高一物理必修一动能定理和机械能守恒实验专题完整版
高一物理-机械能守恒(讲解及练习)
机械能守恒模块一机械能守恒定律知识导航1.机械能的定义力做功的过程,也是能量从一种形式转化为另一种形式的过程。
我们把物体的动能,重力势能和弹性势能统称为机械能,用E 表示,单位是J 重力做功或弹簧弹力做功可以使机械能从一种形式转化为另一种形式。
2.机械能守恒定律在只有重力或弹簧弹力做功的物体系统内,动能和势能可以互相转化,而系统的机械能保持不变这叫做机械能守恒定律。
由于势能是一个系统内物体所共有的能量,所以机械能守恒定律适用的是一个物体系统而不是单个物体。
对机械能守恒定律同学们可以从两个不同角度理解(1)初态的机械能等于末态的机械能(需要选择零势能参考平面)(2)系统内动能的减小量等于势能的增加量(或者势能的减小量等于动能的增加量)3.机械能守恒的条件除了重力、弹力以外没有其他力除了重力、弹力以外还受其他力,但其他力不做功除了重力、弹力以外还受其他力,且其他力也做功,但做功的代数和为零实战演练【例1】下列关于机械能是否守恒的说法中正确的是()A.做匀速直线运动的物体的机械能一定守恒B.做匀加速直线运动的物体的机械能不可能守恒C.运动物体只要不受摩擦阻力的作用,其机械能一定守恒D.物体只发生动能和势能的相互转化,其机械能一定守恒【例2】下列运动中满足机械能守恒的是()A.手榴弹从手中抛出后的运动(不计空气阻力)B.子弹射穿木块C.细绳一端固定,另一端拴着一个小球,使小球在光滑水平面上做匀速圆周运动D.吊车将货物匀速吊起E.物体沿光滑圆弧面从下向上滑动F.降落伞在空中匀速下降【例3】如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A 将弹簧压缩的过程中,A 机械能守恒B.乙图中,在大小等于摩擦力的拉力下沿斜面下滑时,物体B 机械能守恒C.丙图中,不计任何阻力时,A 加速下落,B 加速上升过程中,A、B 机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒【例4】如图所示,一轻弹簧的一端固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速度释放,让它自由下摆,不计空气阻力,则在重物由A 点摆向最低点B 的过程中()A.弹簧与重物的总机械能守恒B.弹簧的弹性势能增加C.重物的机械能定恒D.重物的机械能增加【例5】 如图所示,一固定斜面倾角为 30 ,一质量为 m 的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度大小等于重力加速度的大小 g 。
8专题动能定理机械能守恒和能量守恒综合应用PPT课件
(1)弹簧对物块的弹力做的功。
(2)物块从B点至C点克服阻力做的功。
(3)物块离开C点后落回水平面时其动能的大小。
答案:
(1)3mgR
(2) 1 mgR 2
(3) 5 mgR 2
14
例题6.如图所示,ABCD为一竖直平面的轨道,其中BC水平,A点比BC高出10 m,BC长1 m,AB和CD轨
道光滑,一质量为1 kg的物体,从A点以4 m/s的速度开始运动,经过BC后滑到高出C点10.3 m的D点速度为零。 (g取10 m/s2)求:
水平地面间的动摩擦因数为μ。求:
FN
(1)撤去F时,物块速度的大小。
f
(2)撤去F后,物块还能滑行多远。
解:(2)动能定理
mg
Wf EK
fx1
0
1 2
mv2
mgx1
1 2
mv2
v 2x( F g)
m
x1
x(
F
mg
1)
有没有更简单一点的方法?
答:撤去F时,物块还能滑行
x(
F
mg
1)
9
例题2.如图所示,一质量为m的物块放在水平地面上,现在对物块施加一个
F
对m
:
WF
=
1 2
mv
2
mgH 2mgh 0 mgH 0 1 (m 2m)v2 2
mg H
对2m:WG
WF
1 2mv2 2
零势能面
2mg
2mgh WF
1 2
mv2
v 2 3gh
解法三:能量守恒定律 2mgh 1 (m 2m)v2 2
3
答:此时砝码的速度为 2 3gh 3 11
动能定理和机械能守恒
动能定理和机械能守恒动能定理和机械能守恒一、引言在物理学中,动能定理和机械能守恒是两个基本的定理。
动能定理描述了一个物体的动能与其所受力的关系,而机械能守恒则说明了一个封闭系统中的机械能总量不变。
这两个定理在解决物体运动问题时具有重要作用。
二、动能定理1. 动能的定义动能是一个物体由于其运动而具有的能量,通常用符号K表示。
对于质量为m、速度为v的物体,其动能可以表示为:K = 1/2mv²其中1/2mv²称为该物体的动量。
2. 动力学方程牛顿第二定律描述了一个物体所受外力与其加速度之间的关系。
根据牛顿第二定律,一个质量为m、受到F力作用的物体将会产生加速度a:F = ma3. 动能定理的表述将牛顿第二定律代入上述动力学方程中,可得:F = ma = m(dv/dt) = mdv/dt = mv(dv/dx)其中dx表示位移。
因此,Fdx = mv(dv/dx)dx = mvdv由于Fdx是物体所受力的功,因此:Fdx = ΔK其中ΔK表示物体动能的变化量。
因此,动能定理可以表述为:物体所受外力所做的功等于其动能的变化量。
三、机械能守恒1. 机械能的定义机械能是一个物体由于其位置和速度而具有的能量,通常用符号E表示。
对于质量为m、高度为h、速度为v的物体,其机械能可以表示为:E = mgh + 1/2mv²其中mgh称为该物体的重力势能,1/2mv²称为该物体的动能。
2. 机械能守恒定律机械能守恒定律指出,在一个封闭系统中,系统中各个部分所具有的机械能总量不变。
也就是说,在一个封闭系统中,重力势能和动能之间可以互相转化,但它们之和始终保持不变。
3. 应用举例以一个自由落体运动为例。
当一个物体从高处自由落下时,重力将会使其获得速度,并且在下落过程中逐渐失去高度。
在这个过程中,重力势能逐渐减少而动能逐渐增加。
当物体到达地面时,其重力势能为零,而动能达到最大值。
根据机械能守恒定律,这个系统中的总机械能始终保持不变。
高一物理《动能定理和机械能守恒定律的综合应用》知识点总结
一、动能定理和机械能守恒定律的比较
规律
比较
机械能守恒定律
-ΔEp
ΔEA=-ΔEB
W=ΔEk
使用范围
只有重力或弹力做功
无条件限制
研究对象
物体与地球组成的系统
质点
物理意义
重力或弹力做功的过程是动能与势能转化的过程
合外力对物体做的功是动能变化的量度
应用角度
守恒条件及初、末状态机械能的形式和大小
动能的变化及合外力做功情况
选用原则
(1)无论直线运动还是曲线运动,条件合适时,两规律都可以应用,都要考虑初、末状态,都不需要考虑所经历过程的细节
(2)能用机械能守恒定律解决的问题都能用动能定理解决;能用动能定理解决的问题不一定能用机械能守恒定律解决
(3)动能定理比机械能守恒定律应用更广泛、更普遍
二、动能定理和机械能守恒定律的综合应用
动能定理和机械能守恒定律,都可以用来求能量或速度,但侧重点不同,动能定理解决物体运动,尤其计算对该物体的做功时较简单,机械能守恒定律解决系统问题往往较简单,两者的灵活选择可以简化运算过程.
高中物理专题练习-动能定理 机械能守恒定律及功能关系的应用(含答案)
高中物理专题练习-动能定理机械能守恒定律及功能关系的应用(含答案)满分:100分时间:60分钟一、单项选择题(本题共6小题,每小题5分,共30分.每小题只有一个选项符合题意.)1.(四川理综,1)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大2.(新课标全国卷Ⅱ,17)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()3.(新课标全国卷Ⅱ,16)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1, W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1, W f2<2W f14.(新课标全国卷Ⅰ,17)如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=12mgR,质点恰好可以到达Q点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离5.(海南单科,4)如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( ) A.14mgR B.13mgRC.12mgRD.π4mgR 6.(天津理综,5)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( ) A .圆环的机械能守恒 B .弹簧弹性势能变化了3mgLC .圆环下滑到最大距离时,所受合力为零D .圆环重力势能与弹簧弹性势能之和保持不变二、多项选择题(本题共4小题,每小题7分,共计28分.每小题有多个选项符合题意.全部选对的得7分,选对但不全的得4分,错选或不答的得0分.)7.(浙江理综,18)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105 N ;弹射器有效作用长度为100 m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( ) A .弹射器的推力大小为1.1×106 N B .弹射器对舰载机所做的功为1.1×108 J C .弹射器对舰载机做功的平均功率为8.8×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 28.(新课标全国卷Ⅱ,21)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为g.则() A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg9.(江苏单科,9)如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环()A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14m v2C.在C处,弹簧的弹性势能为14m v2-mghD.上滑经过B的速度大于下滑经过B的速度10.(江苏南通一模)一质点在0~15 s内竖直向上运动,其加速度-时间图象如图所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是()A.质点的机械能不断增加B.在0~5 s内质点的动能增加C.在10~15 s内质点的机械能减少D.在t=15 s时质点的机械能大于t=5 s时质点的机械能三、计算题(本题共2小题,共计42分.解答时写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不得分.)11.(江苏单科,14)(20分)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转轴上.套在转轴上的轻质弹簧连接在O与小环之间,原长为L.装置静止时,弹簧长为32L.转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g.求:(1)弹簧的劲度系数k;(2)AB杆中弹力为零时,装置转动的角速度ω0;(3)弹簧长度从32L缓慢缩短为12L的过程中,外界对转动装置所做的功W.12.(福建理综,21)(22分)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g.(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车.已知滑块质量m=M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m;②滑块从B到C运动过程中,小车的位移大小s. 答案1. A [由机械能守恒定律mgh +12m v 21=12m v 22知,落地时速度v 2的大小相等,故 A 正确.]2.A [当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-f =ma 1,f 不变,所以汽车做加速度减小的加速运动,当F 1=f 时速度最大,且v m =P 1F 1=P 1f .当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-f =ma 2,所以加速度逐渐减小,直到F 2=f 时,速度最大v m ′=P 2f ,以后匀速运动.综合以上分析可知选项A 正确.]3.C [两次物体均做匀加速运动,由于时间相等,两次的末速度之比为1∶2,则由v =at 可知两次的加速度之比为a 1a 2=12,F 1合F 2合=12,又两次的平均速度分别为v 2、v ,故两次的位移之比为x 1x 2=12,由于两次的摩擦阻力相等,由W f =fx 可知,W f 2=2W f 1;由动能定理知W 合1W 合2=ΔE k1ΔE k2=14,因为W 合=W F -W f ,故W F =W 合+W f ;W F 2=W 合2+W f 2=4W 合1+2W f 1<4W 合1+4W f 1=4W F 1;选项C 正确.]4.C [根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg-mg =m v 2R ,所以N 点动能为E k N =3mgR2,从P 点到N 点根据动能定理可得mgR -W =E k N -E k P ,即克服摩擦力做功W =mgR2.质点运动过程,半径方向的合力提供向心力即F N -mg cos θ=ma =m v 2R ,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理-mgR -W ′=E k Q -E k N ,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确.]5.C [在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有F N -mg =m v 2R ,F N =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -W f =12m v 2,解得W f =12mgR ,所以克服摩擦力做功 12mgR ,C 正确.]6.B [圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减少,而圆环与弹簧组成的系统机械能守恒,故A 、D 错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零,故C 错误;圆环重力势能减少了3mgl ,由能量守恒定律知弹簧弹性势能增加了3mgl ,故B 正确.]7.ABD [设总推力为F ,位移x ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x=12m v 2,解得F =1.2×106 N,弹射器推力F 弹=F -F 发=1.2×106 N -1.0×105 N =1.1×106 N,A 正确;弹射器对舰载机所做的功为W =F 弹·x =1.1×106×100 J =1.1×108 J,B 正确;弹射器对舰载机做功的平均功率P -=F 弹·0+v2=4.4×107 W,C 错误;根据运动学公式v 2=2ax ,得a =v 22x =32 m/s 2,D 正确.]8.BD [滑块b 的初速度为零,末速度也为零,所以轻杆对b 先做正功,后做负功,选项A 错误;以滑块a 、b 及轻杆为研究对象,系统的机械能守恒,当a 刚落地时,b 的速度为零,则mgh =12m v 2a +0,即v a =2gh ,选项B 正确;a 、b 的先后受力如图所示.由a 的受力图可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确.] 9.BD [由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12m v 2+E p =mgh +W f ,联立解得:W f =14m v 2,E p =mgh -14m v 2,所以B 正确,C 错误;根据能量守恒,从A 到B 有mgh 1=12m v 2B 1+ΔE p1+W f 1,从C 到B 有12m v 2+ΔE p2=12m v 2B 2+W f 2+mgh 2,又有12m v 2+E p =mgh +W f ,联立可得v B 2>v B 1,所以D 正确.]10.CD [质点竖直向上运动,0~15 s 内加速度方向向下,质点一直做减速运动,B 错误;0~5 s内,a=10 m/s2,质点只受重力,机械能守恒;5~10 s内,a=8 m/s2,受重力和向上的力F1,F1做正功,机械能增加;10~15 s内,a=12 m/s2,质点受重力和向下的力F2,F2做负功,机械能减少,A错误,C正确;由F合=ma可推知F1=F2,由于做减速运动,5~10 s内通过的位移大于10~15 s内通过的位移,F1做的功大于F2做的功,5~15 s内增加的机械能大于减少的机械能,所以D正确.]11.解析(1)装置静止时,设OA、AB杆中的弹力分别为F1、T1,OA杆与转轴的夹角为θ1小环受到弹簧的弹力F弹1=k·L2小环受力平衡:F弹1=mg+2T1cos θ1小球受力平衡:F1cos θ1+T1cos θ1=mg, F1sin θ1=T1sin θ1解得k=4mg L(2)设OA、AB杆中的弹力分别为F2、T2,OA杆与转轴的夹角为θ2,弹簧长度为x 小环受到弹簧的弹力F弹2=k(x-L)小环受力平衡:F弹2=mg,得x=54L对小球:F2cos θ2=mg, F2sin θ2=mω20l sin θ2且cos θ2=x 2l解得ω0=8g 5L(3)弹簧长度为L2时,设OA、AB杆中的弹力分别为F3、T3,OA杆与弹簧的夹角为θ3小环受到弹簧的弹力F弹3=k·L2小环受力平衡:2T3cos θ3=mg+F弹3,且cos θ3=L 4l对小球:F3cos θ3=T3cos θ3+mg;F3sin θ3+T3sin θ3=mω23l sin θ3解得ω3=16g L整个过程弹簧弹性势能变化为零,则弹力做的功为零, 由动能定理:W -mg ⎝ ⎛⎭⎪⎫3L 2-L 2-2mg ⎝ ⎛⎭⎪⎫3L 4-L 4=2×12m (ω3l sin θ3)2解得:W =mgL +16mgl 2L 答案 (1)4mgL (2)8g 5L (3)mgL +16mgl 2L12.解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12m v 2B ①滑块在B 点处,由牛顿第二定律知 N -mg =m v 2B R ② 解得N =3mg ③ 由牛顿第三定律知 N ′=3mg ④(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒 mgR =12M v 2m +12m (2v m )2⑤ 解得v m =gR3⑥②设滑块运动到C 点时,小车速度大小为v C ,由功能关系 mgR -μmgL =12M v 2C +12m (2v C )2⑦ 设滑块从B 到C 过程中,小车运动加速度大小为a ,由牛顿第二定律 μmg =Ma ⑧ 由运动学规律v 2C -v 2m =-2as ⑨解得s =13L ⑩ 答案 (1)3mg (2)①gR 3 ②13L1.运用功能关系分析问题的基本思路(1)选定研究对象或系统,弄清物理过程;(2)分析受力情况,看有什么力在做功,弄清系统内有多少种形式的能在参与转化;(3)仔细分析系统内各种能量的变化情况、变化数量.2.功能关系。
高一物理知识讲解-机械能守恒定律--提高-专题含答案解析
机械能守恒定律【学习目标】1.明确机械能守恒定律的含义和适用条件.2.能准确判断具体的运动过程中机械能是否守恒. 3.熟练应用机械能守恒定律解题.4.知道验证机械能守恒定律实验的原理方法和过程.5.掌握验证机械能守恒定律实验对实验结果的讨论及误差分析. 【要点梳理】 #要点一、机械能 要点诠释:(1)物体的动能和势能之和称为物体的机械能.机械能包括动能、重力势能、弹性势能。
(2)重力势能是属于物体和地球组成的重力系统的,弹性势能是属于弹簧的弹力系统的,所以,机械能守恒定律的适用对象是系统.(3)机械能是标量,但有正、负(因重力势能有正、负).(4)机械能具有相对性,因为势能具有相对性(须确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是以地面为参考系),所以机械能也具有相对性. 只有在确定了参考系和零势能参考平面的情况下,机械能才有确定的物理意义.(5)重力势能是物体和地球共有的,重力势能的值与零势能面的选择有关,物体在零势能面之上的势能是正值,在其下的势能是负值.但是重力势能差值与零势能面的选择无关. ~(6)重力做功的特点:①重力做功与路径无关,只与物体的始、未位置高度筹有关. ②重力做功的大小:W =mgh .③重力做功与重力势能的关系:P G W E =-△.要点二、机械能守恒定律 要点诠释:(1)内容:在只有重力或弹力做功的物体系统内动能和势能可以相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律. (2)守恒定律的多种表达方式.#当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种:①1122k P k P E E E E +=+,即初状态的动能与势能之和等于末状态的动能与势能之和. ②P k E E =-△△或P k E E =-△△,即动能(或势能)的增加量等于势能(或动能)的减少量. ③△E A =-△E B ,即A 物体机械能的增加量等于B 物体机械能的减少量.后两种表达式因无需选取重力势能零参考平面,往往能给列式、计算带来方便. (3)机械能守恒条件的理解.①从能量转化的角度看,只有系统内动能和势能相互转化,无其他形式能量之间(如内能)的转化②从系统做功的角度看,只有重力和系统内的弹力做功,具体表现在: ~a .只有重力做功的物体,如:所有做抛体运动的物体(不计空气阻力),机械能守恒.b .只有重力和系统内的弹力做功.如图(a)、(b)、右图所示.图(a)中小球在摆动过程中线的拉力不做功,如不计空气阻力,只有重力做功,小球的机械能守恒.图(b)中A、B间,B与地面间摩擦不计,A自B上自由下滑过程中,只有重力和A、B间的弹力做功,A、B 组成的系统机械能守恒.但对B来说,A对B的弹力做功,但这个力对B来说是外力,B的机械能不守恒.如下图,不计空气阻力,球在摆动过程中,只有重力和弹簧与球间的弹力做功,球与弹簧组成的系统机械能守恒,但对球来说,机械能不守恒.要点三、运用机械能守恒定律解题的步骤!要点诠释:(1)根据题意选取研究对象(物体或系统).(2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒.(3)恰当地选取零势能面,确定研究对象在过程中的始态和末态的机械能.(4)根据机械能守恒定律的不同表达式列方程,并求解结果.4.机械能守恒定律与动能定理的区别(1)机械能守恒定律和动能定理都是从做功和能量转化的角度来研究物体在力的作用下运动状态的改变,表达这两个规律的方程都是标量方程,这是它们的共同点.~(2)机械能守恒定律的研究对象是物体组成的系统,动能定理的研究对象是一个物体(质点).(3)机械能守恒定律是有条件的,就是只允许重力和弹力做功;而动能定理的成立没有条件的限制,它不但允许重力和弹力做功,还允许其他力做功.(4)机械能守恒定律着眼于系统初、末状态的机械能的表达式,动能定理着眼于过程中合外力做的功及初、末状态的动能的变化.要点四、如何判断机械能是否守恒要点诠释:(1)对某一物体,若只有重力做功,其他力不做功,则该物体的机械能守恒.(2)对某一系统,物体间只有动能和势能的转化,系统跟外界没有发生机械能的传递,也没有转化成其他形式的能(如内能),则系统的机械能守恒.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力做功,其他力不做功或者其他力做的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化、(3)机械能守恒的条件绝不是合外力做的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.(4)一些绳子突然绷紧,物体间碰撞后合在一起等,除非题目特别说明,机械能一般不守恒. 要点五、实验:验证机械能守恒定律 要点诠释:1.实验原理通过实验,分别求做自由落体运动物体的重力势能的减少量和相应过程动能的增加量.若二者相等,说明机械能守恒,从而验证机械能守恒定律:△E P =△E k .2.实验器材打点计时器及电源、纸带、复写纸、重物、刻度尺、带有铁夹的铁架台、导线. 》3.实验步骤(1)如图所示装置,将纸带固定在重物上,让纸带穿过打点计时器.(2)用手握着纸带,让重物静止在靠近打点计时器的地方,然后接通电源,松开纸带,让重物自由落下,纸带上打下一系列小点.(3)从打出的几条纸带中挑选打的点呈一条直线且点迹清晰的纸带进行测量,记下第一个点的位置O ,并在纸带上从任意点开始依次选取几个计数点1、2、3、4、…,并量出各点到O 点的距离h 1、h 2、h 3、…,计算相应的重力势能减少量mgh n ,如图所示.(4)依步骤(3)所测的各计数点到O 点的距离h 1、h 2、h 3、…,根据公式1102n n h h v T+--=计算物体在打下点1、2、…时的即时速度v 1、v 2、….计算相应的动能212n mv . (5)比较212n mv 与n mgh 是否相等. 【4.实验结论在重力作用下,物体的重力势能和动能可以互相转化,但总的机械能守恒. 5.误差分析重物和纸带下落过程中要克服阻力,主要是纸带与计时器之间的摩擦力,计时器平面不在竖直方向,纸带平面与计时器平面不平行是阻力增大的原因,电磁打点计时器的阻力大于电火花计时器,交流电的频率f 不是50 Hz 也会带来误差,f <50Hz ,使动能E k <E P 的误差进一步加大f >50 Hz ,则可能出现E k >E P 的结果.本实验中的重力加速度g必须是当地的重力加速度,而不是纸带的加速度a.【典型例题】类型一、对守恒条件的理解【例1、下列说法中正确的是( )A.用绳子拉着物体匀速上升,只有重力和绳的拉力对物体做功,机械能守恒B.做竖直上抛运动的物体,只有重力对它做功,机械能守恒C.沿光滑斜面自由下滑的物体,只有重力对物体做功,机械能守恒D.用水平拉力使物体沿光滑水平面做匀加速直线运动,机械能守恒【思路点拨】本题考察机械能守恒的条件。
第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律
第6讲动能定理机械能守恒定律能量守恒定律命题规律 1.命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律及应用.2.常用方法:图像法、函数法、比较法.3.常考题型:计算题.考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC和DE是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A点以v=4 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点距水平轨道CD的竖直高度分别为h=2 m 和H=3 m,忽略空气阻力.(g=10 m/s2)(1)运动员从A点运动到B点的过程中,求到达B点时的速度大小v B;(2)求水平轨道CD的长度L;(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,求出回到B点时速度的大小.如果不能,求出最后停止的位置距C点的距离.答案(1)8 m/s(2)5.5 m(3)见解析解析(1)运动员从A点运动到B点的过程中做平抛运动,到达B点时,其速度沿着B点的切线方向,可知运动员到达B 点时的速度大小为v B =vcos 60°, 解得v B =8 m/s(2)从B 点到E 点,由动能定理得mgh -μmgL -mgH =0-12m v B 2代入数值得L =5.5 m(3)设运动员能到达左侧的最大高度为h ′,从E 点到第一次返回到左侧最高处,由动能定理得mgH -μmgL -mgh ′=0 解得h ′=0.8 m<2 m故运动员不能回到B 点.设运动员从E 点开始返回后,在CD 段滑行的路程为s ,全过程由动能定理得 mgH -μmgs =0 解得总路程s =7.5 m 由于L =5.5 m所以可得运动员最后停止的位置在距C 点2 m 处.考点二 机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法 看动能与势能之和是否变化能量转化判断法 没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例2(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R,则v =LgR,故C 正确,A 、B 、D 错误. 例3 (多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),重力加速度为g ,则在圆环下滑到最大距离的过程中( )A .弹簧对圆环先做正功后做负功B .弹簧弹性势能增加了3mgLC .圆环重力势能与弹簧弹性势能之和先减小后增大D .圆环下滑到最大距离时,所受合力为零 答案 BC解析 弹簧一直伸长,故弹簧对圆环一直做负功,A 错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h =(2L )2-L 2=3L ,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p =mgh =3mgL ,B 正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k +ΔE p 重+ΔE p 弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C 正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D 错误.例4 (2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg (ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R设F 与水平方向的夹角为α,则 F cos α=F n F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.考点三 能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律. 2.应用能量守恒定律的基本思路 (1)守恒:E 初=E 末,初、末总能量不变.(2)转移:E A 减=E B 增,A 物体减少的能量等于B 物体增加的能量. (3)转化:|ΔE 减|=|ΔE 增|,减少的某些能量等于增加的某些能量.例5 (2021·山东卷·18改编)如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止.现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量)(1)求B 、C 向左移动的最大距离x 0和B 、C 分离时B 的动能E k ; (2)为保证A 能离开墙壁,求恒力的最小值F min ;(3)若三物块都停止时B 、C 间的距离为x BC ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与fx BC 的大小; 答案 (1)2F -4f k F 2-6fF +8f 2k(2)(3+102)f (3)W <fx BC解析 (1)从开始到B 、C 向左移动到最大距离的过程中,以B 、C 和弹簧为研究对象,由功能关系得 Fx 0=2fx 0+12kx 02弹簧恢复原长时B 、C 分离,从弹簧最短到B 、C 分离,以B 、C 和弹簧为研究对象,由能量守恒定律得 12kx 02=2fx 0+2E k联立方程解得x 0=2F -4fkE k =F 2-6fF +8f 2k.(2)当A 刚要离开墙时,设弹簧的伸长量为x ,以A 为研究对象,由平衡条件得kx =f 若A 刚要离开墙壁时B 的速度恰好等于零,这种情况下恒力为最小值F min ,从弹簧恢复原长到A 刚要离开墙的过程中,以B 和弹簧为研究对象, 由能量守恒定律得E k =12kx 2+fx结合第(1)问结果可知F min =(3±102)f 根据题意舍去F min =(3-102)f , 所以恒力的最小值为F min =(3+102)f . (3)从B 、C 分离到B 停止运动,设B 的位移为x B ,C 的位移为x C ,以B 为研究对象, 由动能定理得-W -fx B =0-E k 以C 为研究对象, 由动能定理得-fx C =0-E k 由B 、C 的运动关系得x B >x C -x BC 联立可知W <fx BC .1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB 段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P 处,弹簧处于原长时上端位于B 点,可视为质点、质量为m 的物体与BP 之间的动摩擦因数为μ(μ<tan θ),物体从A 点由静止释放,将弹簧压缩后恰好能回到AB 的中点Q .已知A 、B 间的距离为x ,重力加速度为g ,则( )A .物体的最大动能等于mgx sin θB .弹簧的最大形变量大于12xC .物体第一次往返中克服摩擦力做的功为12mgx sin θD .物体第二次沿斜面上升的最高位置在B 点 答案 C解析 物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k =mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·浙江温州市二模)我国选手谷爱凌在北京冬奥会自由式滑雪女子U 型场地技巧决赛中夺得金牌.如图所示,某比赛用U 型池场地长度L =160 m 、宽度d =20 m 、深度h =7.25 m ,两边竖直雪道与池底平面雪道通过圆弧雪道连接组成,横截面像“U ”字形状,池底雪道平面与水平面夹角为θ=20°.为测试赛道,将一质量m =1 kg 的小滑块从U 型池的顶端A 点以初速度v 0=0.7 m/s 滑入;滑块从B 点第一次冲出U 型池,冲出B 点的速度大小v B =10 m/s ,与竖直方向夹角为α(α未知),再从C 点重新落回U 型池(C 点图中未画出).已知A 、B 两点间直线距离为25 m ,不计滑块所受的空气阻力,sin 20°=0.34,cos 20°=0.94,tan 20°=0.36,g 取10 m/s 2.(1)A 点至B 点过程中,求小滑块克服雪道阻力所做的功W 克f ;(2)忽略雪道对滑块的阻力,若滑块从池底平面雪道离开,求滑块离开时速度的大小v;(3)若保持v B大小不变,速度v B与竖直方向的夹角调整为α0时,滑块从冲出B点至重新落回U型池的时间最长,求tan α0(结果保留两位有效数字).答案(1)1.35 J(2)35 m/s(3)0.36解析(1)小滑块从A点至B点过程中,由动能定理有mgx sin 20°-W克f=12m v B2-12m v02由几何关系得x=x AB2-d2,联立解得W克f=1.35 J(2)忽略雪道对滑块的阻力,滑块从A点运动到池底平面雪道离开的过程中,由动能定理得mgL sin 20°+mgh cos 20°=12m v2-12m v02,代入数据解得v=35 m/s(3)当滑块离开B点时,设速度方向与U型池斜面的夹角为θ,沿U型池斜面和垂直U型池方向分解速度v y=v B sin θ,v x=v B cos θ,a y=g cos 20°,a x=g sin 20°,v y=a y t1,t=2t1由此可知,当v y最大时,滑块从冲出B点至重新落回U型池的时间最长,此时v B垂直于U 型池斜面,即α0=20°tan α0=sin α0cos α0=0.340.94≈0.36.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A、B(视为质点)用细线相连,两球与截面圆的圆心O处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P.不计空气阻力,重力加速度大小为g.小球A通过P点时的速度大小为()A.gRB.2gRC.(π2-1)gR D.π2gR 答案 C解析 对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2m v 2,解得v =(π2-1)gR ,故选C. 2.(2022·山东泰安市模拟)如图所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过大小不计的光滑定滑轮连接着一质量也为 m 的物体Q (P 、Q 均可视为质点).开始时,用手托住物体P ,使物体P 与A 、C 两点等高在一条水平直线上,且绳子处于拉直的状态,把手放开, P 下落到图示位置时,夹角如图所示.已知AB =L ,重力加速度为g .则由开始下落到图示位置的过程中,下列说法正确的是( )A .物体Q 与物体P 的速度大小始终相等B .释放瞬间P 的加速度小于gC .图示位置时,Q 的速度大小为3gL2 D .图示位置时,Q 的速度大小为2-32gL 答案 D解析 P 与Q 的速度关系如图所示释放后,P 绕A 点做圆周运动,P 的速度沿圆周的切线方向,当绳BC 与水平夹角为30°时,绳BC 与绳AB 垂直,P 的速度方向沿CB 的延长线,此时物体Q 与物体P 的速度大小相等,之前的过程中,速度大小不相等,故A 错误;释放瞬间,P 所受合力为重力,故加速度等于g ,故B 错误;由几何关系知AC =2L ,P 处于AC 的中点时,则有BC =L ,当下降到图示位置时BC =3L ,Q 上升的高度h 1=(3-1)L ,P 下降的高度为h 2=L cos 30°=32L ,由A 项中分析知此时P 、Q 速度大小相等,设为v ,根据系统机械能守恒得mgh 2=mgh 1+12×2m v 2,解得v =2-32gL ,故D 正确,C 错误. 3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m 的金属环,另一端绕过定滑轮悬挂一质量为5m 的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ =d ,金属环从图中P 点由静止释放,OP 与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,则( )A .金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小B .金属环从P 上升到Q 的过程中,绳子拉力对重物做的功为103mgdC .金属环在Q 点的速度大小为2gd3D .若金属环最高能上升到N 点,则ON 与直杆之间的夹角α=53° 答案 AD解析 金属环在P 点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q 点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小,故A 正确;金属环从P 上升到Q 的过程中,设绳子拉力做的功为W ,对重物应用动能定理有W +W G =0,则W =-W G =-5mg (d sin θ-d )=-103mgd ,故B 错误;设金属环在Q 点的速度大小为v ,对环和重物整体,由动能定理得5mg (d sin θ-d )-mg d tan θ=12m v 2,解得v =2gd ,故C 错误;若金属环最高能上升到N 点,则整个过程中,金属环和重物整体的机械能守恒,有5mg (d sin θ-dsin α)=mg (d tan θ+d tan α),解得α=53°,故D 正确. 4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80 km/h 的速度匀速行驶,其1 s 内能量分配情况如图所示.则汽车( )A .发动机的输出功率为70 kWB .每1 s 消耗的燃料最终转化成的内能是5.7×104 JC .每1 s 消耗的燃料最终转化成的内能是6.9×104 JD .每1 s 消耗的燃料最终转化成的内能是7.0×104 J 答案 C解析 据题意知,发动机的输出功率为P =Wt =17 kW ,故A 错误;根据能量守恒定律结合能量分配图知,1 s 消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104 J ,故B 、D 错误,C 正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移x 和对应的速度,作出物块的动能E k -x 关系图像如图乙所示.其中0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 由分析可知,x =0.10 m 时,弹性绳恢复原长,根据动能定理有μmg Δx =ΔE k ,则m =ΔE k μg Δx =0.300.2×10×(0.25-0.10)kg =1 kg ,所以A 错误;动能最大时弹簧弹力等于滑动摩擦力,则有k Δx 1=μmg ,Δx 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmgx m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δx m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60 kg ,弹性绳原长为10 m ,不计空气阻力,g =10 m/s 2.下列说法正确的是( )A .下落过程中,运动员机械能守恒B .运动员在下落过程中的前10 m 加速度不变C .弹性绳最大的弹性势能约为15 300 JD .速度最大时,弹性绳的弹性势能约为2 250 J 答案 BCD解析 下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10 m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5 m ,所以E p =mgH m =15 300 J ,所以C 正确;由题图可知,下落约15 m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12m v m 2=2 250 J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小; (2)物体A 从C 至D 点时的速度大小; (3)弹簧的最大弹性势能. 答案 (1)120g (2)gL 10 (3)38mgL 解析 (1)物体A 从C 运动到D 的过程,对物体A 、B 整体进行受力分析,根据牛顿第二定律有4mg sin 30°-mg -4μmg cos 30°=5ma 解得a =120g(2)物体A 从C 运动至D 的过程,对整体应用动能定理有4mgL sin 30°-mgL -4μmgL cos 30°=12·5m v 2 解得v =gL 10(3)当A 、B 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A 、B 整体应用动能定理得4mg (L +L 2)sin 30°-mg (L +L 2)-μ·4mg cos 30°(L +L2)-W 弹=0-0解得W 弹=38mgL则弹簧具有的最大弹性势能 E p =W 弹=38mgL .8.(2022·江苏南京市二模)现将等宽双线在水平面内绕制成如图甲所示轨道,两段半圆形轨道半径均为R = 3 m ,两段直轨道AB 、A ′B ′长度均为l =1.35 m .在轨道上放置一个质量m =0.1 kg 的小圆柱体,如图乙所示,圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°,如图丙所示.两轨道与小圆柱体间的动摩擦因数均为μ=0.5,小圆柱尺寸和轨道间距相对轨道长度可忽略不计.初始时小圆柱位于A 点处,现使之获得沿直轨道AB 方向的初速度v 0.重力加速度大小g =10 m/s 2,求:(1)小圆柱沿AB 运动时,内、外轨道对小圆柱的摩擦力F f1、F f2的大小;(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时,外轨和内轨对小圆柱的压力F N1、F N2的大小;(3)为了让小圆柱不脱离内侧轨道,v 0的最大值以及在v 0取最大值情形下小圆柱最终滑过的路程s .答案 (1)0.5 N 0.5 N (2)1.3 N 0.7 N (3)57 m/s 2.85 m解析 (1)圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°, 根据对称性可知,两侧弹力大小均与重力相等,为1 N , 内、外轨道对小圆柱的摩擦力F f1=F f2=μF N =0.5 N(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时有12m v 2-12m v 02=-(F f1+F f2)l在B 点有F N1sin 60°-F N2sin 60°=m v 2R ,F N1cos 60°+F N2cos 60°=mg解得F N1=1.3 N ,F N2=0.7 N(3)为了让小圆柱不脱离内侧轨道,v 0最大时,在B 点恰好内轨对小圆柱的压力为0,有 F N1′sin 60°=m v m 2R ,F N1′cos 60°=mg且12m v m 2-12m v 0m 2=-(F f1+F f2)l 解得v 0m =57 m/s ,在圆弧上受摩擦力为 F f =μF N1′=μmg cos 60°=1 N即在圆弧上所受摩擦力大小与在直轨道所受总摩擦力大小相等 所以12m v 0m 2=F f s解得s =2.85 m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,滑块第一次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值. 答案 (1)7 N (2)v =12l x -9.6,其中l x ≥0.85 m (3)见解析 解析 (1)滑块由静止释放到C 点过程,由能量守恒定律有 mgl sin 37°+mgR (1-cos 37°)=12m v C 2在C 点由牛顿第二定律有 F N -mg =m v C 2R解得F N =7 N(2)要保证滑块能到F 点,必须能过DEF 的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl 1sin 37°-(3mgR cos 37°+mgR )=0 解得l 1=0.85 m因此要能过F 点必须满足l x ≥0.85 m能过最高点,则能到F 点,根据动能定理可得 mgl x sin 37°-4mgR cos 37°=12m v 2,解得v =12l x -9.6,其中l x ≥0.85 m.(3)设摩擦力做功为第一次到达中点时的n 倍mgl x sin 37°-mg l FG 2sin 37°-nμmg l FG 2cos 37°=0,l FG =4Rtan 37°解得l x =7n +615 m(n =1,3,5,…)又因为l AB ≥l x ≥0.85 m ,l AB =3 m , 当n =1时,l x 1=1315 m当n =3时,l x 2=95 m当n =5时,l x 3=4115m.。
高一物理动能定理与机械能守恒1
核心公式 重力做功与重力势能 WG=mg △ h =- △ EP=EP1-EP2 弹力做功与弹性势能 W弹=- △ EP=EP1-EP2 2 合外力做功与动能(动能定理) W外 1 mv 2 1 mv 0 t 2 2 机械能守恒 1 mv 2 mgh 1 mv 2 mgh
别 注意的有_______ A.称出重锤质量m B.手提纸带,先接通打点计时器然后松开纸带让 重锤落下 C.取下纸带,可不考虑前面较密集中的点,选某 2 1 mgh 2 m 个清晰的点作为起始运动点处理纸带,验证各 2 1 mgh 2 m 式 D. 第1点算起处理纸带,验证各式
巩固训练 【例4】在用落体法验证机械能守恒定律时,某同
做功相联系:其他力做正功,机械能增加;其 1 E - mgh 减少 他力做负功,机械能减少。 3 一句话:功是能量变化的量度,做功是使能量 发生变化的一种方法。
三种能量共同参与的机械能守恒
例2.如图所示,质量为m=2kg的小球系在轻弹簧的一端, 另一端固定在悬点O处,将弹簧拉至水平位置A处由静止释放, 小球到达距O点下方h处的B点时速度为2m/s。求小球从A运 动到B的过程中弹簧弹力做的功(h=0.5m)。
B
1 2 1 2 mv2 - mv1 mg h ? 2 2
v2 v
C D
实验原理 研究自由落体运动:
O
Ek? E p =
方案1:从起点开始计算
h
A
dc
1 2 1 2 ? mv mgh v gh ? 2 2
测定第n点的速度的常用方法:
B
dD
高中物理《机械能守恒定律》专题训练
高中物理《机械能守恒定律》专题训练1.(2022全国乙,16,6分)固定于竖直平面内的光滑大圆环上套有一个小环。
小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于 ( )A.它滑过的弧长B.它下降的高度C.它到P点的距离D.它与P点的连线扫过的面积答案 C 如图所示,x为PA间的距离,其所对的圆心角为θ,小环由P点运动到A点,由动能定理得mgh=12mv2,由几何关系得h=R-R cos θ,所以v=√2gR(1−cosθ)。
由于1-cos θ=2 sin2θ2,sinθ2=x2R,所以v=√2gR(1−cosθ)=√2gR×2×x24R2=x√gR,故v正比于它到P点的距离,C正确。
2.(2022全国甲,14,6分)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示。
运动员从a处由静止自由滑下,到b处起跳,c点为a、b之间的最低点,a、c两处的高度差为h。
要求运动员经过c点时对滑雪板的压力不大于自身所受重力的k倍,运动过程中将运动员视为质点并忽略所有阻力,则c点处这一段圆弧雪道的半径不应小于 ( )A.ℎk+1B.ℎkC.2ℎkD.2ℎk−1第1页共70页答案 D 运动员从a处滑至c处,mgh=12m v c2-0,在c点,N-mg=m v c2R,联立得N=mg(1+2ℎR ),由题意,结合牛顿第三定律可知,N=F压≤kmg,得R≥2ℎk−1,故D项正确。
3.(2022北京,8,3分)我国航天员在“天宫课堂”中演示了多种有趣的实验,提高了青少年科学探索的兴趣。
某同学设计了如下实验:细绳一端固定,另一端系一小球,给小球一初速度使其在竖直平面内做圆周运动。
无论在“天宫”还是在地面做此实验, ( )A.小球的速度大小均发生变化B.小球的向心加速度大小均发生变化C.细绳的拉力对小球均不做功D.细绳的拉力大小均发生变化答案 C 在“天宫”中是完全失重的环境,小球在竖直平面内做匀速圆周运动,细绳拉力提供小球做圆周运动所需的向心力,小球的线速度大小、向心加速度大小、向心力(细绳的拉力)大小均不变,无论在“天宫”还是在地面,细绳的拉力始终与速度垂直而不做功,故只有C正确。
动能定理和机械能守恒
动能定理和机械能守恒动能定理和机械能守恒是物理学中非常重要的两个概念,它们经常被用来描述物体在运动过程中的能量变化。
本文将详细介绍这两个概念及其应用。
一、动能定理动能定理是描述物体在做功的过程中动能的变化关系的定理。
它的数学表达式为:W=ΔK,其中W表示物体受力做功的大小,ΔK表示物体动能的变化量。
这个定理的意义在于,当一个物体受到外力作用而运动时,物体所受的作用力所做的功等于物体动能的变化量。
例如,当一个物体被施加一个恒定的力F,沿直线方向移动了一个距离s,那么它所受到的功就是W=F×s,而它的动能的变化量ΔK 就是K2-K1=1/2mv2^2-1/2mv1^2。
那么根据动能定理,我们可以得到W=ΔK,即F×s=1/2mv2^2-1/2mv1^2。
这个公式可以用来计算物体在受力作用下动能的变化量。
二、机械能守恒机械能守恒是指在一个封闭的系统中,机械能的总量保持不变的性质。
在一个封闭的系统中,机械能只能通过物体之间的相互作用转化,而不能增加或减少。
机械能包括动能和势能两个部分,它们的总和表示为E=K+U,其中K表示动能,U表示势能。
例如,当一个物体从高处自由落下时,由于重力的作用,它的动能不断增加,而势能则不断减少。
当它落到地面时,由于地面的阻力和摩擦力的作用,它的动能被完全消耗,而势能则被全部转化为热能。
在这个过程中,机械能守恒定律得到了验证。
机械能守恒定律在实际生活中有着广泛的应用。
例如,当我们骑自行车的时候,我们需要不断地蹬踏,将化学能转化为机械能,使自行车前进。
在这个过程中,我们需要消耗大量的能量,而机械能守恒定律则保证了这些能量会被充分利用,不会浪费掉。
动能定理和机械能守恒是物理学中非常重要的两个概念,它们帮助我们理解物体在运动过程中的能量变化,并在实际生活中有着广泛的应用。
对于物理学学习者来说,掌握这两个概念是非常重要的。
高一物理必修一动能定理和机械能守恒实验专题
动能定理和机械能守恒实验专题1.如图所示的实验装置,可用于探究力对静止物体做功与物体获得速度的关系.(1)实验中,小车会受到摩擦阻力的作用,可以使木板适当倾斜来平衡掉摩擦力,下面操作正确的是__________A、放开小车,小车能够自由下滑即可。
B、放开小车,小车能够匀速下滑即可。
C、放开拖着纸带的小车,小车能够自由下滑即可。
D、放开拖着纸带的小车,小车能够匀速下滑即可。
(2)利用如图甲所示的实验装置,让小车在橡皮筋作用下弹出,沿木板滑行。
然后通过增加橡皮筋的条数可以使橡皮筋对小车做的功成整数倍增加。
在正确操作情况下,得到一条较为理想的纸带如图乙所示,为了测量小车获得的速度,应选用纸带的某部分进行测量,你认为下列选项中可能合理的是__________A、BDB、GIC、HKD、AK(3)若木板水平放置,小车在两条橡皮筋作用下运动,当小车速度最大时,关于橡皮筋所处的状态与小车所在的位置(小车的大小忽略),下列说法正确的是__________A、橡皮筋处于原长状态。
B、橡皮筋仍处于伸长状态。
C、小车在两个铁钉的连线处。
D、小车未过两个铁钉的连线.。
2.某兴趣小组利用图甲所示实验装置,验证“合外力做功和动能变化的关系”.小车及车中砝码的质量为M,沙桶和沙的质量为m,小车的速度可由小车后面拉动的纸带经打点计时器打出的点计算得到.(1)在实验中,下列说法正确的有____________A.将木板的右端垫起,以平衡小车的摩擦力B.每次改变小车的质量时,都要重新平衡摩擦力C.用直尺测量细线的长度作为沙桶下落的高度D.在小车运动过程中,对于M、m组成的系统,m的重力做正功(2)图乙是某次实验时得到的一条纸带,O点为静止开始释放沙桶纸带上打的第一个点,速度为0.相邻两个计数点之间的时间间隔为T,根据此纸带可得出小车通过计数点E时的=____________.速度vE(3)若用O、E两点来研究合外力做功和动能变化的关系,需要验证的关系式为____________(用所测物理量的符号表示).3.用图甲所示的装置做“探究小车所受合力的功与小车动能变化关系”的实验。
高一物理机械能守恒和动能定理难题攻略
1.(黄埔一模,12分)如图所示,长为L 的平板车,质量为m 1,上表面到水平地面的高度为h ,以速度v 0向右做匀速直线运动,A 、B 是其左右两个端点。
从某时刻起对平板车施加一个水平向左的恒力F ,与此同时,将一个质量为m 2的小物块轻放在平板车上的P 点(小物块可视为质点,放在P 点时相对于地面的速度为零),PB =L4,经过一段时间,小物块脱离平板车落到地面。
已知小物块下落过程中不会和平板车相碰,所有摩擦力均忽略不计,重力加速度为g 。
求:(1)小物块从离开平板车开始至落到地面所用的时间; (2)小物块在平板车上停留的时间。
~24.(14衡水14分) 如图所示,在距水平地面高为H=处,水平固定一根长直光滑杆,杆上P处固定一定滑轮,滑轮可绕水平轴无摩擦转动,在P 点的右边,杆上套一质量m=2kg 的小球A .半径R=0.3m 的光滑半圆形轨道竖直地固定在地面上,其圆心O 在P 点的正下方,在轨道上套有一质量m=2kg 的小球B.用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来.杆和半圆形轨道在同一竖直面内,小球和小球均可看作质点,且不计滑轮大小的影响.现给小球A 施加一个水平向右、大小为55N 的恒力F ,则: (1)求把小球B 从地面拉到半圆形轨道顶点C 的过程中力F 做的功. (2)求小球B 运动到C 处时的速度大小.(3)小球B 被拉到离地多高时小球A 与小球B 的速度大小相等'A v F BP3.(12人大附中)如图所示,参加某电视台娱乐节目的选手从较高的平台上以水平速度跃出后,落在水平传送带上。
已知平台与传送带的高度差 1.8m H =,水池宽度0 1.2m s =,传送带AB 间的距离016.6m L =.由于传送带足够粗糙,假设选手落到传送带上后瞬间相对传送带静止,经过 1.0s t ∆=反应时间后,立刻以22m/s a =恒定向右的加速度跑至传送带最右端。
⑴ 若传送带静止,选手以03m/s v =的水平速度从平台跃出,求这位选手落在传送带上距离A 点的距离,以及从开始 跃出到跑至传送带右端B 点所经历的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理必修一动能定理和机械能守恒实验专题标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]动能定理和机械能守恒实验专题1.如图所示的实验装置,可用于探究力对静止物体做功与物体获得速度的关系.(1)实验中,小车会受到摩擦阻力的作用,可以使木板适当倾斜来平衡掉摩擦力,下面操作正确的是__________A、放开小车,小车能够自由下滑即可。
B、放开小车,小车能够匀速下滑即可。
C、放开拖着纸带的小车,小车能够自由下滑即可。
D、放开拖着纸带的小车,小车能够匀速下滑即可。
(2)利用如图甲所示的实验装置,让小车在橡皮筋作用下弹出,沿木板滑行。
然后通过增加橡皮筋的条数可以使橡皮筋对小车做的功成整数倍增加。
在正确操作情况下,得到一条较为理想的纸带如图乙所示,为了测量小车获得的速度,应选用纸带的某部分进行测量,你认为下列选项中可能合理的是__________A、BDB、GIC、HKD、AK(3)若木板水平放置,小车在两条橡皮筋作用下运动,当小车速度最大时,关于橡皮筋所处的状态与小车所在的位置(小车的大小忽略),下列说法正确的是__________A、橡皮筋处于原长状态。
B、橡皮筋仍处于伸长状态。
C、小车在两个铁钉的连线处。
D、小车未过两个铁钉的连线.。
2.某兴趣小组利用图甲所示实验装置,验证“合外力做功和动能变化的关系”.小车及车中砝码的质量为M,沙桶和沙的质量为m,小车的速度可由小车后面拉动的纸带经打点计时器打出的点计算得到.(1)在实验中,下列说法正确的有____________A.将木板的右端垫起,以平衡小车的摩擦力B.每次改变小车的质量时,都要重新平衡摩擦力C.用直尺测量细线的长度作为沙桶下落的高度D.在小车运动过程中,对于M、m组成的系统,m的重力做正功(2)图乙是某次实验时得到的一条纸带,O点为静止开始释放沙桶纸带上打的第一个点,速度为0.相邻两个计数点之间的时间间隔为T,根据此纸带可得出小车通过计数点=____________.E时的速度vE(3)若用O、E两点来研究合外力做功和动能变化的关系,需要验证的关系式为____________(用所测物理量的符号表示).3.用图甲所示的装置做“探究小车所受合力的功与小车动能变化关系”的实验。
除了图中的实验器材外,还有为打点计时器供电的低压电源、刻度尺和方木块。
请将下面的分析和实验操作填写完整。
(1)某同学在实验时,先取下小吊盘和砝码,用方木块垫高长木板远离滑轮的一端,使小车连同纸带沿长木板匀速运动,然后再挂上小吊盘和砝码,调整滑轮,使牵引小车的细线与长木板平行,释放小车,进行实验。
其中,“垫高长木板远离滑轮的一端,使小车连同纸带沿长木板匀速运动”的好处是___________(2)实验中,用小吊盘和砝码拉动小车运动,得到一条纸带如图乙所示。
已知打点计时器的工作频率是f,则记数点2对应的速度大小为V2=__________(用图中的x1、x2、x3和f表示)(3)用小吊盘和砝码的总重力的大小作为小车受到的合力F,计算出小车运动的位移x对应的功W;用小车运动的位移x对应的末速度求出动能EK ,则W和EK的大小关系应该是__________________(选填W=EK 或W>EK或 WK)4.如图为验证机械能守恒定律的实验中,质量m=1kg的重物自由下落,在纸带上打出了一系列的点,如图所示,相邻记数点间的时间间隔为0.04s,长度单位是cm,g取9.8m/s2.则:(1)在该实验中,下面叙述正确的是(______)A.应用天平称出重物的质量B.应当选用点迹清晰,第一、二两点距离约2mm的纸带进行测量C.操作时应先放纸带,后接通电源D.打点计时器应接在直流电源上(2)验证机械能守恒定律的实验步骤有:①把打点计时器安装在铁架台上,用导线将学生电源和打点计时器接好。
②重复上一步的过程,打三到五条纸带。
③把纸带的一端用夹子固定在重锤上,另一端穿过打点计时器的限位孔,用手竖直提起纸带,使重锤停靠在打点计时器附近。
④用公式112n n n h h v t +--=,计算出各点的瞬时速度v 1、v 2、v 3、……并记录在表格中。
⑤接通电源,待计时器打点稳定后再松开纸带,让重锤自由下落,打点计时器在纸带上打出一系列的点。
⑥计算各点的重力势能的减少量mgh n 和动能的增加量212n mv ,并进行比较,看是否相等,将数值填入表格内。
⑦选择一条点迹清晰的纸带,在起始点标上O ,以后各点依次为1、2、3、……用刻度尺测量对应下落的高度h 1、h 2、h 3、……记入表格中。
上述步骤合理的顺序应该是______________________。
(3)从打出的纸带中选出符合要求的纸带,如图所示(其中一段纸带图中未画出)。
图中O 点为打出的起始点,且速度为零。
选取在纸带上打出的点A 、B 、C 、D 作为计数点,并测出A 、B 、C 、D 点距起始点O 的距离如图所示。
由此可计算出物体下落到B 点时势能的变化量ΔE P =_____J (保留三位有效数字),动能的增加量ΔE k =_____J (保留三位有效数字)。
(4)该同学利用自己在做该实验时打出的纸带,测量出了各计数点到打点计时器打下的第一个点的距离h,算出了各计数点对应的速度v,以h为横轴,以v2为纵轴画出了如图的图线。
若图线的斜率为k,则可知当地的重力加速的表达式为_____,图线不经过原点的可能原因是_____________________。
参考答案1. D BC BD【解析】试题分析:(1)实验中可以适当抬高木板的一侧来平衡摩擦阻力.受力平衡时,小车应做匀速直线运动;(2)应选择橡皮筋做功完毕时小车的速度,此时小车做匀速直线运动.(3)平衡摩擦力后,橡皮筋的拉力等于合力,橡皮条做功完毕,小车的速度最大,若不进行平衡摩擦力操作,则当橡皮筋的拉力等于摩擦力时,速度最大(1)实验中可以适当抬高木板的一侧来平衡摩擦阻力.受力平衡时,小车应做匀速直线运动,所以正确的做法是:轻轻推一下拖着纸带的小车,能够匀速下滑即可,故ABC错误,D正确.(2)要测量最大速度,应该选用点迹恒定的部分.即应选用纸带的G-K部分进行测量.故BC正确,AD错误.(3)平衡摩擦力后,橡皮筋的拉力等于合力,橡皮条做功完毕,小车的速度最大,若不进行平衡摩擦力操作,则当橡皮筋的拉力等于摩擦力时,速度最大,本题中木板水平放置,显然没有进行平衡摩擦力的操作,因此当小车的速度最大时,橡皮筋仍处于伸长状态,所以没有过两个铁钉的连线,故AC错误,BD 正确.2.(1)AD(2)(3)【解析】试题分析:(1)根据实验的原理即可正确解答;(2)由平均速度公式可求得E点的速度;(3)根据“探究加速度与力、质量的关系”实验原理结合图象特点即可正确回答.解:(1)若用砂和小桶的总重力表示小车受到的合力,为了减少这种做法带来的实验误差,必须:A、使长木板左端抬起﹣个合适的角度,以平衡摩擦力,以保证合外力等于绳子的拉力,但不需要每次都平衡摩擦力;故A正确,B错误;C、下落高度由纸带求出,不需要测量下落高度;故C错误;D、在小车运动过程中,对于M、m组成的系统,m的重力做正功;故D正确;故选:AD;(2)根据匀变速直线运动的特点,C点的速度等于BD之间的平均速度,所以:VE=(3)B到E之间重力势能减小:△EP =mgs5动能增大:△Ek =MvE需要验证的是:故答案为:(1)AD ;(2);(3)【点评】“探究恒力做功与动能改变的关系”与“探究加速度与力、质量的关系”有很多类似之处,在平时学习中要善于总结、比较,提高对实验的理解能力.3. (1)消除了阻力的影响;用小车重力做功补偿阻力的功;使小车所受的力仅为细线的拉力;便于求出小车所受合力的功;等等。
(2)(x 3x 1)x 10(3)x >x x 【解析】(1)“垫高长木板远离滑轮的一端,使小车连同纸带沿长木板匀速运动”,即平衡摩擦力的好处是:消除了阻力的影响;用小车重力做功补偿阻力的功;使小车所受的力仅为细线的拉力;便于求出小车所受合力的功,等等。
(2)记数点2对应的速度大小为x 2=x 3x 110x =(x 3x 1)x 10(3)由于小车运动过程中药克服摩擦阻力做功,则小车所受的拉力对小车做的功大于小车得到的动能,即W>E K .4. B ①③⑤②⑦④⑥ 1.91 1.89 2k g先放纸带后打开打点计时器(或者没有从起始点开始测量)【解析】(1)验证机械能守恒,即验证动能的增加量和重力势能的减小量是否相等,两边都有质量,可以约去,所以不一定需要测量重锤的质量,A 错误;当物体做自由落体运动时,第一、二两点大约距离2211100.02222x gt m mm ==⨯⨯=,所以应选用点迹清晰且第一、二两点间的距离约为2mm 的纸带进行测量,故B 正确;实验过程中应先接通电源后释放纸带,C 错误;带点计时器使用的是交流电源,D 错误;(2)在进行实验时,一般顺序为安装实验仪器,进行实验,记录数据,整理仪器,故顺序为①③⑤②⑦④⑥(3)势能变化量为 1.91J P OB E mgh ∆==,B 点的速度为2OC OA B h h v T -=,增加的动能为212k B E mv ∆=,联立代入数据解得 1.89J k E ∆= (4)根据212mgh mv =可得22v gh =,故2k g =,所以2k g =,图线不过原点,说明开始时,物体已经具有了动能,可能是操作时先释放重物,后接通电源开关.。