数和对数函数模型,确定模型中的参数,计算求解,检验结果,改进模型,最终解决问题,让学生体会数学的来源与应用,丰富学生对数学的认识,提升数学建模素养.5.注重借助信息技术工具研究指数函数和对数函数在不同函数增长差异的教学中,利用信息技术可以作出函数在两个不同范围的图象,帮助学生从不同角度观察到不同函数增长的差异.6.注意通过无理数指数幂的教学渗透极限思想教科书通过“用有理数指数幂逼近无理数指数幂”的思想方法引入无理数指数幂.教学中,可以类比初中用有理数逼近无理数,让学生充分经历从“过剩近似值”和“不足近似值”两个方向,用有理数指数幂逼近无理数指数幂的过程;通过在数轴上表示这些“过剩近似值”和“不足近似值”的对应点,发现这些点逼近一个确定的点,其对应的数就是这个无理数指数幂.这样从“数”与“形”的两个角度,加强了逼近和极限思想的渗透,有助于学生从中初步体会这一重要思想.。

高中数学必修1教材分析

高中数学必修1教材分析

高中数学必修1教材分析一、说课标(一)数学课程总目标使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需求。

知识与技能:获得数学的基本知识和技能,提高空间想象、抽象概括、推理、计算和数据处理的基本能力。

过程和方法:通过不同形式的自主学习和探究活动,体验数学发现和创造的过程,体会概念结论中蕴含的数学思想和方法。

情感态度价值观:发展数学应用意识和创新意识,提高数学的分析和解决问题的能力。

提高数学兴趣、树立信心,形成批判思维和辩证唯物主义世界观。

(二)必修1函数课程目标知识与技能:学会用集合和对应的语言刻画函数,理解函数的概念、性质等。

学会用函数性质求方程近似解过程与方法:经历函数概念、性质由实际背景抽象成数学语言的过程,感受用函数概念建立模型的过程与方法,体会用函数思想理解和处理现实生活和社会中的简单问题。

情感态度价值观:发展数学应用意识,提高数学兴趣、拓展视野,养成理性思维的好习惯。

(三)课程内容标准1.集合与函数的概念(1)学会用集合语言表达相关的数学对象。

(2)用集合与对应的语言刻画函数,会选择恰当的方法表示函数。

(3)理解并简单应用分段函数解题。

(4)理解单调性、极大值和奇偶性。

重点是理解函数的概念,单调性,最大值及其几何意义,函数的奇偶性。

2. 基本初等函数(Ⅰ)(1)理解有理指数幂的含义、对数概念及运算性质,了解对数发展史(2)了解指数、对数函数的实际背景,理解指数、对数函数的概念。

(3)探索并理解指数函数的单调性与特殊点;探索并了解对数函数的单调性与特殊点。

知道指数函数与同底对数函数互为反函数。

(4)结合图像理解幂函数的概念及其变化。

重点是理解指数函数与对数函数的概念及其性质,了解它们是重要的函数模型。

3. 函数的应用(1)结合二次函数的图象,了解函数的零点与方程根的联系.(2)根据具体函数的图象,了解二分法是求方程近似解的常用方法.(3)用计算工具比较指数函数、对数函数和幂函数之间的增长差异。

教材完全解读 高中数学 必修1

教材完全解读 高中数学 必修1

教材完全解读高中数学必修1引言高中数学是中学数学的重要组成部分,对于学生的综合素质和逻辑思维能力的培养具有重要意义。

本文将从以下几个方面对高中数学必修1教材进行详细解读,帮助学生更好地理解和掌握教材内容。

1. 教材概述高中数学必修1教材主要包括数学思维方法、函数与二次函数、一元二次方程与不等式、数列与递推关系、平面向量等内容。

这些内容是高中数学学习的基础,也是理解后续高级数学知识的重要前提。

2. 数学思维方法数学思维方法是高中数学学习的基本功,也是推理和解决问题的关键。

教材中通过举例和解题技巧的介绍,引导学生培养系统思维、创新思维和合作思维。

了解和掌握这些思维方法对于学生的数学学习和思维能力的提升至关重要。

3. 函数与二次函数函数与二次函数是高中数学必修1教材中的重要内容。

教材中详细介绍了函数的基本概念、性质和图像,并给出了大量的例题和习题帮助学生巩固理解。

通过学习函数和二次函数的知识,学生能够解决实际问题中的函数关系、最值问题等。

4. 一元二次方程与不等式一元二次方程与不等式也是高中数学必修1教材中的重要内容。

教材中系统地介绍了一元二次方程和不等式的解法,并通过大量的例题和习题培养学生解决实际问题的能力。

掌握一元二次方程和不等式的解法对于学生后续的数学学习至关重要。

5. 数列与递推关系数列与递推关系是高中数学必修1教材中的重要内容之一。

教材中详细介绍了等差数列和等比数列的概念、性质和求和公式,并通过例题和习题帮助学生掌握数列的求解方法。

数列与递推关系的学习不仅能够培养学生的数学思维能力,还能为后续的微积分学习打下坚实的基础。

6. 平面向量平面向量是高中数学必修1教材中的一项重要内容。

教材中系统地介绍了平面向量的概念、运算规则和性质,并通过实例和习题帮助学生掌握平面向量的应用。

平面向量的学习不仅能够提高学生的空间想象能力,还能为后续的线性代数学习奠定基础。

结论高中数学必修1教材是高中数学学习的基础和重要组成部分。

人教版高中数学必修1(2019A版)教案+反思-1

人教版高中数学必修1(2019A版)教案+反思-1

第一章集合与常用逻辑用语1.4充分条件与必要条件本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.课程目标学科素养1.教学重点:理解充分条件、必要条件、充要条件的意义,掌握命题条件的充要性判断及其证明方法;2.教学难点:命题条件充要性的判断及其证明。

多媒体一、情景引入,温故知新情景1:如图所示电路中(整个电路及灯泡一切正常), 记p:闭合开关A, q:灯泡亮。

请把这个电路图改写为“若p ,则q ”形式的命题并判断真假。

【答案】真命题情景2:记p:x >2, q:x >0 。

判断命题“若x >2 ,则 x >0”的真假。

【答案】真命题 二、探索新知探究一 充分条件与必要条件的含义 1.思考:下列“若P ,则q ”形式的命题中,哪些是真命题?哪些是假命题?(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形; (2)若两个三角形的周长相等,则这两个三角形全等;(3)若2430,1;x x x -+==则(4)若平面内两条直线a 和b 均垂直于直线l ,则a//b 。

【答案】(1)真 (2)假 (3) 假 (4)真2、归纳新知 (1)充分条件、必要条件的含义一般地,用p 、q 分别表示两个命题,如果命题p 成立,可以推出命题q 也成立,即p q ⇒,那么p 叫做q 的充分条件, p 叫做q 的必要条件.P 足以导致q,也就是说条件p 充分了;的一个充分条件。

2022高中数学必修一的优秀教案

2022高中数学必修一的优秀教案

有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样
4. 元素与集合的关系;
(1)假如a是集合A的元素,就说a属于(belong to)A,记作
a∈A(2)假如a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)
5. 常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N_或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来许多不便,除此之外还常用列举法和描述法来表示集合。

(1) 列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{_2,3_+2,5y3-_,_2+y2},…;
思索2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时。

高一数学必修第一册2019(A版)_《指数》教材分析

高一数学必修第一册2019(A版)_《指数》教材分析

4.1指数一、本节知识结构框图二、重点、难点重点:实数指数幂的运算及其性质.难点:用有理数指数幂逼近无理数指数幂.三、教科书编写意图及教学建议指数函数是以指数为自变量的一类函数,其定义域为实数集.为研究指数函数,需要把指数幂运算的范围进一步推广.类似于先把整数推广到有理数,然后把有理数推广到实数一样,本节教科书也是将指数幂由整数指数幂推广到有理数指数幂,然后推广到实数指数幂,进而为指数函数的学习奠定基础.在指数幂运算的推广过程中,“整数指数幂的运算性质在有理数指数幂、实数指数幂中仍然成立”是核心思想.对此,学生在初中学习整数指数幂时,在由正整数指数幂到负整数指数幂的推广过程中已经有所体会,本节教学中要让学生进一步体会.学习指数幂的运算,必须解决无理数指数幂的问题.与对无理数的理解一样,对无理数指数幂的理解是本节教学的难点.对此,教科书通过“用有理数指数幂逼近无理数指数幂”的思想引入无理数指数幂.教学中,可以类比初中用有理数逼近无理数的教学,让学生通过经历从“过剩近似值”和“不足近似值”两个方向,用有理数指数幂逼近无理数指数幂的过程;然后在数轴上表示这些“过剩近似值”和“不足近似值”的对应点,发现这些点逼近一个确定的点,其对应的数就是这个无理数指数幂.由此让学生体会其中的极限思想,并从数和形两个角度认识到.4.1.1n次方根与分数指数幂学生在初中已经学习过整数指数幂,在幂函数的学习中,接触过形如12S的以分数为指数的幂,那么这种以分数为指数的幂的意义是什么?它具有怎样的运算性质?它和整数指数幂有什么联系和区别?这些都是自然而然要研究的问题.教科书就是从这样的问题出发引入本节内容.平方、开平方以及立方、开立方是学生熟悉的运算,它们两两互为逆运算.为了一般化,教科书首先把平方根、立方根的概念推广到n次方根,介绍n次方根的性质;然后在此基础上,建立n次方根与分数指数幂的关系,说明分数(有理数)指数幂的意义,并把整数指数幂的运算性质推广到有理数指数幂的情形.1.n次方根的概念及其性质初中阶段,我们由平方、立方的运算,引入了平方根、立方根.类比平方根、立方根与平方、立方之间的关系,因为4(2)16±=,所以把2±叫做16的4次方根;同样,由于5232=,所以把2叫做32的5次方根.以此类推,就可以得出n次方根的概念.这种推广以具体的例子为载体,由特殊到一般,由具体到抽象,学生理解起来并不困难,通过n次方根的概念,也容易得到其性质,即(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n负的n次方根用符号表示,正的n次方根与负的n次方根可以合并写成0)a>.(3)负数没有偶次方根.(4)0的任何次方根都是00=.进一步,根据n次方根的意义,可以把实数的n次方根推广到n次根式,实现数到式的推广,而且数的性质可以自然地推广到式,这就是数式通性在n次根式中的表现,由此我们容易得到教科书105页探究栏目中问题的答案:当n a=;当n为偶数时,,0, ||,0.a aaa a⎧==⎨-<⎩2.例1的设计及教学例1的作用是巩固n次方根的概念,.前3个小题涉及的都是具体的数,第4小题涉及字母.解决问题时,要特别注意当n 为偶数时最后结果的准确表示以及化简.例如对于最后一个小题,由于涉及字母a,b,其结果要用绝对值的形式表示,所以需要对这两个字母的大小关系进行分类讨论之后再化简.3.n次方根与分数指数幂的关系以n次方根的概念及其性质为基础,教科书进一步研究了n次方根与分数指数幂的关系.对于根式的被开方数的指数与根指数,存在整除与不能整除两种情况.教科书首先通过具体的实例说明,当根式的被开方数,如10a(看成幂的形式)的指数10能被根指数5整除时,可以表示为分数指数幂105a的形式.这样,就把10a的5次方根与分数指数幂105a联系起来,这种联系是非常自然的.整除的情况研究清楚了,自然就会提出“当根式的被开方数的指数不能被根指数整除时,根式是否也可以表示为分数指数幂的形式”的问题.这也就是教科书105页的“思考”提出的问题,这是一个非常重要的问题,这个问题突破了,分数指数幂的推广就顺理成章了.教科书仍然是通过具体的实例,说明根据n次方根的概念及其性质,当根指数不能整除被开方数的指数时,为了使整数指数幕的运算性质,如()n k kna a=仍然成立,根式可以表示为分数指数幂的形式,如23(0)a a=>12(0)b b=>54(0)c c=>.在将n次方根表示为分数指数幂的过程中,核心思想是指数幂的运算性质仍然成立.这种兼容性为运算带来极大的方便,这同时说明了n次方根表示为分数指数幂的合理性.至此,关于正数的正分数指数幂的意义)*0,,,1mna a m n n=>∈>N.就顺理成章了.于是,在条件0a>,m,*n∈N,1n>下,根式都可以写成分数指数幂的形式,指数由整数推广到了正分数.类似正整数指数幂到负整数指数幂的推广,根据正分数指数幂的意义,可以规定正数的负分数指数幂的意义)*10,,,1mnmna a m n na-==>∈>N.负分数指数幂的规定,是完全类比负整数指数幂的规定.这种规定是合理的,它保持了正分数指数幂的运算性质.同样地,与0的整数指数幂的意义相仿,我们规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.规定了分数指数幂的意义以后,指数幂x a中指数x的取值范围就从整数拓展到了有理数.由上可知,教科书通过具体实例的归纳,由具体到抽象,由特殊到一般,建立了分数指数幂与n次方根的关系:分数指数幂是n次方根的一种表示形式,两者是统一的.同时这种表示为后面的运算带来了极大的方便.另外,通过根式与分数指数幂的互化,可以巩固、加深对于根式和分数指数幂的理解.4.有理数指数幂的运算性质对有理数指数幂的运算性质,下面通过n次方根与有理数指数幂的关系给出证明.我们以(1)为例.首先考虑0r>,0s>的情况.由于r ,s 是有理数,所以n r m=,s p q =,其中m ,n ,p ,q 都是正整数,且m 与n 互质,p 与q 互质,所以q np mq np mqn q nr s r s p mp mp mp m p m a a a a a a a a a +++========.对于0r <,0s <的情形,可以转化为正分数指数幂的情形进行证明.5.例2~例4的设计及说明例2通过具体的数字运算,巩固分数指数幂的概念、意义以及分数指数幂中指数的运算性质.例3通过一般表达式的运算,巩固分数指数幂和n 次方根的互相转化,特别是把n 次方根转化为分数指数幂进行运算,把结果表示为分数指数幂的形式.例4具有一定的综合性,需要综合运用n 次方根、分数指数幂的概念,分数指数幂的运算性质,以及式的加减乘除等进行运算,目的是巩固有理数指数幂的运算性质.例3与例4中,为了考虑问题的方便,而且主要是理解有关概念及运算性质,我们假定作为被开方数的字母均为正数.实际上,考虑到后面学习指数函数及对数函数,字母为负数有时没有意义.4.1.2无理数指数幂及其运算性质1.如何理解无理数指数幂指数幂中的指数由整数推广到有理数,比较自然,理解起来也不难.但是,指数是无理数时,这个指数幂有没有意义?如果有意义,其意义是什么?有理数指数幂的意义比较明显,它可以看成n 次方根,但无理数指数幂的意义就没有那么明显.在有理数扩充到实数的过程中,无理数的产生既有实际的背景,又有数学背景,如单位正方形对角线的长度.但是幂的指数由有理数推广到实数,指数变为无理数,很难有实际背景,这完全是数学理性思维的结果.不过这种推广,从思维的角度看,也是自然的.在有理数推广到实数的过程中,我们通过有理数的不足近似值和过剩近似值,,得出它的近似值,并说明它是无限不循环小数,是无理数的证明.同样,对于无理数指数幂,可以运用有理数推广到无理数的经验,通过有理数指数幂逐步逼近无理数指数幂的方法,认识无理数指数幂的意义.对于无理数指数幂的认识,教科书安排了一个探究栏目,从具体的.假设的不足近似值x (有理数)和过剩近似值y (有理数),根据有理数指数幂的意义,利用计算工具,计算相应的5x ,5y 的值,并填入表中.可以发现,的不足近似值x 和过剩近似值y 时,相应的近似值都趋向于同一个数.这时,从差55x y -趋向于0,也可以进一步说明5x ,5y 都趋向于同一个数,这个数就是也就是说, 1.4 1.41 1.414 1.41425,5,5,5,和另一串逐渐减小的有理数指数幂 1.5 1.42 1.415 1.41435,5,5,5,逐步逼近的结果.由于实数与数轴上的点一一对应,这一过程也可以在数轴上标示出来(如教科书图4.1-1).逐步逼近后,根据我们的想象和推断,这个点在数轴上存在,而且是唯一的,它是一个确定的实数,这个数就是还是为了认识这些数的意义,我们在数轴上先选取这个数附近一个小区间内的数,通过不断缩小区间的长度,让区间端点的值从区间的左右两个方向——不断增大的方向(单调递增)和不断减小的方向(单调递减),逐渐向中间逼近,在“单调有界数列必有极限”的基本事实支持下,,不仅在数轴上确实存在,而且是唯一的.这种研究问题的方法是现代数学中常用的方法:选取点所在的一个邻域,运用无限分割的方法,将点所在区间不断缩小,得到区间套,然后运用极限,得到研究问题的答案.这种方法在后面学习导数、积分等内容时,学生会感受得更加深刻.教科书通过“探究”中的表格和图4.1-1的数轴这两种方式展示逐步逼近的过程.用表格展示数据,呈现具体的数值,非常醒目;用数轴表示数值,可以从宏观、整体上把握变化的趋势,两者结合,相得益彰.这样逐渐逼近的过程,比较直观,学生不难理解.通过逼近,使学生认识任何正数的实数次幂都是确定的实数这样一个结论.教学时,可以利用计算工具计算,近似值逐步精确,从而更好地看到也可以利用信息技术作图,在数轴上将程,加深学生对于无理数指数幂的理解.教科书接下来安排了一个思考栏目,让学生类比.在上述研究的基础上,教科书给出结论:一般地,无理数指数幂(0,)a a αα>为无理数是一个确定的实数.这个结论使得以后能在实数范围内定义指数函数,在区间(0,)+∞内定义对数函数.这样,我们把指数幂(0)x a a >中指数x 的取值范围由整数拓展到有理数,并进一步拓展到实数,即任何正数的实数指数幂是一个确定的实数.应当注意的是,在指数幂x a 中,通常要限定0a >这个条件.这是为了保证后续的指数函数x y a =对于任意实数x 都有意义.因为只有正数的任何实数次幂才都有意义,如果底数是0,那么指数就不能为0或负数,否则就没有意义;同样地,如果底数是负数,指数为12n,仍然没有意义.因此我们限定0a 这个条件.本节中,无理数指数幂的理解是教学的一个难点.高中阶段只需知道任何正数的实数指数幂都是确定的实数即可,只要求能通过逼近的方法直观认识它,并不要求严格的证明.但是逼近的思想、用有理数近似表示无理数的方法,则需要学生掌握.2.实数指数幂的运算性质对实数指数幂的运算性质,我们也可以进行推导,推导的基础是把任何一个实数表示为有理数序列的极限,通过极限运算和有理数指数幂的运算性质进行证明,这里从略.。

高一数学必修一教案8篇

高一数学必修一教案8篇

高一数学必修一教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修一教案8篇只有认真准备好详细的教案,我们的教学进度和课堂效率才会有提升,教案在撰写的时候,教师务必要强调逻辑思路清晰,下面是本店铺为您分享的高一数学必修一教案8篇,感谢您的参阅。

高中数学必修一教材

高中数学必修一教材

高中数学必修一教材
高中数学必修一教材是高中数学课程的第一册教材,主要内容包括代数与函数、数与式、二次函数、指数与对数、平面向量、平面解析几何等。

它是高中数学研究的基础,为学生打下坚实的数学基础。

代数与函数是教材的第一部分,主要介绍了代数式的定义和性质,以及函数的概念、性质和函数间的关系等内容。

数与式是第二部分,主要探讨了整式的概念、性质和运算,以及方程、不等式和分式的解法等知识。

二次函数是教材的第三部分,介绍了二次函数的概念、性质和图像,并详细解析了二次函数的一些重要应用。

指数与对数是第四部分,讲解了指数和对数的定义和性质,以及指数和对数函数的运算和应用。

平面向量是教材的第五部分,介绍了平面向量的定义和性质,以及平面向量的运算和应用。

平面解析几何是教材的最后一部分,
主要讲解了平面解析几何的基本概念和相关公式,以及直线、圆和抛物线的方程等知识。

高中数学必修一教材内容丰富,涵盖了代数、函数、数与式、二次函数、指数与对数、平面向量和平面解析几何等重要内容。

通过研究这些知识,学生能够在数学领域建立起扎实的基础,为高中数学的后续研究打下坚实的基础。

需要注意的是,教材的内容在不同的地区和教育机构可能有所差异,因此教材的具体内容以实际使用的版本为准。

同时,教材虽然是学习数学的重要工具,但学生还需要通过教师的指导和辅导来深入理解和应用其中的知识。

人教a版高中数学必修一教材分析

人教a版高中数学必修一教材分析

人教a版高中数学必修一教材分析篇一:人教A版高中数学必修1全套教案课题:1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5. 元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a?A(或a A 6. 常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一教材分析
作为新课程高中数学的起始模块—必修一,它是由“第一章集合和函数概念、第二章基本初等函数、第三章函数的应用”三部分内容组成.下边为了便于讨论,我们分章对于教材作一一分析.
1 集合
集合是近代数学中的一个重要概念,集合概念及其基本理论又是近代数学的一个重要的基础,它不仅与高中数学的许多内容有着联系,而且已经渗透到自然科学的众多领域,应用十分广泛。

中学数学所研究的各种对象都可以看作集合或集合中的元素,用集合语言可以简明地表述数学概念,准确、简捷地进行数学推理.
本章内容以集合的含义与表示、集合的基本关系、集合的基本运算为逻辑链条统领全章,这种安排与以往的教材的处理有很大的区别.例如,集合的基本关系,是将集合的包含和相等关系放在一起,并给出子集的概念;集合的基本运算,是将集合的交、并、补放在这一节,并给出全集的概念,这样安排给学生展现出知识间的联系,便于学生学习.
教学目标
集合语言是现代数学的基本语言.使用集合语言,可以简洁、准确地表达数学的一些内容(集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础),因此高中数学课程中只是将集合作为一种语言来学习.
⑴了解集合的含义,明确元素与集合的“属于”关系.掌握描写某些数集的专用符号.

⑵理解集合的表示法,能用集合语言对事物进行准确,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
⑶理解集合之间包含与相等的含义,能识别给定集合的子集.培养分析、比较、归纳的逻辑思维能力.
⑷了解全集与空集的含义.
⑸理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.
⑹理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.
⑺能使用Venn图表达集合的关系及运算.
教学重点和难点
教学重点
,
(1)了解集合的含义与表示.
(2)理解集合间的包含与相等含义,子集与真子集的概念.
(3)理解交集与并集、全集与补集的含义.
教学难点
(1)运用集合的两种常用表示法—列举法与描述法正确表示一些简单的集合.(集合法的恰当选择)(2)属于关系与包含关系的区别.
(3)交集与并集的概念的理解,交集与并集的符号之间的区别与联系.
知识结构与教学安排
^

@
2 函数
20世纪初,在英国数学家贝利和德国数学家克莱因等人的大力倡导和推动下,函数进入了中学数学。

克莱因提出了一个重要的思想——以函数概念和思想统一数学教育的内容,他认为:“函数概念,应该成为数学教育的灵魂。

以函数概念为中心,将全部数学教材集中在它周围,进行充分地综合。

”在高中课程中,函数与方程、数列、不等式、线性规划、算法、导数及其应用,包括概率统计中的随机变量等,以及选修系列3、4中的大部分专题内容,都与函数有着密切的联系。

用函数(映射)的思想去理解这些内容,是非常重要的一个出发点。

反过来,通过这些内容的学习,可以加深对于函数思想的认识。

实际上,在整个高中数学课程中,都需要不断地体会、理解“函数思想”给我们带来的“好处”。

|
教学目标
⑴了解函数是描述变量之间的依赖关系的重要数学模型.
⑵能用集合与对应的语言刻画函数概念.
⑶了解构成函数的三要素,会求一些简单函数的定义域和值域.
⑷能根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.
⑸了解简单的分段函数,并能简单应用.
⑹了解映射的概念.
⑺了解增函数、减函数的概念,理解函数的单调性,能利用单调性的定义判断函数的单调性.
`
⑻理解二次函数的图象变换,掌握二次函数的性质,并会利用二次函数的图象和性质求最值.
(9)了解函数奇偶性的含义,会判断函数的奇偶性,能根据函数的奇偶性解决有关问题.
(10)能运用函数的图象理解和研究函数的性质.
教学重点和难点
教学重点
(1)理解函数的模型化思想,用集合与对应的语言来刻画函数.
(2)理解函数的概念,函数的表示法.
(3)理解函数单调性、奇偶性的概念,学会判断和证明函数的单调性、奇偶性.
;
(4)掌握用函数的单调性求一些函数的最大值
教学难点
f x的理解,分段函数的表示及图像.
(1)对抽象符号()
(2)应用定义证明单调性.
(3)利用数学本质正确判断函数的奇偶性.
知识结构与教学安排
课时安排
本章教学时间约需要13课时,具体分配如下:
集合约4课时、
函数及其表示约4课时函数的基本性质约3课时实习作业约1课时小结约1课时
3 指数函数和对数函数
函数是贯穿中学数学的核心内容,本章继第一章学习完函数概念和基本性质后,较为系统地研究最重要的两个基本初等函数:指数函数和对数函数.通过这些函数的研究,使学生进一步认识到函数是刻画现实世界变化规律的重要模型,是一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型.并要求结合实际问题,感受运用函数概念建立模型的过程与方法.
教学目标
⑴理解有理指数幂的含义,了解无理指数幂及实数指数幂的意义,掌握幂的运算.
!
⑵了解指数函数模型的实际背景.
⑶理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指
数函数的单调性和特殊点.
⑷在解决实际问题的过程中,体会指数函数是一类重要的函数模型.
⑸理解对数的概念及其性质,知道能用换底公式将一般对数转化为自然对数或常用对数. ⑹了解对数的发展历史以及简化运算的作用.
⑺了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.
⑻能够画出具体的对数函数的图象,了解对数函数的单调性与特殊点.
⑼了解反函数的定义,知道指数函数x
y a =与对数函数log (0,1)a y x a a =>≠互为反函数.
@
⑽掌握幂函数、指数函数和对数函数的变化特点,会区别它们变化的速度的不同.
教学重点和难点
教学重点
(1)指数函数、对数函数的概念和运算性质.
(2)指数函数和对数函数的图象和性质.幂函数的一些性质 (3)对数式与指数式的互化 教学难点
(1) 分数指数幂的概念理解. (2) '
(3)
对数函数概念的理解
(3)底数a 对指数函数与对数函数的函数值变化的影响.
/
$
本章教学时间约需要14课时,具体分配如下:
指数函数约6课时
对数函数约6课时
幂函数约1课时
小结约1课时
4 函数的应用
函数是高中数学的起始课程,函数的重要性主要表现在两个方面:一是函数思想的价值;二是函数的应用价值.从两个方面学习函数的应用,一是函数与其它数学内容的联系:再一个是函数与实际的联系.力图在理念、方法和能力上为高中阶段的学习奠定基础.
:
教学目标
⑴结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.
⑵根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解二分法是求方程近似解的常用方法.
⑶能利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
教学重点和难点
教学重点
(1)函数的零点与方程根之间的联系,初步形成用函数的观点处理问题的意识
(2)通过“二分法”求方程的近似解.
;
(3)将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

教学难点(1)函数与方程的关系、函数与方程思想的渗透.
(2)怎么选择数学模型分析解决实际问题。

知识结构与教学安排
本章教学时间约需要9课时,具体分配如下:
函数与方程约3课时
函数建模及其应用约4课时
实习作业约1课时小结约1课时。

相关文档
最新文档