斜拉桥构造

合集下载

斜拉桥和悬索桥的总体布置和结构体系

斜拉桥和悬索桥的总体布置和结构体系

主跨跨径
索 塔 高 度
索面形式(辐射式、竖琴式或扇式) 双塔:H/l2=0.18~0.25
拉索的索距
单塔:H/l2=0.30~0.45
拉索的水平倾角
6
拉索布置
斜拉索横向布置
空间布置形式
单索面
竖直双索面 双索面
倾斜双索面
7
拉索在平面内的布置型式
辐射式 竖琴式 扇式

拉索间距
早期:稀索
混凝土达 15m~30m 钢斜拉桥达 30m~50m
31
1)斜拉桥施工的理论计算
斜拉桥施工的理论计算方法主要有以下几种:1、倒拆法;2)正算法
倒拆法从斜拉桥成桥状态出发(即理想的恒载状态出发)用与实际施工 步骤相反的顺序,进行逐步倒退计算来获得各施工节段的控制参数,根据 这些参数对施工进行控制与调整,并按正装顺序施工。
正算法是按斜拉桥的施工顺序,依次计算出各施工节段架设时的内力和 位移。并依据一定的计算原则,选定相应的计算参数作为未知变量,通过 求解方程得到相应的控制参数。
1)主梁的边跨和主跨比 2) 主梁端部处理 3) 主梁高度沿跨长的变化
混凝土主梁横截面形式
1)实体双主梁截面;2)板式边主梁截面;3)分 离双箱截面;4)整体箱形截面;5)板式梁截面
双索面钢主梁横截面形式
双主梁、单箱单室钢梁、两个单箱单室钢梁、 多室钢梁和钢桁梁
21
3、主梁构造特点(续)
主要尺寸拟定
混凝土斜拉桥的拉索一般为柔性索,高强钢丝外包的索套仅作为保护材 料,不参加索的受力,在索的自重作用下有垂度,垂度对索的受拉性能有影 响,同时索力大小对垂度也有影响。 为了简化计算,在实际计算中索一般采 用一直杆表示,以索的弦长作为杆长。关健 问题是考虑索垂度效应对索的伸长与轴力的 关系影响,这种影响采用修正弹性模量来考 虑。

斜拉桥&悬索桥

斜拉桥&悬索桥

第六章悬索桥及斜拉桥第一节悬索桥及斜拉桥的分类及构造一、悬索桥、斜拉桥的分类(一)悬索桥悬索桥也称吊桥,是指利用主缆和吊索作为加劲梁的悬挂体系,将桥跨所承受的荷载传递到桥塔、锚碇的桥梁。

其主要结构由主缆、索塔、锚碇、吊索、加劲梁组成。

悬索桥的类型可根据悬吊跨数、主缆锚固方式及悬吊方式等方面加以划分。

1.按悬吊跨数分类其结构形式如图6-1。

其中单跨悬索桥和三跨悬索桥最为常用。

图6-1 悬吊跨数不同的悬索桥a)单跨悬索桥;b)三跨悬索桥;c)四跨悬索桥;d)五跨悬索桥1)单跨悬索桥2)三跨悬索桥3)多跨悬索桥图6-2 联袂布置的悬索桥2.按主缆的锚固方式分类按主缆的锚固形式划分,可分为地锚式悬索桥和自锚式悬索桥。

3.根据悬吊方式分类1)采用竖直吊索并以钢桁架作加劲梁,如图6-4所示。

2)采用三角布置的斜吊索,并以扁平流线形钢箱梁作加劲梁,如图6-5所示。

3)混合式,即采用竖直吊索和斜吊索,流线形钢箱梁作加劲梁。

如图6-6所示。

图6-4 采用竖直吊索桁式加劲梁悬索桥图6-5 采用斜吊索钢箱加劲梁的悬索桥图6-6 带斜拉索的悬索桥4.按支承结构分类图6-7 按支承构造划分悬索桥形式a)单跨两铰加劲梁;b)三跨两铰加劲梁;c)三跨连续加劲梁(二)斜拉桥斜拉桥的主要组成部分为主梁、索塔及拉索。

1.按索塔布置方式分1)单塔式斜拉桥采用图6-8-b)的单塔式斜拉桥。

2)双塔式斜拉桥桥下净空要求较大时,多采用图6-8 a)所示的双塔式斜拉桥。

图6-8 斜拉桥跨径布置3)多塔式斜拉桥在跨越宽阔水面时,由于桥梁长度大,可采用图6-8c)所示的多塔斜拉桥。

2.按主梁的支承条件分1)连续梁式斜拉桥如图6-9 a)。

2)单悬臂式斜拉桥如图6-9 b)。

3)T形刚架式斜拉桥如图6-9 c)。

图 6-9按主梁支承条件划分斜拉桥形式二、悬索桥、斜拉桥的构造(一)悬索桥上部结构的主要形式和构造特点现代悬索桥通常主要由主缆、主塔、锚碇与加劲梁等四大主体结构以及塔顶主索鞍、锚口散索鞍座或散索箍和悬吊系统等重要附属系统组成。

悬索桥和斜拉桥的简单构造

悬索桥和斜拉桥的简单构造

(2)独塔双跨式
适用:跨越中、小河流、谷地和城市道路或较大 河流的主航道
边跨l1 / 中跨l2=0.5~0.8,一般取0.66左右
(3)单跨式
(1) 地锚式:独塔单跨式
双塔单跨式
(2) 无背索式:
Alamillo Bridge (Spain 1992) 长沙洪山大桥,跨径206m
Marian Bridge (the Czech Republic) span=123.3m,pylon=75m
(3)材料:除日本外,多用混凝土 (4)断面:多为箱形
桁架式 刚构式 混合式
四、主缆
(1)作用:主要承重构件 (2)布置形式:一般为平行的两根,个别4根 (3)材料:高强度平行钢丝束 (4)钢丝束股编织方法: 空中编丝组缆(AS法) 预制平行钢丝束股法(PS法或PWS法)
五、吊索
(1)作用:将加劲梁的恒载和活载传到主缆 (2)布置形式:——等间距,等截面 (3)材料:要求有抗拉强度和一定的柔性一般用
桥梁构造
悬索桥构造
悬桥组成
组成:主缆、加劲梁、吊索、索塔、鞍座、锚碇 (下部)及桥面结构
悬索桥的基本类型
1. 按主缆的锚固形式分类 地锚式:主缆的拉力由桥梁端部的重力式锚碇或
隧道式锚碇传递给地基 自锚式:主缆拉力直接传递给它的加劲梁。
2.三跨按悬孔索桥跨:布结置构形形式式最为分合类理,是大跨度悬索
钢桥面板(当前)
七、锚碇
(1)作用:主缆的锚固体,是支承主缆的重要部 分,将主缆的拉力传给地基
(2)形式: 重力式锚碇(重力锚)隧道式锚碇(岩洞锚)
桥梁构造
斜拉桥构造
斜拉桥
图书推荐
国内外斜拉桥建设现状
斜拉桥世界跨径记录

斜拉桥第一 PPT

斜拉桥第一 PPT
(4)振动常以“拍”得形式出现,频率成分较多,但 以基频为主。振幅很大;
(5)在一座桥上,常以多根索同时出现风雨激振 。
辅助墩 1) 依边孔高度、通航要求、施工安全、全桥刚度及
经济和使用而定 2) 作用:减小塔顶水平位移、主梁跨中挠度、塔根弯
矩、边跨主梁弯矩,增强施工期安全。 3) 受力:a)受拉时:减小主跨弯矩和挠度;b)受压时:减
小边跨主梁弯矩 4) 设置位置:由跨中挠度影响线确定,同时考虑索距和
施工要求; 5) 数量:1根最有效;2根以上不明显。
法国,诺曼底大桥,主跨856m,主跨钢梁/边 跨混凝土梁
斜拉桥得发展(国内)
20世纪70年代,1975,1976建成两座混凝 土试验桥
1993年,上海杨浦大桥,L=602m,结合梁斜 拉桥
1996,重庆长江二桥,L=444m,混凝土斜拉 桥
2006:苏通长江大桥,L=1088m
混凝土斜拉桥得发展阶段
拉索得风雨振及减震措施
日本研究人员Hikami首先观察到拉索得风雨激 振。实际得拉索结构得风雨激振有如下特点:
(1)在大、中、小雨状况下皆可能发生拉索得风 雨激振,发生大幅振动得风速一般为8-15m/s 。
(2)长索发生风雨激振得可能性较大,而靠近塔 柱处得短索发生这一振动得可能性较小;
(3)一般发生在PE包裹得拉索,拉索直径一般为 140mm~200mm;
拉索得风雨振及减震措施
1984年,日本Hikami观察到直径140mm得 斜拉索在14m/s风速下振幅值达到275mm 。Aratsu桥在建造时就时有强烈得索振动, 观测到得最大幅值为300mm,大约就是直径 得二倍。法国得布鲁东桥、泰国得RamaIX 桥、日本得名港西大桥报道得拉索振幅甚至 大到相邻拉索发生碰撞得程度。国内杨浦大 桥尾索在风雨共同作用下也曾发生强烈振动 ,其最大振幅超过1米。

第四章斜拉桥

第四章斜拉桥

第四章 斜拉桥内容提要:在本章内主要介绍斜拉桥。

内容包括其构造类型和结构体系。

学习的基本要求:1、了解斜拉桥各组成部分(斜索、塔柱、主梁)的构造类型2、了解斜拉桥的四大结构体系斜拉桥——20世纪50年代蓬勃兴起的一种桥梁型式。

斜拉桥是一种用斜拉索悬吊桥面的桥梁。

最早的这种桥梁,其承重索是用藤罗或竹材编制而成。

它们可以说是现代斜拉桥的雏形。

斜拉桥的发展,有着一段十分曲折而漫长的历程。

18世纪下半叶,在西方的法国、德国、英国等国家都曾修建过一些用铁链或钢拉杆建成的斜拉桥。

可是由于当时对桥梁结构的力学理论缺乏认识,拉索材料的强度不足,致使塌桥事故时有发生。

如德国萨尔河桥(1824)在建成第二年,就在一次有246人举行的火炬游行人群聚集桥上时,桥突然坍塌而酿成50 人丧生的严重惨剧。

因此在相当长的一段时间内,斜拉桥这一桥型就销声匿迹了。

直至第二次世界大战后,在重建欧洲的年月中,为了寻求既经济又建造便捷的桥型,使几乎被遗忘的斜拉桥重新被重视起来。

世界上第一座现代公路斜拉桥是1955年在瑞典建成的,主跨为182.6m 的斯特罗姆海峡钢斜拉桥。

近年来斜拉桥在国内外得到了迅速发展,目前已建成跨度最大的是日本国多多罗桥(890m )。

一、斜拉桥的构造类型预应力混凝土斜拉桥的斜索布置、塔柱型式和主梁截面是多种多样的,现扼要介绍它们的构造类型。

1、 斜索(一) 辐射式:斜索集中塔顶,锚固困难。

(二) 竖琴式:斜索相互平行,倾角相同,外形美观。

(三) 扇式:介于两者之间,采用最多。

2、 塔柱从桥梁行车方向看,塔柱可做成独柱式、双柱式、门式、斜腿门式、倒V 式、宝石式和倒Y 式等多种型式。

3、 主梁斜拉桥主梁的截面形式有板式、箱形截面二、斜拉桥的结构体系斜拉桥的主要组成部分为斜索、塔柱和主梁,这三者可按相互的结合方式组成四种不同的结构体系,即悬浮体系、支承体系、塔梁固结体系和刚构体系。

1、 悬浮体系(漂浮体系)塔墩固结,塔梁分离,主梁除两端外全部用缆索吊起而在纵向可稍作浮动的一种体系。

斜拉桥的构造

斜拉桥的构造

重庆石门嘉陵江桥
武汉汉水月湖桥
3. 三塔四跨式和多塔多跨式 斜拉桥很少采用三塔四跨式或多塔多跨式,因为中间塔顶没
有端锚索来有效地限制它的变位。因此,柔性结构的斜拉桥或悬 索桥采用多塔多跨式将使结构柔性进一步增大,随之而来的是变 形过大。
三塔四跨式(洞庭湖大桥)
三塔四跨式(香港汀九大桥)
(3)拉索 • 索面布置:单索面、竖向双索面和斜向双索面
• 索面形状:放射形、扇形和竖琴形
三、斜拉桥的孔跨布置
1. 双塔三跨式 这是一种最常见的斜拉桥孔跨布置方式。由于它的主跨跨径
较大,一般可适用于跨越较大的河流。
2. 独塔双跨式
这也是一种常见的斜拉桥孔跨布置方式,如下图所示。由 于它的主孔跨径一般比双塔三跨式的主孔跨径小,适用于跨 越中小河流和城市通道。
(2)主梁 • 分离的双箱截面 • 外侧斜腹板、内侧竖腹板的倒梯形箱型截面 • 三角形边箱梁 • 板式截面主梁 • 单箱多室截面
红岩村长江大桥
(3)拉索 • 斜索的构造分为整体安装的斜索和分散安装的斜索两大类。 • 前者的代表为平行钢丝索和冷铸锚,后者的代表为平行钢绞线索和夹片锚。
一、概念
斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上,由承压 的索塔、受拉的斜拉索和承弯的梁体组合起来的一种结构体系。
二、斜拉桥的主要构造
(1)索塔 • 纵桥向:索塔在纵桥向的形式有单柱型,A型及倒Y型等。 单柱型索塔构造简单,外形轻盈美观,施工方便,是常用的桥型。A型和倒Y型,有利于抵抗 索塔两侧拉索的不平衡拉力,能承受较大的顺桥向弯矩,并有更好的抗震能力。

斜拉桥的总体布置-斜拉索构造

斜拉桥的总体布置-斜拉索构造
采用镀锌钢丝制作,最外 层加涂防锈涂料
单股钢绞缆只能在工厂生 产,柔性好、可成盘运输 至现场安装,但用于混凝 土斜拉桥的拉索很少
《桥梁工程》(下)
斜拉桥的总体布置和拉索构造
斜拉索构造
➢ 斜拉索的防护构造
高强度钢材在长期高应力及应力变化状态下工作,良 好的防护是保证其使用寿命的关键
拉索的防护可分为钢材防腐和索体保护两个方面 钢材本身应不含有腐蚀成份,并有足够的抗拉强度和
这种斜拉索弯曲性能好,可以 盘绕,具备长途运输条件,宜 在工厂机械化生产,质量易保 证,逐步取代了纯平行钢丝索
它是目前使用最多的斜拉索
《桥梁工程》(下)
斜拉桥的总体布置和Байду номын сангаас索构造
斜拉索构造
《桥梁工程》(下)
斜拉桥的总体布置和拉索构造
斜拉索构造
钢绞线索——由多根钢绞线按规则排列而成,抗拉强 度标准值达到1860MPa
超大跨径斜拉桥拉索重 量大、安装困难,能够 逐根钢绞线安装及张拉 的平行钢绞线拉索得到 越来越多的应用
采用带护套的无粘结钢 绞线,再穿入高密度聚 乙烯外护套中
《桥梁工程》(下)
斜拉索构造
➢ 斜拉索的防护构造
索体防护_早期方法
钢丝束外缠绕多层玻璃纤维并加涂沥青或环氧树脂(使 用过程中防护层易破裂、油脂外漏)
钢丝束外套钢、 铝或高密度聚乙 烯管,管内压注 水泥浆(上端水 泥浆泌水、钢丝 会锈蚀,使用过 程中有断索危险)
《桥梁工程》(下)
斜拉桥的总体布置和拉索构造
斜拉索构造
根据钢束的组成材料,斜拉索主要类型有:
封闭式钢缆(Locked-Coil Cable) 平行钢筋索(Parallel-Bar Cable) 平行钢丝索(Parallel-Wire Cable) 钢绞线索(Stranded Cable) 螺旋钢绞缆(Spiral Rope)

斜拉桥构造解析

斜拉桥构造解析

主 跨(m) 380 360
348+348 330 320 318 312
建成年 1999 在建
2000
设计单位 广东省公路勘测设计院 广州市政设计院 湖北省交通规划设计院 四川省公路规划设计院 交通部公路规划设计院 江西省交通规划设计院 铁道部大桥局设计院
8 岳阳洞庭湖大桥(三塔) 310+310
The longest spans — Beam Bridges
斜拉桥在我国的发展
学习阶段:
60年代初传入我国; 1975年四川、上海先后建成试验性钢筋混凝土斜拉桥
( 75.8m云阳汤溪河桥, 54m新五桥);
1977年改革开放;1982年建成220m济南黄河大桥(已全面换索)
推广阶段(80年代,30余座斜拉桥)
1860 First Steel Bridge Built
In Vienna 1810 Iron Wire First Produced
1779 Iron Bridge
Built
1960 Carbo and Aramd Fibres First Produced
Higher Strength
Steel
1、定义: 由梁、索、塔三类构件组成的一种桥面体系以加劲梁受压(密索)或受 弯(稀索)为主,支承体系以斜拉索受拉及桥塔受压为主的桥梁。
2、斜拉桥的组成与特点 (1)组成:索塔、拉索、主梁、桥墩、基础 (2)特点:与吊桥相比 ➢它是一种自锚体系,不需昂贵的地锚基础 ➢防腐技术要求较低,还可在通车情况下换索 ➢刚度较大,抗风能力较好 ➢用钢量较少 ➢采用悬臂施工不防碍通航
第一章 绪论 INTRUDOCTION
第一节 斜拉桥的发展 1、斜拉桥的定义 2、斜拉桥的组成与特点 3、斜拉桥的发展历史 4、斜拉桥的发展方向

斜拉桥总体布置与构造

斜拉桥总体布置与构造

10.2 斜拉桥总体布置与构造10.2.1 孔跨布置斜拉桥孔跨布置主要可分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。

在特殊情况下,斜拉桥也可以布置成独塔单跨式或者混合式。

双塔三跨式(图10.1)是一种最常见的斜拉桥孔跨布置方式。

双塔三跨式斜拉桥通常布置成两个边跨跨度相等的对称形式,也可以布置成两个边跨跨度不等的非对称形式。

边跨跨度与主跨跨度的比例关系通常取0.4左右。

根据已建斜拉桥统计,一般跨度比/=0.35~0.5。

另外,还可根据需要在边跨内设置辅助墩,以提高结构体系的刚度。

辅助墩数量不宜过多,一般1~2个,过多,效果不显著。

由于双塔三跨式斜拉桥的主孔跨度较大,一般可适用于跨越较大的河流、河口和海峡。

1L 2L 1L 2L图10.1 双塔三跨式斜拉桥图10.2 重庆石门嘉陵江大桥独塔双跨式斜拉桥也是一种常见的孔跨布置方式,如图10.2所示重庆石门嘉陵江大桥即为独塔双跨式斜拉桥。

独塔双跨式斜拉桥可以布置成两跨不对称的形式,即分为主跨与边跨;也可以布置成两跨对称,即等跨形式。

其中以两跨不对称的形式较多,也较合理。

独塔双跨式斜拉桥的边跨跨度与主跨跨度的比例通常介于0.6~0.7之间。

由于它的主孔跨径一般比双塔三跨式的主孔跨径小,故特别适用于跨越中小河流、谷地及交通道路;当然也可用于跨越较大河流的主航道部分。

1L 2L 在跨越宽阔水面时,由于通航孔要求,必要时也可采用三塔斜拉桥,如湖北宜昌夷陵长江大桥(主跨2×348m,主梁为混凝土箱型梁,悬臂拼装施工)。

多塔多跨式的斜拉桥应用较少,这是由于多塔多跨式斜拉桥的中间塔顶没有端锚索来有效地限制它的变位,结构的刚度较低。

增加主梁的刚度可以在一定程度上提高多塔斜拉桥的整体刚度,但这样做必然会增加桥梁的自重。

在必须采用多塔多跨式斜拉桥时,可将中间塔做成刚性索塔,此时索塔和基础的工程程量将会增加很多,或用斜拉索对中间塔顶加劲,但这种长索柔度较大,且影响桥梁的美观。

斜拉桥简介

斜拉桥简介
斜拉桥简介
代东辉
一、斜拉桥的结构特点
边跨 主跨 索塔 端锚索 边跨
边墩 或桥台
1.斜拉索将梁多点吊起,恒载及活载通过斜拉索传 至塔柱,在通过塔柱基础传至地基。 2.高次内部超静定结构,可通过斜拉索的张拉调整 主梁和主塔塔的恒载受力状态。
3.在不对称荷载作用下,斜拉索对主梁的弹性支撑 作用受塔柱顺桥向弯曲的影响。 4.不对称荷载作用下,斜拉索对主梁的弹性支撑作 用受塔柱顺桥向弯曲的影响,端锚索对主梁座外,其 余位置均有拉索支 撑,成为在纵向可 自由漂移的多点弹 性支撑连续梁,次 内力较小,受力均 匀。具有很好的抗 震消能作用。塔梁 之间要设横向约束。
滑动支座 塔柱 主梁
杨浦大桥
2.将0号索换成塔 柱横梁上的竖向支 撑,主梁刚度更大, 对限制主梁纵向位 移更有利,同时省 去换锁的复杂工艺。 但次内力较大,支 撑处主梁截面需要 加强。我国福州的 青州闽江桥就是采 用的半漂浮体系, 主梁为连续体系, 塔梁交接处通过盆 式橡胶支座。
索塔 单端锚索 桥塔
塔后斜索
边墩 或桥台 自锚体系斜拉桥
边墩 或桥台 地锚式斜拉桥方案
以上是根据斜拉索的锚固方式分成的不同体系, 此外,还有一种是为了景观效果而设计的独特 的无端锚索的斜拉桥,下图是美国著名桥梁专 家林同炎所设计的Ruck-A-Chuck桥方案。
(二)主梁的连续与非连续体系
大部分斜拉桥主梁采用连续体系,当主梁与塔墩固 结时,形成连续钢构体系。也可以将主梁设置成单 悬臂梁或T型钢构。
边跨 主跨 索塔 端锚索 边跨
二、斜拉桥的结构体系
(一)斜拉索的不同锚固体系
1.自锚式斜拉桥 拉索全部锚固在主梁与塔柱之间,竖向荷载通过塔柱递到桥墩 及基础中,拉索的水平分立由主梁的轴来力平衡。 2.地锚式斜拉桥 拉索一端锚固在主梁上,另一端锚固在山岩上。 3.部分地锚式斜拉桥 边跨部分锚索锚固在主梁上,部分拉索布置成地锚式。

10月斜拉桥与悬索桥的构造设计及结构计算课件

10月斜拉桥与悬索桥的构造设计及结构计算课件
31
主要尺寸拟定 主梁高度h:h=1/50~1/200, 主梁宽度B:主梁宽与主跨的比值宜大于1/30,与
主梁高的比宜大于8, 主梁各细部尺寸:主要根据轴力来确定, 截面调试。 钢筋布置 普通钢筋的配置 纵向预应力筋:分段布置,一般在主跨跨中和边
跨端部 横向预应力筋
32
一、实体梁式和板式主梁
实体梁式和板式截面的主梁一般仅适用于双索面斜拉桥, 因为这种截面具有构造简单和施工方便的优点,特别 是斜索在实体的边主梁中锚固时,锚固构造非常简单, 而且在索面内具有一定的抗弯刚度,在锚固点处可以 避免产生大的横向力流。
由力学知识可知:在截面相同的情况下,塔的抗水平位移 刚度与塔高的三次方成反比,因而塔高降低则塔身刚度迅 速提高,但塔高降低后拉索的水平倾角也将减小,拉索对 主梁的支撑作用减弱,而水平压力增大,这相当于拉索对 主梁施加了一个较大的体外预应力。矮塔部分斜拉桥由于 拉索不能提供足够的支撑刚度,故要求主梁的刚度较大。
V形凸纹或圆形凹点的非光滑表面。 2、阻尼减振法 作用机理就是通过安装阻尼装置,提高拉索的阻尼比从
而抑制拉索的振动。 3、改变拉索动力特性法 采用联结器(索夹)或辅助索将若干根索相互联结起来,
辅助索可以采用直径比主要索小的多的索,作用机理: 通过联结将长索转换成为相对较短的短索,使拉索的 振动基频提高,从而抑制索的振动。
具有以下特点(1)塔较矮,(2)梁的无索区较长,没有端 锚索,(3)边跨与主跨的比值较大,一般大于0.5,(4) 梁高较大,高跨比为1/30~1/40,甚至做成高度梁,(5) 拉索对竖向恒活载的分担率小于30%,受力以梁为主,索 为辅,(6)由于梁的刚度大,活载作用下斜拉索的应力 变幅较小,可按体外预应力索设计。
25
五、T构体系 T构体系斜拉桥与刚构体系的区别主要是主梁跨

斜拉桥的结构体系及特点

斜拉桥的结构体系及特点

斜拉桥结构体系及特点斜拉桥亦称矮塔斜拉桥, 其构造特点是在持续梁中支点处设置矮索塔, 其塔高只有斜拉桥索塔高度的一半左右, 斜拉索通太矮索塔上设置的鞍座对主梁产生竖向支反力和水平压力。

部份斜拉桥主梁自身刚度较大, 能够承担大部份荷载效应, 斜拉索对主梁只起到必然程度的帮扶作用。

斜拉桥是介于斜拉桥和持续梁桥之间的一种新桥型, 兼具斜拉桥和持续梁桥的双重结构特点。

斜拉桥是由上部结构索、塔、梁三种大体构件和下部结构墩台、基础组成的结构体系, 阻碍部份斜拉桥结构各部份荷载效应最全然的因素是梁、塔、墩之间的结合方式, 不同的结合方式产生不同的结构体系。

依照部份斜拉桥结构自身的特点和梁、塔、索、墩的结合方式, 可将部份斜拉桥结构体系划分为三种型式: (1) 塔梁固结体系; (2) 支承体系; (3) 刚构体系, 见图1 所示。

(4)半漂浮体系,见图2所示。

(1)塔梁固结体系及特点塔梁固结、塔墩分离、梁底设支座支承在桥墩上, 斜拉索为弹性支承, 这是一种完全的主梁具有弹性支承的持续梁结构。

这种体系必需有一个固定支座, 一样是一个塔柱处梁底支座固定, 而其他支座可纵向活动。

这种体系的要紧优势是取消了经受专门大弯矩的梁下塔柱部份, 代之以一样桥墩, 中央段的轴向拉力较小, 梁身受力也很均匀, 整体温度转变对这种体系阻碍较小, 几乎能够略去。

这种体系结构整体刚度小, 当中跨满载时, 由于主梁在墩顶处的转角位移致使塔柱倾斜, 使塔顶产生较大的水平位移, 因此显著增大了主梁的跨中挠度。

上部结构重力和活载反力需经支座传递到桥墩, 因此需设置大吨位支座。

我国的漳州战备桥、小西湖黄河大桥、离石高架桥; 日本的蟹泽桥、士狩大桥、木曾川桥、揖斐川桥、新唐柜大桥均采纳这种体系。

已建部份斜拉桥采纳这种结构体系较多, 与连梁体系相同, 符合部份斜拉桥的概念含义。

塔梁固结体系的特点:塔、墩内力最小,温变内力也小,主梁边跨负弯矩较大。

(2)支承体系及特点塔墩固结、塔梁分离, 主梁在塔墩上设置竖向支承, 支座均为活动支座, 这种体系接近主梁具有弹性支承的持续梁结构。

斜拉桥

斜拉桥

斜拉桥的变形
(a)三塔四跨式斜拉桥的变形
(b) 双塔三跨式斜拉桥的变形
44
第一章 总体布置
第二节
孔跨布局
四、辅助墩和边引跨
图4-1-6
边引跨和辅助墩
a) 设引跨 b) 设辅助墩 活载往往在边跨梁端附近区域产生很大的正弯矩,并导致 梁体转动,伸缩缝易受损,在此情况下,可以通过加长边梁以 形成引跨或设置辅助墩的方法予以解决,同时,设辅助墩可以 减小拉索应力变幅,提高主跨刚度,又能缓和端支点负反力, 是大跨度斜拉桥中常用的方法。 另外,设置辅助墩也便于斜拉桥的悬臂施工,即双悬臂施 工到辅助墩处的时候就相当于单悬臂施工,其摆动小,较安全。
27
第一章 总体布置
第一节
概述
重庆石门桥:位于重庆市沙坪坝,跨越嘉陵江,全长716m。 主桥为200+230(m)单索面独塔预应力混凝土斜拉桥
28
第一章 总体布置
第一节
概述
鹿特丹的超现代伊拉斯缪斯大桥
29
第一章 总体布置
第一节
概述
长沙洪山庙大桥
30
第一章 总体布置
第一节
概述
海参崴俄罗斯岛跨海大桥,中跨跨度长度— —1104米,为世界纪录,牵索长——580米。 距水平面高度 ——70米。桥墩高度——324 米。主跨1104米的俄罗斯岛大桥(Russky Island Bridge)于2012年7月2日在海参崴通 车投入使用,成为全世界第三座跨度超过千 米的斜拉桥,也超越国内主跨1088米的苏通 大桥(Sutong Bridge)和香港主跨1018米的 昂船洲大桥(Stonecutters Bridge)成为全球 主跨最长的斜拉桥。
6
第一章 总体布置
第一节

斜拉桥的构造

斜拉桥的构造
梁. • 边跨和主跨设计理念区别:主跨必须有良好的动力
特性,自重较轻;边跨由于其拉索起着稳定索塔的作 用,因而边跨应具有克服上提力的功能,需要通过边 跨的自重、刚度或设辅助墩的方式来解决.

第二节 索塔
• 斜拉桥的柔细感与直线感虽基本上来自于 梁体与斜索,但索塔的形状对全桥的景观是 至关重要的,它在美学上几乎起决定性的作 用.因此,必须慎重选择索塔的形状,精心勾画 出优美的尺寸比例.具体的做法可借助于制 作模型来进行比较,然后决定取舍并进行局 部优化.
平行钢筋索:高强钢筋平行布置组成,标准强度不低于1470MPa 施工操作过程繁杂,索中钢筋都有接头,目前很少使用
钢丝索
平行钢丝股索: 平行钢丝索 半平行钢丝索
采用镀锌高强钢丝,其
标准强度不低于 1600MPa,常采用5或 7镀锌钢丝制造
平行钢绞线索:将7丝钢绞线平行排列,布置成六脚形截面 钢绞线 半平行钢绞线索
拉索在塔柱上对称锚固
利用钢锚箱对称锚固
拉索的减振
• 气动控制法 • 阻尼减振法 • 改变拉索动力特性法
斜拉桥的施工
• 1.支架法 • 2.悬臂法 • 3.顶推法 • 4.平转法
第二章 混凝土斜拉桥的构造
第一节 主梁的构造
一、主梁的主要作用: 1.将恒、活载分散传给拉索.梁的刚度越小,则分担 的弯矩越小
2.与拉索及索塔一起成为整个桥梁的一部分,主梁 承受的力主要是拉索的水平分力所形成的轴压力, 因而需有足够的刚度防止压屈
3.抵抗横向风载和地震荷载,并把这些力传给下部 结构
二、主梁高度沿跨长的变化
三、主梁截面形式 实体双主梁截面 板式边主梁截面 分离双箱截面
整体箱形截面
板式箱形截面
四、不同材料主梁的适宜跨径
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 绪论 Introduction 第二章 混凝土斜拉桥的构造 Construction of CSCB 第三章 混凝土斜拉桥的施工 Erection of CSCB 第四章 混凝土斜拉桥的设计与计算 Design and Calculation of CSCB 第五章 实例 Examples
第一章 绪论
第一节 概述
涵洞是公路工程中的小型构造物,虽 然在总造价中,其仅占很小比例,但涵 洞施工质量的好坏,直接影响到公路工 程的整体质量及其使用性能,以及周围 农田的灌溉、排水等 按构造形式的不同,涵洞可以分为 管涵、盖板涵、拱涵、箱涵、倒虹吸管 等。
第二篇 混凝土斜拉桥
Cable Stayed Concrete Bridges (CSCB)
第一章 绪论
INTRUDOCTION
第一节 斜拉桥的发展
1、斜拉桥的定义
2、斜拉桥的组成与特点 3、斜拉桥的发展历史
4、斜拉桥的发展方向
Firth of Forth Br. (Scotland) 1890 (521 m)
Quebec Br. (Canada) 1917 (549 m)
The longest spans — Suspension Bridges
我国斜拉桥(9座,L=300~400m)
排序 1 2 3 4 5 6 7 8 9 桥名 广东番禺大桥 广州鹤洞大桥 夷陵长江大桥(三塔) 涪陵长江大桥 珠海淇澳大桥 江西鄱阳湖口大桥 芜湖长江大桥 岳阳洞庭湖大桥(三塔) 天津塘沽海河大桥 主 跨(m) 380 360 348+348 330 320 318 312 310+310 310 2000 2000 在建 1999 在建 建成年 设计单位 广东省公路勘测设计院 广州市政设计院 湖北省交通规划设计院 四川省公路规划设计院 交通部公路规划设计院 江西省交通规划设计院 铁道部大桥局设计院 湖南省交通规划设计院 天津市政院/大桥局设计院
吊拉组合桥
1、定义: 由梁、索、塔三类构件组成的一种桥面体系以加劲梁受压(密索)或受 弯(稀索)为主,支承体系以斜拉索受拉及桥塔受压为主的桥梁。
2、斜拉桥的组成与特点
(1)组成:索塔、拉索、主梁、桥墩、基础 (2)特点:与吊桥相比
它是一种自锚体系,不需昂贵的地锚基础 防腐技术要求较低,还可在通车情况下换索 刚度较大,抗风能力较好 用钢量较少 采用悬臂施工不防碍通航
INTRUDOCTION
第一节 斜拉桥的发展
Development of Cable-Stayed Bridges 1、斜拉桥的定义
2、斜拉桥的组成与特点
3、斜拉桥的发展历史
4、斜拉桥的发展方向
缆索承重桥 斜拉桥(Cable-Stayed Bridges )
悬索桥 (Suspension Bridges)
2、斜拉桥的组成与特点
(3)斜拉桥近40年发展迅速的原因
高强度钢丝的出现,强度达到1.8Gpa,在相当大跨度
内钢束保持直线承受拉力,具有相当变形刚度;
正交异性板制造工艺已趣成熟,使加劲梁不仅有抗弯
能力,更有强大的抗压曲能力;
电子计算机技术的发展,可分析结构内力及稳定性
2000 m
1960 Carbo and Aramd Fibres First Produced 1860 First Steel Bridge Built In Vienna 1810 Iron Wire First Produced 1779 Iron Bridge Built
The longest spans — Beam Bridges
斜拉桥在我国的发展
学习阶段:
60年代初传入我国; 1975年四川、上海先后建成试验性钢筋混凝土斜拉桥 ( 75.8m云阳汤溪河桥, 54m新五桥); 1977年改革开放;1982年建成220m济南黄河大桥(已全面换索)
推广阶段(80年代,30余座斜拉桥)
260m天津永河大桥,288m东营黄河桥(No.1钢斜拉桥),广州海 印桥(单索面,B35m),重庆石门大桥(230m不对称独塔)
高潮 (90年代)
1991上海南浦大桥423m,1993上海杨浦大桥602m
我国斜拉桥(19座,L>400m)
排 序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 桥名 南京长江二桥 武汉长江三桥 青州闽江大桥 上海杨浦大桥 上海徐浦大桥 汕头岩石大桥 湖北荆沙长江大桥 湖北鄂黄长江大桥 湛江海湾大桥 香港汀九桥 湖北军山长江大桥 重庆大佛寺长江大桥 重庆长江二桥 铜陵长江大桥 香港汲水门桥 上海南浦大桥 郧阳汉江桥 润扬长江大桥(北叉) 武汉长江二桥 主 跨 (m) 628 618 605 602 590 518 500 480 480 475 460 450 444 432 430 423 414 406 400 建成年 2001 2001 2001 1993 1997 1999 (2002) (2002) (2007) 1997 (2002) (2002) 1995 1995 1997 1991 1994 (2005) 1995 结合 P.C. P.C. P.C. P.C. 钢(公铁两用) 结合 P.C. P.C. P.C. 主梁 钢 混合 结合 结合 混合 混合 P.C. 设计单位 交通部公路规划设计院 铁道部大桥局设计院 铁道部大桥局设计院 上海市政设计院/同济 上海市政设计院/同济 铁道部大桥局设计院 湖北交通设计院 交通部第二公路设计院 方案设计 德国 Schlaich Bergermann 湖北省交通设计院 铁道部大桥局设计院 上海市政设计院 交通部公路规划设计院 德国 Leonhardt 上海市政设计院/同济 湖北省交通设计院 江苏省交通规划设计院 铁道部大桥局设计院 世界 记录 3 4 5 6 7 9 11
1500 m
1000 m
Higher Strength Steel
500 m
STEEL Timber and Stone Wrought Iron
0ቤተ መጻሕፍቲ ባይዱ1700
Year
1750 1800 1850 1900 1950 2000
Development of Structural Materials in relation to the World’s longest bridge spans
相关文档
最新文档