运筹学 ppt课件
合集下载
运 筹 学 课 件
12/3 4
z
1 2
x4
x5 42
x3
2 3
x4
1 3
x5
4
新典式
主元化 为1,主 元所在
x2
1 2
x4
6
列的其 余元素
x1
2 3
x4
1 3
x5
4
化为0
观察最后一个典式,所有检验数均为非负, 故其对应的基本可行解为最优解,即
X * 4,6,6,0,0T z* 42
去掉引入变量,得原问题的最优解为:
运筹学课件
目录
运筹学概论 第一章 线性规划基础 第二章 单纯形法 第三章 LP对偶理论 第四章 灵敏度分析 第五章 运输问题 第六章 整数规划 第七章 动态规划 第八章 网络分析
第二章 单纯形法
(SM-Simplex Method)
1947年,美国运筹学家Dantzig提出,原理是 代数迭代。
单纯形法中的单纯形的这个术语,与该方法毫 无关系,它源于求解方法的早期阶段所研究的一 个特殊问题,并延用下来。
CB B1b B1b
z
CB B1N CN X N X B B1NX N
CB B1b B1b
上述方程组的矩阵形式为
10
0 I
CB
B1N B1N
CN
z XB XN
CB B1b B1b
上式的系数增广阵称为对应于基B的单纯形表:
T(B)
CB B1b B1b
0 I
CB
B1N B1N
CN
形式的LP问题,必须解决三个问题: ⑴初始基本可行解的确定; ⑵解的最优性检验; ⑶基本可行解的转移规则。 这里先放一下⑴,研究⑵和⑶,为此,
运筹学基础及应用(全套课件296P) ppt课件
我国朴素的运筹学思想:田忌赛马、丁渭修皇宫
1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为
“Operations Research”这个ppt课名件字一直延用至今。
2
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
16 y3
4 X2 1Leabharlann y4X1 0 , X2 0
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
ppt课件
6
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学;
大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际运筹学会 成立
ppt课件
11
第 2 章 线性规划的对偶 理论
运筹学OperationalResearchppt课件
XB = ( x1 , x2 , … , xm )T,其余的变量称为非基变量, 记为 XN = ( xm+1 , xm+2 , … , xm+n ) T , 故有 X = XB + XN
– 最多有 Cmmn 个基
21
关于标准型解的若干基本概念:
• 可行解与非可行解 – 满足约束条件和非负条件的解 X 称为可行解,满足 约束条件但不满足非负条件的解 X 称为非可行解
3
1
1
1
6.5
4
1
0
3
7.4
5
0
3
0
6.3
6
0
2
2
7.2
余料
0.1 0.3 0.9 0 1.1 0.2
若目标函数为使购裁买剪的后 钢零筋料最少,则有
min f (x) x01.1x1x2 0.x33x2x40.9x35 0xx6 4 1.1x5 0.2x6
2x11 x22 x33 x44 100
x3 =10 x2 =10 x2 =8 x2 =7
x4 =8 x4 =-2 x3 =2 x3 =3
x5 =7
x5 =-3 x5 =-1 x4 =1
O 基础可行解 F 基础解 E 基础解 A 基础可行解
f(x)=36
5 x1, x2 , x3, x4 , x5 0
4
最3 优解 :
x1
2
2,
x2
6,
m2 ax f ( x)K 361 .
同时不等号也要反向 • 第i 个约束为 型,在不等式左边增加一个非负的变量
xn+i ,称为松弛变量;同时令 cn+i = 0
• 第i 个约束为 型,在不等式左边减去一个非负的变量
– 最多有 Cmmn 个基
21
关于标准型解的若干基本概念:
• 可行解与非可行解 – 满足约束条件和非负条件的解 X 称为可行解,满足 约束条件但不满足非负条件的解 X 称为非可行解
3
1
1
1
6.5
4
1
0
3
7.4
5
0
3
0
6.3
6
0
2
2
7.2
余料
0.1 0.3 0.9 0 1.1 0.2
若目标函数为使购裁买剪的后 钢零筋料最少,则有
min f (x) x01.1x1x2 0.x33x2x40.9x35 0xx6 4 1.1x5 0.2x6
2x11 x22 x33 x44 100
x3 =10 x2 =10 x2 =8 x2 =7
x4 =8 x4 =-2 x3 =2 x3 =3
x5 =7
x5 =-3 x5 =-1 x4 =1
O 基础可行解 F 基础解 E 基础解 A 基础可行解
f(x)=36
5 x1, x2 , x3, x4 , x5 0
4
最3 优解 :
x1
2
2,
x2
6,
m2 ax f ( x)K 361 .
同时不等号也要反向 • 第i 个约束为 型,在不等式左边增加一个非负的变量
xn+i ,称为松弛变量;同时令 cn+i = 0
• 第i 个约束为 型,在不等式左边减去一个非负的变量
运筹学课件PPT课件
整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。
运筹学-第四章-运输问题和指派问题 PPT课件
A1 A2 A3 销量
B1
B2
B3
B4
1
32
11 4 3
3 10
3 1 3 9 1 2 -1 8
4
7
6 4 12 10 3 5
3
6
5
6
产量
7 4 9 20
检验数<0表示:例如(A2,B4)如果增加A2到B4的1单位产 品,将会降低1单位的运费,所以,该解不是最优解。
13
解的改进
(1)以 xij 为换入变量,找出它在运输表中的闭回路;
B2 4 11 29
4
6
B3 3
22
3 10
5
B4 产量 10 7
8
4
65
9
5
6
20
求平衡运输问题初始解方法—西北角方法
西
B1
B2
B3
B4 产量
北 角
A1 3
34
11
3
10 7
方
A2
12
92
2
8
4
法
A3
7
43
10 6 5
9
初 始
需求量
3
6
5
6
20
解
x11 3, x12 4, x22 2, x23 2, x33 3, x34 6
min cij xij
s.t.
n
xij si
j 1
m
xij d j
i 1
xij 0
目标函数
n表示物资的n个销地 m表示物资的m个产地
供给约束
需求约束
非负约束
18
问题分析
决策变量 目标函数 约束条件:产量约束、销量约束、非负
运筹课件PPT课件
它涉及到的问题包括最短路径、 最小生成树、最大流等。
图论与网络优化在计算机科学、 交通运输、通信网络等领域有 广泛应用,如路由算法、网络 设计等。
03 运筹学在现实生活中的应 用
生产与库存管理
01
02
03
生产计划
运筹学通过数学模型和算 法,帮助企业制定生产计 划,优化资源配置,提高 生产效率。
库存控制
Excel Solver的特点
Excel Solver易于使用
它提供了一个直观的用户界面,用户可以通过简单的拖放操作来定义问题。
Excel Solver具有广泛的适用性
它可以处理各种类型的优化问题,包括线性规划、整数规划、目标规划、非线性规划等。
Excel Solver具有高效性
它使用了多种优化算法,可以快速求解大规模问题。
它使用了高效的算法和优化的数据结构,可以快速地处理大规模数据和计算任务。
05 案例分析与实践
生产计划优化案例
总结词
生产计划是企业管理中的重要环节,通过优化生产计划可以提高企业的生产效率 和资源利用率。
详细描述
生产计划优化案例主要涉及如何根据市场需求、产品特性、生产能力等因素制定 合理的生产计划,以实现生产效益的最大化。具体包括对生产计划的制定、执行 、调整等环节进行优化,提高生产计划的准确性和灵活性。
运筹学的重要性
01
提高效率
降低成本
02
03
增强决策科学性
运筹学能够通过优化资源配置和 流程,提高系统的效率和生产力。
通过合理的资源配置和计划安排, 运筹学可以帮助企业降低成本和 资源消耗。
运筹学提供的数据分析和模型预 测等方法,有助于增强决策的科 学性和准确性。
运筹学教学课件(全)
实用举例
某公司通过市场调研,决定生产高中档新型拉杆箱。 某分销商决定买进该公司3个月内的全部产品。拉杆箱生 产需经过原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用 7/10小时剪裁、5/10小时缝合、1小时定型、1/10小时检 验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时缝合、 2/3小时定型、1/4小时检验包装。由于公司生产能力有限, 3月内各部的最大生产时间为剪裁部630小时、缝合部600 小时、定型部708小时、检验包装部135小时。
D {x | Ax b, x (x1,, xi ,, xn ) 0}
是凸集(凸多面体)。
引理2.1:线性规划的可行解 x (x1 ,, xn )T 为基本可行解的 充分必要条件是x的正分量所对应的系数列向量是线性无关的, 即每个正分量都是一个基变量。
定理2.2:线性规划问题的基本可行解x对应于可行域的顶点
通过分析生产过程,得出:生产中档拉杆箱需要用
7/10小时可剪裁以、通5/1过0小线时性缝合规、划1小求时定解型!、1/10小时
检验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时 缝合、2/3小时定型、1/4小时检验包装。由于公司生产 能力有限,3月内各部的最大生产时间为剪裁部630小时、 缝合部600小时、定型部708小时、检验包装部135小时。
x2
L1:x1=6 L3:2x1+3x2=18
B 可行域
L2:x2=4 最优解
x1
4x1+3x2
解的特殊情况——解的特殊情况——无界解
线性规划的基本性质
若线性规划有最 优解,则最优解必在可 行域的顶点上达到。
X
可行域内部的点 • 可行解? 是 • 最优解? 不
运筹学OperationsResearchppt课件
实际问题 提出
§1.1 线性规划的数学模型 Mathematical Model of LP
Linear Programming
2024年7月28日星期日 Page 1 of 21
LP问题
基本概念
LP问题 数学模型 解的概念
可行解、最优解 基本解、基可行解 基本最优解
基本方法
图解法
原始单纯形法
单纯形法
2
x1
x2
x3
x4
100
2x2 x3 3x5 2x6 x7 100
x1
x3
3x4
2 x6
3x7
4x8
100
x
j
0,
j
1,2,8
§1.1 线性规划的数学模型 Mathematical Model of LP
Linear Programming
2024年7月28日星期日 Page 11 of 21
大M法
人工变量法
对偶单纯形法
两阶段法
对偶理论
进一步讨论
灵敏度分析──参数规划*
在经济管理领域内应用
运输问题(转运问题)
特殊的LP问题
整数规划 多目标LP问题*
§1.1 线性规划的数学模型 Mathematical Model of LP
Linear Programming
2024年7月28日星期日 Page 2 of 21
2024年7月28日星期日 Page 6 of 21
线性规划的数学模型由
决策变量 Decision variables 目标函数Objective function 及约束条件Constraints
构成。称为三个要素。
怎样辨别一个模型是线性规划模型? 其特征是: 1.解决问题的目标函数是多个决策变量的
§1.1 线性规划的数学模型 Mathematical Model of LP
Linear Programming
2024年7月28日星期日 Page 1 of 21
LP问题
基本概念
LP问题 数学模型 解的概念
可行解、最优解 基本解、基可行解 基本最优解
基本方法
图解法
原始单纯形法
单纯形法
2
x1
x2
x3
x4
100
2x2 x3 3x5 2x6 x7 100
x1
x3
3x4
2 x6
3x7
4x8
100
x
j
0,
j
1,2,8
§1.1 线性规划的数学模型 Mathematical Model of LP
Linear Programming
2024年7月28日星期日 Page 11 of 21
大M法
人工变量法
对偶单纯形法
两阶段法
对偶理论
进一步讨论
灵敏度分析──参数规划*
在经济管理领域内应用
运输问题(转运问题)
特殊的LP问题
整数规划 多目标LP问题*
§1.1 线性规划的数学模型 Mathematical Model of LP
Linear Programming
2024年7月28日星期日 Page 2 of 21
2024年7月28日星期日 Page 6 of 21
线性规划的数学模型由
决策变量 Decision variables 目标函数Objective function 及约束条件Constraints
构成。称为三个要素。
怎样辨别一个模型是线性规划模型? 其特征是: 1.解决问题的目标函数是多个决策变量的
《运筹学》全套课件(完整版)
负指数分布、几何分布、爱尔朗分布等。
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。
运筹学PPT完整版
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
s.t
n j1
aij
xj
bi
(i 1,2,,m)
(2)
xj 0, j 1,2,,n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 28
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
maxZ 2x1 x2 3(x3 x3)0x4 0x5
5x1 x2 (x3 x3) x4 7
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
线性规划问题的数学模型
Page 17
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
s.t
n j1
aij
xj
bi
(i 1,2,,m)
(2)
xj 0, j 1,2,,n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 28
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
maxZ 2x1 x2 3(x3 x3)0x4 0x5
5x1 x2 (x3 x3) x4 7
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
线性规划问题的数学模型
Page 17
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
第10章 排队论 《运筹学》PPT课件全
WL
Wq
Lq
W
1
M/M/s 混 合 制 排 队 模 型
一、 单服务台混合制模型
M/M/1/K: 顾客的相继到达时间服从参数 为λ的负指数分布(即顾客的到达过程为 Poisson流),服务台个数为1,服务时间V 服从参数为μ的负指数分布,系统的空间 为K。
单
平稳状态下队长N的分布pn=P{N=n},n=0,1,2,…。
服
由于所考虑的排队系统中最多只能容纳K个顾 客(等待位置只有K-1个),因而有
务 台
n
0
n
n=0,1,2,...,K-1 n≥K n=1,2,...K
混 合
有
Cn
(
)n
n
n=0,1,2,...,K
0
n>K
制
故 pn n p0 n=1,2,…,K
模 型
1
其中,p0
1
1
K
n
1
K
1
1
n1
统
其分布函数为B(t),密度函数为b(t),则
的
常见的分布有: (1) 定长分布(D)
描
(2) 负指数分布(M)
述
(3) k阶爱尔朗分布(Ek):
排
排队系统的符号表示
队
“Kendall记号”,其一般形式为:X/Y/Z/A/B/C,其中 XX:顾客到达时间间隔的分布
系
YY:服务时间的分布
统
Z Z:服务台个数
的
A :系统容量 B B:顾客源数量
符
C C:服务规则
号
例 (M / M / 1 /
FCFS)表示:
表
到达间隔为负指数分布,服务时间也为负指数分 布,1个服务台,顾客源无限,系统容量也无限,
运筹学PPT完整版
设备 产品
A
B
C
D 利润(元)
甲
2
1
4
0
2
乙
2
2
0
4
3
有效台时
12
8
16 12
线性规划问题的数学模型
Page 15
解:设x1、x2分别为甲、乙两种产品的产量,则数学模型为:
max Z = 2x1 + 3x2 2x1 + 2x2 ≤ 12
x1 + 2x2 ≤ 8
s.t.
4x1
≤ 16
4x2 ≤ 12 x1 ≥ 0 , x2 ≥ 0
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
运筹学在工商管理中的应用
Page 9
组织 联合航空公司 Citgo石油公司 AT&T 标准品牌公司 法国国家铁路公司 Taco Bell Delta航空公司
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
优化炼油程序及产品供应、配送和营销
基:设A为约束条件②的m×n阶系数矩阵(m<n),其秩为 m,B是矩阵A中m阶满秩子矩阵(∣B∣≠0),称B是规划问 题的一个基。设:
a11 a1m
B
(
p1
pm
)
am1
运筹学PPT完整版
C 变量:决策变量和非决策变量
B 约束条件:线性等式或不等式
A 目标函数:求最大值或最小值
非线性规划
目标函数:非线性函数
约束条件:非线性不等式
求解方法:梯度下降法、 牛顿法、拟牛顿法等
应用领域:生产计划、资 源分配、投资决策等
动态规划
基本概念:将复杂问题分解为若干子 0 1 问题,通过求解子问题来解决原问题
运筹学广泛应用于生产、运输、库存、销售、人力 资源等各个领域。
运筹学通过建立数学模型,求解最优解,以实现资 源的合理配置和高效利用。
运筹学的应用领域
生产与运营管理 项目管理 交通与运输规划
供应链管理 财务管理 资源分配与调度
运筹学的发展历程
起源:二战期间, 军事需求推动运 筹学的发展
20世纪50年代: 运筹学逐渐应用 于工业、经济等 领域
适用范围:解决资源分配、路径规划、 02 生产调度等问题
主要步骤:划分阶段、确定状态、建 0 3 立状态转移方程、求解最优解
特点:具有最优子结构性质,能够高 04 效地求解复杂问题
运筹学的实际应 用
生产计划与调度
生产计划:根据市场需求和生产能力制定生产计划, 包括生产数量、生产时间、生产地点等
生产调度:根据生产计划,合理分配生产资源,包 括人员、设备、原材料等
场趋势
运筹学在生物学中 的应用:分析生物 种群数量变化,预
测生物进化趋势
运筹学在工程学中 的应用:优化工程 设计,提高工程效
率
THANK YOU
汇报人:稻小壳
运筹学与人工智 能的结合,拓展
2 了运筹学的应用
领域
3 运筹学与人工智
能的结合,推动 了运筹学的理论 研究和实践应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d1
d1
d
2
0,
d
2
92 / 7
C100 l2
150
d
2
x1 l1
d
2
l4
例2:min
z
P1d
2
P2 (d1
d1 )
s.t 2x1 3x2 300 2x1 1.5x2 180
l1 x2
l2
x1 x2 d1 d1 0
l3
10 x1
12x2
d
2
d
2
1200
150
l4
P1:利润指标为每月16000元;
P2:充分利用生产能力;
P3:加班时间不超过24小时;
P4;产量以预计销量为标准;
为确定生产计划,请建立该问题的OP模型。
设x1, x2, x3分别为计划生产A、B、C产品的数量
min
z
P1d1
P2 d 2
P3d
3
P4
(d
4
d
4
d5
d5
d
6
d
6
)
500x1 650x2 800x3 d1 d1 16000
1、负偏差变量 d 可能实现值未达到指标值的偏差量 d - 0
2、正偏差变量 d 可能实现值超过规定指标值的数量 d 0
3、三种情况 超额完成指标
d 0, d 0
未完成指标
d 0, d 0
恰好完成指标
d 0, d 0
精品资料
(二)目标约束与绝对约束
前例,引入目标约束:
8.5x1 7x2 d1 d1 400 x1, x2, d1 , d1 0
第二节 目标规划的求解方法
一、图解法
例1:min
z
P1(d1
d1 )
P2d
2
x2
s.t 2x1 3x2 300
l1
2x1 1.5x2 180
l2 150
x1 x2 d1 d1 0
l3 A
10 x1
x1,x2
,di
,d
i
0
i 1,2
A
100
1、绝对约束,可行域OABD
2、满足P1,三角形ABF
50
l3
d1
B
d1
F• E
D
3、考虑P2,ABF与OD 的最接
O
50
近点F(满意解)
F (40,200/3)
d1
d
2
d
2
0, d1
80 / 3
C100
l2
150 x1
d
2
l1
d
2
l4
P112/4.3(1) x2
120
2x1 x2
80
x2
30
60x1 70x2 d d 3000
x1, x2, d , d 0
二、多目标问题
上例中,除要求完成3000元利润外,还要求尽可能将30Kg 的铝材用完。
x2
30
x2
d
2
d 2
30
60x1 70x2 d1 d1 3000
(一)优先因子
6 x1
8x2
10x3
d
2
d
2
200
6 x1
8x2
10x3
d
3
d 3
224
x1
d
4
d
4
12
x2
d
5
d5
10
x3
d
6
d6
6
x j 0 ( j 1,2,3) di-,di 0 (i 1,2,...,6)
某企业生产两种产品,每件产品1可获利10 元,每件产品2可获利8元,每生产一件产 品1,需要3小时,每生产一件产品2,需要 2.5小时,每周总有效为120小时,若加班生 产,每件产品1的利润下降1.5元,每件产品 2的利润下降1元,决策者希望在允许的工 作和加班时间内获取最大利润,试建立该 问题的目标规划模型。
dl-
,d
l
0
(l 1,...,L)
( k- l
,
为权系数)
kl
练习题
某彩电组装厂,生产A、B、C三种规格电视机,装配工作在 同一生产线上完成。三种产品装配时的工时消耗分别为6小时、 8小时和10小时。生产线每月正常工作时间为200小时,三种 产品销售后,每台可获利分别为500元,650元和800元,每月 销售量预计为12台、10台、6台。该厂经营目标如下:
总有效工时:120小时
设x1,x2分别为计划生产产品1和产品2的数量。
(1) max z 10x1 8x2 s.t 3x1 2.5x2 120 x1, x2 0
X * 40,0T z* 400
(2) P1: 利润不低于400元
min z d1 3x1 2.5x2 168 (7 24)
三、一般目标规划模型
若有L个目标,K个先等级(K L)的目标规划模型 可表示为:
K
L
min z
Pk
(kl dl
kl
d
l
)
k 1 l 1
n
aijx j (, )bi (i 1,...,m)
j 1
n
cljx j dl dl gl (l 1,...,L)
j 1
xj 0
(j 1,...,n)
P1 P2 P3 ... Pk
前例,P1:超额完成利润指标3000元; P2:恰好用完铝材30Kg。
(二)模型
min
z
P1d1
P2
(d
2
d
2
)
s.t 2x1 3x2
120
2x1 x2
80
60x1 70x2 d1 d1 3000
x2
d
2
d
2
30
x1, x2, di , di 0 i 1,2
第四章 目标规划 第一节 基本概念及模型的建立 一、单一目标问题(该企业应如何安排,能使企业获利最大?)
max z 60x1 70x2
s.t 2x1 3x2 120 l1
2x1 x2 80
l2
x2 30
l3
x1, x2 0
现企业要求实现3000元的利润指标,该如何生产? (一)偏差变量
12x2
d
2
d
2
1000
l4 100
x1,x2
,di
,d
i
0
i 1,2
l3
d1
B
d1
1、l1与l2形成的可行域OABC
50 E D
2、先满足P1,OD线段
3、再满足P2,ED线段(满意解) O 50
E (500/11,500/11) ,
d1
d1
d
2
d
2
0
D (360/7,360/7)
,
10
8A
6C 4E
D 2
O
2
1、绝对约束:△ABO
2、P1:线段CD 3、P2:线段CE
满意解:CE线段
d1
B
d1
468
l3
d
2
C(0,5.2)
d1
d
2
d
2
0, d1
0.4
E(0.6,4.7)
d1
d1
d
2
d
2
0
x1
10
d
2
l1
l2
二、单纯形法 Pk:不同数量级的很大的数, d :松弛变量,d :剩余变量。
60x1 70x2 d d 3000
l1, l2 , l3为绝对约束(系统约束)
(三)目标函数
恰好完成规定指标
超额完成规定指 标 不超过目标值
min z d d
min z d
min z d
前例,要求恰好完成3000元的利润指标。
min z d d
s.t 2x1 3x2