天津市历年中考数学真题及答案

合集下载

天津市历年中考数学真题及答案

天津市历年中考数学真题及答案

2014年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

考试时间100分钟。

答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝各你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A)6 (B)-6 (C)1 (D)-1(2)cos60o的值等于(A)(B)(C)(D)(3)下列标志中,可以看作是轴对称图形的是(A)(B)(C)(D)(4)为让市民出行更加方便,天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608 000000人次.将1608 000 000用科学记数法表示应为(A)×107(B)×108(C)×109(D)×1010(5)如图,从左面观察这个立体图形,能得到的平面图形是(A)(B)(C)(D)(6)正六边形的边心距为,则该正六边形的边长是(A)(B)2(C)3 (D)(7)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25o,则∠C的大小等于(A)20o(B)25o(C)40o(D)50o(8)如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于(A)3:2 (B)3:1(C)1:1 (D)1:2(9)已知反比例函数,当1<x<2时,y的取值范围是(A)0<y<5 (B)1<y<2(C)5<y<10(D)y>10(10)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为(A)(B)(C)(D)(11)某公司招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.公司将录取(A)甲(B)乙(C)丙(D)丁(12)已知二次函数y=ax2+b x+c(a≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=9没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是(A)0 (B)1 (C)2 (D)32014年天津市初中毕业生学业考试试卷数学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。

天津市年中考数学真题试题(含解析)

天津市年中考数学真题试题(含解析)

天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。

第I卷一、选择题(本大题12小题,每小题3分,共36分)1. 计算(-3 )x 9的结果等于A. -27B. -6C. 27D. 6【答案】A【解析】有理数的乘法运算:=-3 X 9=-27,故选A.2. 2sin60的值等于A. 1B. 、、2C. .. 3D. 2【答案】B【解析】锐角三角函数计算,2sin60 =2 X = .. 3,故选A.23. 据3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为7 6 5 4A. 0.423 X 10B.4.23 X 10C.42.3 X 10D.423 X 10【答案】B【解析】科学记数法表示为 4.23 X 106,故选B.4. 在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是美丽校揮(A} 5)(C)7匕匕4 (DO【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。

故选A5. 右图是一个由6个相同的正方体组成的立体图形,它的主视图是(C)「D}【答案】B【解析】图中的立体图形主视图为6•估计33的值在A.2和3之间B.3【答案】D【解析】因为2a7.计算旦a +1A. 2【答案】【解析】8.如图,J—,故选B.和4之间C.4V25 < < v\J6,所以5 V *2-—的结果是a 1B.2aa 1和5之间 D.5 和6之间< 6,故选 D.2a 2 C. 1 D.2a 2a 1=2,故选A.四边形ABC为菱形,A B两点的坐标分别是(4aa 12, 0),( 0, 1),点C D在坐标轴上,则菱形ABC啲周长等于4.3 C. D. 20【答案】C【解析】由勾股定理可得由菱形性质可得=加=CD = CB -所以周长等于故选C.9.方程组丿5“,的解是、6x—2y =11x = -1X =1x=3 ,A. B. 丿 C. 丿 D.y=5y=2J =-1[【答案】Dx =2①+②=3x 2y 6x _2y =7 119x =18x =21代入x = 2到①中,6 • 2y = 7则y ,故选D.(-2, y2), C(1, y3)都在反比函数y^-12的图象上,贝U斗皿皿的关系x【答案】B12 , 12 厂12 “y^__=4,y^__=6,y^__=-12,11.如图,将△ ABC绕点C顺时针旋转得到厶DEC使点A的对应点D恰好落在边A吐,点B的对应点为E,连接BE下列结论一定正确的是由旋转性质可知,/ ACB玄DCE •••/ ACB玄ACD丄DCB / DCE=Z ECB+Z DCB••/ ACD2 ECB1 1•/ AC=CD BC=CE A=Z CDA A(180 °- / ECB,/ EBC=Z CEB—(180°- / ECB ,2 2• D正确,由于由题意无法得到/ ABE=90 ,• B选项错误.故选D。

1997—2019天津市中考数学试卷含详细解答(历年真题)

1997—2019天津市中考数学试卷含详细解答(历年真题)

2019年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.62.(3分)2sin60︒的值等于()A B.2C.1D3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.70.42310⨯B.64.2310⨯C.542.310⨯D.442310⨯4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算2211aa a+++的结果是()A.2B.22a+C.1D.41 a a+8.(3分)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D 在坐标轴上,则菱形ABCD的周长等于()AB.C.D .209.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( )A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18)13.(3分)计算5x x的结果等于.14.(3分)计算1)的结果等于.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.(3分)对于直线21y x=-与x轴的交点坐标是.17.(3分)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若5DE=,则GE的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC∆的顶点A在格点上,B是小正方形边的中点,50ABC∠=︒,30BAC∠=︒,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足PAC PBC PCB∠=∠=∠,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)19.(8分)解不等式组11 211 xx+-⎧⎨-⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(10分)已知PA,PB分别与O相切于点A,B,80∠=︒,C为O上一点.APB(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.22.(10分)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31︒,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin310.52︒≈.︒≈,tan310.60︒≈,cos310.8623.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =.(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②353S 时,求t 的取值范围(直接写出结果即可).25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 2QM +时,求b 的值.2019年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.6【解答】解:(3)927-⨯=-;故选:A.2.(3分)2sin60︒的值等于()A B.2C.1D【解答】解:2sin602︒==故选:A.3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.7⨯B.60.4231042310⨯⨯D.442.3104.2310⨯C.5【解答】解:6=⨯.4230000 4.2310故选:B.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2. 故选:B .6.(3( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间【解答】解:253336<<,∴,56∴<.故选:D . 7.(3分)计算2211a a a +++的结果是( ) A .2B .22a +C .1D .41aa + 【解答】解:原式221a a +=+ 2(1)1a a +=+ 2=.故选:A .8.(3分)如图,四边形ABCD 为菱形,A ,B 两点的坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的周长等于( )AB .C .D .20【解答】解:A ,B 两点的坐标分别是(2,0),(0,1),AB ∴=, 四边形ABCD 是菱形,∴菱形的周长为故选:C .9.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩【解答】解:3276211x y x y +=⎧⎨-=⎩①②,①+②得,2x =,把2x =代入①得,627y +=,解得12y =, 故原方程组的解为:212x y =⎧⎪⎨=⎪⎩.故选:D .10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<【解答】解:当3x =-,11243y =-=-; 当2x =-,21262y =-=-; 当1x =,312121y =-=-, 所以312y y y <<. 故选:B .11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠【解答】解:将ABC ∆绕点C 顺时针旋转得到DEC ∆, AC CD ∴=,BC CE =,AB DE =,故A 错误,C 错误; ACD BCE ∴∠=∠,1802ACD A ADC ︒-∠∴∠=∠=,1802BCECBE ︒-∠∠=,A EBC ∴∠=∠,故D 正确; A ABC ∠+∠不一定等于90︒,ABC CBE ∴∠+∠不一定等于90︒,故B 错误故选:D .12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3【解答】解:当0x =时,2c =-, 当1x =时,22a b +-=-, 0a b ∴+=,22y ax ax ∴=--, 0abc ∴>,①正确; 12x =是对称轴, 2x =-时y t =,则3x =时,y t =,2∴-和3是关于x 的方程2ax bx c t ++=的两个根;②正确;2m a a =+-,422n a a =--, 22m n a ∴==-, 44m n a ∴+=-,当12x =-时,0y >,803a ∴<<, 203m n ∴+<, ③错误; 故选:C .二、填空题(本大题共6小题,每小题3分,共18) 13.(3分)计算5x x 的结果等于 6x . 【解答】解:56x x x =. 故答案为:6x14.(3分)计算1)的结果等于 2 . 【解答】解:原式31=-2=.故答案为2.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 37. 【解答】解:从袋子中随机取出1个球,则它是绿球的概率37=. 故答案为37. 16.(3分)对于直线21y x =-与x 轴的交点坐标是 1(2,0) .【解答】解:根据题意,知,当直线21y x =-与x 轴相交时,0y =, 210x ∴-=,解得,12x =; ∴直线21y x =+与x 轴的交点坐标是1(2,0);故答案是:1(2,0).17.(3分)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为4913.【解答】解:四边形ABCD 为正方形,12AB AD ∴==,90BAD D ∠=∠=︒,由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,BF AE ∴⊥,AH GH =,90FAH AFH ∴∠+∠=︒,又90FAH BAH ∠+∠=︒,AFH BAH ∴∠=∠,()ABF DAE AAS ∴∆≅∆, 5AF DE ∴==,在Rt ADF ∆中,13BF =, 1122ABF S AB AF BF AH ∆==, 12513AH ∴⨯=,6013AH ∴=, 120213AG AH ∴==,13AE BF ==,12049131313GE AE AG ∴=-=-=, 故答案为:4913.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上.(Ⅰ)线段AB 的长等于; (Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .【解答】解:(Ⅰ)AB ,(Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠,故答案为:取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠.三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组11211x x +-⎧⎨-⎩请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 2x - ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来; (Ⅳ)原不等式组的解集为 .【解答】解:(Ⅰ)解不等式①,得2x -; (Ⅱ)解不等式②,得1x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为21x -. 故答案为:2x -,1x ,21x -.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h ,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为40,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.【解答】解:(Ⅰ)本次接受调查的初中学生人数为:410%40÷=,10%100%25%40m=⨯=,故答案为:40,25;(Ⅱ)平均数是:0.94 1.28 1.515 1.810 2.131.540⨯+⨯+⨯+⨯+⨯=,众数是1.5,中位数是1.5;(Ⅲ)40480072040-⨯=(人),答:该校每天在校体育活动时间大于1h的学生有720人.21.(10分)已知PA,PB分别与O相切于点A,B,80APB∠=︒,C为O上一点.(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.【解答】解:(Ⅰ)连接OA、OB,PA,PB是O的切线,90OAP OBP∴∠=∠=︒,360909080100AOB ∴∠=︒-︒-︒-︒=︒,由圆周角定理得,1502ACB AOB ∠=∠=︒;(Ⅱ)连接CE ,AE 为O 的直径,90ACE ∴∠=︒, 50ACB ∠=︒,905040BCE ∴∠=︒-︒=︒, 40BAE BCE ∴=∠=︒,AB AD =,70ABD ADB ∴∠=∠=︒, 20EAC ADB ACB ∴∠=∠-∠=︒.22.(10分)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.【解答】解:在Rt CAD ∆中,tan CDCAD AD∠=, 则5tan313CD AD CD =≈︒,在Rt CBD ∆中,45CBD ∠=︒, BD CD ∴=,AD AB BD =+,∴5303CD CD =+, 解得,45CD =,答:这座灯塔的高度CD 约为45m .23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.【解答】解:(Ⅰ)甲批发店:630180⨯=元,6150900⨯=元;乙批发店:730210⨯⨯=元,7505(15050)850⨯+-=元.故依次填写:180 900 210 850. (Ⅱ)16y x = (0)x >当050x <时,27y x = (050)x <当50x >时,27505(50)5100y x x =⨯+-=+ (50)x >因此1y ,2y 与x 的函数解析式为:16y x = (0)x >;27y x = 2(050)5100x y x <=+ (50)x >(Ⅲ)①当12y y =时,有:67x x =,解得0x =,不和题意舍去; 当12y y =时,也有:65100x x =+,解得100x =, 故他在同一个批发店一次购买苹果的数量为100千克. ②当120x =时,16120720y =⨯=元,25120100700y =⨯+=元, 720700>∴乙批发店花费少.故乙批发店花费少.③当360y =时,即:6360x =和5100360x +=;解得60x =和52x =, 6052>∴甲批发店购买数量多.故甲批发店购买的数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =.(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②353S 时,求t 的取值范围(直接写出结果即可).【解答】解:(Ⅰ)点(6,0)A , 6OA ∴=, 2OD =,624AD OA OD ∴=-=-=,四边形CODE 是矩形, //DE OC ∴,30AED ABO ∴∠=∠=︒,在Rt AED ∆中,28AE AD ==,ED == 2OD =,∴点E 的坐标为(2,;(Ⅱ)①由平移的性质得:2O D ''=,E D ''=ME OO t '='=,////D E O C OB '''', 30E FM ABO ∴∠'=∠=︒,∴在Rt MFE ∆'中,22MF ME t ='=,FE ',1122MFE S ME FE t ∆'∴=''=⨯=,2C O D E S O D E D ''''=''⋅''=⨯矩形,MFE C O D E S S S ∆'''''∴=-=矩形2S ∴=+,其中t 的取值范围是:02t <<;②当S ③所示: 6O A OA OO t ''=-=-,90AO F '∠=︒,30AFO ABO '∠=∠=︒,)O F A t ''∴==-1(6))2S t t ∴=--=解得:6t =6t =,6t ∴=S =④所示:6O A t '=-,624D A t t '=--=-,)O G t '∴=-,)D F t '=-,1))]22S t t ∴=--⨯=,解得:52t =, ∴353S 时,t 的取值范围为5622t -.25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 2QM +时,求b 的值.【解答】解:(Ⅰ)抛物线2y x bx c =-+经过点(1,0)A -, 10b c ∴++=,即1c b =--,当2b =时,2223(1)4y x x x =--=--,∴抛物线的顶点坐标为(1,4)-;(Ⅱ)由(Ⅰ)知,抛物线的解析式为21y x bx b =---, 点(,)D D b y 在抛物线21y x bx b =---上,211D y b b b b b ∴=---=--, 由0b >,得02bb >>,10b --<, ∴点(,1)D b b --在第四象限,且在抛物线对称轴2bx =的右侧, 如图1,过点D 作DE x ⊥轴,垂足为E ,则点(,0)E b , 1AE b ∴=+,1DE b =+,得AE DE =,∴在Rt ADE ∆中,45ADE DAE ∠=∠=︒,AD ∴=,由已知AM AD =,5m =,5(1)1)b ∴--=+,1b ∴=;(Ⅲ)点1(2Q b +,)Q y 在抛物线21y x bx b =---上, 2113()()12224Q b y b b b b ∴=+-+--=--,可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧,22()2QM AM QM +=+, ∴可取点(0,1)N ,如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M ,由45GAM ∠=︒,得2AM GM =, 则此时点M 满足题意,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0), 在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒,QH MH ∴=,QM =,点(,0)M m ,310()()242b b m ∴---=+-,解得,124b m =-,24QM +=,∴1112[()(1)])()]24224b b b ---++--=4b ∴=.2018年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

天津初三数学试题及答案

天津初三数学试题及答案

天津初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.1416B. √2C. 0.3333D. 22/7答案:B2. 一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是多少?A. 10B. 11C. 12D. 13答案:B3. 如果一个数的立方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. A、B和C答案:D4. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 25D. 50答案:B5. 函数y=2x+3的图象不通过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 下列哪个选项是方程x²-5x+6=0的解?A. 2B. 3C. 1和2D. 1和3答案:C7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是多少?A. 24cm³B. 26cm³C. 28cm³D. 30cm³答案:A8. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A9. 一个数的绝对值是3,那么这个数可能是:A. 3B. -3C. 3或-3D. 0答案:C10. 一个角的余角是30°,那么这个角的度数是多少?A. 60°B. 90°C. 120°D. 150°答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于它的4倍,这个数是______。

答案:±22. 一个数的平方根是2,那么这个数是______。

答案:43. 一个圆的直径是10cm,那么它的周长是______。

答案:31.4cm4. 一个数的立方根是3,那么这个数是______。

答案:275. 一个等边三角形的边长是6cm,那么它的高是______。

答案:3√3 cm三、解答题(每题10分,共50分)1. 已知一个直角三角形的两个直角边长分别为3cm和4cm,求斜边的长度。

天津市20112014历年中考数学真题及答案

天津市20112014历年中考数学真题及答案
XX
天津市2011-2014历年中考数学 真题及答案
单击添加副标题
汇报人:XX
目录
01 03 05
真题回顾
02
考点分析
பைடு நூலகம்
04
反思与总结
答案解析 解题技巧
01
真题回顾
2011年真题
• 题目:若关于 x 的一元二次方程 x^2 - 4x + m - 1 = 0 有两个不相等的实数根,则 m 的取值范围是 _______.
知识
综合与实践: 主要考查学生 运用所学知识 解决实际问题 的能力,包括 数学建模、数 形结合等思想
方法
重点考点分析
函数与方程:主要考察函数性质、图像、最值等 三角形与四边形:考察角度、边长、相似等性质 圆:考察圆的性质、切线、弦长等 概率与统计:考察概率、期望、方差等概念及应用
难点考点解析
函数与方程:考查函数的性质、图像和一元二次方程的解法,涉及数形结 合思想。
2012年真题
考试科目:数学 考试时间:6月25日(上午) 考试形式:闭卷、笔试 考试内容:按照《2012年天津市初中毕业生学业考试说明》规定的考试内容和要求命题
2013年真题
考试科目:数学 考试时间:90分钟 考试形式:闭卷、笔试 考试内容:天津市2013年中考数学真题及答案
2014年真题
考试科目:数学
• 题目:已知关于 x 的一元二次方程 x^2 - (2k + 3)x + k^2 + 3k + 2 = 0 的两个不相等的实数根为 x₁,x₂. (1)求实数 k 的取值范围; (2)若该方程的两个实数根 x₁,x₂ 满足 (x₁)^3 = (x₂)^3,求 k 的值.

天津市中考数学试卷及答案(Word解析版)

天津市中考数学试卷及答案(Word解析版)

天津市中考数学试卷一、选择题(共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(•天津)计算(﹣3)+(﹣9)的结果等于()A.12 B.﹣12 C.6D.﹣6考点:有理数的加法.分析:根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可.解答:解:(﹣3)+(﹣9)=﹣12;故选B.点评:本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础题.2.(3分)(•天津)tan60°的值等于()A.1B.C.D.2考点:特殊角的三角函数值.分析:根据记忆的特殊角的三角函数值即可得出答案.解答:解:tan60°=.故选C.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.3.(3分)(•天津)下列标志中,可以看作是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.点评:本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.(3分)(•天津)中国园林网4月22日消息:为建设生态滨海,天津滨海新区将完成城市绿化面积共8210 000m2,将8210 000用科学记数法表示应为()A.821×102B.82.1×105C.8.21×106D.0.821×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:8 210 000=8.21×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(•天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知()A.(1)班比(2)班的成绩稳定B.(2)班比(1)班的成绩稳定C.两个班的成绩一样稳定D.无法确定哪班的成绩更稳定考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵(1)班成绩的方差为17.5,(2)班成绩的方差为15,∴(1)班成绩的方差>(2)班成绩的方差,∴(2)班比(1)班的成绩稳定.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:所给图形的三视图是A选项所给的三个图形.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键.7.(3分)(•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形考点:旋转的性质;矩形的判定.分析:根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.解答:解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF矩形.故选A.点评:本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角是平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.8.(3分)(•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:2 考点:正多边形和圆.分析:首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.解答:解:如图:设六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线OC,则AC=AB=a,∴OC==a,∴正六边形的边心距与边长之比为:a:a=:2.故选B.点此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.9.(3分)(•天津)若x=﹣1,y=2,则﹣的值等于()A.B.C.D.分式的化简求值.考点:先根据分式混合运算的法则把原式进行化简,再把x,y的值代入进行计算即可.分析:解解:原式=﹣答:===,当x=﹣1,y=2时,原式==.故选D.点本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.评:10.(3分)(•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y 升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P 与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.3考函数的图象.分析:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;解答:解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选C.点评:本题考查了函数的图象,解答本题需要同学们仔细分析所示情景,判断函数图象是否符合,要求同学们能将实际问题转化为函数图象,有一定难度.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(•天津)计算a•a6的结果等于a7.考点:同底数幂的乘法.专题:计算题.分析:利用同底数幂的法则计算即可得到结果.解答:解:a•a6=a7.故答案为:a7点评:此题考查了同底数幂的乘法运算,熟练掌握运算法则是解本题的关键.12.(3分)(•天津)一元二次方程x(x﹣6)=0的两个实数根中较大的根是6.考点:解一元二次方程-因式分解法.专计算题.分析:原方程转化为x=0或x﹣6=0,然后解两个一次方程即可得到原方程较大的根.解答:解:∵x=0或x﹣6=0,∴x1=0,x2=6,∴原方程较大的根为6.故答案为6.点评:本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.13.(3分)(•天津)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是k>0.考点:一次函数图象与系数的关系.分析:根据一次函数图象所经过的象限确定k的符号.解答:解:∵一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k>0.故填:k>0.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.14.(3分)(•天津)如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段AC=BD(答案不唯一).考点:全等三角形的判定与性质.专题:开放型.分析:利用“角角边”证明△ABC和△BAD全等,再根据全等三角形对应边相等解答即可.解答:解:∵在△ABC和△BAD中,,∴△ABC≌△BAD(AAS),∴AC=BD,AD=BC.故答案为:AC=BD(答案不唯一).点评:本题考查了全等三角形的判定与性质,是基础题,关键在于公共边AB的应用,开放型题目,答案不唯一.15.(3分)(•天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55(度).考点:切线的性质.分析:首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.解答:解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(•天津)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.考点:列表法与树状图法.专题:计算题.分析:先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.解答:解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为.点评:本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.17.(3分)(•天津)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为7.考点:相似三角形的判定与性质;等边三角形的性质.分析:先根据边长为9,BD=3,求出CD的长度,然后根据∠ADE=60°和等边三角形的性质,证明△ABD∽△DCE,进而根据相似三角形的对应边成比例,求得CE的长度,即可求出AE的长度.解答:解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=9﹣3=6;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE,则=,即=,解得:CE=2,故AE=AC﹣CE=9﹣2=7.故答案为:7.点评:此题主要考查了相似三角形的判定和性质以及等边三角形的性质,根据等边三角形的性质证得△ABD∽△DCE是解答此题的关键.18.(3分)(•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于6;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.考点:作图—相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求解答:解:(Ⅰ)△ABC的面积为:×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求点评:此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.三、解答题(共8小题,满分66分)19.(6分)(•天津)解不等式组.考点:解一元一次不等式组.专计算题.题:分析:分别解两个不等式得到x<3和x>﹣3,然后根据大于小的小于大的取中间确定不等式组的解集.解答:解:,解①得x<3,解②得x>﹣3,所以不等式组的解集为﹣3<x<3.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.20.(8分)(•天津)已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(Ⅰ)求这个函数的解析式;(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质;反比例函数图象上点的坐标特征.分析:(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值.(Ⅱ)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于6时,即该点在函数图象上;(Ⅲ)根据反比例函数图象的增减性解答问题.解答:解:(Ⅰ)∵反比例函数y=(k为常数,k≠0)的图象经过点A(2,3),∴把点A的坐标代入解析式,得3=,解得,k=6,∴这个函数的解析式为:y=;(Ⅱ)∵反比例函数解析式y=,∴6=xy.分别把点B、C的坐标代入,得(﹣1)×6=﹣6≠6,则点B不在该函数图象上.3×2=6,则点C中该函数图象上;(Ⅲ)∵当x=﹣3时,y=﹣2,当x=﹣1时,y=﹣6,又∵k>0,∴当x<0时,y随x的增大而减小,∴当﹣3<x<﹣1时,﹣6<y<﹣2.点评:本题考查了反比例函数图象的性质、待定系数法求反比例函数解析式以及反比例函数图象上点的坐标特征.用待定系数法求反比例函数的解析式,是中学阶段的重点.21.(8分)(•天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为50,图①中m的值是32;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.分析:(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;(3)根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.解答:解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15=15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.故答案为:50,32.点评:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.(8分)(•天津)已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.考点:切线的性质;圆周角定理;直线与圆的位置关系.分析:(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.解答:解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=180°﹣72°=18°.点评:此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.(8分)(•天津)天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).考点:解直角三角形的应用-仰角俯角问题.分析:首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD﹣AB=CD﹣112;在Rt△BCD中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.解答:解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD为:415m.点评:本题考查了仰角的知识.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用.24.(8分)(•天津)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题题意,填写下表(单位:元)累计购物实际花费130 290 (x)在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?考一元一次不等式的应用;一元一次方程的应用.点:分析:(1)根据已知得出100+(290﹣100)×0.9以及50+(290﹣50)×0.95进而得出答案,同理即可得出累计购物x元的实际花费;(2)根据题中已知条件,求出0.95x+2.5,0.9x+10相等,从而得出正确结论;(3)根据0.95x+2.5与0.9x+10相比较,从而得出正确结论.解答:解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(290﹣100)×0.9x=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(290﹣50)×0.95x=0.95x+2.5;(2)根据题意得出:0.9x+10=0.95x+2.5,解得:x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同,(3)由0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,y B=0.95x+50(1﹣95%)=0.95x+2.5,正确;∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少;当小红累计购物超过100元而不到150元时,在乙商场实际花费少.点评:此题主要考查了一元一次不等式的应用和一元一次方程的应用,此题问题较多且不是很简单,有一定难度.涉及方案选择时应与方程或不等式联系起来.25.(10分)(•天津)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E 在OB上,且∠OAE=∠0BA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).考点:相似形综合题.分析:(Ⅰ)根据相似三角形△OAE∽△OBA的对应边成比例得到=,则易求OE=1,所以E(0,1);(Ⅱ)如图②,连接EE′.在Rt△A′BO中,勾股定理得到A′B2=(2﹣m)2+42=m2﹣4m+20,在Rt△BE′E中,利用勾股定理得到BE′2=E′E2+BE2=m2+9,则A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.所以由二次函数最值的求法知,当m=1即点E′的坐标是(1,1)时,A′B2+BE′2取得最小值.解答:解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠0BA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴=,即=,解得,OE=1,∴点E的坐标为(0,1);(Ⅱ)①如图②,连接EE′.由题设知AA′=m(0<m<2),则A′O=2﹣m.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2﹣m)2+42=m2﹣4m+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=m.又BE=OB﹣OE=3,∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,∴A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).②如图②,过点A作AB′⊥x,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A=BE′,∴A′B+BE′=A′B+B′A′.当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴==,∴AA′=×2=,∴EE′=AA′=,∴点E′的坐标是(,1).点评:本题综合考查了相似三角形的判定与性质、平移的性质以及勾股定理等知识点.此题难度较大,需要学生对知识有一个系统的掌握.26.(10分)(•天津)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).(1)求y2与x之间的函数关系式;(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.x …﹣1 0 3 …y1=ax2+bx+c …0 0 …考点:二次函数综合题.专题:探究型.分析:(I)先根据物线经过点(0,)得出c的值,再把点(﹣1,0)、(3,0)代入抛物线y1的解析式即可得出y1与x之间的函数关系式;(II)先根据(I)中y1与x之间的函数关系式得出顶点M的坐标.①记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥l,再由点P(x,y2)可知点A(x,t)(x≠1),所以PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q (1,y2),故QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,根据勾股定理即可得出y2与x之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P 点坐标,故可得出y2与x之间的函数关系式;②据题意,借助函数图象:当抛物线y2开口方向向上时,可知6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),由于3>,所以不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,求出y1﹣y2的值;若3t﹣11≠0,要使y1<y2恒成立,只要抛物线方向及且顶点(1,)在x 轴下方,因为3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.解解:(Ⅰ)∵抛物线经过点(0,),答:∴c=.∴y1=ax2+bx+,∵点(﹣1,0)、(3,0)在抛物线y1=ax2+bx+上,∴,解得,∴y1与x之间的函数关系式为:y1=﹣x2+x+;(II)∵y1=﹣x2+x+,∴y1=﹣(x﹣1)2+3,∴直线l为x=1,顶点M(1,3).①由题意得,t≠3,如图,记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,∵由已知得,AM与BP互相垂直平分,∴四边形ANMP为菱形,∴PA∥l,又∵点P(x,y2),∴点A(x,t)(x≠1),∴PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q(1,y2),∴QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,∵PM2=QM2+PQ2,即(y2﹣t)2=(y2﹣3)2+(x﹣1)2,整理得,y2=(x﹣1)2+,即y2=x3﹣x+,∵当点A与点C重合时,点B与点P重合,∴P(1,),∴P点坐标也满足上式,∴y2与x之间的函数关系式为y2=x3﹣x+(t≠3);②根据题意,借助函数图象:当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),∵3>,∴不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,y1﹣y2=﹣(x﹣1)2+3﹣[(x﹣1)2+]=(x﹣1)2+,若3t﹣11≠0,要使y1<y2恒成立,只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,)在x轴下方,∵3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.综上,可以使y1<y2恒成立的t的取值范围是t≥.点评:本题考查的是二次函数综合题,涉及到待定系数法二次函数解的解析式、勾股定理及二次函数的性质,解答此类题目时要注意数形结合思想的运用.。

真题解析:2022年天津市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)

真题解析:2022年天津市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)

2022年天津市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、一次函数y 1=kx +b 与y 2=mx +n 的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( ) A .x >0 B .x <0 C .x <﹣1 D .x >﹣1 2、如图,在矩形ABCD 中,点E 在CD 边上,连接AE ,将ADE 沿AE 翻折,使点D 落在BC 边的点F处,连接AF ,在AF 上取点O ,以O 为圆心,线段OF 的长为半径作⊙O ,⊙O 与AB ,AE 分别相切于点G ,H ,连接FG ,GH .则下列结论错误的是( )·线○封○密○外A .2BAE DAE ∠=∠B .四边形EFGH 是菱形C .3AD CE = D .GH AO ⊥3、若关于x ,y 的方程()716m x m y ++=是二元一次方程,则m 的值为( )A .﹣1B .0C .1D .24、已知关于x 的分式方程2-2124x mx x x -=+-无解,则m 的值为( ) A .0 B .0或-8 C .-8 D .0或-8或-45、下列方程中,关于x 的一元二次方程的是( )A .x 2-1=2xB .x 3+2x 2=0C .210x x +=D .x 2-y +1=0 6、在数2,-2,12,12-中,最小的数为( )A .-2B .12C .12- D .27、如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,10AB =,BD 平分ABC ∠,如果点M ,N 分别为BD ,BC 上的动点,那么CM MN +的最小值是( )A .6B .8C .10D .4.88、下列利用等式的性质,错误的是( )A .由a b =,得到11a b +=+B .由ac bc =,得到a b =C .由a b =,得到ac bc =D .由22ab =,得到a b = 9、人类的遗传物质是DNA ,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( ) A .3×106 B .3×107 C .3×108 D .0.3×108 10、在数-12,π,-3.4,0,+3,73-中,属于非负整数的个数是( ) A .4 B .3 C .2 D .1 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、方程233x k x x =---无解,那么k 的值为________. 2、某商场在“元旦”期间举行促销活动,顾客根据其购买商品标价的一次性总额,可以获得相应的优惠方法:①如不超过800元,则不予优惠;②如超过800元,但不超过1000元,则按购物总额给予8折优惠;③如超过1000元,则其中1000元给予8折优惠,超过1000元的部分给予7折优惠.促销期间,小明和他妈妈分别看中一件商品,若各自单独付款,则应分别付款720元和1150元;若合并付款,则他们总共只需付款______元. 3、按下面的程序计算,若开始输入的值x 为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当2x =时,输出结果=____.若经过2次运算就停止,则x 可以取的所有值是____. 4、如图,在△ABC 中,∠ABC =120°,AB =12,点D 在边AC 上,点E 在边BC 上,sin∠ADE =45,ED =5,如果△ECD 的面积是6,那么BC 的长是_____. ·线○封○密○外5、如图,在坐标系中,以坐标原点 O , A (-8,0), B (0,6)为顶点的Rt △AOB ,其两个锐角对应的外角平分线相交于点M ,且点M 恰好在反比例函数k y x=的图象上,则 k 的值为是______.三、解答题(5小题,每小题10分,共计50分)1、用一面足够长的墙为一边,其余各边用总长42米的围栏建成如图所示的生态园,中间用围栏隔开.由于场地限制,垂直于墙的一边长不超过7米.(围栏宽忽略不计)(1)若生态园的面积为144平方米,求生态园垂直于墙的边长;(2)生态园的面积能否达到150平方米?请说明理由.2、用适当的方法解下列方程:(1)2220x x --=;(2)()()1224x x x ++=+.3、已知:如图在ABC 中,∠BAC =90°,AB =AC ,点E 在边BC 上,∠EAD =90°,AD =AE .求证:(1)ABE ≌ACD ;(2)如果点F 是DE 的中点,联结AF 、CF ,求证:AF =CF . 4、上海迪士尼乐园调查了部分游客前往乐园的交通方式,并绘制了如下统计图.已知选择“自驾”方式的人数是调查总人数的415,选择“其它”方式的人数是选择“自驾”人数的58,根据图中提供的信息,回答下列问题: (1)本次调查的总人数是多少人? (2)选择“公交”方式的人数占调查总人数的几分之几? 5、先化简,再求值:22214244a a a a a a a a +--⎛⎫-÷ ⎪--+⎝⎭,其中2a =-参考答案- 一、单选题·线○封○密·○外1、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.2、C【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,∆ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在Rt∆EFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切线,点G、H分别是切点,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EF 与AB 交于点N ,如图: ∵OF ⊥EF ,OF 是⊙O 的半径,∴EF 是⊙O 的切线, ∴HE =EF ,NF =NG , ∴△ANE 是等边三角形, ∴FG //HE ,FG =HE ,∠AEF =60°, ∴四边形EFGH 是平行四边形,∠FEC =60°, 又∵HE =EF , ∴四边形EFGH 是菱形,故B 正确,不符合题意; ∵AG =AH ,∠GAF =∠HAF , ∴GH ⊥AO ,故D 正确,不符合题意; 在Rt △EFC 中,∠C =90°,∠FEC =60°, ∴∠EFC =30°, ∴EF =2CE , ∴DE =2CE . ∵在Rt △ADE 中,∠AED =60°, ·线○·封○密○外∴AD ,∴AD ,故C 错误,符合题意.故选C .【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30︒的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.3、C【分析】 根据二元一次方程的定义得出1m =且10m +≠,再求出答案即可.【详解】解:∵关于x ,y 的方程()716m x m y ++=是二元一次方程, ∴1m =且10m +≠,解得:m =1,故选C .【点睛】本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.4、D【分析】把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解.【详解】∵2x-2mx 124x x -=+- ∴22(x-2)mx 1(2)(2)4x x x -=+--, ∴22(-2)4x mx x -=-, ∴(+4)8m x =, ∴当m +4=0时,方程无解,故m = -4; ∴当m +4≠0,x =2时,方程无解, ∴(+4)28m ⨯= 故m =0; ∴当m +4≠0,x = -2时,方程无解, ∴(+4)(2)8m ⨯-= 故m =-8; ∴m 的值为0或-8或-4, 故选D . 【点睛】 本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键. 5、A 【分析】 只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断. 【详解】解:A 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题·线○封○密·○外意;B 、未知数最高次数是3,不是关于x 的一元二次方程,不符合题意;C 、为分式方程,不符合题意;D 、含有两个未知数,不是一元二次方程,不符合题意故选:A .【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.6、A【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】 解:∵22-=,1122-=, ∴-2<12-<12<2,故选A .【点睛】本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键.7、D【分析】如图所示:过点C 作CE AB ⊥于点E ,交BD 于点M ,过点M 作MN BC ⊥于点N ,则CM MN CM ME CE +=+=,此时最小,再利用等面积法求解最小值即可. 【详解】解:如图所示: 过点C 作CE AB ⊥于点E ,交BD 于点M ,过点M 作MN BC ⊥于点N , BD 平分ABC ∠, ME MN ∴=, CM MN CM ME CE ∴+=+=. 在Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,10AB =,CE AB ⊥, Δ1122ABC S AB CE AC BC ∴=⋅=⋅, 1068CE ∴=⨯, 4.8CE ∴=. 即CM MN +的最小值是4.8, 故选:D . 【点睛】 本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定CM MN +取最小值时点,M N 的位置是解本题的关键. 8、B 【分析】 根据等式的性质逐项分析即可. 【详解】 ·线○封○密○外A.由a b =,两边都加1,得到11a b +=+,正确;B.由ac bc =,当c ≠0时,两边除以c ,得到a b =,故不正确;C.由a b =,两边乘以c ,得到ac bc =,正确;D.由22ab =,两边乘以2,得到a b =,正确; 故选B .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.9、B【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:30000000=3×107.故选:B .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.10、C【分析】非负整数即指0或正整数,据此进行分析即可.【详解】解:在数-12,π,-3.4,0,+3,73-中,属于非负整数的数是:0,+3,共2个,故选:C .【点睛】本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.二、填空题1、3【分析】先将分式方程转化为整式方程,根据分式方程无解,可得3x =,进而求得k 的值.【详解】 解:233x k x x =---, 2(3)x x k =-+, 26x x k =-+, 6x k =-, 方程无解, 3x ∴=, 63k ∴-=, 3k ∴=, 故答案为:3. 【点睛】 本题考查了解分式方程,掌握分式方程的计算是解题的关键. 2、1654或1780或1654 【分析】 根据题意知付款720元时,其实际标价为为720或900元;付款1150元,实际标价为1500元,再分·线○封○密○外别计算求出一次购买标价2220元或2400元的商品应付款即可.【详解】解:由题意知付款720元,实际标价为720或720×108=900(元), 付款1150元,实际标价肯定超过1000元,设实际标价为x ,依题意得:(x -1000)×0.7+1000×0.8=1150,解得:x =1500(元),如果一次购买标价720+1500=2220(元)的商品应付款:1000×0.8+(2220-1000)×0.7=1654(元).如果一次购买标价900+1500=2400(元)的商品应付款:1000×0.8+(2400-1000)×0.7=1780(元).故答案是:1654或1780.【点睛】本题考查了一元一次方程的应用,通过优惠政策利用解方程求出小明和他妈妈分别看中商品的售价是解题的关键.3、11, 2或3或4.【分析】根据题意将2x =代入求解即可;根据题意列出一元一次不等式组即可求解.【详解】解:当2x =时,第1次运算结果为2215⨯+=,第2次运算结果为52111⨯+=,∴当2x =时,输出结果11=,若运算进行了2次才停止,则有()2121102110x x ⎧+⨯+>⎨+<⎩, 解得:7 4.54x <<. x 可以取的所有值是2或3或4, 故答案为:11,2或3或4.【点睛】此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组. 4、6## 【分析】 如图,过点E 作EF ⊥BC 于F ,过点A 作AH ⊥CB 交CB 的延长线于H .解直角三角形求出BH ,CH 即可解决问题. 【详解】 解:如图,过点E 作EF ⊥BC 于F ,过点A 作AH ⊥CB 交CB 的延长线于H . ∵∠ABC =120°, ∴∠ABH =180°﹣∠ABC =60°,∵AB =12,∠H =90°,∴BH =AB •cos60°=6,AH =AB •sin60°=∵EF ⊥DF ,DE =5,·线○封○密○外∴sin∠ADE =EF DE =45, ∴EF =4,∴DF 3,∵S △CDE =6, ∴12 ·CD ·EF =6,∴CD =3,∴CF =CD +DF =6,∵tan C =EF CF =AH CH ,∴46 ,∴CH =∴BC =CH ﹣BH =6.故答案为:6【点睛】本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.5、144-【分析】过M 分别作AB ,x 轴、y 轴的垂线,垂足分别为C ,D 、E ,根据勾股定理可得10AB ,再根据角平分线的性质可得DM =CM =EM ,然后设(),M t t - ,则CM t = ,利用=MBE MBA MAD OAB MEOD S S S S S ∆∆∆∆+++矩形,可得12t = ,即可求解.【详解】解:如图,过M 分别作AB ,x 轴、y 轴的垂线,垂足分别为C ,D 、E , ∵A (-8,0), B (0,6), ∴OA =8,OB =6,∴10AB == , ∵Rt △AOB 的两个锐角对应的外角平分线相交于点M , ∴DM =CM ,CM =EM , ∴DM =CM =EM , ∴可设(),M t t - ,则CM t = , ∵=MBE MBA MAD OAB MEOD S S S S S ∆∆∆∆+++矩形, ∴1111(6)10(8)682222t t t t t t t ⨯-+⨯⨯+⨯-+⨯⨯=⨯ , 解得:12t = , ∴点()12,12M - , 把()12,12M -代入k y x =,得:144k =- . 故答案为:144-【点睛】·线○封·○密○外本题主要考查了反比例函数的图象和性质,角平分线的性质定理,勾股定理,熟练掌握反比例函数的图象和性质,角平分线的性质定理,勾股定理是解题的关键.三、解答题1、(1)6米(2)不能达到,理由见解析【分析】(1)设生态园垂直于墙的边长为x 米,则可得生态园平行于墙的边长,从而由面积关系即可得到方程,解方程即可;(2)方法与(1)相同,判断所得方程有无解即可.(1)设生态园垂直于墙的边长为x 米,则x ≤7,生态园平行于墙的边长为(42-3x )米由题意得:x (42-3x )=144即214480x x -+=解得:126,8x x ==(舍去)即生态园垂直于墙的边长为6米.(2)不能,理由如下:设生态园垂直于墙的边长为y 米,则生态园平行于墙的边长为(42-3y )米由题意得:y (42-3y )=150即214500y y -+=由于2(14)415040∆=--⨯⨯=-<所以此一元二次方程在实数范围内无解即生态园的面积不能达到150平方米.【点睛】本题考查了一元二次方程在实际生活中的应用,理解题意并根据等量关系正确列出方程是解题的关键.2、(1)11x =21x =(2)12x =-,21x =【分析】 (1)用配方法解即可; (2)用因式分解法即可. (1) 方程配方得:2(1)3x -=开平方得:1-=x解得:11x =21x =(2) 原方程可化为:(1)(2)2(2)0x x x ++-+= 即(2)(1)0x x +-= ∴20x +=或10x -= 解得:12x =-,21x = ·线○封○密·○外【点睛】本题考查了解一元二次方程的配方法和因式分解法,根据方程的特点采用适当的方法可使解方程简便.3、(1)见解析(2)见解析【分析】(1)根据SAS 证明即可;(2)由∠BAC =90°,AB =AC ,得到∠B =∠ACB=45︒,根据全等三角形的性质得到∠ACD =∠B =45︒,求出∠DCE =90︒,利用直角三角形斜边中线的性质得到DE =2CF ,DE =2AF ,由此得到结论.(1)证明:∵∠BAC =90°,∠EAD =90°,∴∠BAC =∠EAD ,∴∠BAC+∠CAE =∠EAD+∠CAE ,即∠BAE =∠CAD , 在ABE 和ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ACD (SAS );(2)证明:∵∠BAC =90°,AB =AC ,∴∠B =∠ACB=45︒, ∵ABE ≌ACD ,∴∠ACD =∠B =45︒,∴∠BCD =90︒,∴∠DCE =90︒,∵点F 是DE 的中点,∴DE =2CF ,∵∠EAD =90°,∴DE =2AF ,∴AF =CF . . 【点睛】 此题考查了等腰直角三角形的性质,全等三角形的判定及性质,直角三角形斜边中线等于斜边一半的性质,熟记各知识点并综合应用是解题的关键. 4、 (1)120; (2)1730 【分析】 (1)用自驾的人数除以所占百分数计算即可; (2)先计算出乘公交的人数=总人数-自驾人数-其它人数,后计算即可. (1) ·线○封○密○外∵ “自驾”方式的人数是32人,且是调查总人数的415, ∴总人数为:32÷415=120(人). (2) ∵选择“其它”方式的人数是选择“自驾”人数的58,“自驾”方式的人数是32人,∴选择“其它”方式的人数是32×58=20(人)∴选择公交的人数是:120-32-20=68(人), ∴选择“公交”方式的人数占调查总人数的681712030=. 【点睛】本题考查了条形统计图,样本估计整体,正确获取解题信息是解题的关键.5、()212a -,16 【分析】先对括号里进行通分、合并同类项,然后进行乘除运算化为最简,最后代值求解即可.【详解】解:原式()()221242a a a a a a a ⎛⎫+-=-⨯ ⎪ ⎪---⎝⎭()()()()222142a a a a a a a a +---=⨯-- ()2442a aa a a -=⨯--()212a =-当2a = 原式()()221116222a ===-. 【点睛】 本题考查了分式的混合运算以及二次根式的混合运算.解题的关键在于熟练掌握混合运算的运算法则. ·线○封○密·○外。

1999—2018天津市中考数学试卷含详细解析(历年真题)

1999—2018天津市中考数学试卷含详细解析(历年真题)

2018年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)计算(﹣3)2的结果等于( ) A .5B .﹣5C .9D .﹣92.(3分)cos30°的值等于( )A .√22B .√32C .1D .√33.(3分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为( ) A .0.778×105B .7.78×104C .77.8×103D .778×1024.(3分)下列图形中,可以看作是中心对称图形的是( )A .B .C .D .5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√65的值在( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间7.(3分)计算2x+3x+1−2x x+1的结果为( )A .1B .3C .3x+1D .x+3x+18.(3分)方程组{x +y =102x +y =16的解是( )A .{x =6y =4B .{x =5y =6C .{x =3y =6D .{x =2y =89.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=12x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1 10.(3分)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB 边上的点E处,折痕为BD,则下列结论一定正确的是()A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB 11.(3分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.AB B.DE C.BD D.AF12.(3分)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算2x4•x3的结果等于.14.(3分)计算(√6+√3)(√6﹣√3)的结果等于.15.(3分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)将直线y=x向上平移2个单位长度,平移后直线的解析式为.17.(3分)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF ⊥AC于点F,G为EF的中点,连接DG,则DG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(I)∠ACB的大小为(度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。

2024年天津市中考数学试卷版,含答案

2024年天津市中考数学试卷版,含答案

2024年天津市中考数学试卷版,含答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 下列哪个数是负数?A. 5B. 0C. 3D. 82. 下列哪个数是偶数?A. 11B. 14C. 17D. 203. 下列哪个数是质数?A. 12B. 17C. 20D. 274. 下列哪个数是合数?A. 11B. 13C. 17D. 195. 下列哪个数是平方数?A. 16B. 18C. 20D. 226. 下列哪个数是立方数?A. 8B. 27C. 64D. 1257. 下列哪个数是无理数?A. √2B. √3C. √4D. √58. 下列哪个数是有理数?A. πB. eC. √2D. √39. 下列哪个数是整数?A. 3.14B. 5.67C. 8.910. 下列哪个数是分数?A. 0.25B. 0.5C. 0.75D. 111. 下列哪个数是正数?A. 3B. 0C. 3D. 812. 下列哪个数是负数?A. 5B. 0C. 3D. 813. 下列哪个数是偶数?A. 11B. 14C. 17D. 2014. 下列哪个数是质数?A. 12B. 17D. 2715. 下列哪个数是合数?A. 11B. 13C. 17D. 19二、判断题(每题1分,共20分)1. 0是正数。

2. 1是质数。

3. 2是偶数。

4. 3是合数。

5. 4是平方数。

6. 5是立方数。

7. 6是无理数。

8. 7是有理数。

9. 8是整数。

10. 9是分数。

11. 10是正数。

12. 1是负数。

13. 2是偶数。

14. 3是质数。

15. 4是合数。

16. 5是平方数。

17. 6是立方数。

18. 7是无理数。

19. 8是有理数。

20. 9是整数。

三、填空题(每空1分,共10分)1. 3的相反数是______。

2. 4的绝对值是______。

3. 5的平方是______。

4. 6的立方是______。

5. √9的值是______。

22年天津中考数学试卷

22年天津中考数学试卷

22年天津中考数学试卷一、以下哪个数是无理数?A. 3/4B. √2C. 0D. -5(答案:B)二、在直角坐标系中,点A(3,4)关于x轴对称的点的坐标是?A. (-3,4)B. (3,-4)C. (-3,-4)D. (4,3)(答案:B)三、若a∶b∶c = 2∶3∶4,且a + b + c = 27,则a的值为?A. 6B. 9C. 12D. 18(答案:A)四、下列哪个函数是y关于x的正比例函数?A. y = x2B. y = x + 1C. y = 2/xD. y = 3x(答案:D)五、一个三角形的两边长分别为3和5,第三边长为x,则x的取值范围是?A. 2 < x < 8B. 3 < x < 8C. 2 ≤ x ≤ 8D. 3 ≤ x ≤ 8(答案:C)六、下列哪个选项描述的是平行四边形的性质?A. 对角线相等B. 对角线互相垂直C. 对角线互相平分D. 对角线平分一组对角且相等(答案:C)七、若一次函数y = kx + b的图象经过点(1,2)和点(-1,-2),则k的值为?A. -1B. 1C. 2D. -2(答案:C)八、一个圆的半径为r,若其面积增加了100%,则半径增加了多少?A. 50%B. 100%C. 150%D. 200%(答案:B)九、下列哪个不等式组的解集是x > 2?A. x > 1 and x > 2B. x > 1 or x > 2C. x < 1 and x > 2D. x ≤ 1 or x > 2(答案:A)十、在△ABC中,∠A = 60°,∠B和∠C的度数比为1∶2,则∠C的度数为?A. 60°B. 80°C. 100°D. 120°(答案:B)。

中考数学试题天津卷及答案

中考数学试题天津卷及答案

中考数学试题天津卷及答案1. 选择题1. 下列哪个数是无理数?A. √2B. πC. 0.5D. 02. 如果a:b = 3:4,且b:c = 5:6,则a:c等于A. 15:20B. 9:20C. 12:18D. 10:153. 若(3x+4y):(2x+y)= 5:2,则x:y等于A. 2:5B. 5:2C. 3:5D. 5:34. 下列哪个关系式成立?A. 3x > 5xB. 2x-3 > 5xC. 2x+3 > 3xD. 4x-1 < x+25. 若x取等差数列的第n项,且x+1是该等差数列的第k项,则k:n的值为A. 1:2B. 2:1C. 1:3D. 3:12. 填空题1. 当x=2时,方程2(x−1)-3(x+1)的解是______。

2. 计算:12÷3+4×2-8=______。

3. 一个长方形的长是4cm,宽是3cm,它的周长是______。

4. 已知直角三角形的斜边长为5cm,一直角边长为4cm,求另一直角边的长度______。

3. 解答题1. 某数除以5,商是26,余数是3,这个数是多少?2. 两人同时从相距800m的同一地点出发,速度分别是6m/s和8m/s,问多长时间后两人相距1600m?答案:1. 选择题答案:ABDBD2. 填空题答案:-3, 10, 14, 33. 解答题答案:1. 这个数可以表示为5的倍数加上3,所以这个数是5 × 26 + 3 = 133。

2. 两人的相对速度是8 - 6 = 2m/s,所以相距1600m需要1600 / 2= 800秒。

天津市2023年中考:《数学》考试真题与参考答案

天津市2023年中考:《数学》考试真题与参考答案

天津中考数学科目:2023年考试真题与答案解析目录选择题…………01页填空题…………05页解答题…………07页参考答案………11页天津市2023年中考:《数学》考试真题与参考答案一、选择题本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.计算()122⎛⎫-⨯- ⎪⎝⎭的结果等于( )A .52-B .1-C .14D .12.估计的值在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.如图是一个由6个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.全B.面C.发D.展5.据2023年5月21日《天津日报》报道,在天津举办的第七届世界智能大会通过“百网同播、万人同屏、亿人同观”,全球网友得以共享高端思想盛宴,总浏览量达到935000000人次,将数据935000000用科学记数法表示应为()A.9⨯0.93510B.8⨯9.3510C.7⨯93.510D.6⨯935106.sin 45︒+的值等于( ) A .1BCD .2 7.计算21211x x ---的结果等于( ) A .1- B .1x - C .11x + D .211x - 8.若点()()123,2,,1,)2(,A x B x C -都在反比例函数2y x=-的图象上,则123,,x x x 的大小关系是( )A .231x x x <<B .213x x x <<C .132x x x <<D .321x x x <<9.若12,x x 是方程2670x x --=的两个根,则( ) A .126x x +=B.126x x+=-C.127 6x x=D.127x x=10.如图,在ABC△中,分别以点A和点C为圆心,大于12AC的长为半径作弧(弧所在圆的半径都相等),两弧相交于M,N两点,直线MN分别与边,BC AC相交于点D,E,连接AD.若,4,5BD DC AE AD===,则AB的长为()A.9B.8C.7D.611.如图,把ABC△以点A为中心逆时针旋转得到ADE△,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是()A.CAE BED∠=∠=B.AB AEC.ACE ADE∠=∠D.CE BD=12.如图,要围一个矩形菜园ABCD,共中一边AD是墙,且AD的长不能超过26m,其余的AB BC CD用篱笆,且这三边的和为40m.有下列结论:三边,,①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD面积为2192m;③菜园ABCD面积的最大值为2200m.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题本大题共6小题,每小题3分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。

试卷满分120分。

考试时间100分钟。

答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝各你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共12题,共36分。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A)6 (B)-6 (C)1 (D)-1(2)cos60o的值等于(A)(B)(C)(D)(3)下列标志中,可以看作是轴对称图形的是(A)(B)(C)(D)(4)为让市民出行更加方便,天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608 000000人次.将1608 000 000用科学记数法表示应为(A)×107(B)×108(C)×109(D)×1010(5)如图,从左面观察这个立体图形,能得到的平面图形是(A)(B)(C)(D)(6)正六边形的边心距为,则该正六边形的边长是(A)(B)2(C)3 (D)(7)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25o,则∠C的大小等于(A)20o(B)25o(C)40o(D)50o(8)如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于(A)3:2 (B)3:1(C)1:1 (D)1:2(9)已知反比例函数,当1<x<2时,y的取值范围是(A)0<y<5 (B)1<y<2(C)5<y<10(D)y>10(10)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为(A)(B)(C)(D)(11)某公司招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.公司将录取(A)甲(B)乙(C)丙(D)丁(12)已知二次函数y=ax2+b x+c(a≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=9没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是(A)0 (B)1 (C)2 (D)32014年天津市初中毕业生学业考试试卷数学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。

2.本卷共13题,共84分。

二、填空题(本大题共6小题,每小题3分,共18分)(13)计算的结果等于.(14)已知反比例函数(为常数,)的图象位于第一、第三象限,写出一个符合条件的的值为.(15)如图,是一副普通扑克牌中的13张黑桃牌.将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.(16)抛物线的顶点坐标是.(17)如图,在中,,为斜边上的两个点,且,,则的大小为.(18)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)计算的值等于;(Ⅱ)请在如图所示的网格中,用无刻度...的直尺,画出一个以为一边的矩形,使矩形的面积等于,并简要说明画图方法(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推第(15)题第(17)题第(12)题第(20)题第(22)题理过程)(19)(本小题8分)解不等式组请结合题意填空,完成本小题的解答. (Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ; (Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 . (20)(本小题8分)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图①和图②,请根据有关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为_________,图①中m 的值是_________;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双(21)(本小题10分) 已知⊙O 的直径为10,点A 、点B 、点C 是在⊙上,∠CAB 的平分线交⊙O于点D .(Ⅰ)如图①,若BC 为⊙O 的直径,AB =6,求AC 、BD 、CD 的长;(Ⅱ)如图②,若∠CAB =60°,求BD 的长.(22)(本小题10分) 解放桥是天津市的标志性建筑之一,是一座全钢结构对的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB 等于47m ,从AB 的中点C 处开启,则AC 、开启到A ’C ’的位置时,A ’C ’的长为_________;(Ⅱ)如图②,某校兴趣小组要测量解放桥的全长PQ ,在观景平台M 处测得∠PMQ =54°,沿河岸MQ 前行,在观景平台N 处测得∠PNQ =73°.已知PQ ⊥MQ ,MN =40m ,求解放桥的全长PQ .(tan54°≈,tan73°≈,结果保留整数)图①图②图①图②图①图②34号 35号 36号 37号 38号第(24)题(23)(本小题8分)“黄金1号”玉米种子的价格为5元/kg .如果一次购买2kg 以上的种子,超过2kg 的部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:(Ⅱ)设购买种子的数量为x kg ,付款金额为y 元,求y 关于x 的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.(24)(本小题10分)在平面直角坐标系中,O 为原点,点A (-2,0),点B (0,2),点E ,点F 分别为OA ,OB 的中点.若正方形OEDF 绕点O 顺时针旋转,得正方形OE ’D ’F ’,记旋转角为α.(Ⅰ)如图①,当α=90°,求AE ’,BF’ 的长;(Ⅱ)如图②,当α=135°,求证AE ’ =BF’,且AE ’ ⊥BF’; (Ⅲ)若直线AE ’与直线BF ’相交于点P ,求点P 的纵坐标的最大值(直接写出结果即可).(25)(本小题10分)在平面直角坐标系中,O 为原点,直线l :x =1,点A (2,0),点E 、点F 、点M 都在直线l 上,且点E 和点F 关于点M 对称,直线EA 与直线OF 交于点P .(Ⅰ)若点M 的坐标为(1,-1).① 当F 的坐标为(1,1)时,如图,求点P 的坐标; ② 当F 的为直线l 上的动点,记为P (x ,y ),求y 关于x 的函数解析式;(Ⅱ)若点M (1,m ),点F (1,t ),其中t ≠0.过点P 作PQ ⊥l 于点Q ,当OQ =PQ 时,试用含t 的式子表示m .图①图②2013年天津市初中毕业生学业考试试卷数学第Ⅰ卷二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-3)+(-9)的结果等于(A)12 (B)-12 (C)6 (D)-6(2)tan60︒的值等于(A)1 (B(C(D)2(3)下列标志中,可以看作是中心对称图形的是(A)(B)(C)(D)(4)中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8 210 000m2.将8210 000用科学记数法表示应为(A)482110⨯(B)582.110⨯(C)68.2110⨯(D)70.82110⨯(5)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为,(2)班成绩的方差为15.由此可知(A)(1)班比(2)班的成绩稳定(B)(2)班比(1)班的成绩稳定(C)两个班的成绩一样稳定(D)无法确定哪班的成绩更稳定(6)右图是一个由3个相同的正方体组成的立体图形,它的三视图是(A)(B)(C)(D)(7)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(A)矩形(B)菱形(C)正方形(D)梯形(8)正六边形的边心距与边长之比为(A(B2(C)1:2(D2(9)若222112648xx yx y x y=-=---,,则的值等于(A)117-(B)117(C)116(D)115第(6)题第(7)题(10)如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y =S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为(A) 0 (B) 1(C) 2 (D)32013年天津市初中毕业生学业考试试卷数学第Ⅱ卷二、填空题(本大题共8小题,每小题3分,共24分)(11)计算6a a⋅的结果等于.(12)一元二次方程(6)0x x-=的两个实数根中较大的根是.(13)若一次函数1(0)y kx k k=+≠为常数,的图象经过第一、二、三象限,则k的取值范围是.(14)如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段.(15)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).(16)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于4的概率是.(17)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE 的长为.(18)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图的方法(不要求证明).三、解答题(本大题共8小题,共66分.解答应写出文字说明、演算步骤或推理过程)(19)(本小题6分)解不等式组12,29 3.xx-<⎧⎨+>⎩第(10)题第(14)题第(15)题第(17)题第(22)题第(21)题(20)(本小题8分)已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点23A ( ),. (Ⅰ)求这个函数的解析式; (Ⅱ)判断点16B (- ),,32C ( ),是否在这个函数的图象上,并说明理由; (Ⅲ)当31x -<<-时,求y 的取值范围.(21)(本小题8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为_________,图①中m 的值是_________;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数; (Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数. (22)(本小题8分)已知直线l 与⊙O ,AB 是⊙O 的直径,AD ⊥l 于点D .(Ⅰ)如图①,当直线l 与⊙O 相切于点C 时,若∠DAC =30°,求∠BAC 的大小;(Ⅱ)如图②,当直线l 与⊙O 相交于点E 、F 时,若∠DAE =18°,求∠BAF 的大小.人数捐款金额5元 10元 15元 20元 30元 图①图②图①图②第(23)题(23)(本小题8分)天塔是天津市的标志性建筑之一.某校数学兴趣小组要测量天塔的高度.如图,他们在点A 处测得天塔的最高点C 的仰角为45︒,再往天塔方向前进至点B 处测得最高点C 的仰角为54︒,AB =112m .根据这个兴趣小组测得的数据,计算天塔的高度CD (tan360.73≈°,结果保留整数).(24)(本小题8分)甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x 元,其中x >100.(Ⅰ)根据题意,填写下表(单位:元):(Ⅱ)当x 取何值时,小红在甲、乙商场的实际花费相同(Ⅲ)当小红在同一商场累计购物超过100元时,在哪家商场的实际的花费少 (25)(本小题10分)在平面直角坐标系中,已知点(2,0)A -,点(0,4)B ,点E 在OB 上,且∠OAE =∠OBA .(Ⅰ)如图①,求点E 的坐标; (Ⅱ)如图②,将AEO 沿x 轴向右平移得到A E O ''',连接A B BE ''、. ①设AA m '=,其中02m <<,试用含m 的式子表示22A B BE ''+,并求出使22A B BE ''+取得最小值时点E '的坐标;②当A B BE ''+取得最小值时,求点E '的坐标(直接写出结果即可).第(25)题(26)(本小题10分)已知抛物线21(0)y ax bx c a=++≠的对称轴是直线l,顶点为M. 若自变量x与函数值1y的部分对应值如下表所示:(Ⅰ)求1y与x之间的函数关系式;(Ⅱ)若经过点(0,)T t作垂直于y轴的直线l',A为直线l'上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记作2(,)P x y;①求2y与x之间的函数关系式;②当x取任意实数时,若对于同一个x,有12y y<恒成立,求t的取值范围.图①图②2012年天津市中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.2cos60°的值等于( )A .1B .C ..22.下列标志中,可以看作是中心对称图形的是( )A .B .C .D .3.据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET ”域名注册量约为560000个,居全球第三位,将560000用科学记数法表示应为( )A .356010⨯B .45610⨯C .55.610⨯D .60.5610⨯ 41的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( )A .300名B .400名C .500名D .600名 6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )A .平行四边形B .矩形C .菱形D .正方形7.如图是一个由4个相同的正方体组成的立体图形,它的三视图是( )8.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME=MC ,以DE 为边作正方形DEFG ,点G 在边CD 上,则DG 的长为( ) A1 B.3-C1 D19.某电视台“走基层”栏目的一位记者乘汽车赴360km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( ) A .汽车在高速公路上的行驶速度为100km/h B .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后到达采访地10.若关于x 的一元二次方程(1)(3)x x m --=有实数根12,x x ,且12x x ≠,有下列结论:①122,3x x ==;②14m >-;③二次函数12()()y x x x x m =--+的图象与x 轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(共8小题,每小题3分,满分24分) 11.3-= ;12.化简221(1)(1)x x x ---的结果是 ;13.袋子中装有5个红球和3个黑球,这些球除了颜色外都相同.从袋子中随机的摸出一个球,则它是红球的概率是 ;14.将正比例函数6y x =-的图象向上平移,则平移后所得图象对应的函数解析式可以是 ;(写出一个即可).15.如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,点D 为⊙O 上一点,若∠CAB=55°,则∠ADC 的大小为 (度);16.若一个正六边形的周长为24,则该六边形的面积为 ;17.如图,已知正方形ABCD 的边长为1,以顶点A 、B 为圆心,1为半径的两弧交于点E ,以顶点C 、D 为圆心,1为半径的两弧交于点F ,则EF 的长为 ;18.“三等分任意角”是数学史上一个著名问题.已知一个角∠MAN ,设13MAN α∠=∠.(Ⅰ)当∠MAN=69°时,∠α的大小为 (度);(Ⅱ)如图,将∠MAN 放置在每个小正方形的边长为1cm 的网格中,角的一边AM 与水平方向的网格线平行,另一边AN 经过格点B ,且AB=.现要求只能使用带刻度的直尺,请你在图中作出∠α,并简要说明做法(不要求证明) 。

相关文档
最新文档