梁的弯曲应力和强度问题

合集下载

梁弯曲正应力实验中遇到的问题和解决方法

梁弯曲正应力实验中遇到的问题和解决方法

梁弯曲正应力实验中遇到的问题和解决方法
梁弯曲正应力实验是一种常见的力学实验,用于研究材料在受弯曲负载时的应力分布情况。

在进行这种实验时,有可能会遇到一些问题,下面是一些常见问题及其解决方法:
1. 梁的变形较大:当梁弯曲变形较大时,可能会导致实验结果不准确。

这可能是由于使用的材料强度不够或梁的截面形状不合适所引起的。

解决方法可以是使用更强度更高的材料或调整梁的截面形状以增加刚度。

2. 不均匀的载荷分布:在实验中,均匀的载荷分布对于获得准确的应力分布至关重要。

然而,由于实际操作中的误差或载荷施加不均匀,可能会导致载荷分布不均。

为了解决这个问题,可以使用适当的装置来均匀施加载荷,例如调整载荷点的位置或使用辅助支撑装置。

3. 测量误差:在实验测量过程中,可能会存在测量误差,例如测量长度或载荷的误差。

为了减小测量误差,可以使用更精确的测量仪器,例如数字测量仪或压力传感器,并进行多次重复测量以取得平均值。

4. 材料非线性行为:某些材料在受到较大应力时可能会出现非线性行为,例如弹性极限的超越或塑性变形。

这可能会影响到实验结果的准确性。

在这种情况下,可以选择更适合材料特性的实验方法,或者
进行更详细的材料力学性质测试。

5. 温度变化:温度的变化可能会导致材料的线膨胀或收缩,从而影响实验结果。

为了解决这个问题,可以进行温度补偿,即在实验过程中测量和控制温度变化,并根据材料的热膨胀系数进行修正。

总之,梁弯曲正应力实验是一种常见且有用的实验,但在实验过程中可能会遇到各种问题。

通过合适的措施和方法,可以克服这些问题,并获得准确可靠的实验结果。

梁弯曲的强度条件和刚度条件及应用

梁弯曲的强度条件和刚度条件及应用

范中查到。
在梁的设计计算中,通常是根据强度条件确定截面尺寸,然
后用刚度条件进行校核。具体过程参看下面例题。
工程力学
梁弯曲的强度条件和刚度条件及应用
(1)小跨度梁或荷载作用在支座附近的梁。此时梁的Mm ax可能较小而FSmax较大。
(2)焊接的组合截面(如工字形)钢梁。当梁截面的腹板厚 度与高度之比小于型钢截面的相应比值时,横截面上可能产 生较大的切应力τmax。
(3)木梁。木梁在顺纹方向的抗剪能力差,可能沿中性层 发生剪切破坏。
梁弯曲的强度条件和刚度条件及应用
2. 强度条件的应用 【例8-6】
梁弯曲的强度条件和刚度条件及应用
(2)内力分析。绘制内力图如图8-27(b)和(c)所示, 确定最大剪力、弯矩为
FSmax=60 kN,Mmax=18 kN·m (3)根据正应力强度条件选择截面。由式(8-26)得
查附录型钢表,可选用16号工字钢,其抗弯截面系数 Wz=141 cm3,高h=16 cm,腿厚t=9.9 mm,腹板厚b1= 6 mm。
梁弯曲的强度条件和刚度条件及应用
图8-27
梁弯曲的强度条件和刚度条件及应用
1.2 弯曲梁的刚度条件
梁除满足强度条件外,还应满足刚度要求。根据工程实际的
需要,梁的最大挠度和最大(或指定截面的)转角应不超过某一规
定值,由此梁的刚度条件为
ymax≤y
(8-28)
θmax≤θ
(8-29)
式中,许可挠度y和许可转角θ的大小可在工程设计的有关规
工程力学
ห้องสมุดไป่ตู้
梁弯曲的强度条件和刚度条件及应用
1.1 梁弯曲的强度条件及应用 1. 强度条件
由于梁弯曲变形时横截面上即有正应力又有切应力,因此强度条 件应为两个。当弯曲梁横截面上最大正应力不超过材料的许用正应力, 最大切应力不超过材料的许用切应力时,梁的强度足够,即

梁的剪应力及其强度条件梁的弯曲应力与强度计算剪应力计算公式

梁的剪应力及其强度条件梁的弯曲应力与强度计算剪应力计算公式
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力 8.2 弯曲正应力的强度条件 8.3 梁的剪应力及其强度条件 8.4 提高弯曲强度的措施
8.1 梁弯曲时横截面上的正应力
横截面上有弯矩又有剪力。 例如:AC和DB段。 称为横力弯曲(剪切弯曲)。 横截面上有弯矩没有剪力。 例如:CD段。 称为纯弯曲。
力 max 发生在弯矩最大的截面上,且离中性轴最远处。即
引用记号 则
max
M max ymax Iz
Wz
Iz ymax
max
M max Wz
Wz 称为弯曲截面模量。它与截面的几何形状有关,单位为m3。
8.2 弯曲正应力的强度条件
对于宽为 b ,高为 h 的矩形截面
Wz
Iz ymax
bh3 /12 h/2
A
A
M
E
Iz
式中1/ρ为梁弯曲后轴线的曲率。
EIz 称为梁的弯曲刚度。
8.1 梁弯曲时横截面上的正应力
E y
(b)
由上面两式,得纯弯曲时正应力的计算公式:
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为 正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。 以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。
8.1 梁弯曲时横截面上的正应力
E y
(b)
将式(b)代入式(d),得
M y
z dA 0
A
(d)
M z
y dA M
A
(e)
z dA E y z dA 0
A
A
A y z dA I yz 0
(自然满足)
y 轴为对称轴,必然有Iyz=0。

提高梁弯曲强度的主要措施

提高梁弯曲强度的主要措施

提高梁弯曲强度的主要措施弯曲正应力是控制抗弯强度的主要因素。

因此,讨论提高梁抗弯强度的措施,应以弯曲正应力强度条件为主要依据。

由]σ[σmax max ≤=zW M 可以看出,为了提高梁的强度,可以从以下三方面考虑。

(1) 合理安排梁的支座和载荷从正应力强度条件可以看出,在抗弯截面模量z W 不变的情况下,M max 越小,梁的承载能力越高。

因此,应合理地安排梁的支承及加载方式,以降低最大弯矩值。

例如图1(a)所示简支梁,受均布载荷q 作用,梁的最大弯矩为281ql M max =。

图1 简支梁如果将梁两端的铰支座各向内移动0.2l ,如图1(b)所示,则最大弯矩变为2401ql M max =,仅为前者的1/5。

由此可见,在可能的条件下,适当地调整梁的支座位置,可以降低最大弯矩值,提高梁的承载能力。

例如,门式起重机的大梁图2(a),锅炉筒体图2(b)等,就是采用上述措施,以达到提高强度,节省材料的目的。

图2 合理安排梁的支座和载荷(2) 采用合理的截面形状由正应力强度条件可知,梁的抗弯能力还取决于抗弯截面系数W Z 。

为提高梁的抗弯强度,应找到一个合理的截面以达到既提高强度,又节省材料的目的。

比值A W z 可作为衡量截面是否合理的尺度,AW z 值越大,截面越趋于合理。

例如图3中所示的尺寸及材料完全相同的两个矩形截面悬臂梁,由于安放位置不同,抗弯能力也不同。

竖放时662h bh bh A W z == 平放时 662b bh hb A W z == 当h>b 时,竖放时的A W z 大于平放时的AW z ,因此,矩形截面梁竖放比平放更为合理。

在房屋建筑中,矩形截面梁几乎都是竖放的,道理就在于此。

图3矩形梁的不同放置在讨论截面的合理形状时,还应考虑材料的特性。

对于抗拉和抗压强度相等的材料,如各种钢材,宜采用对称于中性轴的截面,如圆形、矩形和工字形等。

这种横截面上、下边缘最大拉应力和最大压应力数值相同,可同时达到许用应力值。

第九章第六节梁弯曲时的应力及强度计算(上课用)

第九章第六节梁弯曲时的应力及强度计算(上课用)

m
V
( Stresses in Beams)
m

m
M
V
m m
只有与剪应力有关的切向内力元素 d V = dA 才能合成剪力
只有与正应力有关的法向内力元素 d FN = dA 才能合成弯矩
剪力V 内力 弯矩M 正应力 剪应力
所以,在梁的横截面上一般
既有 正应力, 又有 剪应力
先观察下列各组图
所以,可作出如下 假设和推断:
1、平面假设:
2.单向受力假设: 各纵向纤维之间互不挤压,纵向纤维均处于单向受拉或受压的状态。 因此梁横截面上只有正应力σ而无剪应力τ
各横向线代表横截面,实验表 明梁的横截面变形后仍为平面。
梁在弯曲变形时,上面部分纵向纤维缩短,下面部分纵向纤维伸长,必 有一层纵向纤维既不伸长也不缩短,保持原来的长度,这一纵向纤维层称为 中性层. 中性层与横截面的交线称为中性轴,中性轴通过截面形心,是一条形心轴。 且与截面纵向对称轴y垂直,将截面分为受拉区及受压区。梁弯曲变形时, 各横截面绕中性轴转动。
(3)横截面上任一点处的剪应力计算公式(推导略)为

V S I zb
Z
V——横截面上的剪力
Iz——整个横截面对中性轴的惯性矩
b——需求剪应力处的横截面宽度 S*Z——横截面上需求剪应力处的水平线 以外(以下或以上)部分面积A*(如图 )对 中性轴的静矩
V
3V 4 y2 (1 2 ) 2bh h
应力状态按主应力分类:
(1)单向应力状态。在三个相对面上三个 主应力中只有一个主应力不等于零。 (2)双向应力状态。在三个相对面上三个 主应力中有两个主应力不等于零。
(3)三向应力状态。其三个主应力都不等于零。例 如列车车轮与钢轨接触处附近的材料就是处在三向应 力状态下.

梁的应力和强度计算

梁的应力和强度计算

梁的应力和强度计算1.梁的基本假设梁的基本假设包括:梁材料是均匀各向同性的,梁截面是平面截面,梁的纵向伸缩变形可以忽略,梁的横向收缩变形可以忽略,梁截面平面保持平直。

2.梁的受力分析在进行梁的应力和强度计算之前,需要对梁的受力进行分析。

常见的梁的受力包括弯曲、剪切和轴向拉压等。

2.1弯曲弯曲是梁的一种主要受力状态,发生在梁受到弯矩作用时。

对于弯曲受力的梁,可以运用梁弯曲理论进行应力和强度计算。

常见的梁弯曲理论包括欧拉-伯努利梁理论和延性梁理论。

2.2剪切剪切是梁的另一种重要受力状态,发生在梁上部分截面受到剪力作用时。

剪切力引起梁截面上的剪应力,可以通过剪切变形理论进行计算。

2.3轴向拉压轴向拉压发生在梁上部分截面受到轴向拉力或压力作用时。

轴向拉力或压力引起梁截面上的轴向应力,可以通过轴向变形理论进行计算。

3.梁的应力分析根据梁的基本假设和受力分析,可以进行梁的应力分析。

梁的应力分析包括黄金区和非黄金区的判断、应力分布的计算和强度设计的确定。

3.1黄金区和非黄金区判断黄金区是指梁截面上应力最大的区域,通常位于材料的纤维处。

在黄金区内,应力达到梁材料的屈服强度。

非黄金区则是指其他区域,应力小于屈服强度。

3.2应力分布计算根据梁的受力和应力分析,可以计算出梁截面上的应力分布。

应力分布的计算可以通过梁的几何形状、外力和边界条件以及材料的性质来确定。

常见的应力分布包括弯曲应力、剪切应力和轴向应力等。

4.梁的强度设计梁的强度设计是根据计算得到的应力分布进行的。

根据材料的强度,可以确定梁的尺寸和形状,以满足梁的极限状态和使用状态的要求。

总结起来,梁的应力和强度计算是梁力学中的基本问题,包括梁的受力分析、应力分布计算和强度设计等内容。

通过合理的计算和设计,可以确保梁的安全和可靠性,提高结构的性能。

弯曲变形的强度条件和强度计算

弯曲变形的强度条件和强度计算

弯曲变形的强度条件和强度计算当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。

如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。

如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。

本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。

图1 平面弯曲一、梁弯曲时的内力——剪力和弯矩梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。

为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。

图2 剪力的正负图3 弯矩的正负例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。

解:(1)求支反力=∑C M:0310126=⨯--⋅AyF,kN7=AyF=∑Y:010=-+ByAyFF,kN3=ByF(2)列内力方程剪力:⎩⎨⎧<<-<<=63kN33kN7)(S xxxF弯矩:⎩⎨⎧≤≤≤≤⋅-⋅-=633mkN)6(3mkN127)(xxxxxM(3)作剪力图和弯矩图二、梁弯曲时的正应力在一般情况下,梁的横截面上既有弯矩又有剪力。

若梁上只有弯矩没有剪力,称为纯弯曲。

本讲主要讨论纯弯曲时横截面上的应力——正应力。

梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。

图4 梁弯曲时的正应力分布图即有yIxMz)(=σ(1)中性轴把截面分成受拉区和受压区两部分,且最大拉应力和最大压应力发生在上下边缘处,其值为max max y I Mz=σ。

令max y I W z z=,即有:zW M =max σ (2)式中,W z 称为抗弯截面系数,它与横截面的几何尺寸和形状有关,量纲为[长度]3,常用单位为mm 3或m 3。

梁的应力及强度计算

梁的应力及强度计算

梁的应力及强度计算梁是一种常见的结构元件,用于承受或分配荷载。

在设计和分析梁的过程中,计算梁的应力及强度是非常重要的。

本文将详细介绍梁的应力及强度计算方法。

首先,梁的应力定义为单位面积上的力,用公式表示为:σ=M*y/I其中,σ表示梁的应力,M表示梁的弯矩,y表示距离中性轴的垂直距离,I表示梁的截面惯性矩。

梁的应力通常包括弯曲应力、剪切应力和轴向应力。

弯曲应力是由于弯曲力引起的应力,计算公式为:σ_b=M*y/I其中,σ_b表示弯曲应力。

剪切应力是由于纵向剪力引起的应力,计算公式为:τ=V*Q/(b*t)其中,τ表示剪切应力,V表示纵向剪力,Q为形状系数,b为梁的宽度,t为梁的厚度。

轴向应力是由于轴向力引起的应力,计算公式为:σ_a=N/A其中,σ_a表示轴向应力,N表示轴向力,A表示梁的截面积。

梁的强度是指在给定的荷载下梁能够承受的最大应力。

在计算梁的强度时,通常需要将不同种类的应力进行合并。

弯曲强度是指梁在弯曲荷载下的抗弯矩能力。

根据材料的弯曲性能和形状,可以采用破坏理论或变形理论计算梁的弯曲强度。

剪切强度是指梁在剪切荷载下的抗剪切能力。

根据材料的剪切性能和梁的几何形状,可以计算出梁的剪切强度。

轴向强度是指梁在轴向荷载下的抗轴向力能力。

轴向强度的计算通常基于材料的抗拉性能。

在进行梁的应力及强度计算时,还需要考虑其他因素,如材料的弹性模量、断裂韧性和安全系数等。

总之,梁的应力及强度计算是结构设计和分析中必不可少的一部分。

通过合理的计算方法,可以确保梁在荷载下的正常工作和安全使用。

工程力学第8章梁的弯曲应力与强度计算

工程力学第8章梁的弯曲应力与强度计算
弯曲应力是指由于外力矩作用,使梁 发生弯曲变形时,在梁的横截面上产 生的应力。
弯曲应力的大小与外力矩、截面尺寸 和材料性质等因素有关。
弯曲应力的产生原因
当梁受到外力矩作用时,梁的横截面上的内力分布不均匀, 产生弯曲应力。
弯曲应力的产生与梁的弯曲变形有关,是梁在受到外力矩作 用时,抵抗弯曲变形的能力的表现。
弯曲应力的分类
正弯曲应力
当梁受到外力矩作用时,在横截面上产生的正应 力称为正弯曲应力。
剪切弯曲应力
当梁受到外力矩作用时,在横截面上产生的剪切 应力称为剪切弯曲应力。
扭曲弯曲应力
当梁受到外力矩作用时,在横截面上产生的扭曲 应力称为扭曲弯曲应力。
03
梁的弯曲应力计算
纯弯曲梁的正应力计算
01
公式:$sigma = frac{M}{I}$
方向的力,梁的宽度是截面的几何尺寸。
弯曲正应力和剪切应力的关系源自公式$sigma + tau = frac{M}{I} + frac{V}{b}$
描述
该公式表示弯曲正应力与剪切应力之间的关系,两者共同作用在梁上,决定了梁的强度和刚度。
04
梁的强度计算
强度计算的依据
梁的弯曲应力
01
梁在弯曲时,其内部的应力分布情况是决定其强度的关键因素。
机械零件
在机械零件设计中,如起 重机的吊臂、汽车的车身 等,梁的强度计算是保证 其正常工作的基础。
05
梁的弯曲应力与强度的关系
弯曲应力对强度的影响
弯曲应力是梁在受到垂直于轴线的力时产生的应力,它会 导致梁发生弯曲变形。弯曲应力的大小和分布与梁的跨度 、截面形状和材料等因素有关。
弯曲应力对梁的强度有显著影响。当弯曲应力过大时,梁 可能会发生断裂或过度变形,导致其承载能力下降。因此 ,在进行梁的设计和强度计算时,必须考虑弯曲应力的影 响。

梁的弯曲应力和强度计算

梁的弯曲应力和强度计算

88
7.5 106 7.6 106
88 86.8MPa
弯曲正应力计算
三、计算题
27.一矩形截面简支梁,梁上荷载如图所示.已知P=6kN、 l=4m、b=0.1m、h=0.2m,试画出梁的剪力图和弯矩图并求 梁中的最大正应力. 解:(1) 作剪力图、弯矩图
(2)求最大正应力
Mmax 6kN m
横向线:仍为直线,仍与纵向线正交,相对转动了一个角度 纵向线:曲线,下部伸长,上部缩短
(2)假设 平面假设:横截面在变形前为平面,变形后仍为平面,且仍
垂直于变形后梁的轴线,只是绕横截面上某个轴 旋转了一个角度。 单向受力假设:梁由无数根纵向纤维组成,之间无横向挤压,
只受轴向拉伸与压缩。
中性层
3、正应力计算公式 〖1〗几何变形关系
内容回顾
弯曲正应力 1. 基本假设:
(1)平面假设:变形前为平面的横截面,变形后仍为平面,但转动了一角度。 (2)单向受力假设:杆件的纵截面(与杆轴平行的截面)上无正应力。
2.中性轴Z:
中性层与横截面的交线,平面弯曲时中性轴过形心且与对称轴垂直。
3.正应力计算公式:
中性层
4.正应力分布规律:沿截面高度呈线性分布。
4、正负号确定 1)M、y 符号代入公式
2)直接观察变形
5、适用范围及推广
〖1〗适用范围: 平面弯曲(平面假设、单向受力假设基础上)、 线弹性材料
〖2〗推广: ① 至少有一个对称轴的截面; ② 细长梁 (l/h>5);
6、最大正应力
工程上关心的是极值应力:
只与截面形状、尺寸有关
抗弯截面模量
对剪切(横力)弯曲: 矩形:
解:(1)作弯矩图,
求最大弯矩

材料力学--弯曲正应力及其强度条件

材料力学--弯曲正应力及其强度条件

C
E
15 106 200 109
7.5 105
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
例21:图示木梁,已知下边缘纵向总伸
长为 10 mm,E=10GPa,求载荷P的大小。
P
300
A
C
B 200
2m
2m
解: AC
l/2
(x) dx
0
l/2 (x) d x l/2 M ( x) d x
1m
例20:简支梁受均布荷载,在其C截面
的下边缘贴一应变片,已知材料的 E=200GPa,试问该应变片所测得的应变 值应为多大?
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
解:C截面的弯矩
ql2 MC 8 45kN m
C截面下边缘的应力 C
MC Wz
15MPa
应变值
P
y1
y2
Cz
解:
max
M max y1 Iz
[ ]
(1)
max
M max y2 Iz
[ ]
(2)
(1) 得: y1 [ ]
(2)
y2 [ ]
例16:图示外伸梁,受均布载荷作用,
材料的许用应力[σ]=160 MPa,校核 该梁的强度。
10 kN / m
2m
4m
200 100
10 kN / m
变形几何关系 从三方面考虑: 物理关系
静力学关系
1、变形几何关系
m
mn
m
aa
bb
mn
m
m
观察到以下变形现象: (1)aa、bb弯成弧线,aa缩短,bb伸长 (2)mm、nn变形后仍保持为直线,且仍与变为

弯曲正应力、切应力与强度条件

弯曲正应力、切应力与强度条件

M
C

Z
C
Z
中性轴

y
中性轴
y

中性轴将横截面分为 受拉 和 受压 两部分。
M yAz(
d)A E
Az
y dA
E
I
yz
0
Iyz0
因为 y 轴是横截面的对称轴,所以 Iyz 一定为零。 该式自动满足
中性轴是横截面的形心主惯性轴
M ZAy(
d)A E
A
y2 dA
E
Iz
M
1M
EI z
基本假设2: 纵向纤维无挤压假设
纵向纤维间无正应力。
公式推导
d
用两个横截面从梁中假想地截取 长为 dx 的一段 。
由平面假设可知,在梁弯曲时,
这两个横截面将相对地旋转一个
角度 d 。
横截面的转动将使梁的凹边的纵 向线段缩短,凸边的纵向线段伸 长。由于变形的连续性,中间必 有一层纵向线段 O1O2 无长度改 变。此层称为 中性层 。
m M
FS m
m
m
M
FS
m
m
只有与切应力有关的切向内力元素 dFS = dA 才能合成剪力 只有与正应力有关的法向内力元素 dFN = dA 才能合成弯矩 所以,在梁的横截面上一般既有 正应力,又有 切应力
一,纯弯曲梁横截面上的正应力
RA
P
P RB
C a
P
+
D a
+
P
+
Pa
推导 纯弯曲 梁横截面上正应力的计算公式。 几何 物理 静力学
2 假想地从梁段上截出体积元素 mB1
m'
m z

梁弯曲时横截面上的应力及强度计算.

梁弯曲时横截面上的应力及强度计算.

《机械设计基础》课程单元教学设计单元标题:梁弯曲时横截面上的应力及强度计算单元教学学时 2在整体设计中的位置第16次授课班级上课地点教学目标能力目标知识目标素质目标能利用强度计算条件进行承载能力计算1.掌握应力计算公式2.掌握强度计算条件1.培养学生热爱本专业、爱学、会学的思想意识。

2.培养学生应用理论知识分析和解决实际问题的能力;3.培养学生的团队合作意识;4.培养学生仔细、认真、严谨的工作态度。

能力训练任务及案例任务:能利用强度计算条件进行承载能力计算教学材料1.教材2.使用多媒体辅助教学单元教学进度步骤教学内容教学方法学生活动工具手段时间分配1复习、导入复习总结:弯曲变形截面上剪力和弯矩的求法,剪力图、弯矩图的绘图步骤。

导入:梁弯曲时横截面上的应力及强度计算。

提问讲授讨论回答黑板课件视频5分钟2设置情景提出问题简支矩形截面木梁如图所示,L=5m,承受均布载荷q=3.6kN/m,木材顺纹许用应力[σ]=10MPa,梁截面的高宽比h/b=2,试选择梁的截面尺寸。

问题探究问题引领听讲思考黑板、ppt5分钟一.纯弯曲概念:1.纯弯曲:平面弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。

2.剪切弯曲:平面弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。

二.纯弯曲时梁的正应力:1.中性层和中性轴的概念:中性层:纯弯曲时梁的纤维层有的变长,有的变短。

其中有一层既不伸长也不缩短,这一层称为中性层。

中性轴:中性层与横截面的交线称为中性轴。

10分钟3讲授新知提供咨询2.纯弯曲时梁的正应力的分布规律:以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性规律分布,最大的正应力发生在上下边沿点。

3、纯弯曲时梁的正应力的计算公式:(1).任一点正应力的计算公式:(2).最大正应力的计算公式:其中:M---截面上的弯矩;I Z---截面对中性轴(z轴)的惯性矩; y---所求应力的点到中性轴的距离。

工程力学弯曲强度2(应力分析与强度计算

工程力学弯曲强度2(应力分析与强度计算

max
y
2
当中性轴是横截面的对称轴时:
IZ
max
IZ
y
y1 y2 y max
1
即对称截 面梁
max max max
y
Iz 简单截面的抗弯截面系数 Wz= ymax y
h z
y z
bh Iz bh 2 Wz= 12 h h 6 2 2
3
max - max -

i max

M z max max i = Wz i
一般非等直梁
M z x y x max = max x = I z x max
可利用函数求导的方法得到最大正应力数值
固定端处梁截面上的弯矩: M=Me 。 且这一梁的所有横截面上的弯矩都 等于外加力偶的力偶矩Me
中性轴通过 截面形心,因此z 轴就是中性轴。 据弯矩方向可知中性 轴以上均受压应力,以下 均受拉应力。 根据正应力公式,横截面上正应力沿截面高度(y) 按直线分布,在上、下边缘正应力最大。可画出固定 端截面上的正应力分布图。
M max y 2 0.253N m 10 3 15 10 3 m 2 0.842 10 3 Pa 84.2MPa Iz 4.5 10 -8 m 4
例题
C
FRA FRB
T形截面简支梁在中点承受集中力 FP =32kN, l=2m。 T形截面的形心坐标yC=96.4mm,横截面对于z 轴的惯性矩Iz =1.02108 mm4。求:弯矩最大截面上的 最大拉应力和最大压应力。 解: 根据静力学平衡可求得支座A和B处的约束力分别 为FRA=FRB=16 kN。据内力分析,知梁中点截面 上弯矩最大

梁弯曲

梁弯曲
例如:AC和DB段。
称为横力弯曲
(bending by transverse force)。
横截面上只有弯矩没有剪力。
例如:CD段。
称为纯弯曲(pure bendin而另一端为可动 铰支座的梁 悬臂梁:一端为固定端, 另一端为自由端的梁 外伸梁:简支梁的一端或两端 伸出支座之外的梁
载荷简化
(1)分布载荷q(x) ――连续作用在一段长度 的载荷。
例如:自重、惯性力、液压等, 单位: N/m。
q(x)
a d
b
x
(2)集中力P
dx
(3)集中力偶 M
剪力和弯矩
例 一悬臂梁,其尺寸及梁上荷载如图8-9所示,求截面1-1上的剪力和 弯矩。
解: 对于悬臂梁不需求支座反力,可取右段梁为研究对象,其受力图如 图 (b)所示。
如取1-1截面右段梁为研究对象,可得出同样的结果。
一、梁弯曲时的内力—剪力与弯矩 1、剪力Q和弯矩M---剪力是横截面切向分布内力的合力; 弯矩M是横截面法向分布内力的合力偶矩。 (1)用截面法,根 据静力平衡求内力
∑FY=0: Q=RA-P1
∑MA=0: M=P1.a+Q.x
=P1.a+(RA-P1).x
2.求弯矩的规律 计算弯矩时,对截面左(或右)段梁建立力矩方程,经过移项后可得
M MC左

M MC右
上两式说明:梁内任一横截面上的弯矩在数值上等于该截面一侧所有外力(包 括力偶)对该截面形心力矩的代数和。将所求截面固定,若外力矩使所考虑的梁 段产生下凸弯曲变形时(即上部受压,下部受拉),等式右方取正号;反之取负号, 此规律可记为“下凸弯矩正”。
梁的平面弯曲
3、纵向对称面— 通过梁的轴线和 横截面的对称轴 的平面。

梁的弯曲应力与强度计算

梁的弯曲应力与强度计算

虽然横力弯曲与纯弯曲存在这些差异,但是应用纯弯曲时正
应力计算公式来计算横力弯曲时的正应力,所得结果误差不大,
足以满足工程中的精度要求。且梁的跨高比 l/h 越大,其误差越小。

My Iz
8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力
例: 已知 l=1m,q=6kN/m,10号槽 钢。求最大拉应力和压应力。 解:(1)作弯矩图
28 . 8 MPa t
y2

( 2 . 5 10 N m )( 88 10 763 10
8
3
m)
Iz
m
4
故该梁满足强度条件。
8 梁的弯曲应力与强度计算 8.3.1 梁的弯曲剪应力
8.3 梁的剪应力及其强度条件
1. 矩形截面梁的弯曲剪应力
关于横截面上剪应力的分布
M
max

2F 3W z
Wz




3 2
( 237 10
6
)( 160 10 ) N 56 . 9 kN
6
8 梁的弯曲应力与强度计算
8.2 弯曲正应力的强度条件
例:一矩形截面木梁,已知 F =10 kN,a =1.2 m。木材的许用应力
=10MPa。设梁横截面的高宽比为h/b=2,试选梁的截面尺寸。

bh 6
2
对于直径为 D 的圆形截面
Wz Iz y max

D / 64
4

D
32
3
D /2
对于内外径分别为 d 、D 的空心圆截面
Wz Iz y max

D (1 ) / 64

混凝土梁的弯曲强度标准

混凝土梁的弯曲强度标准

混凝土梁的弯曲强度标准一、引言混凝土梁是建筑结构中常用的构件之一,其承担着承重、支撑等多种功能。

在使用过程中,混凝土梁的弯曲强度是一个至关重要的指标。

因此,制定混凝土梁的弯曲强度标准对于确保建筑结构的安全和可靠是非常重要的。

二、弯曲强度的定义弯曲强度是指混凝土梁在受到弯曲作用时所能承受的最大应力。

一般用弯矩和截面惯性矩的比值来表示,即:f_b = M / I其中,f_b为弯曲应力,M为弯矩,I为截面惯性矩。

三、影响弯曲强度的因素1.混凝土的强度:混凝土的强度越高,其弯曲强度也相应提高。

2.钢筋的配筋率:钢筋的配筋率越高,混凝土梁的弯曲强度也相应提高。

3.截面形状:不同形状的截面对混凝土梁的弯曲强度有不同的影响。

4.荷载的大小和作用方式:不同大小和作用方式的荷载对混凝土梁的弯曲强度有不同的影响。

5.梁跨度:梁跨度越大,混凝土梁的弯曲强度越低。

四、弯曲强度标准为了确保混凝土梁的安全可靠,制定弯曲强度标准是非常必要的。

以下是常见的两种弯曲强度标准:1.中国建筑标准设计规范《混凝土结构设计规范》(GB 50010-2010)该标准规定了不同等级混凝土梁的弯曲强度等级,如下表所示:等级 | f_b(MPa)---|---C15 | 2.5C20 | 2.8C25 | 3.1C30 | 3.4C35 | 3.7C40 | 4.0C45 | 4.2C50 | 4.4C55 | 4.6C60 | 4.82.美国混凝土协会《建筑规范》(ACI 318-14)该标准将混凝土梁的弯曲强度按等级划分为A、B、C、D四个等级,如下表所示:等级 | f_b(MPa)---|---A | 7.5B | 10C | 12.5D | 15五、弯曲强度的检验方法为了检验混凝土梁的弯曲强度是否符合标准要求,需要进行相应的测试。

常见的测试方法有以下两种:1.三点弯曲试验该试验方法是将混凝土梁放置在两个支点上,施加作用于中央的负载,测量混凝土梁在受力时的弯曲程度,从而计算出其弯曲强度。

弯曲应力和强度.

弯曲应力和强度.

第六章 弯曲应力和强度1、 纯弯曲时的正应力 横力弯曲时,0≠=Q dxdM。

,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。

根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。

横截面只是绕其面内的某一轴线刚性地转了一个角度。

这就是弯曲变形的平面假设。

(2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。

(2)物理关系根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。

当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为y EE ρεσ==该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上ρE为常数,说明弯曲正应力沿截面高度按线性规律分布,如图所示。

中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。

(3)静力关系截面上的最大正应力为zI My maxmax =σ 如引入符号m axy I W zz =则截面上最大弯曲正应力可以表达为zW M=max σ 式中,z W 称为截面图形的抗截面模量。

它只与截面图形的几何性质有关,其量纲为[]3长度。

矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面:621223maxbh h bh y I W zz ===直径为d 的圆截面:3226433maxd d d y I W z z ∏=∏==至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。

若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如T 形截面。

这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。

最大拉应力为:zt I My 1)(=σ 最大压应力为:ze I My 2)(=σ 2、横力弯曲时的正应力zI My=σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档