视频压缩与MPEG降噪技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

视频压缩和MPEG 降噪技术

作者:Phuc-Tue Le Dinh

and Jacques Patry, Algolith

理论上,数字电视(DTV)画面品质优于传统的模拟电视,没有鬼影、雪花、颤动和色彩失真等等问题。而且,模拟电视信号正如可以论证的那样,最大的缺陷就是画面斑点甚多,且因为对高频信号响应不足而导致画面不够细腻,简单地说,就是带宽不够。图像越细致,分辨率就越高,所需要的带宽就越大。

很久以前,美国官方就把可用频谱中的每6MHz 带宽分配给美国广播公司的每一个频道以提供模拟电视信号,这种对视频带宽的限制及其对应的显示标准(NTSC 制式),就决定了传统电视机的特征,并在几十年时间里决定了电视画面的质量。

随着数字电视的出现,广播公司看到了能更充分地利用其分配的带宽的机会。的确,从他们的角度来看,数字电视最突出的优点莫过于容许在同样的带宽内传输更多的频道,并且同样能支持后续的高清晰度电视节目(HDTV)。 冗长的数据

HDTV 对技术的要求非常高。传

统传播模拟信号的NTSC 信号在

一个频道6MHz 带宽内最低要使

用4.2MHz 的带宽,并以29.97Hz

的场频扫描525线。经过数字量

化和编码压缩之后,该信号可以

被记录在DVD 上,其位传输bit

率从2Mbits/s 到10Mbits/s (支

持自适应),平均为4Mbits/s 。

比较而言,典型的HDTV 具有5

倍于模拟TV 的分辨率。因此在同样条件下,传输数据率应该是模拟信号的5倍才能达到同样的性能。

无论是传统的空中广播(OTA)、有线电视公司的机顶盒,还是卫星电视,他们都在传输信号时受到带宽的制约,在受限的带宽上他们还要附加占用带宽的服务,包括互动广播、收费频道和电视节目表等等。

那么,怎样才能解决问题呢?采用压缩技术是一种办法。

数字视频压缩引起失真

目前最常用的数字视频压缩算法是MPEG-2。从现有的卫星电视传输、有线数字电视传输到空中数字广播,MPEG -2在各种应用中已经被国际上广为采用。

MPEG-2首先通过运动补偿去除时间冗余,然后将一帧图像分割成一个个8x8的相素点阵,在每个点阵内使用DCT (离散余弦变换)去除空间冗余。DCT 完成后通过量化和重组后压缩就完成了,然后进行可变长编码,最后进行霍夫曼编码。整个压缩过程极大的减少了比特率(>10:1压缩比)。

然而,比特率的减少也带来了问题,因为编码损失了一些原始的视频信息,有可能引起严重的负作用,所以,MPEG-2被称为有损编码。它丢弃了被认为视觉上较为次要的图像信息。压缩得越大,编码后的图像与原始图像的差异就越大。图像质量和逼真度现在取决于所选择的(或通常是施加的)压缩级别。因为它直接与可用带宽相关,我们必须问问自己,什么时候才不出现过度的视频压缩呢?

带宽的限制

看得见的失真

在数字信号传输中的带宽限制以及过分的图像压缩,使压缩后的图象完全不同于模拟世界看到的图像。

通常,模拟图像变差(或噪声)经常是以高斯噪声的形式出现,该噪声的优点是它会保留基本的内容并且因为人眼视觉缺陷而不易被发觉。我们常常会看到那些有些模糊而让人不那么舒服的模拟图像,但是,这并不会让人觉得明显的反感。

数字噪声遵循的是一种不同的分布模式,更重要的是,其特殊的形态让人的视觉感到很不自然。当将MPEG-2编码(或任何基于DCT模块的编解码)用到极限,失真就主要有两种方式:蚊式噪声(Mosquito noise)和方块效应(Blocking artifacts)。

蚊式噪声和a.k.a. Gibbs效应

蚊式噪声

在清晰的彩色背景上,围绕突出物体、电脑仿真物体或滚动的字符周围的蚊式噪声最为明显。它看起来像某种围绕物体与背景之间高频分界(在前景物体与背景之间形成的尖锐跳变)的朦胧的东西或闪光体,甚至有时它被误认为是环绕物。不幸的是,这种细小的效应在人身体之类更接近自然的形状上也能看到。VIRIS项目组(视频参考损伤系统)将蚊式噪声定义为“伴随着运动物体边缘的失真,表现为围绕着物体四周有一层象飞行物体和/或模糊的?泡的物质(就像蚊子围绕着人头部和肩膀飞)”。

当重建图像并因为使用用反余弦变换丢弃一些数据时,就会出现蚊式噪声。

“蚊子”在一张图像的其它部分也可以找到,例如,在特定的纹理分界处或颗粒状物体处也会出现蚊式噪声。结果就有点类似随机噪声了,噪声看起来似乎与纹理或颗粒物混合在了一起,看起来就像画面的原始特征。

方块效应

方块效应

方块效应,名副其实,在图像中表现出令人讨厌和不自然的方块。有时侯表现为一大块,它是一种图像的失真,且是由分块编码结构造成的。

当编码达到最大化的时候,每个像素点阵就会被相当粗糙地取平均,使之看上去像一个大像素。每一个像素点阵的计算都不一样,这样就造成了各个点阵之间象是有明显的边界一样。

当物体或摄像机快速运动的时候该效应更为明显。最佳的例子是在NFL(美国国家足球联盟)广播过程中,抱球飞奔的运动员看起来就像老式任天堂游戏机里的马利奥兄弟似的。

预平滑

尽管预平滑不是图像压缩处理算法中的一种,但它已经被用于消除这种数字失真。

广播公司和内容提供商已经越来越意识到其传播系统的缺陷,他们中的一些针对已有的带宽限制采用了相当有争议的解决方案:预平滑。

通过在信号输入信道之前消除其图像中的高频部分,编码器有更多的时间处理其任务,所产生的图像受到方块效应和蚊式噪声的影响就更小。另一方面,这种一定程度上的过度滤波也损失了原始图像中的所有微细变化和纹理。

例如,一个蓄须达一周的足球运动员现在看来象是胡须剃得很干净(即使他处于静止状态),而体育场则看起来像一片绿色的大地毯。

可以证明,尽管有人会觉得预平滑也不错,但这完全是一个不可逆的算法。一旦处理掉了细节,人们就不能再重建它们了。

然而,方块效应和蚊式噪声确实消失了。

MNR: Algolith公司的解决方案

从学术的观点看,人们已经对图像的压缩和校正进行了广泛的研究,但是,至今为止,尚没有多少针对最终用户的切实可行的解决方案。

相关文档
最新文档