人教版数学中考知识点梳理-二次函数的应用
中考重点二次函数的性质与应用
![中考重点二次函数的性质与应用](https://img.taocdn.com/s3/m/e19f0ba29a89680203d8ce2f0066f5335a81671a.png)
中考重点二次函数的性质与应用中考重点:二次函数的性质与应用二次函数是初中数学中的重要内容之一,它在中考中的考查频率较高。
掌握二次函数的性质与应用,能够帮助我们解决与二次函数相关的问题,提高解题能力。
本文将重点讨论二次函数的性质和应用,探索其在数学中的作用。
一、二次函数的定义及一般式表示二次函数是形如y = ax² + bx + c的函数,其中a、b、c为常数且a≠0。
其中,a决定了二次函数的开口方向,b决定了函数的对称轴位置,c表示函数与y轴的交点。
二次函数的一般式表示形式为y = ax² + bx + c,其中a、b、c为实数且a≠0。
一般式可以转化为顶点式表示或者因式分解式表示,从而更方便地研究二次函数的性质。
二、二次函数的性质1. 对称性:二次函数的图像关于对称轴对称。
对称轴的表示为x = -b / (2a),在二次函数图像上即为顶点的横坐标。
2. 开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
3. 极值点与最值:二次函数的极值点即顶点,其横坐标为-x / (2a),纵坐标为f(-x /(2a))。
当a>0时,二次函数的最小值为f(-x / (2a));当a<0时,二次函数的最大值为f(-x / (2a))。
4. 零点:二次函数与x轴的交点称为零点,可以通过求解二次方程ax² + bx + c = 0来确定。
二次函数有两个零点时称为有两个实根,有一个零点时称为有一个实根,没有实根时称为无实根。
三、二次函数的应用1. 求解问题:二次函数常常用于求解与平面图形有关的问题。
例如,已知抛物线y = ax² + bx + c与x轴交于A、B两点,求抛物线经过的最高点的坐标。
通过求解顶点坐标可以得到问题的解。
2. 最值问题:二次函数能够用于解决最值问题。
例如,已知二次函数y = ax² + bx + c,在一定范围内求函数的最值。
初三数学《二次函数》考点整理与例题解析
![初三数学《二次函数》考点整理与例题解析](https://img.taocdn.com/s3/m/fbe8c2aca1116c175f0e7cd184254b35eefd1a02.png)
初三数学《二次函数》考点整理与例题解析二次函数重难点分析:1、二次函数的图像2、二次函数的性质以及性质的综合应用3、二次函数的应用性问题:①面积最值问题②高度、长度最值问题③利润最大化问题④求近似解知识点归纳:1、二次函数的概念y=ax2+bx+c(a≠0)2、求二次函数的解析式一般式y=ax2+bx+c、顶点式y=a(x+m)2+k交点式y=a(x-x1)(x-x2)3、二次函数的图像和性质当a>0时,图像开口向上,有最低点,有最小值当a<0时,图像开口向下,有最高点,有最大值顶点式对称轴:直线x=-m一般式对称轴:直线x=-b/2a交点式对称轴:直线x=(x1+x2)/24.二次函数图像的平移函数y=a(x+m)2+k的图像,可以由函数y=ax2的图像先向右(当m<0时)或向左(m>0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到5、抛物线与系数的关系二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c)抛物线与x轴交点个数?= b2-4ac>0时,抛物线与x轴有2个交点。
?= b2-4ac=0时,抛物线与x轴有1个交点。
?= b2-4ac<0时,抛物线与x轴没有交点知识拓展:初中数学最重要的部分,在中考中占的比重大,跟其他知识点联系多,以数形结合的题型考查几何,解方程、代数等都相互联系,知识点多题型多变,压轴题多以此为出题点1、考查形式:以选择题、填空题形式考察二次函数图像的性质,以解答题形式考察以二次函数为载体的综合题。
2、考察趋势:二次函数图像与系数的关系,二次函数的应用仍是重点3、二次函数求最值的应用:依据实际问题中的数量关系,确定二次函数的解析式,结合方程、一次函数等知识解决实际问题(对于二次函数最大(小)值的确定,一定要注意二次函数自变量的取值范围,同时兼顾实际问题中对自变量的特殊约定,结合图像进行理解)经典例题。
人教版数学中考知识点梳理-二次函数的应用
![人教版数学中考知识点梳理-二次函数的应用](https://img.taocdn.com/s3/m/0ccdd39d852458fb770b56e9.png)
第13讲二次函数的应用
一、知识清单梳理
【素材积累】
1、只要心中有希望存摘,旧有幸福存摘。
预测未来的醉好方法,旧是创造未来。
坚志而勇为,谓之刚。
刚,生人之德也。
美好的生命应该充满期待、惊喜和感激。
人生的胜者决不会摘挫折面前失去勇气。
2、我一直知道,漫长人生中总有一段泥泞不得不走,总有一个寒冬不得不过。
感谢摘这样的时候,我遇见的世界上最美的心灵,我接受的最温暖的帮助。
经历
过这些,我将带着一颗感恩和勇敢的心继续走上梦想的道路,无论是风雨还是荆棘。
初三数学二次函数知识点归纳
![初三数学二次函数知识点归纳](https://img.taocdn.com/s3/m/5198d69751e2524de518964bcf84b9d528ea2c82.png)
初三数学二次函数知识点归纳在初中数学的学习中,二次函数是一个重要的内容,也是进一步深入学习代数的基础。
学好二次函数的性质和运用对于学生的数学能力的提升至关重要。
下面将对初三数学中二次函数的知识进行归纳总结。
一、二次函数及其图象的性质1. 二次函数的定义二次函数是一个以x的二次幂作为最高次幂的多项式函数,一般的二次函数表达式为: y = ax^2 + bx + c (其中 a, b, c 为常数且 a ≠ 0)。
2. 二次函数图象的平移二次函数图象的平移可以通过改变 a, b 和 c 的值来实现。
当将 a 的值变为 a',则图象的开口方向和大小会有相应的改变;当将 b 的值变为 b',则图象在 x 轴方向上平移;当将 c 的值变为 c',则图象在y 轴方向上平移。
3. 二次函数图象的对称轴二次函数图象的对称轴是一个线段,记作 x = -b/2a,对称轴将图象分为两个对称的部分。
4. 二次函数的顶点二次函数的顶点就是图象的最高点或最低点,所有的二次函数图象都有一个顶点。
5. 二次函数图象的开口方向二次函数图象的开口方向由二次项的系数 a 的正负决定。
当 a > 0 时,图象开口向上;当 a < 0 时,图象开口向下;当 a = 0 时,不再是二次函数。
二、二次函数的求解1. 二次函数的零点二次函数的零点是指函数曲线与 x 轴相交的点,也就是函数的根。
求解二次函数的零点可以通过以下步骤进行:首先,将函数表达式设置为 y = 0;然后,应用求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 计算 x 的值。
2. 二次函数的最值二次函数的最值通过求解顶点来确定。
当a > 0 时,函数有最小值,且最小值为顶点的纵坐标;当 a < 0 时,函数有最大值,且最大值为顶点的纵坐标。
三、二次函数的应用1. 抛物线二次函数的图象通常被称为抛物线。
初三的二次函数知识点总结
![初三的二次函数知识点总结](https://img.taocdn.com/s3/m/73c92d7cf011f18583d049649b6648d7c1c708ea.png)
初三的二次函数知识点总结一、二次函数的定义二次函数是一个形如f(x) = ax^2 + bx + c的函数,其中a、b、c是常数且a≠0。
二次函数的图像是一个抛物线,开口方向由a的符号决定,a>0时开口向上,a<0时开口向下。
二、二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,顶点的横坐标可以用公式x=-b/2a来求得,纵坐标可以代入x的值计算得到。
三、二次函数的平移对于一般的二次函数f(x)=ax^2+bx+c,如果f(x)变为f(x)+m或f(x)-m,就是把抛物线上下平移了m个单位。
如果f(x)变为f(x)+m或f(x)-m,就是把抛物线左右平移了m个单位。
四、二次函数的对称轴二次函数的对称轴是与顶点横坐标相等的直线,即x=-b/2a。
五、二次函数的判别式二次函数的判别式Δ=b^2-4ac,当Δ>0时,函数在x轴上有两个不同的实根;当Δ=0时,函数在x轴上有一个重根;当Δ<0时,函数在x轴上没有实根。
六、二次函数的图像二次函数的图像是一条抛物线,它的开口方向和顶点的位置可以通过二次函数的系数来描述。
七、二次函数的性质1. 当a>0时,抛物线开口向上,函数的最小值为y轴的对称轴。
2. 当a<0时,抛物线开口向下,函数的最大值为y轴的对称轴。
3. 当a>0时,函数在对称轴的一侧是单调递增的,另一侧是单调递减的。
4. 当a<0时,函数在对称轴的一侧是单调递减的,另一侧是单调递增的。
八、二次函数的应用二次函数在生活中有很多应用,比如抛物线的运动轨迹、抛物线的优化问题、抛物线的张力问题、抛物线的最大值与最小值等等。
以上就是初三二次函数的知识点总结。
希望同学们能够掌握这些知识,为以后的学习打下坚实的基础。
人教版九年级数学《二次函数》知识点梳理与总结(超经典)
![人教版九年级数学《二次函数》知识点梳理与总结(超经典)](https://img.taocdn.com/s3/m/5ccd3195d1f34693daef3e67.png)
《二次函数》单元知识梳理与总结一、二次函数的概念1、定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2、注意点:(1)二次函数是关于自变量x 的二次式,二次项系数a 必须为非零实数,即a ≠0,而b 、c 为任意实数。
(2)当b=c=0时,二次函数2ax y =是最简单的二次函数。
(3)二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2为整式)3、三种函数解析式:(1)一般式: y=ax 2+bx+c (a ≠0),对称轴:直线x=ab2- 顶点坐标:( a b ac a b 4422--, ) (2)顶点式:()k h x a y +-=2(a ≠0),对称轴:直线x=h 顶点坐标为(h ,k )(3)交点式:y=a (x-x 1)(x-x 2)(a ≠0), 对称轴:直线x=22x1x + (其中x 1、x 2是二次函数与x 轴的两个交点的横坐标).二、二次函数的图象1、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.2、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.注:二次函数的图象可以通过抛物线的平移得到 3、二次函数c bx ax y ++=2的图像的画法因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:(1)先找出顶点坐标,画出对称轴;(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等); (3)把上述五个点按从左到右的顺序用平滑曲线连结起来.1、增减性:当a>0时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大; 当a<0时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少; 2、最大或最小值:当a>0时,函数有最小值,并且当x=a b2- , y 最小 =a b ac 442-当a<0时,函数有最大值,并且当x=ab2- , y 最大 =a b ac 442-四、.抛物线的三要素:开口方向、对称轴、顶点坐标。
初三中考数学 二次函数的应用
![初三中考数学 二次函数的应用](https://img.taocdn.com/s3/m/0c0cf451ad51f01dc281f1f6.png)
第21课时二次函数的应用【复习要点】1、二次函数的应用常用于求解析式、交点坐标等。
(1)求解析式的一般方法:①已知图象上三点或三对的对应值,通常选择一般式。
②已知图象的顶点坐标、对称轴、最值或最高(低)点等,通常选择顶点式。
③已知图象与x轴的两个交点的横坐标为x1、x2,通常选择交点式(不能做结果,要化成一般式或顶点式)。
(2)求交点坐标的一般方法:①求与x轴的交点坐标,当y=代入解析式即可;求与y轴的交点坐标,当x=代入解析式即可。
②两个函数图像的交点,将两个函数解析式联立成方程组解出即可。
2、二次函数常用来解决最优化问题,即对于二次函数2(0)=++≠,当x=时,y ax bx c a函数有最值y=。
最值问题也可以通过配方解决,即将2(0)y a x h k a=-+≠,当x=时,函数()(0)=++≠配方成2y ax bx c a有最值y=。
3、二次函数的实际应用包括以下方面:(1)分析和表示不同背景下实际问题,如利润、面积、动态、数形结合等问题中变量之间的二次函数关系。
(2)运用二次函数的知识解决实际问题中的最值问题。
4、二次函数主要是利用现实情景或者纯数学情景,考查学生的数学建模能力和应用意识。
从客观事实的原型出发,具体构造数学模型的过程叫做数学建模,它的基本思路是:【例题解析】例1:如图1所示,一位运动员在距篮圈中心水平距离4米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米.求抛物线的表达式.解析:因为抛物线的对称轴为y轴,故可设篮球运行的路线所对应的函数表达式为2y ax k=+(a≠0,k≠0).代入A,B两点坐标为(1.5,3.05),(0,3.5).可得:21.5 3.053.5a kk⎧+=⎨=⎩,.解得0.2a=-,所以,抛物线对应的函数表达式为20.2 3.5y x =-+.反思:将实际问题转化为数学问题,建立适当的平面直角坐标系是解决问题的关键。
第二十二章《二次函数》知识点总结人教版数学九年级上册
![第二十二章《二次函数》知识点总结人教版数学九年级上册](https://img.taocdn.com/s3/m/3ea4bec8bdeb19e8b8f67c1cfad6195f312be890.png)
《二次函数》知识点总结【知识点1 二次函数的表达式】1. 一般式: . 顶点坐标: . 对称轴: .2. 顶点式: .顶点坐标: . 对称轴: . 【知识点2 二次函数的图象与性质】 1. 二次项系数a 决定抛物线的 开口方向 ;①当0>a 时,抛物线的 ; ②当0<a 时,抛物线的 ; ③ ||a 越大,抛物线的开口 .3.常数项c 决定抛物线 与y 轴 交点的位置 . ①当0=c ,抛物线与y 轴交于 ; ②当0>c ,抛物线与y 轴交于 ; ③当0<c ,抛物线与y 轴交于 .5.根据a 、b 、c 的符号,画出二次函数的草图:①已知 a <0、b <0、c <0 ②已知 a>0、b <0、c >0 6.描述下面二次函数c bx ax y ++=2的增减性: 【知识点3 抛物线与坐标轴的交点】 1. 抛物线c bx ax y ++=2与x 轴的交点个数,即02=++c bx ax . ①当 ,抛物线与x 轴有两个交点; ②当 ,抛物线与x 轴有1个交点; ③当 ,抛物线与x 轴有没有交点;2.求抛物线c bx ax y ++=2与x 轴的交点的过程: 3.求抛物线c bx ax y ++=2与y 轴的交点的过程:4.函数 y = ax 2 + bx + c 的图象如图,那么 ①方程 ax 2 + bx + c =2 的根是 ______________;2.系数a 和b 共同决定抛物线 对称轴的位置 . ①a 和b 同号,对称轴在原点的 ; ②a 和b 异号, .4.根据图象判断出a 、b 、c 的符号:方法总结:第一步:求出对称轴;第二步:用箭头在对称轴两侧标出上升和下降;第三步:描述增减性.①当 时,随的增大而减小; ②当 时, 随的增大而增大;∵轴上的点, 为零,∴ . ∵轴上的点, 为零,∴ .②不等式 ax 2 + bx + c >0 的解集是 ___________; ③不等式 ax 2 + bx + c <2 的解集是 _________.④ a + b + c 0 ,4a 2 b + c 0 , 9a +3 b + c 0 .【知识点4 抛物线的平移】二次函数 y = ax 2 + bx + c 的平移口诀:“上下平移, ;左右平移, .” 【 * *知识点5 抛物线的对称 ** 】抛物线c bx ax y ++=2关于x 轴对称的解析式为 . 抛物线c bx ax y ++=2关于y 轴对称的解析式为 . 【 * *知识点6 二次函数图象的画法 ** 】 画出二次函数3-2-2x x y =的的图象.【典型例题 】1.m2+1+2x −是二次函数,则m 的值为( )C. −1D. 1或−12.【求顶点坐标 】抛物线y =2(x −3)4的顶点坐标是( ) A. (3,4)B. (−3,4)C. (3,−4)D. (2,4)3.【与坐标轴的交点 】抛物线y =−x 2+4x −4与坐标轴的交点个数为( ) A. 0B. 1C. 2D. 34.【平移】将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( ) A. 向左平移1个单位 B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位5.【平移】抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的( )A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先向右平移3个单位,再向上平移2个单位 6.【图象与性质】对于抛物线y =−3(x +1)2−2,下列说法正确的是( ) A. 抛物线开口向上 B. 当x >−1时,y 随x 的增大而减小 C. 函数最小值为−2D. 顶点坐标为(1,−2)7.【增减性】已知(−3,y 1),(−1,y 2),(2,y 3)是抛物线y =−3x 2+6x +m 上的三个点.则( ) A. y 1<y 3<y 2B. y 3<y 2<y 1C. y 1<y 2<y 3D. y 2<y 1<y 38.【最值】已知二次函数y=x2−4x+2,关于该函数在−1≤x≤3的取值范围内,下列说法正确的是( )A. 有最大值−1,有最小值−2B. 有最大值0,有最小值−1C. 有最大值7,有最小值−1D. 有最大值7,有最小值−29.【系数与图象】二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B. C. D.10.【求解析式】如图所示,已知二次函数y=ax2+bx+c的图象,求二次函数的解析式.11.如图,已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的解析式、对称轴及顶点坐标;(2)点C是抛物线与x轴的一个交点,点D是抛物线与y轴的交点,求三角形ACD 的面积;(3)已知点M(x1,y1)和N(1+x1,y2)在抛物线对称轴的右侧,判段y1和y2的大小.12.在运动会比赛时,九年级的一名男同学推铅球,已知铅球经过的路线是某二次函数图象的一部分(如图所示),如果这名男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求出这个二次函数的解析式;(2)请求出这名男同学比赛时的成绩?13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.(1)建立平面直角坐标系,求抛物线的解析式;(2)如果水面下降1m,则水面宽度是多少米?14.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?。
二次函数(最全的中考二次函数知识点总结
![二次函数(最全的中考二次函数知识点总结](https://img.taocdn.com/s3/m/ef55bc0332687e21af45b307e87101f69e31fb0f.png)
二次函数(最全的中考二次函数知识点总结二次函数是中学数学中的一个重要内容,它在中考中也是一个常见的考点。
下面是一个最全的中考二次函数知识点总结。
1. 二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为常数,且a≠0。
2.二次函数的图像:二次函数的图像是一条开口朝上或朝下的抛物线,a的符号决定了抛物线的开口方向。
3. 二次函数的顶点坐标:顶点坐标为(-b/2a, f(-b/2a)),其中f(x) = ax^2 + bx + c。
4.二次函数的对称轴:对称轴为x=-b/2a。
5. 二次函数的判别式:判别式Δ = b^2 - 4ac,可以用来判断二次函数的性质。
6.二次函数的零点:二次函数的零点是指函数图像与x轴的交点,即f(x)=0的解。
7.二次函数的单调性:当a>0时,二次函数是开口朝上的,是递增函数;当a<0时,二次函数是开口朝下的,是递减函数。
8. 定比分点:对于二次函数y = ax^2 + bx + c,若存在一点(x1,y1),使得x1 = -b/2a + t 且 y1 = f(x1),其中t为常数,则称(x1,y1)为定比分点。
9.定比分点与顶点的关系:二次函数的定比分点与顶点的横坐标之差等于m倍的a的倒数,即x1-(-b/2a)=m/a。
10. 二次函数的平移变换:对于二次函数y = ax^2 + bx + c,当a 不等于1时,二次函数的平移变换可以通过替换x变量来实现,平移后的函数为y = a(x-h)^2 + k。
11.二次函数与一次函数的关系:当a=0时,二次函数退化为一次函数。
12.二次函数的最值:当a>0时,二次函数的最小值为f(-b/2a);当a<0时,二次函数的最大值为f(-b/2a)。
13.二次函数与根的关系:如果二次函数有两个不相等的根,那么函数图像必定与x轴有两个交点;如果二次函数有两个相等的根,那么函数图像必定与x轴有一个相切的交点;如果二次函数没有实数根,那么函数图像与x轴没有交点。
中考数学人教版 考点系统复习 第三章 函数 人教版 第八节 二次函数的实际应用
![中考数学人教版 考点系统复习 第三章 函数 人教版 第八节 二次函数的实际应用](https://img.taocdn.com/s3/m/dae232386d85ec3a87c24028915f804d2a168758.png)
(1)请求出日获利W与销售单价x之间的函数关系式; 解:当y=-100x+5 000≥4 000时,解得x≤10. 当6≤x≤10时,W=[x-(6-1)](-100x+5 000)-2 000 =-100x2+5 500x-27 000. 当10<x≤30时, W=(x-6)(-100x+5 000)-2 000 =-100x2+5 600x-32 000.
(3)当W≥40 000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关
费用,若此时日获利的最大值为42 100元.求a的值. 解:∵40 000>18 000, ∴10<x≤30,则W=-100x2+5 600x-32 000. 令W=40 000,则-100x2+5 600x-32 000=40 000.解得x1=20,x2= 36. 由二次函数性质可知当W≥40 000时,20≤x≤36. 又∵10<x≤30,∴20≤x≤30. ∴W=(x-6-a)(-100x+5 000)-2 000 =-100x2+(5 600+100a)x-32 000-5 000a.
-100x2+5 500x-27 000(6≤x≤10), W=-100x2+5 600x-32 000(10<x≤30).
(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多 少元? 当6≤x≤10时,W=-100x-5252+48 625, ∵在对称轴左侧,W随x的增大而增大, ∴当x=10时,W最大=18 000元. 当10<x≤30时,W=-100(x-28)2+46 400, ∴当x=28时,W最大=46 400元. 答:当单价定为28元时,日获利最大,为46 400元.
第八节 二次函数的实际 应用
1.(2022·武威)如图,以一定的速度将小球沿与地面成一定角度的方 向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的 飞行高度h(单位:m)与飞行时间t(单位:s) 之间具有函数关系:h=- 5t2+20t,则当小球飞行高度达到最高时,飞行时间t=2 2 s.
专题15二次函数及其应用(知识点总结例题讲解)-2021届中考数学一轮复习
![专题15二次函数及其应用(知识点总结例题讲解)-2021届中考数学一轮复习](https://img.taocdn.com/s3/m/4c568dc15901020206409c7c.png)
1 2 中考数学 专题 15 二次函数及其应用(知识点总结+例题讲解)一、二次函数的概念:1.二次函数的概念:(1)一般地,如果 y=ax 2+bx+c(a ,b ,c 是常数,a≠0),那么 y 叫做 x 的二次函数; (2)抛物线 y=ax 2+bx+c(a ,b ,c 是常数,a≠0)叫做二次函数的一般式。
2.二次函数的解析式( 二次函数的解析式有三种形式): (1)一般式:y=ax 2+bx+c(a ,b ,c 是常数,a≠0) (2)顶点式:y=a(x-h)2+k(a ,h ,k 是常数,a≠0) (3)两根式(交点式):y=a(x-x 1)(x-x 2);①已知图像与 x 轴的交点坐标 x 1、x 2,通常选用交点式; 即对应二次方程 ax 2+bx+c=0 有实根 x 和 x 存在; ②如果没有交点,则不能这样表示。
3.用待定系数法求二次函数的解析式:(1)若已知抛物线上三点坐标,可设二次函数表达式为 y =ax 2+bx +c ; (2)若已知抛物线上顶点坐标或对称轴方程,则可设顶点式:y =a(x -h)2+k ,其中对称轴为 x =h ,顶点坐标为(h ,k);(3)若已知抛物线与 x 轴的交点坐标或交点的横坐标,则可采用两根式(交点式):y =a(x -x 1)(x -x 2),其中与 x 轴的交点坐标为(x 1,0),(x 2,0)。
【例题 1】已知二次函数的图象经过(2,10)、(0,12)和(1,9)三点,求二次函数的解析式.【答案】y=2x 2-5x+12【解析】设抛物线的解析式为 y=ax 2+bx+c ,把(2,10)、(0,12)、(1,9)分别代入求出 a ,b ,c 即可.解:设抛物线的解析式为 y=ax 2+bx+c ;⎨ ⎩ ⎧4a + 2b + c = 10 把(2,10)、(0,12)、(1,9)分别代入得⎪c = 12⎪a + b + c = 9 所以,二次函数的解析式为:y=2x 2-5x+12。
人教版初中数学九年级上册二次函数重点知识归纳
![人教版初中数学九年级上册二次函数重点知识归纳](https://img.taocdn.com/s3/m/5759d080c67da26925c52cc58bd63186bceb928f.png)
人教版初中数学九年级上册二次函数重点知识归纳知识点1 二次函数的概念和一般形式1.概念:一般地,形如y=ax2+bx+c(a ,b ,c 是常数,a≠0)的函数,叫做二次函数。
其中, x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项。
【注意】(1)自变量x的最高次数是2,a≠0,b,c可以为0;(2)含自变量x 的代数式是整式而不是分式或根式。
2.一般式:y=ax2+bx+c(a ,b ,c 是常数,a≠0)知识点2 二次函数的图像和性质1.二次函数的图像:是一条平滑的曲线叫做抛物线。
2.二次函数图像的画法:①列表;②描点;③连线。
3.二次函数的解析式(4种形式)(1)y = ax 2(a≠0)(2)y = ax 2+k(a,k是常数,a≠0)(3)y = a(x-h)2(a,h是常数,a≠0)(4)y = a(x-h)2+k(a,k,h是常数,a≠04.二次函数的图像和性质:分别从五种图像(4种特殊+1个一般式)和7个性质(顶点特点、开口方向、顶点坐标、对称轴、最值、增减性、形状和大小等7个方面研究)。
如下图:二次函数的图像与性质a <05.图像平移后的解析式:y = a(x-h)2+k(a,k,h是常数,a≠0)平移规则:左加右减,上加下减。
知识点3 用待定系数法求二次函数的解析式:一般式、顶点式、交点式。
(1)已知抛物线上普通的3点的坐标,一般选用一般式;(2)顶点在原点,可设y = ax 2(3)顶点在x轴上,若抛物线与x轴有一个交点,可设y = a(x-h)2;若抛物线与x轴有两个交点,可设y=a(x-x1)(x-x2);(4)顶点在y轴上(或对称轴在y轴上),可设y = ax 2+k;(5)已知顶点(h,k),可设顶点式y = a(x-h)2+k知识点4 二次函数与一元二次方程的关系1. 二次函数与一元二次方程的关系二次函数y=ax2+bx+c(a≠0)的图像与x轴(直线y=0)交点的横坐标就是一元二次方程ax2+bx+c=0的解。
人教版中考数学考点系统复习 第三章 函数 第八节 二次函数的实际应用
![人教版中考数学考点系统复习 第三章 函数 第八节 二次函数的实际应用](https://img.taocdn.com/s3/m/810bed3915791711cc7931b765ce050876327519.png)
此类问题一般涉及抛球、投篮、隧道、拱桥、喷泉水柱等.解决此类问 题的关键是理解题目中的条件所表示的几何意义.最高点为抛物线的顶 点,抛出点为抛物线中的 c 值,落地点为抛物线与 x 轴的交点,落地点 到抛出点的水平距离是此落地点横坐标的绝对值.
(1)抛球运动判断球是否过网即判断此点的坐标是否在抛物线上方;(2) 投篮判断是否能投中即判断篮网是否在球的运动轨迹所在的抛物线上; (3)判断货车是否能通过隧道即判断两端点的坐标是否在抛物线的下方; (4)判断船是否能通过拱桥即判断船两端的高度是否比桥上对应点到水 面的距离小;(5)判断人是否会被喷泉淋湿即判断人所处位置的水的高度 是否比人的身高高.
Ⅱ)为庆祝节日,在钢缆和拱桥之间竖直装饰若干条彩带,求彩带长度的
最小值. 【分层分析】Ⅱ)设彩带长度为 Lm,则 L=y2-y1=x182x2-x-+x4+4,所以当
x=44时,L 有最小值为 22 m. m
解:设彩带的长度为 L m,则 L=y2-y1=112(x-6)2+1--214x2=18x2-x+4=18(x-4)2+2, ∴当 x=4 时,L 最小值=2, 答:彩带长度的最小值是 2 m.
【分层分析】(1)设 y 与 x 之间的函数解析式为 y=kx+b(k≠0),取表格 中任两组对应数据,用待定系数法解得 k=--22,b=224400,因此 y 与 x 之间的函数解析式为 yy==--2x 2+x+240. 解:设 y 与 x 之间的函数24解0析式为 y=kx+b(k≠0),
将(56,128)和(65,110)分别代入,得 56k+b=128, k=-2, 65k+b=110,解得b=240, ∴y 与 x 之间的函数解析式为 y=-2x+240.
★(2022·南充)如图,水池中心点 O 处竖直安装一水管,水管喷头喷出 抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水 柱落点与点 O 在同一水平面.安装师傅调试发现,喷头高 2.5 m 时,水 柱落点距 O 点 2.5 m;喷头高 4 m 时,水柱落点距 O 点 3 m.那么喷头高 8 8 m 时,水柱落点距 O 点 4 m.
人教版中考数学一轮复习--二次函数的应用(精品课件)
![人教版中考数学一轮复习--二次函数的应用(精品课件)](https://img.taocdn.com/s3/m/c73c23ac70fe910ef12d2af90242a8956becaad2.png)
∵A(1,0),即二次函数图象的对称轴为直线x=1,
∴x=-2×b-14=1,∴b=12,
∴二次函数的解析式为 y=-14x2+12x+3.
(2)若点C与点B重合,求tan∠CDA的值.
解:过点D作x轴的垂线,垂足为E.
∵∠CAD=90°,∴∠BAO+∠DAE=90°.
解:当m=-2时,直线l2:y=-2x+n(n≠10), ∴直线l2:y=-2x+n(n≠10)与直线l1:y=-2x+10不重合, 假设l1与l2不平行,则l1与l2必相交,设交点为P(xP,yP), ∴ yyPP= =- -22xxPP+ +n10,,解得n=10. ∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1.
综上所述,当a≥50时,矩形菜园ABCD面积的最大值为1 250 m2; 当0<a<50时,矩形菜园ABCD面积的最大值为 50a-12a2 m2.
考点3 销售问题 例4 某药店选购了一批消毒液,进价为每瓶10元,在销售过
程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在 一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒 液售价为12元时,每天销售量为90瓶;当每瓶消毒液售 价为15元时,每天销售量为75瓶. (1)求y与x之间的函数关系式;
∴直线MN的解析式为y=-x+4,
由-x2+2x+3=-x+4 得,x=3±2 5,
∴M 点横坐标为3+2
5或3-2
5 .
例2 【2020福建节选14分】已知直线l1:y=-2x+10交y轴 于点A,交x轴于点B,二次函数的图象过A,B两点,交 x轴于另一点C,BC=4,且对于该二次函数图象上的任 意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.
二次函数的图象与性质-中考数学知识点归纳总结(人教版)
![二次函数的图象与性质-中考数学知识点归纳总结(人教版)](https://img.taocdn.com/s3/m/6b7140060b4c2e3f5727639a.png)
开口
向上
向下
对称轴
x=
顶点坐标
增减性
当x> 时,y随x的增大而增大;当x< 时,y随x的增大而减小.
当x> 时,y随x的增大而减小;当x< 时,y随x的增大而增大.
最值
x= ,y最小= .
x= ,y最大= .
3.系数a、b、c
a
决定抛物线的开口方向及开口大小
(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.
若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.
知识点二:二次函数的图象与性质
3.二次函数的图象和性质
图象
(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.
失分点警示
(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
a、b
决定对称轴(x=-b/2a)的位置
第22章二次函数全章知识点归纳总结人教版九年级数学上册
![第22章二次函数全章知识点归纳总结人教版九年级数学上册](https://img.taocdn.com/s3/m/e18836e67e192279168884868762caaedd33ba82.png)
初三上学期二次函数全章知识点归纳总结【例1】下列函数是二次函数的有()①y=(x+1)2﹣x2;②y=﹣3x2+5;③y=x3﹣2x;④y=x2−1x+3.A.1个B.2个C.3个D.4个【变式11】下列函数中,是二次函数的有()①y=√x2+2;②y=﹣x2﹣3x;③y=x(x2+x+1);④y=11+x2;⑤y=﹣x+x2.A.1个B.2个C.3个D.4个【例2】若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣1【变式21】函数y=(a﹣5)x a2+4a+5+2x﹣1,当a=时,它是一次函数;当a=时,它是二次函数.【例3】关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【例4】下列具有二次函数关系的是()A.正方形的周长y与边长x B.速度一定时,路程s与时间tC.正方形的面积y与边长x D.三角形的高一定时,面积y与底边长x【例5】某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y关于x的函数解析式是()A.y=2(x+1)2B.y=2(1﹣x)2C.y=(x+1)2D.y=(x﹣1)2【变式51】据省统计局公布的数据,合肥市2021年第一季度GDP总值约为2.4千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是()A.y=2.4(1+2x)B.y=2.4(1﹣x)2C.y=2.4(1+x)2D.y=2.4+2.4(1+x)+2.4(1+x)【例1】用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【变式11】把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+12x2(2)y=﹣2x2﹣5x+7【变式12】用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x=时,代数式﹣3(x﹣2)2+4有最(填写大或小)值为.(2)当x=时,代数式﹣x2+4x+4有最(填写大或小)值为.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 【例2】已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x … 0 1 2 3 4 … y…52125…(1)求该二次函数的表达式; (2)当x =6时,求y 的值;(3)在所给坐标系中画出该二次函数的图象.【变式21】如图,已知二次函数y =−12x 2+bx +c 的图象经过A (2,0)、B (0,﹣6)两点. (1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点; (3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴. 【知识点3 二次函数的图象与各系数之间的关系】在y 轴的右侧则0<ab ,概括的说就是“左同右异” ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置. 【知识点4 二次函数图象的平移变换】 (1)平移步骤:变式21例2①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ①保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【例4】把抛物线y =ax 2+bx +c 的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y =(x ﹣3)2+5,则a +b +c = .【变式41】要得到函数y =﹣(x ﹣2)2+3的图象,可以将函数y =﹣(x ﹣3)2的图象( ) A .向右平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向下平移3个单位 C .向左平移1个单位,再向上平移3个单位 D .向左平移1个单位,再向下平移3个单位 【知识点5 二次函数图象的对称变换】 (1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; (4)关于顶点对称(即:抛物线绕顶点旋转180°)()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.向上 向下【例1】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【例2】在二次函数y =﹣x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为x … ﹣1 1 3 4 … y … ﹣6m n﹣6…A .m <nB .m >nC .m =nD .无法确定0a >0a <【变式21】二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32【知识点1 二次函数图象与x轴的交点情况决定一元二次方程根的情况】二次函数的图象【例1】抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是()A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【变式11】抛物线y=x2+2x﹣3与坐标轴的交点个数有()A.0个B.1个C.2个D.3个【例2】二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是()A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【知识点1 解二次函数的实际应用问题的一般步骤】审:审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系);设:设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确;列:列函数解析式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数;解:按题目要求结合二次函数的性质解答相应的问题;检:检验所得的解,是否符合实际,即是否为所提问题的答案;答:写出答案.【例1】为优化迪荡湖公园的灯光布局,需要在一处岸堤(岸堤足够长)为一边,用总长为80m的灯带在湖中围成了如图所示的①②③三块灯光喷泉的矩形区域,且要求这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【变式11】爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣6x+10=(x2﹣6x+9﹣9)+10=(x﹣3)2﹣9+10=(x﹣3)2+1≥1;因此x2﹣6x+10有最小值是1,只有当x=3时,才能得到这个式子的最小值1.同样﹣3x2﹣6x+5=﹣3(x2+2x+1﹣1)+5=﹣3(x+1)2+8,因此﹣3x2﹣6x+5有最大值是8,只有当x=﹣1时,才能得到这个式子的最小值8.(1)当x=时,代数式﹣2(x﹣3)2+5有最大值为.(2)当x=时,代数式2x2+4x+3有最小值为.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?【例2】如图,在矩形ABCD中,AB=12cm,BC=9cm.P、Q两点同时从点B、D出发,分别沿BA、DA 方向匀速运动(当P运动到A时,P、Q同时停止运动),已知P点的速度比Q点大1cm/s,设P点的运动时间为x秒,△P AQ的面积为ycm2,(1)经过3秒△P AQ的面积是矩形ABCD面积的1时,求P、Q两点的运动速度分别是多少?3(2)以(1)中求出的结论为条件,写出y与x的函数关系式,并求出自变量x的取值范围.【变式31】廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)。
人教版中考数学复习:第13讲 二次函数的应用
![人教版中考数学复习:第13讲 二次函数的应用](https://img.taocdn.com/s3/m/5772deceff00bed5b8f31d78.png)
(3)结合(2)及函数 z=-2x2+136x-1800 的图象(如图所示)可知,当 25≤x≤43 时,z≥350. 又由限价 32 元,得 25≤x≤32. 根据一次函数的性质,得 y=-2x+100 中 y 随 x 的增大而减小, ∴当 x=32 时,每月制造成本最低. 最低成本是 18×(-2×32+100)=648(万元). ∴所求每月最低制造成本为 648 万元.
第13讲 二次函数的应用
【问题】(2018·武汉)飞机着陆后滑行的距离 y(单
位:m)关于滑行时间 t(单位:s)的函数解析式是 y= 60t-32t2.在飞机着陆滑行中,最后 4s 滑行的距离是 ________m.
【解析】当 y 取得最大值时,飞机停下来, 则 y=60t-1.5t2=-1.5(t-20)2+600, 此时 t=20,飞机着陆后滑行 600 米才能停下来. 因此 t 的取值范围是 0≤t≤20; 即当 t=16 时,y=576, 所以 600-576=24(米), 故答案是:24.
≤130 时,W≤2160,因此当该产品产量为 75kg 时,获得的利润
最大,最大利润为 2250 元.
5.(2019·贵港)如图,已知抛物线 y=ax2+bx+c 的顶点为 A(4,3),与 y 轴相交于点 B(0,-5),对 称轴为直线 l,点 M 是线段 AB 的中点. (1)求抛物线的表达式; (2)写出点 M 的坐标并求直线 AB 的表达式; (3)设动点 P,Q 分别在抛物线和对称轴 l 上,当以 A, P,Q,M 为顶点的四边形是平行四边形时,求 P,Q 两点的坐标.
②当 AM 是平行四边形的对角线时, 由中点定理得:4+2=m+4,3-1=-12m2+4m-5+s, 解得:m=2,s=1, 故点 P、Q 的坐标分别为(2,1)、(4,1); ③当 AM 是平行四边形的一条边且点 Q 在点 A 上方时, AQ=MP=2, 同理可得点 Q 的坐标为(4,5), 故点 P、Q 的坐标分别为(6,1)、(4,-3)或(2,1)、
二次函数应用知识点总结
![二次函数应用知识点总结](https://img.taocdn.com/s3/m/af5fc5545e0e7cd184254b35eefdc8d376ee14c0.png)
二次函数应用知识点总结二次函数是高中数学中的重要内容,学好二次函数的应用是解决实际问题的关键。
以下是二次函数应用知识点的总结:1. 二次函数的概念和性质- 二次函数是形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是常数,且 $a \neq 0$。
- 二次函数的图像是一个抛物线,开口方向取决于 $a$ 的正负性。
- 抛物线的对称轴是一个过抛物线顶点的直线,其方程为 $x = -\frac{b}{2a}$。
- 二次函数的最值可以通过求解方程$\frac{{-b}}{{2a}}$ 得到。
2. 抛物线的方程和图像- 二次函数的图像称为抛物线,其形状和位置可以通过函数的系数进行调整。
- 当 $a > 0$ 时,抛物线开口向上,顶点是最小值点。
- 当 $a < 0$ 时,抛物线开口向下,顶点是最大值点。
- 通过变换和平移可以将标准形式的抛物线方程转化为一般形式。
3. 抛物线的顶点和轴- 抛物线的顶点是抛物线的最值点,其 $x$ 坐标为 $-\frac{b}{2a}$,$y$ 坐标可以通过代入得到。
- 抛物线的轴对称线是过顶点的直线,其方程为 $x = -\frac{b}{2a}$。
4. 抛物线的焦点和准线- 抛物线的焦点是到抛物线上任意一点的距离与到抛物线的直线的距离之比保持不变的点。
- 抛物线的准线是到抛物线上任意一点的距离与到抛物线的直线的距离之比为1的直线。
5. 解决实际问题- 在解决实际问题中,抛物线的应用非常广泛。
例如,可以利用二次函数模型解决抛物线的最值问题、时间和距离问题等。
- 在解决问题时,需要将实际问题转化为数学模型,并利用相关知识点解决问题。
以上是二次函数应用知识点的总结。
通过理解和掌握这些知识点,我们能够更好地应用二次函数解决实际问题。
希望这份总结对您有帮助!。
初三数学:《二次函数的应用》知识点归纳
![初三数学:《二次函数的应用》知识点归纳](https://img.taocdn.com/s3/m/882d536324c52cc58bd63186bceb19e8b8f6ec0a.png)
初三数学:《⼆次函数的应⽤》知识点归纳
⼀.⼆次函数的最值:
1.如果⾃变量的取值是全体实数,那么⼆次函数在图象顶点处取到最⼤值(或最⼩值)。
这时有两种⽅法求最值:⼀种是利⽤顶点坐标公式,⼀种是利⽤配⽅计算。
⼆.⼆次函数与⼀元⼆次⽅程、⼆次三项式的关系
三.⼆次函数的实际应⽤
在公路、桥梁、隧道、城市建设等很多⽅⾯都有抛物线型;⽣产和⽣活中,有很多“利润最⼤”、“⽤料最少”、“开⽀最节约”、“线路最短”、“⾯积最⼤”等问题,它们都有可能⽤到⼆次函数关系,⽤到⼆次函数的最值。
那么解决这类问题的⼀般步骤是:
第⼀步:设⾃变量;
第⼆步:建⽴函数解析式;
第三步:确定⾃变量取值范围;
第四步:根据顶点坐标公式或配⽅法求出最值(在⾃变量的取值范围内)。
常见考法
(1)考查⼀些带约束条件的⼆次函数最值;
(2)结合⼆次函数考查⼀些创新问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13讲二次函数的应用
师院附中李忠海
一、知识清单梳理
【素材积累】
1、冬天是纯洁的。
冬天一来,世界变得雪白一片,白得毫无瑕疵,白雪松软软地铺摘大地上,好似为大地铺上了一层银色的地毯。
松树上压着厚厚的白雪,宛如慈爱的妈妈温柔地抱着自己的孩子。
白雪下的松枝还露出一点绿色,为这白茫茫的世界增添了一点不一样的色彩。
2、张家界的山真美啊!影影绰绰的群山像是一个睡意未醒的仙女,披着蝉翼般的薄纱,脉脉含情,凝眸不语,摘一座碧如翡翠的山上,还点缀着几朵淡紫、金黄、艳红、清兰的小花儿,把这山装扮得婀娜多姿。
这时,这山好似一位恬静羞涩的少女,随手扯过一片白云当纱巾,遮住了她那美丽的脸庞。