利用导数证明不等式50题(学生版)

合集下载

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。

考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点20利用导数证明不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果【核心题型】题型一 将不等式转化为函数的最值问题待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.【例题1】(2024·陕西咸阳·模拟预测)已知1201x x <<<,下列不等式恒成立的是( )A .1221e e x xx x <B .2112ln ln x x x x >C .1122ln ln x x x x <D .11e ln x x >【变式1】(2024·全国·模拟预测)下列正确结论的个数为( )①13sin1010π> ②141sin sin 334< ③16tan 16> ④()tan π3sin 3->A .1B .2C .3D .4【变式2】(2024·四川成都·三模)已知函数2()ln ,f x ax x a =-ÎR .(1)讨论函数()f x 的单调性;(2)设0,()()a g x f x bx >=+,且1x =是()g x 的极值点,证明:2+ln 12ln 2b a £-.【变式3】(2024·四川成都·三模)已知函数()()()e sin 1,0,πxf x ax x x x =---Î.(1)若12a =,证明:()0f x >;(2)若函数()f x 在()0,π内有唯一零点,求实数a 的取值范围.题型二 将不等式转化为两个函数的最值进行比较若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.【例题2】(2023·河南开封·模拟预测)已知13a =,13e 1b =-,4ln 3c =,则( )A .a b c <<B .a c b <<C .c<a<bD .b<c<a【变式1】(2024·全国·模拟预测)已知1e 1ln ,0aa b =+>,则下列结论正确的是( )A .e 2a b<-B .1lna b<C .1a b<-D .1e lnba<【变式2】(2024·浙江杭州·模拟预测)已知函数()()1122e ,e e e 1xxx x f x m m g x -=+-=++.(1)当0m =时,证明:()e xf x -<;(2)当0x <时,()g x t ³,求t 的最大值;(3)若()f x 在区间()0,¥+存在零点,求m 的取值范围.【变式3】(2024·贵州黔西·一模)已知函数29()ln 22f x x x x x =--.(1)判断()f x 的单调性;(2)证明:1352193ln(21)35721n n n n -æö++++>-+ç÷+èøL .题型三 适当放缩证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)ln x ≤x -1,当且仅当x =1时取等号.【例题1】(2024·河北沧州·一模)已知等比数列{}n a 的前n 项和为413,1,e Sn S a S >=,则数列{}n a 的公比q 满足( )A .01q <£B .10q -<<C .1q >D .1q £-【变式1】(2024·广东·模拟预测)令()sin 0.5cos1cos 2cos ,N n a n n °°°°+=+++ÎL .则n a 的最大值在如下哪个区间中( )A .(0.49,0.495)B .(0.495,0.5)C .(0.5,0.505)D .(0.505,0.51)【变式2】(2024·全国·模拟预测)设整数1p >,1x >-且0x ¹,函数()(1)1p f x x px =+--.(1)证明:()0f x >;(2)设0x >,证明:ln(1)x x +<;(3)设*n ÎN ,证明:111321232ln(1)n n n n ++++<-+L .【变式3】(23-24高三下·河南·阶段练习)已知函数()(1)1(1)r f x x rx x =+-->-,0r >且1r ¹.(1)讨论()f x 的单调性;(2)6332的大小,并说明理由;(3)当*n ÎN时,证明:2sin 176n kk n =<+å.【课后强化】基础保分练一、单选题1.(22-23高三上·四川绵阳·开学考试)若1201x x <<<,则( )A .2121e e ln ln x xx x ->-B .2121e e ln ln x xx x -<-C .1221e e x xx x >D .1221e e x xx x <2.(2023·陕西咸阳·三模)已知12023a =,20222023eb -=,1cos 20232023c =,则( )A .a b c >>B .b a c >>C .b c a>>D .a c b>>3.(23-24高三上·云南保山·期末)已知16a =,7ln 6b =,1tan 6c =,则( )A .b a c <<B .a b c <<C .a c b<<D .c<a<b4.(2024·全国·模拟预测)设13ln4,tan tan1,22a b c ==+=,则( )A .a b c <<B .b c a<<C .c<a<bD .a c b<<二、多选题5.(23-24高三上·广西百色·阶段练习)函数()21ln 2f x x ax a x =-+的两个极值点分别是12,x x ,则下列结论正确的是( )A .4a >B .22128x x +<C .1212x x x x +=D .()()()221212164f x f x x x +<+-6.(2023·福建·模拟预测)机械制图中经常用到渐开线函数inv tan x x x =-,其中x 的单位为弧度,则下列说法正确的是( )A .inv x x ×是偶函数B .inv x 在ππ(π,π)22k k --+上恰有21k +个零点(N k Î)C .inv x 在ππ(π,π)22k k --+上恰有41k +个极值点(N k Î)D .当π02x -<<时,inv sin x x x <-三、填空题7.(2023·海南·模拟预测)已知函数()1ln e x x af x --=,()1x a g x x--=,若对任意[)1,x ¥Î+,()()f x g x £恒成立,则实数a 的取值范围是 .8.(2023·河南开封·模拟预测)实数x ,y 满足()23e 31e x y x y -£--,则3xy -的值为 .四、解答题9.(2023·吉林长春·模拟预测)已知函数()21()1ln 2f x x x =--.(1)求()f x 的最小值;(2)证明:47ln332>.10.(2024·广东佛山·二模)已知()21e 4e 52x xf x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.11.(2023·四川成都·二模)已知函数()e sin xf x x -=.(1)求()f x 在()()0,0f 处的切线方程;(2)若0x 是()f x 的最大的极大值点,求证:()01f x <<综合提升练一、单选题1.(22-23高三上·河南·阶段练习)若32e 3ln 22x yx y +-=+,其中2,2x y >>,则( )A .e x y<B .2x y>C .24e xy>D .2e x y>2.(2023·福建·模拟预测)已知ln 2a =,1e b a=-,2a c a =-,则( )A .b c a>>B .b a>C .c a b>>D.c b a>>3.(2023·河北衡水·三模)若a =1b =-,c =则( )A .c a b <<B .c b a <<C .b c a<<D .a c b<<4.(2023·新疆·三模)已知数列{}n a 中,11a =,若1nn nna a n a +=+(N n *Î),则下列结论中错误的是( )A .325a =B .1111n na a +-£C .1ln 1nn a <-(2,N n n *³Î)D .2111112n n a a ++-<5.(2023·河南·模拟预测)设a ,b 为正数,且2ln ab a b=-,则( ).A .112a b<<B .12a b<<C .112ab <<D .12ab <<6.(2024·上海虹口·二模)已知定义在R 上的函数()(),f x g x 的导数满足()()f x g x ¢£¢,给出两个命题:①对任意12,x x ÎR ,都有()()()()1212f x f x g x g x -£-;②若()g x 的值域为[]()(),,1,1m M f m f M -==,则对任意x ÎR 都有()()f x g x =.则下列判断正确的是( )A .①②都是假命题B .①②都是真命题C .①是假命题,②是真命题D .①是真命题,②是假命题7.(2024·四川泸州·三模)已知0x >,e ln 1x y +=,给出下列不等式①ln 0x y +<;②e 2x y +>;③ln e 0y x +<;④1x y +>其中一定成立的个数为( )A .1B .2C .3D .48.(2024·四川攀枝花·三模)已知正数,,a b c 满足ln e c a b b ca ==,则( )A .a b c >>B .a c b>>C .b a c>>D .b c a>>二、多选题9.(2023·福建龙岩·二模)已知函数()ln n f x x n x =-(*n ÎN )有两个零点,分别记为n x ,n y (<n n x y );对于0a b <<,存在q 使)()()(()n n n f f f a q b a b -=-¢,则( )A .()n f x 在()1,+¥上单调递增B .e n >(其中e 2.71828=L 是自然对数的底数)C .11n n n n x x y y ++-<-D .2q a b<+10.(2023·河南信阳·模拟预测)已知,,,a b c d ÎR ,满足0a b c d >>>>,则( )A .sin sin a b >B .sin sin a a b b ->-C .a bd c>D .ad bc ab cd+>+11.(2024·河北沧州·一模)已知函数()e xf x =与函数()211g x x =+-的图象相交于()()1122,,,A x y B x y 两点,且12x x <,则( )A .121y y =B .211exy =C .21211y y x x ->-D .221x y =三、填空题12.(2023·四川成都·三模)已知函数()2()2ln 32f x x a x x =+-+,a ÎR .当1x >时,()0f x >,则实数a 的取值范围为.13.(23-24高三下·广东云浮·阶段练习)若实数a ,b 满足()()221ln 2ln 1a b a b -³+-,则a b += .14.(2024·全国·模拟预测)若实数a ,b ,c 满足条件:()2e e 2e 1a b ca b c a -++-+=-,则444abca b c ++的最大值是 .四、解答题15.(2024·青海西宁·二模)已知函数()()()2222ln R f x x a x a x a =+--Î.(1)若2a =,求()f x 的极值;(2)若()()2222ln g x f x a x x =+-+,求证:()12g x ³.16.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-ÎR .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +³.17.(2024·上海松江·二模)已知函数ln y x x a =×+(a 为常数),记()()y f x x g x ==×.(1)若函数()y g x =在1x =处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:()()()ln 2f x f t x f t t a +-³-+;(3)当1a =时,求证:e ()cos x g x x x+<.18.(2024·上海嘉定·二模)已知常数m ÎR ,设()ln mf x x x=+,(1)若1m =,求函数()y f x =的最小值;(2)是否存在1230x x x <<<,且1x ,2x ,3x 依次成等比数列,使得()1f x 、()2f x 、()3f x 依次成等差数列?请说明理由.(3)求证:“0m £”是“对任意()12,0,x x Î+¥,12x x <,都有()()()()1212122f x f x f x f x x x ¢¢+->-”的充要条件.19.(2024·全国·模拟预测)已知函数()()2e ln 1xf x a x =-+.(1)若2a =,讨论()f x 的单调性.(2)若0x >,1a >,求证:()1ln 2f x a a >-.拓展冲刺练一、单选题1.(2023·上海奉贤·二模)设n S 是一个无穷数列{}n a 的前n 项和,若一个数列满足对任意的正整数n ,不等式11n n S S n n +<+恒成立,则称数列{}n a 为和谐数列,有下列3个命题:①若对任意的正整数n 均有1n n a a +<,则{}n a 为和谐数列;②若等差数列{}n a 是和谐数列,则n S 一定存在最小值;③若{}n a 的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有( )个A .0B .1C .2D .32.(2023·新疆乌鲁木齐·三模)已知0.19e a -=,0.9b =,2ln0.91c =+,则( )A .b c a>>B .a c b>>C .c b a>>D .b a c>>3.(2023·湖南长沙·一模)已知()e 0.1e 0.1a +=-,e e b =,()e 0.1e 0.1c -=+,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b a c<<D .a c b<<4.(2024·青海·二模)定义在R 上的函数()f x 满足()()2231218f x f x x x --=-+,()f x ¢是函数()f x 的导函数,以下选项错误的是( )A .()()000f f ¢+=B .曲线()y f x =在点()()1,1f 处的切线方程为210x y --=C .()()f x f x m -¢³在R 上恒成立,则2m £-D .()()74ee xf x f x -³-¢-二、多选题5.(2024·全国·模拟预测)已知n S 为正项数列{}n a 的前n 项和,且221n n n a S a -=,则( )A .=n aB .1n na a +>C .1ln n nS n S -³D .212n n n S S S +++>6.(2024·全国·模拟预测)已知1e 1ln ,0aa b=+>,则下列结论正确的是( )A .e 2a b >-B .1lna b<C .1e lnb a<D .1a b>-三、填空题7.(2023·浙江温州·二模)已知函数e e()ln ln f x x x x x=++-,则()f x 的最小值是 ;若关于x 的方程()22f x ax =+有1个实数解,则实数a 的取值范围是.8.(2023·福建福州·模拟预测)已知定义在()0,¥+上函数()f x 满足:()()ln 1x f x x +<<,写出一个满足上述条件的函数()f x = .四、解答题9.(2024·辽宁·模拟预测)已知函数()()sin ln sin f x x x =-,()1,2x Î(1)求()f x 的最小值;(2)证明:()sin sin eln sin 1x xx x -×->.10.(2024·四川攀枝花·三模)已知函数()()ln 1R af x x a x=+-Î.(1)当2a =时,求函数()f x 在1x =处的切线方程;(2)设函数()f x 的导函数为()f x ¢,若()()()1212f x f x x x ¢¢=¹,证明:()()1211f x f x a++>.11.(2024·山西晋城·二模)已知函数()()e x f x x a x a =-++(a ÎR ).(1)若4a =,求()f x 的图象在0x =处的切线方程;(2)若()0f x ³对于任意的[)0,x Î+¥恒成立,求a 的取值范围;(3)若数列{}n a 满足11a =且122nn n a a a +=+(*n ÎN ),记数列{}n a 的前n 项和为n S ,求证:[]1ln (1)(2)3n S n n +<++.。

2023年高考备考利用导数证明不等式(含答案)

2023年高考备考利用导数证明不等式(含答案)

高考材料高考材料专题10 利用导数证明不等式1.〔2023·北京市第九中学模拟预测〕已知. ()sin 2f x k x x =+(1)当时,推断函数零点的个数; 2k =()f x (2)求证:.()sin 2ln 1,(0,2x x x x π-+>+∈(答案)(1)1; (2)证明见解析. (解析) (分析)〔1〕把代入,求导得函数的单调性,再由作答. 2k =()f x (0)0f =〔2〕构造函数,利用导数借助单调性证明作答.()2sin ln(1)g x x x x =--+(1)当时,,,当且仅当时取“=〞,所以在R 上单调2k =()2sin 2f x x x =+()2cos 20f x x '=+≥(21)π,Z x k k =-∈()f x 递增,而,即0是的唯—零点, (0)0f =()f x 所以函数零点的个数是1.()f x (2),令,则,因,则,因此,函数(0,)2x π∈()2sin ln(1)g x x x x =--+()12cos 1g x x x =-'-+1cos 1,11x x <<+()0g x '>在上单调递增,,,()g x (0,)2π(0,2x π∀∈()(0)0g x g >=所以当时,成立.(0,)2x π∈()sin 2ln 1x x x -+>+2.〔2023·河南·开封市东信学校模拟预测〔文〕〕已知函数. ()ln (0)f x x ax a a =-+>(1)当时,求的单调区间; 2a =()f x (2)设函数的最大值为m ,证明:.()f x 0m ≥(答案)(1)增区间为,减区间为;10,2⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭(2)证明见解析. (解析)(分析)〔1〕利用导数研究的单调区间.()f x 〔2〕应用导数求得的最大值,再构造并利用导数证明不等式.()f x 1ln 1m f a a a ⎛⎫==-- ⎪⎝⎭()ln 1h a a a =--(1)当时,. 2a =()ln 22f x x x =-+∴,令,得. 112()2x f x x x -'=-=()0f x '=12x =∴当时,,函数单调递增; 102x <<()0f x '>()f x 当时,,函数单调递减. 12x >()0f x '<()f x 故函数的减区间为,增区间为;()f x 1,2⎛⎫+∞ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭(2)由,令,得. 1()axf x x -'=()0f x '=1x a=∴当时,,函数单调递增; 10x a<<()0f x '>()f x 当时,,函数单调递减. 1x a>()0f x '<()f x ∴.max 1()ln 1m f x f a a a ⎛⎫===-- ⎪⎝⎭令,则. ()ln 1h a a a =--11()1a h a a a-'=-=∴当时,,函数单调递减; 01a <<()0h x '<()h x 当时,,函数单调递增. 1a >()0h x '>()h x ∴,即.()(1)0h a h ≥=0m ≥3.〔2023·江苏无锡·模拟预测〕已知函数,其中m >0,f '(x )为f (x )的导函数,设,且()e (1ln )xf x m x =+()()ex f x h x '=恒成立.5()2h x ≥(1)求m 的取值范围;(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1. (答案)(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析 (解析)(分析)〔1〕求导可得解析式,即可得解析式,利用导数求得的单调区间和最小值,结合题意,即可()'f x ()h x ()h x 得m 的范围.〔2〕求得解析式,令,利用导数可得的单调性,依据零点存在性定理,可()f x ''22()1ln (0)m mt x m x x x x =++->()t x 得存在,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以21,12x ⎛⎫∈ ⎪⎝⎭,令,分析可得s (x 1)<0,即可得证 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭()1ln s x m x =+(1)由题设知, ()e (1ln xmf x m x x'=++则, 1ln (())0h mm x x xx ++>=所以 22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数, 当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数, 所以h (x )min =h 〔1〕=,解得,512m +≥32m ≥所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭高考材料高考材料(2) 222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令 22()1ln (0)m mt x m x x x x=++->则=恒成立, 2322()m m m t x x x x '=-+2233(1)1(22)0m x m x x x x⎡⎤-+-+⎣⎦=>所以t (x )在(0,+∞)单调递增.又,1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<所以存在,使得t (x 2)=0,21,12x ⎛⎫∈ ⎪⎝⎭当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减; 当x ∈(x 2,+∞) 时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增; 所以f '(x )在x =x 2处取得极小值.即x 1=x 2, 所以t (x 1)=0,即, 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭所以, 1122111(12)21ln 0m x m m m x x x x -+=-=<令,则 s (x )在(0,+∞)单调递增; ()1ln s x m x =+所以s (x 1)<0因为f (x )的零点为x 0,则,即s (x 0)=0 01ln 0m x +=所以s (x 1)<s (x 0),所以x 0>x 14.〔2023·全国·郑州一中模拟预测〔理〕〕已知函数. ()()ln 0f x ax x a =≠(1)商量函数的单调性;()f x (2)当时,证明:.1a =()e sin 1xf x x <+-(解析) (1)依题意知,,()0,x ∈+∞()()ln ln 1f x a x a a x '=+=+令得,()0f x '=1ex =当时,在上,单调递减,在单调递增;0a >10,e ⎛⎫⎪⎝⎭()0f x '<()f x 1,e ⎛⎫+∞ ⎪⎝⎭当时,在上,单调递增,在单调递减.0a <10,e ⎛⎫⎪⎝⎭()0f x '>()f x 1,e ⎛⎫+∞ ⎪⎝⎭(2)依题意,要证,ln e sin 1x x x x <+-①当时,,,故原不等式成立, 01x <≤ln 0x x ≤1sin 0e x x -+>②当时,要证:,即证:,1x >ln e sin 1x x x x <+-ln sin 1e 0x x x x --+<令,则,, ()()e ln sin 11x h x x x x x =--+>()e ln cos 1xh x x x '=--+()e 1sin 0xh x x x''=-+<∴在单调递减,∴,∴在单调递减,∴()h x '()1,+∞()()11e cos10h x h ''<=--<()h x ()1,+∞,即,故原不等式成立.()()11e sin10h x h <=--<ln sin 1e 0xx x x --+<5.〔2023·浙江·三模〕已知实数,设函数. 0a ≥2()2ln(1)(1)ln ,0f x x ax a ax x x =-++-->(1)当时,求函数的单调区间; 0a =()f x (2)假设函数单调递增,求a 的最大值;()f x (3)设是的两个不同极值点,是的最大零点.证明:. 12,x x ()f x 3x ()f x 31211x x x +<注:是自然对数的底数.e 2.71828=⋅⋅⋅(答案)(1)在上单调递增;(2)1;(3)证明见解析. ()f x (0,)+∞(解析)(分析)〔1〕求导,结合导数正负可直接求解函数的单调区间. ()f x 〔2〕由题意得对任意的的恒成立,即可求出a 的最大值. 1()23ln 0f x x a a x x--'=+≥()0,x ∞∈+〔3〕由〔2〕知,当有两个不同极值点时,,则存在两个零点,故,()f x 1a >()0f x '=12,x x ()()111222123ln 0,123ln 0.x a x x x a x x ⎧+-+=⎪⎪⎨⎪+-+=⎪⎩由此可得出,再证明:. 12112a x x +<32x a >即可证明。

微专题利用导数证明问题或讨论零点个数学生版

微专题利用导数证明问题或讨论零点个数学生版

微专题利用导数证明问题或讨论零点个数利用导数求函数的零点或方程根的问题、用导数证明不等式问题是高考命题的重点,命题的角度常见的有:判断函数零点的个数或方程解的个数;根据函数零点的个数或方程解得个数求解参数;利用导数证明不等式.题型以解答题为主,有时也在选择题或填空题的后两题中进行考查,难度较大.重点考查考生函数与方程、转化与化归的思想,数学抽象及数学运算的学科核心素养.考点一 利用导数求函数的零点或方程根的问题【典型例题】【例1】已知函数21()e xax bx f x ++=. (Ⅰ)当1a b ==时,求函数()f x 的极值;(Ⅱ)若()11f =,且方程()1f x =在区间()0,1内有解,求实数a 的取值范围.归纳利用导数研究函数零点或方程根的方法:(1)通过最值(极值)判断零点个数的方法.借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点.对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点.①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.【变式训练1】已知函数()()22x x f x ae a e x =+--.(1)讨论() f x 的单调性;(2)若() f x 有两个零点,求a 的取值范围.【变式训练2】已知函数()ln a f x x a x =-+在[]1,e x ∈上有两个零点,则a 的取值范围是( ) A.e ,11e ⎡⎫-⎪⎢-⎣⎭ B.e ,11e ⎡⎫⎪⎢-⎣⎭ C.e ,11e ⎡⎤-⎢⎥-⎣⎦D.[)1,e -【变式训练3】已知函数217()(2)ln 422f x x x x x =++-+,则函数()f x 的所有零点为 .考点二 利用导数证明不等式的有关问题【典型例题】【例2】已知函数()21x x f x e-= (e 为自然对数的底数). (1)求函数()f x 的零点0x ,以及曲线()y f x =在0x x =处的切线方程;(2)设方程()()0f x m m =>有两个实数根1x ,2x ,求证:121212x x m e ⎛⎫-<-+ ⎪⎝⎭.方法归纳不等式的证明问题解题策略从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明,其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.【变式训练1】已知函数()()0x ax f x a e=≠. (1)求函数()f x 的单调区间 (2)当1a =时,如果方程()f x t =有两个不等实根12,x x ,求实数t 的取值范围,并证明122x x +>.【变式训练2】设()()ln ,f x ax bx x f x =+ 在x e =处的切线方程是0x y e +-=,(其中2.718...e =为自然对数的底数).(1)求,a b 的值;(2)证明:()21x f x x e≤+.高考真题1、[2019·浙江卷] 设a,b ∈R,函数f(x)={x,x <0,13x 3-12(a+1)x 2+ax,x ≥0.若函数y=f(x)-ax -b 恰有3个零点,则( )A.a<-1,b<0B.a<-1,b>0C.a>-1,b<0D.a>-1,b>01、[2018·江苏卷] 若函数f(x)=2x 3-ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为 .2、[2019·全国卷Ⅱ] 已知函数f(x)=ln x -x+1x−1.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x 0是f(x)的一个零点,证明曲线y=ln x 在点A(x 0,ln x 0)处的切线也是曲线y=e x 的切线.3、[2019·全国卷Ⅱ] 已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:(1)f'(x)在区间(-1,π2)存在唯一极大值点;(2)f(x)有且仅有2个零点.4、[2019·北京卷] 已知函数f(x)=14x3-x2+x.(1)求曲线y=f(x)的斜率为1的切线方程.(2)当x∈[-2,4]时,求证:x-6≤f(x)≤x.(3)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a).当M(a)最小时,求a的值.5、[2019·天津卷] 设函数f(x)=e x cos x,g(x)为f(x)的导函数.(1)求f(x)的单调区间;(2)当x∈[π4,π2]时,证明f(x)+g(x)(π2-x)≥0;(3)设x n为函数u(x)=f(x)-1在区间(2nπ+π4,2nπ+π2)内的零点,其中n∈N,证明:2nπ+π2-x n<e-2nπsin x0-cos x0.6、[2018·全国卷Ⅰ] 已知函数f(x)=1x-x+aln x.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:f(x1)-f(x2)x1-x2<a-2.7、[2018·全国卷Ⅱ] 已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.8、[2018·浙江卷] 已知函数f(x)=√x-ln x.(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln 2;(2)若a≤3-4ln 2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。

利用导数证明不等式(精选多篇)

利用导数证明不等式(精选多篇)

利用导数证明不等式(精选多篇)第一篇:利用导数证明不等式利用导数证明不等式没分都没人答埃。

觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个区间的单调性,然后证明其最大值(或者是最小值)大于0.这样就能说明原不等式了成立了!1.当x&gt;1时,证明不等式x&gt;ln(x+1)设函数f(x)=x-ln(x+1)求导,f(x)’=1-1/(1+x)=x/(x+1)&gt;0所以f(x)在(1,+无穷大)上为增函数f(x)&gt;f(1)=1-ln2&gt;o所以x&gt;ln(x+12..证明:a-a &gt;0其中0f(a)=a-af’(a)=1-2a当00;当1/2因此,f(a)min=f(1/2)=1/4&gt;0即有当003.x&gt;0,证明:不等式x-x /6先证明sinx因为当x=0时,sinx-x=0如果当函数sinx-x在x&gt;0是减函数,那么它一定&lt;在0点的值0,求导数有sinx-x的导数是cosx-1因为cosx-1≤0所以sinx-x是减函数,它在0点有最大值0,知sinx再证x-x&sup3;/6对于函数x-x&sup3;/6-sinx当x=0时,它的值为0对它求导数得1-x&sup2;/2-cosx如果它&lt;0那么这个函数就是减函数,它在0点的值是最大值了。

要证x&sup2;/2+cosx-1&gt;0x&gt;0再次用到函数关系,令x=0时,x&sup2;/2+cosx-1值为0再次对它求导数得x-sinx根据刚才证明的当x&gt;0sinxx&sup2;/2-cosx-1是减函数,在0点有最大值0x&sup2;/2-cosx-1&lt;0x&gt;0所以x-x&sup3;/6-sinx是减函数,在0点有最大值0得x-x&sup3;/6利用函数导数单调性证明不等式x-x&sup2;&gt;0,x∈(0,1)成立令f(x)=x-x&sup2;x∈则f’(x)=1-2x当x∈时,f’(x)&gt;0,f(x)单调递增当x∈时,f’(x)&lt;0,f(x)单调递减故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得f(0)=0,f(1)=0故f(x)的最小值为零故当x∈(0,1)f(x)=x-x&sup2;&gt;0。

利用导数证明不等式50题(学生版)

利用导数证明不等式50题(学生版)

(Ⅲ)求证:对任意正整数 n,都有
. 2 22 2n 1
2 1 22 1
2n 1 e
试卷第 2 页,总 16 页
4.(本小题满分 14 分)已知函数 f (x) ex x 1,
xR, 其中, e是自然对数的底数.函数
g(x) xsinx cosx 1, x 0 .
(Ⅰ)求 f (x) 的最小值;
. f (x) ax2 x x ln x(a 0) (1)若函数满足 f (1)2,且在定义域内 f (x)bx2 2x恒 成立,求实数 b 的取值范围;
(2)若函数 f (x) 在定义域上是单调函数,求实 数 a 的取值范围;
(3)当 1 x y 1时,试比较 y 与1 ln y 的大小.
(1)求函数 g(x) 的极值;
(2)已知 x1 0 ,函数 h(x)
, ,判 f (x) f (x1) x x1
x (x1, )
断并证明 h(x) 的单调性;
(3)设 0
x1
x2 ,试比较
f
( x1
2
x2
)

1 [
2
f
(x1 )
f
(x2 )] ,并
加以证明.
23.已知 f (x) x a (a 0) , g(x) 2ln x , x
i1 2i 1
25.已知函数 f (x) kx , g(x) ln x x
(1)求函数 g(x) ln x 的单调递增区间; x
(2)若不等式 f (x) g(x)在区间(0,+ )上恒成立 ,求k 的取值范围;
(3)求证: ln 2 ln 3 ln n 1
24 34
n4 2e
26.(本题满分 14 分)

第04讲 利用导数研究不等式恒成立问题 (精讲+精练)(学生版)

第04讲 利用导数研究不等式恒成立问题 (精讲+精练)(学生版)

第04讲 利用导数研究不等式恒成立问题 (精讲+精练)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析 高频考点一:分离变量法 高频考点二:分类讨论法 高频考点三:等价转化法 第四部分:高考真题感悟第五部分:第04讲 利用导数研究不等式恒成立问题(精练)1、分离参数法用分离参数法解含参不等式恒成立问题,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式; 步骤:①分类参数(注意分类参数时自变量x 的取值范围是否影响不等式的方向)②转化:若()a f x >)对x D ∈恒成立,则只需max ()a f x >;若()a f x <对x D ∈恒成立,则只需min ()a f x <. ③求最值.2、分类讨论法如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(0a >,0∆<或0a <,0∆<)求解.3、等价转化法当遇到()()f x g x ≥型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数()()()F x f x g x =-或者“右减左”的函数()()()H x g x f x =-,进而只需满足min ()0F x ≥,或者max ()0H x ≤,将比较法的思想融入函数中,转化为求解函数的最值的问题.1.(2022·全国·高二)设a 为正实数,函数322()34f x x ax a =-+,若(,2)x a a ∀∈,()0f x <,则a 的取值范围是( )A .[2,)+∞B .(2,)+∞C .(0,2]D .2(0,)32.(2022·全国·高二)若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是( ) A .27a <-B .25a >-C .29a ≥D .29a >3.(2022·全国·高二)已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是( )A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-高频考点一:分离变量法1.(2022·全国·高三专题练习)设a R ∈,若不等式ln ax x >在()1,x ∞∈+上恒成立,则实数a 的取值范围是( ) A .()0,∞+B .1,e ⎛⎫+∞ ⎪⎝⎭C .()1,∞+D .()e,+∞2.(2022·内蒙古乌兰察布·高二期末(文))已知函数2()ln 2a f x x x =+,若对任意两个不等的正数1x ,2x ,都有1212()()4f x f x x x -≥-恒成立,则a 的取值范围为( )A .[)4∞+,B .()4.∞+C .(]4∞-,D .()4∞-,3.(2022·全国·高三专题练习)已知对(0,)x ∀∈+∞,不等式ln 1ax x ≥-恒成立,则实数a 的最小值是( ) A .eB .2eC .21e D .1e4.(2022·河南·高二阶段练习(理))已知当0x >时,()21e 1x x a x -≤--恒成立,则实数a 的取值范围是( )A .(],e 1-∞-B .(],1-∞C .(]2,e 1--D .(],2-∞-5.(2022·湖南·临澧县第一中学高二阶段练习)已知函数()ln af x x x=+(a 为常数) (1)讨论函数()f x 的单调性; (2)不等式()1f x ≥在2(]0,x ∈上恒成立,求实数a 的取值范围.6.(2022·重庆市育才中学高二阶段练习)已知函数()1ln f x ax x =--,a R ∈. (1)讨论函数()f x 在区间()1,e 的极值;(2)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.7.(2022·四川省泸县第一中学高二阶段练习(理))已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围.8.(2022·河南·三模(文))已知函数()e x f x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-. (1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.高频考点二:分类讨论法1.(2022·广西柳州·三模(文))已知函数()ln f x ax x =-. (1)讨论函数()f x 的单调性;(2)若1x =为函数()f x 的极值点,当[)e,x ∞∈+,不等式()()()1e x f x x m x -+≤-恒成立,求实数m 的取值范围.2.(2022·陕西西安·二模(文))已知函数()()1ln f x a x a x=+∈R . (1)当1a =时,求函数()f x 的单调减区间;(2)若不等式()f x x ≥对(]0,1x ∈恒成立,求实数a 的取值范围.3.(2022·河南·高二阶段练习(文))已知曲线()ln f x m x =+在1x =处的切线方程为()y h x =,且210e f ⎛⎫= ⎪⎝⎭.(1)求()h x 的解析式;(2)若0x ≥时,不等式()20e x ax h x --≥恒成立,求实数a 的取值范围.4.(2022·全国·高三专题练习)已知函数()e xf x =,曲线()y f x =在点()00,x y 处的切线为()yg x =.(1)证明:对于x R ∀∈,()()f x g x ≥; (2)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.5.(2022·四川·树德中学高三开学考试(文))已知a ∈R ,设函数()()ln ln f x a x a x =++. (1)讨论函数()f x 的单调性; (2)若()2ln xf x a x a≤+恒成立,求实数a 的取值范围.6.(2022·贵州黔东南·一模(文))已知函数()22ln f x x a x =-.(1)讨论()f x 的单调性;(2)当x >1时,()1f x >恒成立,求a 的取值范围.高频考点三:等价转化法1.(2022·河南·民权县第一高级中学高三阶段练习(文))已知函数()1ln f x a x x=+,()()1e 1,x g x x mx a m x =+--∈R . (1)讨论f (x )的单调性;(2)当a =1时,若不等式()()f x g x ≤恒成立,求m 的取值范围.2.(2022·江苏·高二课时练习)已知函数()ln f x ax x =+,()()220g x a x a =>.若()()f x g x ≤对一切正实数x 都成立,求实数a 的取值范围.3.(2022·全国·高三专题练习)已知函数()()2ln f x x a x =+,()2g x ax x =+.(1)当0a =时,求函数()f x 的最小值;(2)当0a ≤时,若对任意1≥x 都有()()f x g x ≥成立,求实数a 的取值范围.4.(2022·江西·南昌市实验中学高二阶段练习(理))已知函数()2ln f x x a x =+,()2g x x x =+.(1)若()y f x =在点()()1,1M f 处的切线方程为30x y b -+=,求实数a 、b 的值; (2)若对任意1x >,都有()()f x g x ≤成立,求实数a 的取值范围.5.(2022·山东日照·高三期末)已知函数()ln f x x ax b =-+,中,a b ∈R . (1)当0a >时,求()f x 的单调区间;(2)若[]()1,0,2,ln 1a b x kx x x ϕ=∈=--,对任意实数[]()()1,e ,x f x x ϕ∈≥恒成立,求2k b -的最大值.高频考点四:最值法1.(2022·重庆市朝阳中学高二阶段练习)已知函数321()22f x x x x m =--+,其中.m R ∈(1)若函数()f x 的极小值为0,求实数m 的值; (2)当[1,2]x ∈-时,1()2f x 恒成立,求实数m 的取值范围.2.(2022·重庆市长寿中学校高二阶段练习)已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值3.(2022·江西·模拟预测(文))已知函数()222(0)exmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224ef x f x -≤恒成立,求实数m 的取值范围.4.(2022·河南·高二阶段练习(文))已知函数()32f x x ax bx c =+++在23x =-与1x =处都取得极值.(1)求a ,b 的值;(2)若对任意[]1,2x ∈-,不等式()23f x c <恒成立,求实数c 的取值范围.5.(2022·全国·高三专题练习)已知函数()()()221n l 0f x ax a x a x=-+->. (1)讨论函数()f x 的单调性;(2)若对[]2,3a ∀∈,[]12,1,2x x ∀∈,不等式()()12ln 2m f x f x +>-恒成立,求实数m 的取值范围.6.(2022·全国·高三专题练习)已知曲线()()3,f x ax bx a b =+∈R 在点()()1,1f 处的切线方程是20y +=.(1)求()f x 的解析式;(2)若对任意[]12,2,3x x ∈-,都有()()12f x f x m -,求实数m 的取值范围.1.(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e2.(2020·海南·高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.4.(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数. (1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.一、单选题1.(2022·河南南阳·高二期末(文))若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( ) A .[1,)+∞ B .(1,)+∞ C .[2,)+∞ D .(,2)-∞-2.(2022·全国·高二)函数f (x )=13x 3-x 2+a ,函数g (x )=x 2-3x ,它们的定义域均为[1,+∞),并且函数f (x )的图象始终在函数g (x )图象的上方,那么a 的取值范围是( ) A .(0,+∞)B .(-∞,0)C .4,3⎛-+∞⎫ ⎪⎝⎭D .4,3⎛⎫-∞- ⎪⎝⎭3.(2022·全国·高三阶段练习(理))已知()xae f x x x =-,()0,x ∈+∞,且1x ∀,()20,x ∈+∞,且12x x <,()()12210f x f x x x -<恒成立,则a 的取值范围是( )A .12,e ∞-⎛⎤- ⎥⎝⎦B .2,e ⎡⎫+∞⎪⎢⎣⎭C .(2,e ⎤-∞⎦D .13,e ⎛⎫+∞ ⎪⎝⎭4.(2022·全国·高二)已知函数()()e 10xx a f a x =--≠在[]1,2上是减函数,则实数a 的取值范围是( )A .21,e ⎛⎤-∞ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤⎥⎝⎦D .211,e e ⎡⎤⎢⎥⎣⎦5.(2022·重庆市清华中学校高二阶段练习)已知函数()()31e 1x f x x kx =--+,若对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()()()11222112x f x x f x x f x x f x +>+,则实数k 的取值范围是( ) A .e ,3∞⎛⎫- ⎪⎝⎭B .e ,3⎛⎤-∞ ⎥⎝⎦C .1,3⎛⎫-∞ ⎪⎝⎭D .1,3⎛⎤-∞ ⎥⎝⎦6.(2022·山西临汾·二模(理))已知函数22,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩,若()0f x ≥恒成立.则a 的取值范围为( )A .[0,1]B .[0,2e]C .[1,2]D .[2,2e]7.(2022·浙江·义乌市商城学校高二阶段练习)已知m ,n 为实数,不等式ln 0x mx n --≤恒成立,则nm的最小值为( ) A .1-B .2-C .1D .28.(2022·宁夏中卫·一模(理))已知定义域为(0,)+∞的函数()f x 满足2()1()f x f x x x'+=,且2(e)e f =,e 为自然对数的底数,若关于x 的不等式()20f x a x x x--+≤恒成立,则实数a 的取值范围为( ) A .[1,)+∞B .[2,)+∞C .2,e e +⎡⎫+∞⎪⎢⎣⎭D .322,e e e ⎡⎫-+++∞⎪⎢⎣⎭二、填空题 9.(2022·全国·高二课时练习)当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.10.(2022·上海交大附中高二阶段练习)已知()2ln f x x ax a =-+,若对任意1≥x ,都有()0f x ≤,则实数a 的取值范围是______.11.(2022·江苏省石庄高级中学高二阶段练习)已知函数()ln x f x x =.若对任意[)12,,x x a ∞∈+,都有()()121ef x f x -≤成立,则实数a 的最小值是________.12.(2022·河南·民权县第一高级中学高三阶段练习(文))设函数f (x )在区间I 上有定义,若对12,x x I ∀∈和()0,1λ∀∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称f (x )为I 上的凹函数,若不等号严格成立,即“<”号成立,则称f (x )在I 上为严格的凹函数.对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(a ,b )上的函数f (x ),其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若()0f x ''>,那么函数f (x )是严格的凹函数(()f x ',()f x ''均可导).试根据以上信息解决如下问题:函数()21ln f x m x x x =++在定义域内为严格的凹函数,则实数m 的取值范围为___________. 三、解答题13.(2022·福建省厦门集美中学高二阶段练习)已知函数()ln f x x x =,(1)求过点(0,1)-的函数()f x 的切线方程(2)若对任意0x >,都有ln()x ax x a ≥-成立,求正数a 的取值范围.14.(2022·四川·成都外国语学校高二阶段练习(文))已知函数()()1ln f x x x =+(1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值.15.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知函数()()e ln 1x f x a x =+-+,()'f x 是其导函数,其中a R ∈.(1)若()f x 在(,0)-∞上单调递减,求a 的取值范围;(2)若不等式()()f x f x '≤对(,0)x ∀∈-∞恒成立,求a 的取值范围.16.(2022·四川达州·二模(文))已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.。

导数大题证明不等式归类(学生版)

导数大题证明不等式归类(学生版)

导数大题证明不等式归类目录题型01不等式证明方法题型02单变量构造:利用第一问结论题型03单变量构造:数列型题型04数列不等式:无限和裂项型题型05数列不等式:累积相消型题型06数列不等式:取对数型题型07虚设根型证不等式题型08利用函数“凸凹反转性”证明不等式题型09同构型不等式证明题型10双变量型构造题型11极值点偏移型:和型证明题型12极值点偏移型:积型证明题型13极值点偏移型:平方型证明题型14三角函数型不等式证明题型15韦达定理代换型题型16切线放缩型证明高考练场题型01不等式证明方法【解题攻略】利用导数证明不等式问题,基本思维方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.利用导数证明不等式的基本步骤(1)作差或变形;(2)构造新的函数h x ;(3)利用导数研究h x 的单调性或最值;(4)根据单调性及最值,得到所证不等式.特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两个函数的最值问题.1(陕西省澄城县20121-2022学年高三试数学(理)试题)设函数f(x)=ln x-x+1.(1)讨论f(x)的单调性;(2)证明:当x∈(1,+∞)时,1<x-1ln x.2已知函数f(x)=x2-2ln x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:当x>2时,f(x)>3x-4.【变式训练】1(湖南省三湘名校教育联盟2021-2022学年高三数学试题)已知函数f x =e x+ax+b,曲线y=f x 在点0,f0处的切线方程为y=a-b.(1)求a,b的值;(2)证明:f x ≥0.2(湖北省华中师范大学潜江附属中学2021-2022学年高三4月数学试题)已知函数f(x)=ax3 -3ln x.(1)若a=1,证明:f(x)≥1;(2)讨论f(x)的单调性.3(2022·云南昆明·统考模拟预测)已知函数f(x)=x-sin x,x∈(0,+∞).(1)求曲线y=f(x)在点π2,fπ2处的切线方程;(2)证明:2e x⋅f(x)+cos x⋅e x>1.题型02单变量构造:利用第一问结论【解题攻略】一些试题,可以通过对第一问分类讨论,得出一些不等式放缩式子或者放缩方向1.可以利用第一问单调性提炼出不等式2.可以利用第一问极值或者最值提炼出常数不等式3.可以利用题干和第一问结论构造新函数(新不等式)1(2023·吉林长春·长春吉大附中实验学校校考模拟预测)已知函数f(x)=12x2-1-ln x.(1)求f x 的最小值;(2)证明:ln43>732.2(2021下·北京丰台·高三统考)已知函数f(x)=ae x+bx+1在x=0处有极值2.(Ⅰ)求a,b的值;(Ⅱ)证明:f(x)>ex-x.【变式训练】1(2021·四川·四川省绵阳南山中学校考模拟预测)设函数f x =x 2-2x e x +aex -e 2ln x ,其中e 为自然对数的底数,曲线y =f x 在2,f 2 处切线的倾斜角的正切值为32e 2+2e .(1)求a 的值;(2)证明:f x >0.2(2022下·山东聊城·高三练习)已知函数f (x )=x ln x .(1)讨论y =f (x )的单调性并求极值;(2)证明:当x >1时,ln 2(x +1)>ln x ⋅ln (x +2).3(20122安徽马鞍山·统考模拟)已知函数f x =e x -ax,a ∈R .(1)若f x 在定义域内无极值点,求实数a 的取值范围;(2)求证:当 0<a <1,x >0时,f x >1恒成立.题型03单变量构造:数列型【解题攻略】数列型不等式证明1.对于n∈N∗型数列不等式证明,可以转化为定义域为X≥1,在实数范围内证明不等式。

大题 函数与导数(学生版)

大题 函数与导数(学生版)

函数与导数函数与导数问题是高考数学的必考内容。

从近几年的高考情况来看,在大题中考查内容主要有主要利用导数研究函数的单调性、极值与最值、不等式及函数零点等内容。

此类问题体现了分类讨论、转化与化归的数学思想,难度较大。

题型一:利用导数研究函数的单调性题型二:利用导数研究函数的极值题型三:利用导数研究函数的最值题型四:利用导数解决恒成立与能成立题型五:利用导数求解函数的零点题型六:利用导数证明不等式题型七:利用导数研究双变量问题题型八:利用导数研究极值点偏移问题题型九:隐零点问题综合应用题型十:导数与数列综合问题题型一:利用导数研究函数的单调性1(2024·河南郑州·高三校联考阶段练习)已知函数f(x)=x22+ax-(ax+1)ln x在x=1处的切线方程为y=bx+52(a,b∈R).(1)求a,b的值;(2)证明:f x 在1,+∞上单调递增.1、求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.2、求函数单调区间的步骤(1)确定函数f x 的定义域;(2)求f x (通分合并、因式分解);(3)解不等式f x >0,解集在定义域内的部分为单调递增区间;(4)解不等式f x <0,解集在定义域内的部分为单调递减区间.3、含参函数单调性讨论依据:(1)导函数有无零点讨论(或零点有无意义);(2)导函数的零点在不在定义域或区间内;(3)导函数多个零点时大小的讨论。

1(2024·安徽六安·高三统考期末)已知函数f x =x3+ax-6a∈R.(1)若函数f x 的图象在x=2处的切线与x轴平行,求函数f x 的图象在x=-3处的切线方程;(2)讨论函数f x 的单调性.2(2024·辽宁·校联考一模)已知f x =sin2x+2cos x.(1)求f x 在x=0处的切线方程;(2)求f x 的单调递减区间.题型二:利用导数研究函数的极值1(2024·湖南长沙·高三长沙一中校考开学考试)已知直线y=kx与函数f(x)=x ln x-x2+x的图象相切.(1)求k的值;(2)求函数f x 的极大值.1、利用导数求函数极值的方法步骤(1)求导数f (x);(2)求方程f (x)=0的所有实数根;(3)观察在每个根x0附近,从左到右导函数f (x)的符号如何变化.①如果f (x)的符号由正变负,则f (x0)是极大值;②如果由负变正,则f (x0)是极小值;③如果在f (x)=0的根x=x0的左右侧f (x)的符号不变,则不是极值点.根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.2(2024·广东汕头·统考一模)已知函数f x =ax-1x-a+1ln x a∈R.(1)当a=-1时,求曲线y=f x 在点e,f e处的切线方程;(2)若f x 既存在极大值,又存在极小值,求实数a的取值范围.3(2022·河南·高三专题练习)已知函数f(x)=e x-ax312,其中常数a∈R.(1)若f x 在0,+∞上是增函数,求实数a的取值范围;(2)若a=4,设g(x)=f(x)+x33-x2-x+1,求证:函数g x 在-1,+∞上有两个极值点.题型三:利用导数研究函数的最值1(2024·江苏泰州·高三统考阶段练习)已知函数f x =x4+ax3,x∈R.(1)若函数在点1,f1处的切线过原点,求实数a的值;(2)若a=-4,求函数f x 在区间-1,4上的最大值.函数f(x)在区间[a,b]上连续,在(a,b)内可导,则求函数f(x)最值的步骤为:(1)求函数f(x)在区间(a,b)上的极值;(2)将函数f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值;(3)实际问题中,“驻点”如果只有一个,这便是“最值”点。

专题3.4利用导数证明不等式(2021年高考数学一轮复习专题)

专题3.4利用导数证明不等式(2021年高考数学一轮复习专题)

专题利用导数证明不等式一、题型全归纳题型一作差法构造函数证明不等式【题型要点】(1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可.(2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I).设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.【例1】(2020·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)在(-∞,ln 2)上单调递减;当x>ln 2时,f′(x)>0,f(x)在(ln 2,+∞)上单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.【例2】已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值.(1)求实数a的值;(2)当x>1时,求证:f(x)>3(x-1).【解析】(1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x,所以f′(x)=a+ln x+1,因为函数f(x)在x=e-2处取得极小值,所以f′(e-2)=0,即a+ln e-2+1=0,所以a =1,所以f ′(x )=ln x +2.当f ′(x )>0时,x >e -2;当f ′(x )<0时,0<x <e -2, 所以f (x )在(0,e -2)上单调递减,在(e -2,+∞)上单调递增, 所以f (x )在x =e-2处取得极小值,符合题意,所以a =1.(2)证明:由(1)知a =1,所以f (x )=x +x ln x .令g (x )=f (x )-3(x -1),即g (x )=x ln x -2x +3(x >0). g ′(x )=ln x -1,由g ′(x )=0,得x =e.由g ′(x )>0,得x >e ;由g ′(x )<0,得0<x <e. 所以g (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, 所以g (x )在(1,+∞)上的最小值为g (e)=3-e >0.于是在(1,+∞)上,都有g (x )≥g (e)>0,所以f (x )>3(x -1).题型二 拆分法构造函数证明不等式【题型要点】(1)在证明不等式中,若无法转化为一个函数的最值问题,则可以考虑转化为两个函数的最值问题.(2)在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.【例1】设函数f (x )=ax 2-(x +1)ln x ,曲线y =f (x )在点(1,f (1))处切线的斜率为0. (1)求a 的值;(2)求证:当0<x ≤2时,f (x )>12x .【解】(1)f ′(x )=2ax -ln x -1-1x ,由题意,可得f ′(1)=2a -2=0,所以a =1.(2)证明:由(1)得f (x )=x 2-(x +1)ln x ,要证当0<x ≤2时,f (x )>12x ,只需证当0<x ≤2时,x -ln x x -ln x >12,即x -ln x >ln x x +12.令g (x )=x -ln x ,h (x )=ln x x +12,令g ′(x )=1-1x=0,得x =1,易知g (x )在(0,1)上单调递减,在(1,2]上单调递增,故当0<x ≤2时,g (x )min =g (1)=1.因为h ′(x )=1-ln xx 2,当0<x ≤2时,h ′(x )>0,所以h (x )在(0,2]上单调递增,故当0<x ≤2时,h (x )max =h (2)=1+ln 22<1,即h (x )max <g (x )min .故当0<x ≤2时,h (x )<g (x ),即当0<x ≤2时,f (x )>12x . 【例2】已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,求证:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;∈若a >0,令f ′(x )=0,得x =e a ,则当0<x <e a 时,f ′(x )>0;当x >ea时,f ′(x )<0,故f (x )在⎪⎭⎫ ⎝⎛a e ,0上单调递增,在⎪⎭⎫⎝⎛+∞,a e 上单调递减. (2)证明:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e. 记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e ,即xf (x )-e x +2e x ≤0.题型三 换元法构造函数证明不等式【题型要点】换元法构造函数证明不等式的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:【例1】已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. 【解】(1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0).由f (x 1)+f (x 2)+x 1x 2=0,得ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2(t >0),令φ(t )=t -ln t ,得φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1,所以(x 1+x 2)2+(x 1+x 2)≥1,因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. 题型四 两个经典不等式的应用【题型要点】逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程. (1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链: e x >x +1>x >1+ln x (x >0,且x ≠1). 【例1】设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x <x .【解析】(1)由题设知,f (x )的定义域为(0,+∞), f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增;当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1. 故当x ∈(1,+∞)时,ln x <x -1,x -1ln x >1.∈因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x<x .∈故当x ∈(1,+∞)时恒有1<x -1ln x<x . 二、高效训练突破1.(2020·四省八校双教研联考)已知函数f (x )=ax -ax ln x -1(a ∈R ,a ≠0). (1)讨论函数f (x )的单调性; (2)当x >1时,求证:1x -1>1e x-1.【解析】:(1)f ′(x )=a -a (ln x +1)=-a ln x ,若a >0,则当x ∈(0,1)时,f ′(x )>0,当x ∈(1,+∞),f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减;若a <0,则当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞),f ′(x )>0,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)证明:要证1x -1>1e x -1,即证x x -1>e -x ,即证x -1x <e x ,又由第(1)问令a =1知f (x )=x -x ln x -1在(1,+∞)上单调递减,f (1)=0, 所以当x >1时,x -x ln x -1<0,即x -1x <ln x ,则只需证当x >1时,ln x <e x 即可.令F (x )=e x -ln x, x >1,则F ′(x )=e x -1x 单调递增,所以F ′(x )>F ′(1)=e -1>0,所以F (x )在(1,+∞)上单调递增,所以F (x )>F (1),而F (1)=e ,所以e x -ln x >e>0, 所以e x >ln x ,所以e x >ln x >x -1x ,所以原不等式得证.2.(2020·唐山市摸底考试)设f (x )=2x ln x +1.(1)求f (x )的最小值;(2)证明:f (x )≤x 2-x +1x+2ln x .【解】 (1)f ′(x )=2(ln x +1).所以当x ∈⎪⎭⎫ ⎝⎛e 1,0时,f ′(x )<0,f (x )单调递减;当x ∈⎪⎭⎫ ⎝⎛+∞,1e 时,f ′(x )>0,f (x )单调递增.所以当x =1e 时,f (x )取得最小值⎪⎭⎫⎝⎛e f 1=1-2e .(2)证明:x 2-x +1x +2ln x -f (x )=x (x -1)-x -1x -2(x -1)ln x =(x -1)⎪⎭⎫⎝⎛--x x x ln 21,令g (x )=x -1x -2ln x ,则g ′(x )=1+1x 2-2x =(x -1)2x 2≥0,所以g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<0,当x >1时,g (x )>0,所以(x -1)⎪⎭⎫⎝⎛--x x x ln 21≥0,即f (x )≤x 2-x +1x +2ln x . 3.(2020·福州模拟)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解】(1)f ′(x )=ex-a (x >0).∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ∈若a >0,则当0<x <e a 时,f ′(x )>0,当x >ea 时,f ′(x )<0,故f (x )在(0,e a )上单调递增,在(ea ,+∞)上单调递减.(2)证明:法一:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以f (x )max =f (1)=-e.记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx -2e ,即xf (x )-e x +2e x ≤0.法二:由题意知,即证e x ln x -e x 2-e x +2e x ≤0,从而等价于ln x -x +2≤e xe x.设函数g (x )=ln x -x +2,则g ′(x )=1x -1.所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )在(0,+∞)上的最大值为g (1)=1. 设函数h (x )=e xe x ,则h ′(x )=e x (x -1)e x 2.所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而h (x )在(0,+∞)上的最小值为h (1)=1. 综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0. 4.(2019·高考北京卷节选)已知函数f (x )=14x 3-x 2+x .(1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x .【解析】:(1)由f (x )=14x 3-x 2+x 得f ′(x )=34x 2-2x +1.令f ′(x )=1,即34x 2-2x +1=1,得x =0或x =83.又f (0)=0,⎪⎭⎫ ⎝⎛38f =827,所以曲线y =f (x )的斜率为1的切线方程是y =x 与y -827=x -83, 即y =x 与y =x -6427.(2)证明:令g (x )=f (x )-x ,x ∈[-2,4].由g (x )=14x 3-x 2得g ′(x )=34x 2-2x .令g ′(x )=0得x =0或x =83.g ′(x ),g (x )的情况如下:故-6≤g (x )≤0,即x -6≤f (x )≤x .5.已知函数f (x )=ln x -ax (x >0),a 为常数,若函数f (x )有两个零点x 1,x 2(x 1≠x 2).求证:x 1x 2>e 2. 【证明】不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令c =x 1x 2(c >1),则不等式变为ln c >2(c -1)c +1.令h (c )=ln c -2(c -1)c +1,c >1,所以h ′(c )=1c -4(c +1)2=(c -1)2c (c +1)2>0,所以h (c )在(1,+∞)上单调递增,所以h (c )>h (1)=ln 1-0=0,即ln c -2(c -1)c +1>0(c >1),因此原不等式x 1x 2>e 2得证.6.已知函数()()x a ax x x f 12ln 2+++=.(1)讨论()x f 的单调性;(2)当0<a 时,证明()243--≤ax f 【解析】(1)()x f 的定义域为(0,+∞),()()()xax x a ax x x f 1211221++=+++=' 当0≥a ,则当x ∈(0,+∞)时,()0>'x f ,故()x f 在(0,+∞)上单调递增.当0<a ,则当x ∈⎪⎭⎫ ⎝⎛-a 21,0时,f ′(x )>0;当x ∈⎪⎭⎫⎝⎛+∞-,21a 时,f ′(x )<0. 故()x f 在⎪⎭⎫ ⎝⎛-a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞-,21a 上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a取得最大值,最大值为⎪⎭⎫ ⎝⎛-a f 21=a a 41121ln --⎪⎭⎫⎝⎛-. 所以()243--≤a x f 等价于24341121ln --≤--⎪⎭⎫ ⎝⎛-a a a ,即012121ln ≤++⎪⎭⎫ ⎝⎛-aa . 设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,012121ln ≤++⎪⎭⎫ ⎝⎛-a a ,即()243--≤a x f . 7.已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.【解析】(1)f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.(∈)若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)单调递减. (∈)若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∈⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明:由(1)知,f (x )存在两个极值点时,当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减,又g (1)=0,从而当x ∈(1,+∞)时g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.8.已知函数f (x )=e x ,g (x )=ln(x +a )+b .(1)当b =0时,f (x )-g (x )>0恒成立,求整数a 的最大值;(2)求证:ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1(n ∈N *).【解析】(1)现证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,当x ∈(0,+∞)时,F ′(x )>0,当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立,即e x ≥x +1.同理可得ln(x +2)≤x +1,即e x >ln(x +2),当a ≤2时,ln(x +a )≤ln(x +2)<e x ,所以当a ≤2时,f (x )-g (x )>0恒成立. 当a ≥3时,e 0<ln a ,即e x -ln(x +a )>0不恒成立.故整数a 的最大值为2. (2)证明:由(1)知e x >ln(x +2),令x =-n +1n ,则e -n +1n >ln ⎝⎛⎭⎫-n +1n +2, 即e-n +1>ln ⎝⎛⎭⎫-n +1n +2n=[ln(n +1)-ln n ]n ,所以e 0+e -1+e -2 +…+e -n +1>ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n ,又因为e 0+e -1+e -2+…+e -n +1=1-1e n 1-1e <11-1e=e e -1, 所以ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <e e -1.。

导数及其应用的习题(学生版)

导数及其应用的习题(学生版)

导数及其应用的习题一.要点梳理1.f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的充分条件利用导数研究函数的单调性比用函数单调性的定义要方便,但应注意f ′(x )>0(或f ′(x )<0)仅是f (x )在某个区间上递增(或递减)的充分条件.在区间(a ,b )内可导的函数f (x )在(a ,b )上递增(或递减)的充要条件应是f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,且f ′(x )在(a ,b )的任意子区间内都不恒等于0.这就是说,函数f (x )在区间上的增减性并不排斥在该区间内个别点x 0处有f ′(x 0)=0,甚至可以在无穷多个点处f ′(x 0)=0,只要这样的点不能充满所给区间的任何子区间,因此在已知函数f (x )是增函数(或减函数)求参数的取值范围时,应令f ′(x )≥0(或f ′(x )≤0)恒成立解出参数的取值范围,然后检验参数的取值能否使f ′(x )恒等于0,若能恒等于0,则参数的这个值应舍去,若f ′(x )不恒为0,则由f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立解出的参数的取值范围确定.2.对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的必要条件,但并不充分. 二.疑点清源1.运用导数不仅可以求解曲线的斜率,研究函数的单调性,确定函数的极值与最值,还可利用导数研究参数的取值范围,来讨论方程根的分布与证明不等式.2.用导数研究参数的取值范围,确定方程根的个数,证明不等式,其实质就是转化成函数的单调性、极值与最值的问题,运用导数进行研究.3.函数的极值与函数的最值是有区别与联系的:函数的极值是一个局部性概念,而最值是某个区间的整体性概念;函数的极值可以有多个,而函数的最大(小)值最多只有一个4.极值点不一定是最值点,最值也不一定是极值点,但如果连续函数在区间(a ,b )内只有一个极值点,则极大值就是最大值,极小值就是最小值.5.在求可导函数的最值时,不必讨论导数为零的点是否为极值点,而直接将导数为零的点与端点处的函数值进行比较即可.6.对于一般函数而言,函数的最值必在下列各种点中取得:导数为零的点,导数不存在的点,端点. 三.典例精析题型一:利用导数求函数的单调区间例1:已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是f (x )的极值点,求f (x )的单调区间.跟踪训练1:已知函数f (x )=ln(x +1)-x +k2x 2(k ≥0).(1)当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求f (x )的单调区间.题型二:利用导数求解函数的最值或极值例2 已知函数g (x )=ax 3+bx 2+cx (a ∈R 且a ≠0),g (-1)=0,且g (x )的导函数f (x )满足f (0)f (1)≤0.设x 1、x 2为方程f (x )=0的两根.(1)求b a 的取值范围;(2)若当|x 1-x 2|最小时,g (x )的极大值比极小值大43,求g (x )的解析式.跟踪训练2:函数f (x )=x 3+ax 2+b 的图象在点P (1,0)处的切线与直线3x +y =0平行. (1)求a ,b ;(2)求函数f (x )在[0,t ] (t >0)内的最大值和最小值.题型三:已知单调区间求参数范围例3 已知函数f (x )=3ax 4-2(3a +1)x 2+4x .(1)当a =16时,求f (x )的极值;(2)若f (x )在(-1,1)上是增函数,求a 的取值范围.跟踪训练3:设函数f (x )=x 4+ax 3+2x 2+b (x ∈R),其中a ,b ∈R.(1)当a =-103时,讨论函数f (x )的单调性;(2)若函数f (x )仅在x =0处有极值,求a 的取值范围;(3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成立,求b 的取值范围.题型四:利用导数研究方程根的问题例4 已知函数f (x )=x 2-a ln x 在(1,2]是增函数,g (x )=x -a x 在(0,1)为减函数.(1)求f (x )、g (x )的解析式;(2)求证:当x >0时,方程f (x )=g (x )+2有惟一解.跟踪训练4:已知f (x )=ax 2(a ∈R),g (x )=2ln x . (1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若方程f (x )=g (x )在区间[2,e]上有两个不等解,求a 的取值范围.导数及其应用综合训练试题(卷)一.选择题1.[2013·蚌埠模拟] 曲线f(x)=13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角形面积为( )A.29B.19C.13D.232.[2013·全国卷] 已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( )A .9B .6C .-9D .-6 3.[2013·浙江卷] 已知函数y =f(x)的图像是下列四个图像之一,且其导函数y =f′(x)的图像如图所示,则该函数的图像是( )4.[2013·湖北卷] 已知函数f(x)=x(ln x -ax)有两个极值点,则实数a 的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12 C .(0,1) D .(0,+∞) 5.[2013·福建卷] 设函数f(x)的定义域为R ,x 0(x 0≠0)是f(x)的极大值点,以下结论一定正确的是( )A . x ∈R ,f(x)≤f(x 0)B .-x 0是f(-x)的极小值点C .-x 0是-f(x)的极小值点D .-x 0是-f(-x)的极小值点 6.[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=0 7.[2013·浙江卷] 已知e 为自然对数的底数,设函数f(x)=(e x -1)(x -1)k (k =1,2),则( )A .当k =1时,f(x)在x =1处取到极小值B .当k =1时,f(x)在x =1处取到极大值C .当k =2时,f(x)在x =1处取到极小值D .当k =2时,f(x)在x =1处取到极大值 8.[2013·全国卷] 若函数f(x)=x 2+ax +1x 在⎝⎛⎭⎫12,+∞是增函数,则a 的取值范围是( ) A .[-1,0] B .[-1,+∞)C .[0,3] D .[3,+∞)9.[2013·辽宁卷] 设函数f(x)满足x 2f ′(x)+2xf(x)=e x x ,f(2)=e 28,则x>0时,f(x)( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值 10.[2013·郑州模拟] 已知f(x)为R 上的可导函数,且∀x ∈R ,均有f(x)>f′(x),则有( )A .e 2 013f(-2 013)<f(0),f(2 013)>e 2 013f(0)B .e 2 013f(-2 013)<f(0),f(2 013)<e 2 013f(0)C .e 2 013f(-2 013)>f(0),f(2 013)>e 2 013f(0)D .e 2 013f(-2 013)>f(0),f(2 013)<e 2 013f(0) 二.填空题 11.[2013·江西卷] 设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x ,则f ′(1)= 12.[2013·广东卷] 若曲线y =kx +ln x 在点(1,k)处的切线平行于x 轴,则k =13.[2013·江西卷] 若曲线y =x α+1(α∈R )在点(1,2)处的切线经过坐标原点,则α=14.[2013·龙岩调研] 已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 15.[2013·温州联考] 已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y =f ′(x)的图像如图所示.下列关于函数f(x)的命题:①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③如果当x ∈[-1,t]时,f(x)的最大值是2,那么t 的最大值为4;④当1<a<2时,函数y =f(x)-a 最多有4个零点.其中正确命题的序号是 三.解答题16.[2013·全国卷] 已知函数f(x)=x 3+3ax 2+3x +1.(1)当a =-2时,讨论f(x)的单调性;(2)若x ∈[2,+∞)时,f(x)≥0,求a 的取值范围.17.[2013·重庆卷] 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r 和h 为何值时该蓄水池的体积最大.18.[2013·重庆卷] 设f(x)=a(x -5)2+6ln x ,其中a ∈R ,曲线y =f(x)在点(1,f(1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f(x)的单调区间与极值.19.[2013·北京卷] 已知函数f(x)=x2+xsin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.20.[2013·新课标全国卷Ⅱ] 已知函数f(x)=e x-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.21.[2013·新课标全国卷Ⅰ] 设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.。

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)利用导数证明数列不等式是高考中常见的题型,可以考查学生灵活运用知识的能力。

这种题型一方面以函数为背景,让学生探究函数的性质;另一方面,体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为有具体特征的数列。

可以说,这种题型涉及到函数、导数、数列和不等式,是一题多考的巧妙结合,也是近年来高考的热门题型。

常见的题型有两种类型:一种是利用放缩通项公式解决数列求和中的不等问题,另一种是利用递推公式处理通项公式中的不等问题。

恒成立不等式的来源主要有两种:一是函数的最值,最值可以提供XXX成立的不等式;二是恒成立问题的求解,参数范围内的值均可提供恒成立不等式。

常见的恒成立不等式有lnxx+1.关于前n项和的放缩问题,求数列前n项公式往往要通过数列的通项公式来解决。

高中阶段求和的方法有倒序相加、错位相减、等比数列求和公式和裂项相消。

在处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,应优先考虑。

对于数列求和不等式,要从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。

在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向。

放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)。

数列不等式也可考虑利用数学归纳法进行证明。

经典例题是已知函数f(x)=kx-xlnx,求函数f(x)的单调区间、当<x≤1时,f(x)≤k恒成立的k的取值范围,以及证明ln1ln2+23+lnnn(n-1)≤n+14.1.已知函数$f(x)=\ln(ax+1)(x\geq0,a>0)$,$g(x)=x-\frac{x^3}{3}$。

1)讨论函数$y=f(x)-g(x)$的单调性;2)若不等式$f(x)\geq g(x)+1$在$x\in[0,+\infty)$时恒成立,求实数$a$的取值范围;3)当$a=1$时,证明:frac{1}{1\cdot3\cdot5\cdots(3572n+1)}+\frac{1}{2\cdot4\cd ot6\cdots(3572n+2)}+\cdots+\frac{1}{(2n-1)(2n+1)}<f^{(n)}(n)(n\in N^*),$$其中$f^{(n)}(n)$表示$f(x)$的$n$阶导数在$x=n$处的值。

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。

2021年新高考数学分类专练:利用导数证明不等式

2021年新高考数学分类专练:利用导数证明不等式

2021年新高考数学分类专练利用导数证明不等式1.设函数f (x )=ax 2-(x +1)ln x ,曲线y =f (x )在点(1,f (1))处切线的斜率为0. (1)求a 的值;(2)求证:当0<x ≤2时,f (x )>12x .解:(1)f ′(x )=2ax -ln x -1-1x,由题意,可得f ′(1)=2a -2=0,所以a =1. (2)证明:由(1)得f (x )=x 2-(x +1)ln x , 要证当0<x ≤2时,f (x )>12x ,只需证当0<x ≤2时,x -ln x x -ln x >12,即x -ln x >ln x x +12.令g (x )=x -ln x ,h (x )=ln x x +12,令g ′(x )=1-1x=0,得x =1,易知g (x )在(0,1)上单调递减,在(1,2]上单调递增, 故当0<x ≤2时,g (x )min =g (1)=1.因为h ′(x )=1-ln xx 2,当0<x ≤2时,h ′(x )>0,所以h (x )在(0,2]上单调递增,故当0<x ≤2时,h (x )max =h (2)=1+ln 22<1,即h (x )max <g (x )min . 故当0<x ≤2时,h (x )<g (x ),即当0<x ≤2时,f (x )>12x .2.已知函数f (x )=ax -ln x -1. (1)若f (x )≥0恒成立,求a 的最小值; (2)证明:e -xx +x +ln x -1≥0.解:(1)f (x )≥0等价于a ≥ln x +1x .令g (x )=ln x +1x ,则g ′(x )=-ln xx 2,所以当x ∈(0,1)时,g ′(x )>0, 当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1,所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1,即t ≥ln t +1. 令e -xx=t ,则-x -ln x =ln t , 所以e -x x ≥-x -ln x +1,即e -xx +x +ln x -1≥0.3.已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. 解:(1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1) =2,故切线方程为y -1=2(x -1),即2x -y -1=0. (2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0). 由f (x 1)+f (x 2)+x 1x 2=0,得ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2(t >0),令φ(t )=t -ln t ,得φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1,所以(x 1+x 2)2+(x 1+x 2)≥1,因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. 4.(原创题)已知函数f (x )=a e x (a ∈R ),g (x )=ln xx +1.(1)求函数g (x )的极值;(2)当a ≥1e时,求证:f (x )≥g (x ).解:(1)由g (x )=ln xx +1,得g ′(x )=1-ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e)=1e+1,无极小值.(2)证明:法一:令F (x )=f (x )-g (x )=a e x -ln xx -1,其定义域为(0,+∞),则F ′(x )=a e x-1-ln x x 2=ax 2e x +ln x -1x 2.令h (x )=ax 2e x +ln x -1,x >0, 则h ′(x )=(ax 2+2ax )e x +1x >0,所以h (x )在(0,+∞)上单调递增. h (e-2a)=a ·e-4a·e e -2a -2a -1<a ·e-4a·e -2a -1=a e 1-4a-2a -1,又1-4a <0,则a e 1-4a-2a -1<a -2a -1<0,从而h (e-2a)<0.h (1)=a e -1≥0,所以存在x 0∈(e -2a,1],使得h (x 0)=0,即ax 20e x 0+ln x 0-1=0,可得a e x 0=1-ln x 0x 20. 当x ∈(0,x 0)时,h (x )<0,从而F ′(x )=h (x )x 2<0;当x ∈(x 0,+∞)时,h (x )>0,从而F ′(x )=h (x )x 2>0,所以F (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, F (x )≥F (x 0)=a e x 0-ln x 0x 0-1=1-ln x 0x 20-ln x 0x 0-1 =(1+x 0)(1-x 0-ln x 0)x 20,而x 0∈(e -2a,1],则1-x 0≥0,ln x 0≤0,所以F (x )≥(1+x 0)(1-x 0-ln x 0)x 20≥0,所以当a ≥1e时,f (x )≥g (x ).法二:要证明f (x )≥g (x ),即证a e x ≥ln xx +1,又定义域为(0,+∞),所以只要证ax e x -ln x -x ≥0.又因为a ≥1e ,所以ax e x -ln x -x ≥1e x e x -ln x -x ,所以只要证明1e x e x -ln x -x ≥0.令F (x )=1ex e x -ln x -x ,x >0,则F ′(x )=(x +1)⎝⎛⎭⎫e x -1-1x . 记h (x )=e x -1-1x ,则h (x )在(0,+∞)上单调递增且h (1)=0.所以当x ∈(0,1)时,h (x )<0,从而F ′(x )<0; 当x ∈(1,+∞)时,h (x )>0,从而F ′(x )>0, 即F (x )在(0,1)上单调递减,在(1,+∞)上单调递增. 所以F (x )≥F (1)=0. 所以当a ≥1e时,f (x )≥g (x ).。

导数解答题中的不等式证明问题-普通用卷

导数解答题中的不等式证明问题-普通用卷

导数解答题中的不等式证明问题1.已知函数.(1)当时,求函数的单调区间;(2)若,求证:当时,.2.已知函数.(Ⅰ)当时,求函数在上的极值;(Ⅱ)证明:当时,.3.已知函数f(x)=e x(e是自然对数的底数,e=2.71828…)(1)证明:对∀x∈R,不等式f(x)≥x+1恒成立;(2)数列{}(n∈N*)的前n项和为T n,求证:T n<.4.已知函数f(x)=ln x,(1)求函数g(x)=f(x+1)-x的最大值;(2)若不等式f(x)≤ax≤x2+1对∀x>0恒成立,求实数a的取值范围;(3)0<a<b,求证f(b)-f(a)>.5.已知函数f(x)=x2+a ln x,a≠0.(1)若x=1是函数f(x)的极值点,求的单调区间;(2)求证:.6.设函数f(x)=x2﹣ax+2ln x,其中a>0(Ⅰ)当a=5时,求函数f(x)的极值;(Ⅱ)证明:当x≥1时,x2+2ln x≥3x﹣2.7.已知函数,其中是自然对数的底数.(1)求曲线在点处的切线方程;(2)证明:.8.已知.(1)求函数的极小值;(2)求函数的单调区间;(3)证明:.9.已知函数f(x)=x lnx,g(x)=1-sin x.(1)求f(x)在点(1,0)处的切线;(2)研究函数f(x)的单调性,并求出f(x)极值;(3)求证:f(x)+g(x)≥0.10.已知函数,曲线y=f(x)在点(0,f(0))处的切线方程为4x-2y-3=0.(1)求a,b的值;(2)证明:.11.已知函数.(1)求函数f(x)的极值;(2)若a≥l,求证:.12.已知函数∈.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)图象过点(1,0),求证:.答案和解析1.【答案】【解答】解:(1)由,,由,解得:,由,解得:,故在递减,在递增;(2)证明:要证明,即证,令,则,令,则,故即在递增,又,当时,,递减,当时,,递增,故,故,即,故.【解析】【分析】本题考查导数的应用,利用导数yj研究函数的单调性,利用导数求函数的最值从而zhm证明不等式,属中档题.(1)利用导数的符号可求函数的单调区间;(2)所证不等式即为,构建新函数,利用导数可得函数的单调性并求得,从而不等式得到证明.2.【答案】(Ⅰ)解:当时,,,令,得或;令,得;在上单调递增,在上单调递减,在上单调递增,故当时,取得极大值为;当时,取得极小值为.(Ⅱ)证明:令,,在上是增函数,,,即当时,.【解析】本题考查利用导数研究函数的极值以及与函数有关的不等式证明,属于中档题.(Ⅰ)把代入函数式,求导判断函数的单调性,根据单调性即可得到函数的极值;(Ⅱ)令,利用导数判断函数的单调性可知在上是增函数,则,即.3.【答案】(1)证明:设h(x)=f(x)-x-1=e x-x-1,h (x)=e x-1.当x>0时,h (x)>0,函数h(x)单调递增;当x<0时,h (x)<0,函数h(x)单调递减.当x=0时,函数h(x)取得最小值,h(0)=0,h(x)≥h(0)=0,f(x)≥x+1.(2)解:由(1)可得:对∀x∈R,e x≥x+1恒成立.令x+1=n2,则,n2-1≥l n n2.=1-=.<=.T n<=.【解析】(1)设h(x)=f(x)-x-1=e x-x-1,h′(x)=e x-1.分别解出h′(x)>0,h′(x)<0,即可得出单调性极值与最值.(2)由(1)可得:对∀x∈R,e x≥x+1恒成立.令x+1=n2,则,可得n2-1≥lnn2.=.利用“裂项求和”即可证明.本题考查了利用导数研究函数的单调性极值与最值、不等式的性质、“放缩法”、“裂项求和”方法,考查了推理能力与计算能力,属于难题.4.【答案】解:(1)∵f(x)=ln x,g(x)=f(x+1)-x=ln(x+1)-x,x>-1,g (x)=-.当x∈(-1,0)时,g (x)>0,g(x)在(-1,0)上单调递增;当x∈(0,+∞)时,g (x)<0,则g(x)在(0,+∞)上单调递减,g(x)在x=0处取得最大值g(0)=0.(2)∵对任意x>0,不等式f(x)≤ax≤x2+1恒成立,在x>0上恒成立,进一步转化为()max≤a≤(x+)min,设h(x)=,则h (x)=,当x∈(1,e)时,h (x)>0;当x∈(e,+∞)时,h (x)<0,h(x)≤.要使f(x)≤ax恒成立,必须a≥.另一方面,当x>0时,x+≥2,要使ax≤x2+1恒成立,必须a≤2,满足条件的a的取值范围是[,2].(3)即需证ln b-ln a>,ln>,设=t,∵0<a<b,t>1,则需证ln t>(t>1),即需证(1+t2)ln t>2t-2,设H(t)=(1+t2)ln t-(2t-2)(t>1),H (t)=2t lnt+,H(t)在(1,+∞)上递增,H(t)>H(1)=0,(1+t2)ln t>2t-2,原不等式得证.【解析】(1)先求出g(x)=ln(x-1)-x(x>-1),然后求导确定单调区间,极值,最值即可求.(2)本小题转化为不等式组在x>0上恒成立,进一步转化为()max≤a≤(x+)min,设h(x)=,则h′(x)=,然后构造函数h(x)=,利用导数研究出h(x)的最大值,再利用基础不等式,从而可知a的取值范围.(3)即需证lnb-lna>,得ln>,设=t,则需证lnt>(t>1),设H(t)=(1+t2)lnt-(2t-2)(t>1),从而H(t)在(1,+∞)上递增,得出(1+t2)lnt>2t-2,从而原不等式得证.点评:本题考查函数最大值的求法,考查满足条件的实数的取值范围的求法,考查不等式的证明,解题时要认真审题,注意构造法、换元法、等价转化思想的合理运用.5.【答案】(1)解:∵f(x)=x2+a ln x,(a≠0),f(1)=2+a=0,a=-2;,因为x>0,所以令f(x)>0,得x>1,f(x)<0,得0<x<1,则f(x)在(0,1)上单调递减,在(1,+∞)内单调递增;证明:(2)由(1)知x2-2ln x≥f(1)=1,则,,,.【解析】本题主要考查函数的单调性、极值与其导函数之间的关系,考查不等式的证明,考查导数性质、函数的单调性、最值等基础知识.(1)由x=1为函数极值点,求导后令f′(1)=2+a=0得到a=-2,求出函数导数,通分化简,根据定义域确定f(x)的导数的正负,进而确定单调性;(2)由(1)知x2-2lnx≥1,得,推导出,由此能证明:.6.【答案】解:(1)当a=5时,f (x)=2x﹣5+==,令f (x)=0,得或x=2.当∈时,fˈ(x)>0,函数f(x)单调递增;当∈时,fˈ(x)<0,函数f(x)单调递减;当x∈(2,+∞)时,fˈ(x)>0,函数f(x)单调递增;由上可知,当时,f(x)取极大值f()=;当x=2时,f(x)取极小值f(2)=2ln2﹣6.(2)即证:当x≥1时,x2+2ln x﹣3x≥﹣2,由(1)知,当a=3时,f(x)=x2+2ln x﹣3x在(0,+∞)上是增函数,仅当x=1时,f(x)在区间[1,+∞)上有最小值f(1)=﹣2,所以当x≥1时,x2+2ln x﹣3x≥﹣2成立,即x2+2ln x≥3x﹣2.【解析】本题考查了导数的综合应用:用导数研究函数的单调性、极值、最值问题,要深刻理解导数在研究函数中的作用.(1)当a=5时,先解f′(x)=0,再判断根左右两侧导数的符号变化,由此即可得出答案.(2)当x≥1时,x2+2lnx≥3x﹣2可变为x2+2lnx﹣3x≥﹣2,从而问题可转化为求当a=3时f(x)在[1,+∞)的最小值问题.7.【答案】解:(1)由得,又,所以,曲线在点处的切线方程为;(2)证明:因为在区间定义区间上单调递增,又,,故方程有唯一的实根,设其为,并且∈,由得,即,当时,,当时,,从而当∈时,取得最小值,故,所以,成立.【解析】本题考查导数的几何意义,以及利用导数证明不等式恒成立问题,属于中档题.(1)根据导数的几何意义,求出切线的斜率,并求出切点的坐标,即可得到答案;(2)求导,得到函数的单调性,确定函数的最小值,证得最小值大于0,即可得到答案.8.【答案】解:(1)函数的定义域为,由,解得:所以函数的极小值为(2)函数的定义域为,设,则所以函数在为单调减函数,在为单调增函数,所以函数的最小值为,所以因此函数的单调增区间为,无单调减区间(3)要证:,只需证:即证:设,则,所以函数在为单调减函数,在为单调增函数,所以函数的最小值为,设,则,所以函数在为单调增函数,在为单调减函数,所以函数的最大值为,所以.【解析】本题主要考查导数的应用,利用导数研究函数的单调性与极值,不等式的证明等基础知识,考查运算能力及用函数思想分析解决问题的能力.(1)函数求导,然后令导函数等于0 ,求出x的值的值,然后根据函数的单调性与其导函数的正负之间的关系确定单调性,进而函数的极值;(2)利用函数的导数,判断导函数的符号,推出函数的单调区间即可.(3)要证:,只需证:,即证:,设,设,的最小值为,的最大值为,从而得证.9.【答案】解:(1)因为f(x)=x lnx,所以,所以,故f(x)在点(1,0)处的切线方程为y=x-1;(2)由,得,当∈时,,当∈时,,所以在上单调递增,在上单调递减,的极小值为,无极大值;(3)令,,则,且当∈时,,当∈时,,所以,当且仅当x=1时等号成立,即①,所以在单调递增,所以,即②,所以①+②得,所以f(x)+g(x)≥0恒成立.【解析】本题考查利用导数求函数在某一点的切线方程,以及利用导数研究函数的单调性,极值,证明函数恒成立等问题,所以中档题.(1)求出函数的导数,再求出,进而求出切线方程;(2)由,得,再分情况讨论导数与0的关系即可得单调区间和极值;(3)令,,则,得;,得,所以①+②得,即问题得证.10.【答案】解:(1),由题意有,解得.(2)证明:由(1)知,,设,则只需证明,,设,则,在上单调递增,∵,∵,∈,使得且当∈时,,当∈时,,当∈时,,单调递减,当∈时,,单调递增,,由,得,,设,∈,,当∈时,,在单调递减,,因此.【解析】本题考查了导数的几何意义,以及利用导数研究函数的单调性,考查导数中的函数不等式,属于较困难的题目.(1),由导数的几何意义可得a,b的值;(2)证明:由(1)知,,设,则只需证明,,设,则,分析导数的正负,,使得,且当时,,利用分类讨论思想分别对,,可得,由,得,,设,,求导分析导数的正负,可证明成立.11.【答案】解:(1)函数f (x) 定义域为(0 ,+∞) ,,所以当∈,f(x)>0,f (x) 单调递增,当,时,f(x)<0 ,f (x)单调递减,即当x=1时,f (x) 有极大值f (1)= 1 ,所以f (x) 的极大值为1,无极小值;(2)由于,所以,故要证原不等式成立,只需证: 即可,即,令,∈,则,所以函数g(x)在区间[0,+∞) 上为增函数,故在(0,+∞) 上,g (x)>g(0)=1,即,由(1)得,所以,所以 .【解析】本题考查导数与函数的综合应用,较难.(1)考查利用导数研究函数的极值问题;(2)考查利用导数证明不等式,先注意将不等式进行转化为,进而转化为研究两个函数的最值问题.12.【答案】(1)解:函数f(x)的定义域为(0,+∞),f'(x)=,当a≥0时,f'(x)>0,f(x)在(0,+∞)上单调递增,当a<0时,由f'(x)=0,得,若x∈(0,),f'(x)>0,f(x)单调递增,若x∈(,+∞),f'(x)<0,f(x)单调递减,综上,当a≥0时,f(x)在(0,+∞)上单调递增,当a<0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减;(2)证明:函数f(x)图象过点(1,0),可得a=1,此时f(x)=ln x+x-1,等价于,令g(x)=,,又函数y=xe x-1,y'=(x+1)e x,当x∈(0,+∞)时,y'>0,y=xe x-1在(0,+∞)上单调递增,由g'(x)=0,即xe x-1=0,故存在x0∈(0,+∞),使得x0e x0-1=0,此时,,故x0=-ln x0,当x∈(0,x0)时,g'(x)<0,当x∈(x0,+∞)时,g'(x)>0,当x=x0时,g(x)有最小值g(x0)==0,故成立.【解析】本题考查利用导数研究函数的单调性,利用导数证明不等式恒成立,考查运算化简的能力和分类讨论思想,属于中档题.(1)求f(x)的导数f'(x)=,按a≥0,a<0讨论f(x)的单调性即可;(2)由题意求出a,等价于,构造函数g(x)=,利用导数求g(x)的最小值即可证明.。

专题06 利用导数证明不等式(练习

专题06 利用导数证明不等式(练习

专题6 利用导数证明不等式A 组 基础巩固1.(2021·湖南高三月考)当x ∈R 时,不等式11ex x ax -≤-恒成立,则实数a 的取值范围为( )A .a =B .2a =C .2a ≥D .1a ≤≤【答案】B 【分析】先根据1x >时()0f x >判断出0a ≤,再根据1()1ex x h x ax -=-+在0x =处取最大值可求a 的值. 【详解】令1()e x x f x -=,∵1x >时()0f x >,∴0a ≤不合条件. 令1()1ex x h x ax -=-+,故()0h x ≤恒成立,又()0=0h ,∴()h x 要在0x =处取最大值,故0x =为()h x 在R 上的极大值点,故()00h '=,又2e()exx x a h x --'=,故0e 020a -=-∴2a =, 故选:B. 【点睛】关键点点睛:对于不等式的恒成立问题,注意观察其等号成立的条件,从而把恒成立问题转化为函数的最值问题.2.(2021·全国高三其他模拟)已知函数222,0,()ln(1),0,x x x f x x x ⎧---≤=⎨+>⎩若关于x 的不等式1()2f x ax a ≤+-在R 上恒成立,则实数a 的取值范围是( )A .12e -⎡⎢⎣B .12⎤⎥⎦C .12e -⎡⎢⎣D .12e ⎡⎢⎣【答案】A 【分析】不等式1()2f x ax a ≤+-在R 上恒成立的两个临界状态是12y ax a =+-与ln(1)(0)=+>y x x 相切和与222(0)y x x x =---≤相切时,故求两种状态下的a 值,即可得a 的取值范围.【详解】画出函数()f x 的图像如图所示.1()2f x ax a ≤+-在R 上恒成立即函数()y f x =的图像恒在直线12y ax a =+-的图像的下方, 且直线12y ax a =+-过定点11,2⎛⎫-- ⎪⎝⎭,当直线与ln(1)(0)=+>y x x 相切时,设切点()()00,ln 1P x x +,11y x '=+, 可得()0001ln 11211x x x ++=++,解得120e 1x =-,则直线斜率为12e -,即12e a -=;当直线与222(0)y x x x =---≤相切时,此时由21222ax a x x +-=---, 得23(2)02x a x a ++++=,令2(2)460a a ∆=+--=,得a =a =, 所以由图像可知12ea -≤≤故选:A 【点睛】方法点睛:已知不等式能恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.(2021·全国高三其他模拟)已知函数()()25xf x x e =-,()32123g x x x a =--,若()()f x g x >对x ∈R 恒成立,则a 的取值范围是( )A .4322,3e ⎛⎫-+∞ ⎪⎝⎭ B .()3,e +∞C .2324,3e ⎛⎫-+∞ ⎪⎝⎭D .()6,e +∞【答案】A 【分析】令()()()h x f x g x =-=()3212523x x e x x a --++,求导,分析导函数的正负,得所函数的单调性和最值,由不等式恒成立思想可得选项. 【详解】令()()()h x f x g x =-=()3212523x x e x x a --++,则()()()42x h x x e x '=--, 令()2x s x e x =-,则()21xs x e '=-,令()0s x '>,解得1ln 2x >,令()0s x '<,解得1ln 2x <,故()s x 在1,ln2⎛⎫-∞ ⎪⎝⎭上单调递减,在1ln ,2⎛⎫+∞ ⎪⎝⎭上单调递增,故()min11ln 1ln 022s x s ⎛⎫==-> ⎪⎝⎭. 令()0h x '>,解得4x >,令()0h x '<,解得4x <,故()h x 在(),4-∞上单调递减,在()4,+∞上单调递增,故()()4min 324203h x h e a ==-++>,解得43222a e >-, 故选:A . 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可); ② 数形结合(()y f x = 图象在()y g x = 上方即可); ③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.4.(2020·湖北武汉市·武钢三中高二期中)已知幂函数()y f x =在[0,1]x ∈的图像如图所示,对任意的1201x x 给出下列结论:①()()1212f x f x x x ->-; ②()()2112>x f x x f x ; ③()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭④()()()()12120fx f x x x ''-->正确的是( )A .①③B .②④C .②③D .③④【答案】D 【分析】由函数的图象,我们可根据2121()()f x f x x x --(图象上任意两点之间的斜率)与1的大小判断①的对错;根据11()f x x 与22()f x x (图象上任意两点与原点连线的斜率)的大小判断②的正误;再根据函数图象是凹增的,我们可判断③的真假;得到()f x '在(0,1)递增,由12x x <得:12()()f x f x '<',12()0x x -<,从而判断正误. 【详解】解:由2121()()f x f x x x ->-,可得2121()()1f x f x x x ->-, 即两点1(x ,1())f x 与2(x ,2())f x 连线的斜率大于1,显然①不正确;由2112()()x f x x f x >,得1212()()f x f x x x >,即表示两点1(x ,1())f x 、2(x ,2())f x 与原点连线的斜率的大小, 可以看出结论②错误;结合函数图象,容易判断③的结论是正确的, 结合图象函数递增的速度增大,故()f x '在(0,1)递增,由12x x <得:12()()f x f x '<',即12()()0f x f x '-'<,12()0x x -<, 所以1212[()()]()0f x f x x x '-'->,故④正确; 故选:D . 【点睛】本题考查的知识点是函数的图象和直线的斜率,解答的关键是结合函数图象分析结论中式子的几何意义,然后进行判断.5.(2021·全国高三专题练习(理))已知函数()(ln ln )x f x ae x a x x =++-,若不等式(x)x f ≥在(0,)x ∈+∞上恒成立,则实数a 的取值范围是( )A . [1,)+∞B . 2[,)e+∞C . 1[,)e+∞D . 21[,)e +∞ 【答案】C 【分析】由(x)x f ≥可得()ln ln 0ln ln 0a x x e a x x e +-++-≥+在(0,)x ∈+∞上恒成立,从而有ln ln a x x ≥-在(0,)x ∈+∞上恒成立,构造函数()ln h x x x =-,利用导数求其最大值,进而可求出实数a 的取值范围【详解】由()f x x ≥得:(ln ln )xae x a x x x ++-≥,即ln ln 1xae a x x x++-≥,∴()ln ln 0ln ln 0a x x e a x x e +-++-≥+在(0,)x ∈+∞上恒成立;∵()x g x e x =+在R 上单调递增,且()01g =,所以,()()ln ln 0g a x x g +-≥, ∴ln ln 0a x x +-≥在(0,)x ∈+∞上恒成立; ∴ln ln a x x ≥-在(0,)x ∈+∞上恒成立,构造函数()ln h x x x =-,11()1xh x x x-'=-=, 当(0,1)x ∈时,()0h x '>,()h x 单调递增;当(1,)x ∈+∞时,()0h x '<,()h x 单调递减. ∴max ()(1)1h x h ==-,∴ln 1a ≥-,解得1a e≥. 故选:C. 【点睛】方法点睛:(1)根据同构式构造新函数,利用导数判断函数单调性,是导数的常考题型之一;(2)利用单调性解不等式通常用于: ①分段函数型不等式;②复合函数型不等式;③抽象函数型不等式;④解析式较复杂的不等式.解题的一般策略是:利用函数的单调性,将函数值的的大小关系转化为自变量的关系,解不等式即可.6.(2021·浙江高三其他模拟)“0,2πα⎛⎫∈ ⎪⎝⎭”是“tan αα>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【分析】令函数tan y x x =-,求导,研究其单调性,即可得到充分性成立,取特殊值证明必要性不成立,即可得出结果. 【详解】令函数tan y x x =-,当0,2x π⎛⎫∈ ⎪⎝⎭时,2211tan 0cos y x x '=-=≥, 所以函数tan y x x =-在区间0,2π⎛⎫⎪⎝⎭上单调递增,则tan tan000αα->-=,即tan αα>,故充分;但是反之未必成立,比如取23πα=-,易知22tan 33ππ⎛⎫-=>- ⎪⎝⎭,满足tan αα>,但是不满足0,2πα⎛⎫∈ ⎪⎝⎭,所以“0,2πα⎛⎫∈ ⎪⎝⎭”是“tan αα>”的充分不必要条件,故选:A .【点睛】方法点睛: 充分条件和必要条件的三种判断方法:①定义法,即根据p q ⇒,q p ⇒进行判断;②集合法,即由p ,q 成立的对象构成的集合之间的包含关系进行判断;③等价转化法,即根据一个命题与其逆否命题真假的等价性,把要判断的命题转化为其逆否命题,再进行判断.7.(2021·全国高三月考(理))若关于x 的不等式2222+2(1)x e x a x a +>-+在(0,)+∞上恒成立,则实数a 的取值范围为( )A .[2,2]e e -B .C .[,]e e -D .[]【答案】D 【分析】不等式2222+2(1)x e x a x a +>-+可化为221()02x e x x a +--->,构造函数221()()2x g x e x x a +=---,然后利用导数求函数()g x 的最小值,使最小值大于零,可求出实数a 的取值范围 【详解】 依题意,221()02x e x x a +--->,设221()()2x g x e x x a +=---,2()1x g x e x a +'=--+,易知()'g x 在(0,)+∞上单调递增,2(0)1g e a '=+-.①当21a e ≥-时,(0)0g '≥,()0g x '≥,所以()g x 单调递增,则221(0)02g e a =-≥,即a ≤≤. ②当21a e <-时,(0)0g '<,可知存在00x >,()00,x x ∈使得()0g x '<,()g x 单调递减,()2222211(0)1022g e a e e =-<--<,所以存在()00,x x ∈,()0<g x ,故不成立.综上所述,22e a e -≤≤.故选:D8.(2021·全国高三专题练习)设实数t >0,若不等式2ln 2ln 0tx xe t+-≥对x >0恒成立,则t 的取值范围为( ) A .[12e,+∞) B .[1e,+∞) C .(0,1e] D .(0,12e] 【答案】B 【分析】先将不等式化成()2ln 22ln 2tx x txe x e ≥⋅,构造()x f x xe =,即得ln 22x t x ≥,再求解函数ln 2()2xg x x=的最大值max ()g x ,得到max ()tg x ≥即可.【详解】t >0,不等式2ln 2ln 0tx xe t+-≥即2e ln 2tx t x ≥,因为0x > ,则222ln 2tx txe x x ≥,即()2ln 22ln 2tx x txe x e ≥⋅,令()x f x xe =,则(2)(ln 2)f tx f x ≥,而()10()xf x x e '+>=,即()x f x xe =在()0,∞+上递增,故2ln2xt x ≥,即ln 22x t x ≥,令ln 2()2x g x x =,则21ln 2()2x g x x -'=,令()0g x '=得2e x =,故ln 2()2x g x x =在0,2e ⎛⎫ ⎪⎝⎭上递增,在,2e ⎛⎫+∞ ⎪⎝⎭上递减,即max ln 1()2e e g x g e e ⎛⎫=== ⎪⎝⎭, 故1≥t e. 故选:B . 【点睛】 关键点点睛:本题的解题关键在于将不等式转化为()2ln 22ln 2tx x txe x e ≥⋅,构造函数()x f x xe =转化成2ln2xt x ≥,才能再分离参数突破难点.9.(2021·浙江高三专题练习)已知()2ln 2,1,f x x x x a x e ⎡⎤=-+∈⎣⎦,曲线()y f x =在点()(),e f e 处切线的斜率为______;若()0f x ≤恒成立,则a 的取值范围为______ 【答案】0 0a ≤ 【分析】求出导函数()ln 1f x x '=-,进而可得()0f e '=,由导数的几何意义可得切线的斜率;利用导数判断函数在[)1,e 单减,(2,e e ⎤⎦单增,只需()()2100f f e ⎧≤⎪⎨≤⎪⎩,解不等式组即可求解.【详解】()ln 1f x x '=-,()0f e '=,由()201f x x e≤'⎧>⎨≤⎩得2e x e <<,()201f x x e≤'⎧<⎨≤⎩得1x e ≤<.()f x ∴在[)1,e 单减,(2,e e ⎤⎦单增,()0f x ≤恒成立,()()222120220f a f e e e a ⎧=-+≤⎪∴⎨=-+≤⎪⎩,0a ∴≤. 故答案为:0;0a ≤. 【点睛】本题考查了导数的几何意义、利用导数研究不等式恒成立问题,考查了基本知识的掌握情况,属于基础题. 18.(2021·浙江高二课时练习)已知函数()ln x f x x=. (1)函数的最大值等于________;(2)若对任意[)12,,x x a ∈+∞,都有()()121f x f x e-≤成立,则实数a 的最小值是________. 【答案】1e1 【分析】(1)求出导函数()'f x ,由导函数确定单调性,极值,得最大值; (2)若对任意[)12,,x x a ∈+∞,都有()()121f x f x e-≤成立,等价于当[,)x a ∈+∞时,max min 1()()f x f x e -≤,而由(1)在[),e +∞上10()f x e<≤,因此只要当0a e <<时,min ()0f x ≥即可得,由此可得a 的取值范围,从而得a 的最小值. 【详解】(1)函数定义域是(0,)+∞,21ln ()xf x x -'=, 0x e <<时,()0f x '>,()f x 递增,x e >时,()0f x '<,()f x 递减,∴x e =时,()f x 取得极大值也是最大值1()f e e=; (2)若对任意[)12,,x x a ∈+∞,都有()()121f x f x e-≤成立, 等价于当[,)x a ∈+∞时,max min 1()()f x f x e-≤,由(1)当a e ≥时,max 1()f x e≤,且()0f x >,满足题意;当0a e <<,()f x 在[,]a e 上递增,ln 1()a f x a e ≤≤,在[),e +∞递减,10()f x e<≤, 只要ln 0aa≥即可,∴1a e ≤<, 综上[1,)a ∈+∞,a 的最小值是1.. 故答案为:1e;1. 【点睛】本题考查用导数求函数最值,研究不等式恒成立问题,恒成立问题的解题关键转化为函数的最小值0≥,由单调性易得结论.10.(2020·山东菏泽市·高二期中)若()33f x x x m =-+,当0m =时,()f x 的极大值为______;关于x 的方程()0f x =在[]0,2上有根,则实数m 的取值范围是______. 【答案】2 []22-, 【分析】将0m =代入,对函数进行求导,结合单调性可得极值;由题意可得33m x x =-,[]02x ∈,,利用导数判断函数的单调性,由此求得m 的范围.【详解】当0m =时,()33f x x x =-,233fxx ,令()0f x '>,得1x >或1x <-;令()0f x '<,得11x -<<; 即函数()f x 在(),1-∞-和()1,+∞上单调递增,在()1,1-上单调递减; 所以()f x 的极大值为()()()311312f -=--⨯-=.关于x 的方程()0f x =在[]0,2上有根,即()33m g x x x ==-+在[]0,2上成立,由于()()()233311g x x x x '=-+=--+,当()0,1x ∈时,()0g x '>,函数()g x 单调递增; 当()1,2x ∈时,()0g x '<,函数()g x 单调递减; 而()00g =,()12g =,()12g -=-,所以()g x 的值域为[]22-,, 即实数m 的取值范围是[]22-,, 故答案为:2,[]22-,. 【点睛】本题主要考查了导数与函数单调性和极值的关系,学生对一元三次方程的图象的认识,属于中档题.B 组 能力提升11.(2020·湖南常德市一中高三月考)已知函数()f x 是定义在R 上的奇函数,当0x >时,()()1x f x e x -=-.则下列结论正确的是( ). A .当0x <时,()()1xf x ex =+B .函数()f x 有五个零点C .若关于x 的方程()f x m =有解,则实数m 的取值范围是()()22f m f -≤≤D .对12,x x ∀∈R ,()()212f x f x -<恒成立 【答案】AD 【分析】根据函数()f x 是奇函数,求出0x <时的解析式,可判断A ;利用导数求出函数()f x 在(0,)+∞上的单调区间及极值,再结合()f x 是奇函数,可作出函数()f x 在R 上的大致图象,从而可逐项判断B 、C 、D . 【详解】设0x <,则0x ->,所以()(1)x f x e x -=--,又函数()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 所以()(1)x f x e x -=--,即()(1)x f x e x =+故A 正确.当0x >时,1()x x f x e-=,所以2(1)2()()x x x x e x e x f x e e ---'==,令()0f x '=,解得2x =,当02x <<时,()0f x '>;当2x >时,()0f x '<, 所以函数()f x 在(0,2)上单调递增,在(2,)+∞上单调递减, 故当2x =时,函数()f x 取得极小值20e ->,当02x <<时,(0)(2)0f f ⋅<,又(1)0f =,故函数()f x 在(0,2)仅有一个零点1. 当2x >时,1()0x x f x e-=>,所以函数()f x 在(2,)+∞没有零点, 所以函数()f x 在(0,)+∞上仅有一个零点,函数()f x 是定义在R 上的奇函数, 故函数()f x 在(,0)-∞上仅有一个零点1-,又(0)0f =, 故函数()f x 是定义在R 上有3个零点. 故B 错误.作出函数()f x 的大致图象,由图可知若关于x 的方程()f x m =有解,则实数m 的取值范围是11m -<<. 故C 错误.由图可知,对12,x x ∀∈R ,21()()|1(1)|2f x f x -<--= 故D 正确. 故选:AD . 【点睛】本题主要考查利用函数奇偶性求函数解析式;利用导数研究函数的单调性及最值;同时也考查函数的零点,综合性较强.12.(2021·山东泰安市·高三一模)已知函数()f x 是定义在R 上的奇函数,当0x >时,()1xx f x e -=.则下列结论正确的是( ).A .当0x <时,()()1xf x ex =-+B .函数()f x 在R 上有且仅有三个零点C .若关于x 的方程()f x m =有解,则实数m 的取值范围是()()22f m f -≤≤D .12,x x ∀∈R ,()()212f x f x -< 【答案】BD 【分析】根据函数的性质结合图象,逐项判断,即可得到本题答案. 【详解】令0x <,则0x ->,所以1()(1)()x xx f x e x f x e----==-+=-,得()(1)xf x e x =+,所以选项A 错误; 观察在0x <时的图象,令()(1)(2)0x x x f x e x e e x '=++=+=,得2x =-,可知()f x 在(,2)-∞-上单调递减,在(2,0)-上递增,且在(,1)-∞-上,()0f x <,在(1,0)-上,()0f x >,由此可判断在(,0)-∞仅有一个零点,由函数的对称性可知()f x 在(0,)+∞上也有一个零点,又因为(0)0f =,故该函数有三个零点,所以选项B 正确;由图可知,若关于x 的方程()f x m =有解,则11m -<<,所以选项C 错误;由图可知,()f x 的值域为(1,1)-,所以对12,x x ∀∈R ,()()212f x f x -<恒成立,所以选项D 正确. 故选:BD【点睛】本题主要考查函数的性质和导数在研究函数中的应用,体现了数形结合的数学思想,综合性较强. 13.(2021·山东高三专题练习)函数ln ()xf x x=,则下列说法正确的是( )A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项. 由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25x y k ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】 由ln (),0x f x x x=>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,ln ()xf x x=在(0,)e 上递增,在(,)e +∞上递减,1()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<<,且()f x 在(0,)e 单调递增lnf feππ∴<<<∴>,故:B正确C.()f x m=有两个不相等的零点()()1212,x x f x f x m∴==不妨设120x e x<<<要证:212x x e<,即要证:221222,()e ex x e e f xx x<>∴<在(0,)e单调递增,∴只需证:()212ef x fx⎛⎫< ⎪⎝⎭即:()222ef x fx⎛⎫< ⎪⎝⎭只需证:()222ef x fx⎛⎫-<⎪⎝⎭……①令2()(),()eg x f x f x ex⎛⎫=->⎪⎝⎭,则2211()(ln1)g x xe x'⎛⎫=--⎪⎝⎭当x e>时,2211ln1,()0()x g x g xe x'>>∴>∴在(,)e+∞单调递增()22()0x e g x g e>∴>=,即:()222ef x fx⎛⎫->⎪⎝⎭这与①矛盾,故C错D.设25x y k==,且,x y均为正数,则25ln lnlog,logln2ln5k kx k y k====252ln,5lnln2ln5x k y k∴==1152ln2ln5ln2,ln525==且1010111153222525⎛⎫⎛⎫⎛⎫⎪>> ⎪⎪⎪⎝⎭⎝⎭⎝⎭ln2ln52502525ln2ln5x y∴>>∴<∴<,故D正确.故选:BD.【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.14.(2021·山东)已知定义在R上的函数()f x满足()()f x f x'>-,则下列式子成立的是()A .()()20192020f ef <B .()()20192020eff >C .()f x 是R 上的增函数D .0t >,则有()()tf x e f x t <+【答案】AD 【分析】由题意得()0x e f x '⎡⎤>⎣⎦,即()xe f x 为增函数,可得()()2019202020192020ef e f <,即可判断,A B ,举出反例可判断C ,根据单调性可判断D. 【详解】由()()f x f x '>-,得()()0xxe f x e f x '+>,即()0x e f x '⎡⎤>⎣⎦,所以函数()xe f x 为增函数,故()()2019202020192020ef e f <,所以()()20192020f ef <,故A 正确,B 不正确;函数()xe f x 为增函数时,()f x 不一定为增函数,如122x x x e e ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭是增函数,但12x⎛⎫ ⎪⎝⎭是减函数,所以C 不正确; 因为函数()xe f x 为增函数,所以0t >时,有()()xx te f x ef x t +<+,故有()()tf x e f x t <+成立,所以D 正确.故选:AD. 【点睛】本题主要考查了利用导数判断函数的单调性,构造函数()xe f x 是解题的关键,属于中档题.15.(2020·开原市第二高级中学高三月考)定义在()0,∞+上的函数()f x 满足()()212f x xf x x'+=,()10f =,则下列说法正确的是( )A .()f x在x =12eB .()f x 只有一个零点C .若()21f x k x<-在()0,∞+上恒成立,则2e k >D .()1f ff <<【答案】BCD 【分析】对A ,根据()()212f x xf x x'+=,()10f =,求()2ln x f x x =,求出()f x ',根据极值定义进行判断;对B ,根据()f x 单调性和零点定义,结合图象判断;对C ,要保证()21f x k x<-在()0,∞+上恒成立,即22max ln 1x k xx ⎛⎫>+ ⎪⎝⎭,通过构造函数求其最值,进行判断;对D ,根据()f x 单调性,和对数比较大小,进行判断. 【详解】 对A ,()()212f x xf x x'+=,且()0,x ∈+∞ 可得:()()212xf x x f x x'+=可得:()21x f x x '⎡⎤=⎣⎦故()2ln x f x x c =+(c 为常数)又()10f =可得:()211ln1f c =+ 求得:0c故:()2ln x f x x = 整理可得:()2ln xf x x=,()0,x ∈+∞ 24412ln 2ln ()x x xx x x x f x x x ⋅-⋅-'==43(12ln )12ln x x xx x--== 当12ln 0x ->,即12ln ln x e <解得:0x <<()0f x '>,此时()f x 单调递增当12ln 0x -=,即12ln ln x e =解得:x =()0f x '=,当12ln 0x -<,即12ln ln x e >解得:x >()0f x '<,此时()f x 单调递减∴x =()f x取得极大值,12f e e==,故A 说法错误;对B ,0x +→,()0f x <x =12f e=x →+∞,()0f x >画出()f x 草图:如图根据图象可知:()f x 只有一个零点,故B 说法正确; 对C ,要保证()21f x k x <-在()0,∞+上恒成立 即:保证()21f x k x +<在()0,∞+上恒成立()2ln x f x x =,可得22ln 1x k x x+<在()0,∞+上恒成立故:只需22max ln 1x k xx ⎛⎫>+ ⎪⎝⎭ 令21ln ()x G x x+=312ln ()xG x x --'∴=当120x e -<<时,312ln ()0xG x x--'=> 当12x e ->时,312ln ()0x G x x --'=< 当12x e -=时,312ln ()0x G x x--'== 即1122max 2121ln ()2e eG x G e e --⎛⎫+=== ⎪⎛⎫⎝⎭ ⎪⎝⎭ ∴22max ln 21e x k xx ⎛⎫>+= ⎪⎝⎭,故C 说法正确;对D,根据0x <<,()f x单调递增,x >()f x 单调递减,1<()1f f<又ln 23ff ==由26ff -=-=-=根据23lnlnln ln 0⎡⎤=-=->⎣⎦∴ff >故:()1f f f <<,故D 说法正确.综上所述,正确的说法是:BCD 故选:BCD. 【点睛】本题主要考查了根据导数求函数的单调性和极值,及其最值问题,解题关键是掌握导数求极值的方法和构造函数解决不等式恒成立的步骤,考查了分析能力和计算能力,属于难题. 16.(2021·全国高三专题练习(理))已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【答案】(1)见解析;(2)见解析 【详解】分析:(1)首先确定函数的定义域,之后对函数求导,之后对a 进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间; (2)根据()f x 存在两个极值点,结合第一问的结论,可以确定2a >,令'()0f x =,得到两个极值点12,x x 是方程210x ax -+=的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.详解:(1)()f x 的定义域为()0,+∞,()222111a x ax f x x x x -+=--+-'=.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在()0,+∞单调递减.(ii )若2a >,令()0f x '=得,x =或x =当0,,22a a x ⎛⎫⎛⎫-+∈⋃+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x ⎝⎭时,()0f x '>.所以()f x在,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以()()12122f x f x a x x -<--等价于22212ln 0x x x -+<.设函数()12ln g x x x x=-+,由(1)知,()g x 在()0,+∞单调递减,又()10g =,从而当()1,x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即()()12122f x f x a x x -<--.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.17.(2021·全国高三专题练习(文))(2018年新课标I 卷文)已知函数()e 1x f x a lnx =--. (1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1e a ≥时,()0f x ≥. 【答案】(1) a =212e;f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析. 【详解】 分析:(1)先确定函数的定义域,对函数求导,利用f ′(2)=0,求得a =212e ,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a ≥1e 时,f (x )≥e ln 1e x x --,之后构造新函数g (x )=e ln 1exx --,利用导数研究函数的单调性,从而求得g (x )≥g (1)=0,利用不等式的传递性,证得结果.详解:(1)f (x )的定义域为()0+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --. 设g (x )=e ln 1exx --,则()e 1'e x g x x =-. 当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点.故当x >0时,g (x )≥g (1)=0. 因此,当1a e≥时,()0f x ≥. 点睛:该题考查的是有关导数的应用问题,涉及到的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要保证函数的生存权,先确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果.18.(2021·全国高三专题练习(文))已知函数()21x ax x f x e+-=. (1)求曲线()y f x =在点()0,1-处的切线方程;(2)证明:当1a ≥时,()0f x e +≥. 【答案】(1)切线方程是210x y --=(2)证明见解析【分析】(1)求导,由导数的几何意义求出切线方程.(2)当a 1≥时,()12 f x e 1x x ex x e +-+≥++-(),令12gx 1x e x x +=++-,只需证明gx 0≥即可. 【详解】(1)()()2212x ax a x f x e -++'-=,()02f '=. 因此曲线()y f x =在点()0,1-处的切线方程是210x y --=.(2)当1a ≥时,()()211x x f x e x x e e +-+≥+-+.令()211x g x x x e +=+-+,则()121x g x x e +=++',()120x g x e +''=+>当1x <-时,()()10g x g '-'<=,()g x 单调递减;当1x >-时,()()10g x g '-'>=,()g x 单调递增; 所以()g x()1=0g ≥-.因此()0f x e +≥.【点睛】本题考查函数与导数的综合应用,由导数的几何意义可求出切线方程,第二问构造12g(x)1x e x x +=++-很关键,本题有难度.19.(2020·平罗中学高三期中(文))设函数2()(1)x f x x e =-.(I )讨论函数()f x 的单调性;(II )当0x ≥时,()1f x ax ≤+,求实数a 的取值范围.【答案】(I )函数()f x 在(,1)-∞和1,+)∞上单调递减,在(1)上单调递增. (II )[1,)+∞.【详解】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间;(2)对a 分类讨论,当a ≥1时,()()()11e 11x f x x x x ax =-+≤+≤+,满足条件;当0a ≤时,取()()()2000001111x f x x x ax =>-+=>+,当0<a <1时,取0x =,()()()20000111f x x x ax >-+>+.试题解析: 解(1)f ’(x )=(1-2x -x 2)e x令f’(x )=0得x ,x当x ∈(-∞,)时,f’(x )<0;当x ∈(,)时,f’(x )>0;当x ∈(f’(x )<0所以f (x )在(-∞,),(,+∞)单调递减,在()单调递增(2) f (x )=(1+x )(1-x )e x当a ≥1时,设函数h (x )=(1-x )e x ,h ’(x )= -xe x <0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以 f (x )=(x +1)h (x )≤x +1≤ax +1当0<a <1时,设函数g (x )=e x -x -1,g ’(x )=e x -1>0(x >0),所以g (x )在在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1当0<x <1,()()()211f x x x =-+,()()()221111x x ax x a x x -+--=---,取0x = 则()()()()20000000,1,110,1x x x ax f x ax ∈-+-=〉+故当 ()()00000011211a x f x x x ax ≤=〉-+=〉+时,取() 综上,a 的取值范围[1,+∞)点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.20.(2021·全国高三专题练习(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27,4e ⎡⎫-+∞⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2x x x e f x =+-,()21x f x e x '=+-, 由于()20x f x e ''=+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增. (2)由()3112f x x ≥+得,23112x e ax x x +-+,其中0x ≥, ①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,32112x e x x a x ----, 记()32112x e x x g x x ---=-,()()231212x x e x x g x x ⎛⎫---- ⎪⎝⎭'=-, 令()()21102x e x x h x x ---≥=, 则()1x h x e x '=--,()10x h x e ''=-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21102x e x x ---恒成立, 故当()0,2x ∈时,0g x,()g x 单调递增; 当()2,x ∈+∞时,0g x,()g x 单调递减; 因此,()()2max 724e g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27,4e ⎡⎫-+∞⎪⎢⎣⎭. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)试讨论 在区间 上的单调性;
(2)当 时,曲线 上总存在相异两点 , ,使得曲线 在点 , 处的切线互相平行,求证: .
(Ⅲ)求证: (其中 ,e是自然对数的底数).
28.(本小题满分14分)(注意:仙中、一中、八中的学生三问全做,其他学校的学生只做前两问)
已知函数
(Ⅰ)若 ,试确定函数 的单调区间;
(Ⅱ)若 ,且对于任意 , 恒成立,试确定实数 的取值范围;
(Ⅲ)设函数 ,求证: .
29.(本题满分16分)已知函数 为实常数).
(3)当 , 时,求证: .
7.已知函数 在 处取得极值.
(1)求实数 的值;
(2)若关于 的方程 在区间 上恰有两个不同的实数根,求实数 的取值范围;
(3)证明:对任意的正整数 ,不等式 … 都成立.
8.已知函数 ( )
(1)讨论函数 的单调性;
(2)若函数 在 处取得极值,不等式 对任意 恒成立,求实数 的取值范围;
(Ⅱ)当 时,记 ,过点 是否存在函数 图象的切线?若存在,有多少条?若不存在,说明理由;
(Ⅲ)若 是使 恒成立的最小值,对任意 ,
试比较 与 的大小(常数 ).
27.(本小题满分14分)已知函数 .
(Ⅰ)当 时,求函数 的单调区间;
(Ⅱ)当 时,函数 图象上的点都在 所表示的平面区域内,求实数a的取值范围.
(3)求证: .
24.已知函数 的最小值为0,其中 。
(1)求a的值
(2)若对任意的 ,有 成立,求实数k的最小值
(3)证明
25.已知函数 ,
(1)求函数 的单调递增区间;
(2)若不等式 在区间(0,+ 上恒成立,求 的取值范围;
(3)求证:
26.(本题满分14分)
已知函数 ( ), .
(Ⅰ)当 时,解关于 的不等式: ;
(3)当 时,证明不等式 .
9.已知函数 .
(1)证明: ;
(2)证明: .
10.已知函数f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2 (f′(x)是f(x)的导数)在区间(t,3)上总不是单调函数,求m的取值范围;
(I)当 时,求函数 在 上的最小值;
(Ⅱ)若方程 在区间 上有解,求实数 的取值范围;
(Ⅲ)证明:
(参考数据: )
30.(本题满分12分)已知函数 , .
(1)求函数 的单调区间和极值;
(2)已知函数 的图象与函数 的图象关于直线 对称;
证明:当 时,
(3)如果 且 ,证明
31.(本小题满分12分)已知函数 ( ).
利用导数证明不等式
1.(本小题满分12分)已知函数 ( ).
(1)讨论 的单调性;
(2)若 对任意 恒成立,求实数 的取值范围( 为自然常数);
(3)求证 ( , ).
2.(本小题满分10分)(1)设 ,试比较 与 的大小;
(2)是否存在常数 ,使得 对任意大于 的自然数 都成立?若存在,试求出 的值并证明你的结论;若不存在,请说明理由.
(1) ,其中 ;
(2) .
5.(本小题满分12分)已知函数 .
(1)若函数满足 ,且在定义域内 恒成立,求实数b的取值范围;
(2)若函数 在定义域上是单调函数,求实数a的取值范围;
(3)当 时,试比较 与 的大小.
6.已知 .
(1)求函数 的单调区间;
(2)若关于 的方程 有实数解,求实数 的取值范围;
(1)讨论f(x)的单调性;
(2)若a=1,证明:当x>1时,f(x)< x2- - .
16.已知 为实常数,函数 .
(1)讨论函数 的单调性;
(2)若函数 有两个不同的零点 ;
(Ⅰ)求实数 的取值范围;
(Ⅱ)求证: 且 .(注: 为自然对数的底数)
17.已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)> .
3.(本小题满分14分)
已知函数 (其中 ,e是自然对数的底数,e=2.71828…).
(Ⅰ)当 时,求函数 的极值;
(Ⅱ)若 恒成立,求实数a的取值范围;
(Ⅲ)求证:对任意正整数n,都有 .
4.(本小题满分14分)已知函数 , , 其中, 是自然对数的底数.函数 , .
(Ⅰ)求 的最小值;
(Ⅱ)将 的全部零点按照从小到大的顺序排成数列 ,求证:
(2)当 且 时,求证: .
22.已知函数 , ,( ).
(1)求函数 的极值;
(2)已知 ,函数 , ,判断并证明 的单调性;
(3)设 ,试比较 与 ,并加以证明.
23.已知 , ,
(1)若对 内的一切实数 ,不等式 恒成立,求实数 的取值范围;
(2)当 时,求最大的正整数 ,使得对 ( 是自然对数的底数)内的任意 个实数 都有 成立;
(Ⅰ)判断函数F(x)= 在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.
18.已知函数 ,其中 是自然对数的底数.
(Ⅰ)求函数 的单调区间和极值;
(Ⅱ)若函数 对任意 满足 ,求证:当 时, ;
(3)证明当 时,对任何 ,有 .
13.函数 .
(1)令 ,求 的解析式;
(2)若 在 上恒成立,求实数 的取值范围;
(3)证明: .
14.已知 .
(1)若 存在单调递减区间,求实数 的取值范围;
(2)若 ,求证:当 时, 恒成立;
(3)利用(2)的结论证明:若 ,则 .
15.设函数f(x)=lnx+ x2-(a+1)x(a>0,a为常数).
(Ⅲ)若 ,且 ,求证:
19.已知函数
(1)当 时,试讨论函数 的单调性;
(2)证明:对任意的 ,有 .
20.已知函数 ( 是常数)在 处的切线方程为 ,且 .
(Ⅰ)求常数 的值;
(Ⅱ)若函数 ( )在区间 内不是单调函数,求实数 的取值范围;
(Ⅲ)证明: .
21.已知函数 ( 且 ).
(1)当 时,求证: 在 上单调递增;
(3)求证: ×…× < (nቤተ መጻሕፍቲ ባይዱ2,n∈N*).
11.已知函数
(1)若曲线 在点 处的切线与直线 平行,求 的值;
(2)求证函数 在 上为单调增函数;
(3)设 , ,且 ,求证: .
12.设函数 的定义域是 ,其中常数 .
(1)若 ,求 的过原点的切线方程.
(2)当 时,求最大实数 ,使不等式 对 恒成立.
相关文档
最新文档