人教版初中数学第十八章平行四边形知识点
八年级平行四边形知识点总结
八年级平行四边形知识点总结平行四边形是初中数学中一个重要的几何学概念。
它涉及到面积、周长、角度、比例等多个知识点。
本文对八年级学习平行四边形所需掌握的知识点进行总结,以帮助读者更好地理解和掌握平行四边形。
1. 定义和性质
平行四边形是两对对边分别平行的四边形,具有以下性质:
(1)对边平行;
(2)相邻角互补;
(3)对角线互相平分;
(4)对边相等;
(5)对角相等。
2. 面积公式
平行四边形面积公式为 S = 底 ×高。
其中,底指平行四边形中一条边的长度,高指从这条边到与之平行的另一边的距离。
3. 周长公式
平行四边形周长公式为 P = 2a + 2b。
其中,a 和 b 分别指平行四边形相邻的两条边的长度。
4. 角度性质
(1)对角线所在直线的平行线截平行四边形所得的线段所对应的角相等。
(2)平行四边形内角和为 360 度。
(3)相邻角互补,对角相等。
5. 平行四边形的分类
(1)长方形:除了对角线之外,所有的角都是直角。
(2)正方形:对角线相等,所有边相等,所有角都是直角。
(3)菱形:四条边全等,对角线相互垂直,并平分对方角。
6. 平行线判定
(1)同侧内角和等于 180 度,说明两条直线平行。
(2)如果两条同向直线上有两个等于对应内角,则这两条直线平行。
(3)如果一条直线与两个相交的直线,对应内角相等,则这条直线平行于另一条线段。
以上是关于八年级平行四边形的知识点总结,通过对这些知识点的掌握,可以更好地理解和应用平行四边形的概念,也有利于提升数学学科成绩。
(完整版)第十八章平行四边形知识点总结
nd Sufferin 一、计算题
a 1. 如图,在菱形 ABCD 中,∠A=60°, AB =4,O 为对角线 BD 的中点,过 O 点作 OE⊥AB,垂足为 E.
ing (1) 求∠ABD 的度数; th (2)求线段 BE 的长.
D
C
me 60 o A
O EB
6. 如图,将矩形纸片 ABCD 沿 EF 折叠,使点 A 与点 C 重合,点 D 落在点 G 处, EF 为折痕. (1)求证: △≌FG△C EBC ; (2)若 AB 8,AD 4 ,求四边形 ECGF (阴影部分)的面积.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
th (1)定义:有一个角是直角 的平行四边形 是矩形。 in 注意条件:① 平行四边形; ② 一个角是直角,两者缺一不可.
(2)矩形性质:①边:对边平行且相等; ②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;
gs ④对称性:轴对称图形(对边中点连线所在直线,2 条). in (3)矩形的判定及证明四边形是矩形:方法有(3 种)
④ 设梯形 ABCD 的上底为 a,下底为 b,高为 h,则 S 梯形= 1 (a b)h . 2
re ①定义:两组对边分别平行 a ②方法 1:两组对角分别相等 ing ③方法 2:两组对边分别相等
e ④方法 3:对角线互相平分
b ⑤方法 4:一组对边平行且相等
的四边形是平行四边形
人教版初中数学八年级下册第十八章《平行四边形》教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、重要性质和判定方法。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(4)面积计算的灵活运用:学生在计算平行四边形面积时,有时难以确定底和高。
突破方法:通过讲解不同形状的平行四边形面积计算方法,让学生学会根据实际情况确定底和高,并运用到实际问题中。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行四边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状像梯子斜靠在墙上的图形?”(如平行四边形)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行四边形的奥秘。
人教版初中数学八年级下册第十八章《平行四边形》教案
一、教学内容
人教版初中数学八年级下册第十八章《平行四边形》主要包括以下内容:
1.平行四边形的定义及性质:平行四边形的定义、对边平行且相等、Байду номын сангаас角相等、对角线互相平分。
2.特殊平行四边形:矩形、菱形、正方形的性质及判定方法。
3.平行四边形的判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形。
2.提升逻辑推理能力:在学习平行四边形的判定方法及性质证明过程中,培养学生严谨的逻辑思维和推理能力。
人教版初中数学第十八章平行四边形知识点汇编
.学习-----好资料第十八章 平行四边形18.1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形 平行四边形用□“ ”表示,读作“平行四边形”.平行四边形 ABCD 记作“□ABCD”.18.1.1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点.例、已知:□ABCD 求证:AD=BC ,AB=DC ;∠A=∠C ,∠B=∠D.证明:连接 AC ,AD / /CD, AD / / BC∴∠1 = ∠2, ∠3 = ∠4又 AC 是△ABC 和△CDA 的公共边,∴ △ABC ≌△CDA ,∴ AD = CB, AB = CD, ∠B = ∠D平行四边形性质 1:平行四边形的两组对边分别相等.平行四边形性质 2:平行四边形的两组对角分别相等.例、已知:如图:□ABCD 的对角线 AC 、BD 相交于点 O.求证:OA=OC ,OB=OD .证明:四边形 ABCD 是平行四边形∴ AD=BC ,AD ∥BC.∴∠1=∠2,∠3=∠4.∴△AOD ≌△COB (ASA ).∴ OA=OC ,OB=OD .平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线之间的距离特征 1:平行线之间的距离处处相等.平行线之间的距离特征 2:夹在两条平行线之间的平行线段相等.平行四边形性质 3:平行四边形的两条对角线互相平分.例、如图,□ ABCD 中,BD ⊥AB ,AB=12cm ,AC=26cm ,求 AD 、BD 长..解:∵四边形 ABCD 是平行四边形,∴AO=CO= 1AC ,OB=OD .2∵BD ⊥AB ,∴在 △Rt A BO 中,AB=12cm ,AO=13cm .∴BO= AO 2 - AB 2 = 5 .∴BD=2B0=10cm .∴在 Rt △ABD 中,AB=12cm ,BD=10cm .∴AD= AB 2 + BD 2 = 2 61 (cm).例、如图,在□ A BCD 中,已知对角线 AC 和 BD 相交于点 △O , AOB 的周长为 25,AB=12,求对角线 AC 与 BD 的和.解:∵△AOB 的周长为 25,∴OA+BO+AB=25,又 AB=12,∴AO+OB=25-12=13,∵平行四边形的对角线互相平分,∴AC+BD=2OA+2OB=2(0A+OB)=2×13=2618.1.2 平行四边形的判定平行四边形判定 1:两组对边分别平行的四边形是平行四边形.平行四边形判定 2:两组对边分别相等的四边形是平行四边形.平行四边形判定 3:两组对角分别相等的四边形是平行四边形.平行四边形判定 4:两条对角线互相平分的四边形是平行四边形.平行四边形判定 5:一组对边平行且相等的四边形是平行四边形.中位线:连接三角形两边中点的线段叫做三角形的中位线三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半 例、 如图,在□ABCD 中,已知点 E 和点 F 分别在 AD 和 BC 上,且 AE=CF ,连结CE 和 AF ,试说明四边形 AFCE 是平行四边形.证明:∵四边形 ABCD 是平行四边形,∴AD//BC ,∵点 E 在 AD 上,点 F 在 BC 上,∴AE//CF ,E F .又∵AE=CF ,∴四边形 AFCE 是平行四边形.例、如图,E 、F 是四边形 ABCD 的对角线 AC 上的两点,AF=CE ,DF=BE ,DF ∥BE .求证:(△1)AFD ≌△CEB .(2)四边形 ABCD 是平行四边形.解:(1)∵DF ∥BE ,∴∠AFD =∠CEB . 又∵AF=CE , DF=BE ,∴△AFD ≌△CEB .(2)由(1)△AFD ≌△CEB 知 AD=BC ,∠DAF =∠BCE , ∴AD ∥BC ,∴四边形 ABCD 是平行四边形.例、如图,平行四边形 ABCD 中, 、 为边 AD 、BC 上的点,且 AE=CF ,连结 AF 、EC 、BE 、DF 交于 M 、N ,试说明:MFNE 是平行四边形.AED解:∵四边形 ABCD 是平行四边形,∴AD ∥BC , AD ∥BC又∵AE=CF ,∴ED=FB ,四边形 AFCE 是平行四边形∴AF ∥EC .同理:BE ∥FD .∴四边形 MFNE 是平行四边形.BMNFC18.2 特殊的平行四边形18.2.1 矩形矩形定义 1:有一个角是直角的平行四边形叫做矩形矩形定义 2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线 矩形性质 1:矩形的四个角都是直角.矩形性质 2:矩形的对角线相等且互相平分.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半矩形判定 1:有一个角是直角的平行四边形是矩形.矩形判定 2:有三个角是直角的四边形是矩形.矩形判定 3:对角线相等的平行四边形是矩形.例、如图,已知 AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE ,..求证:四边形 BCED 是矩形.证明:在△ABD 和△ACE 中,AB = AC ,AD = AE ,∠BAD = ∠CAE∴△ABD ≌△ACE ,∴BD=CE ,又 DE=BC ,∴四边形 BCED 为平行四边形.在△ACD 和△ABE 中,∵AC=AB ,AB=AE ,∠CAD = ∠CAB +∠ BAD = ∠CAB +∠ CAE = ∠BAE ,∴△ADC ≌△AEB∴CD=BE∴四边形 BCED 为矩形18.2.2 菱形菱形定义 1:有一组邻边相等的平行四边形叫做菱形.菱形定义 2:四条边都相等的四边形叫做菱形.菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线 菱形性质 1:菱形的四条边都相等.菱形性质 2:菱形的对角线互相垂直平分.菱形性质 3:菱形的每一条对角线平分一组对角.菱形的面积:菱形的面积等于对角线乘积的一半.推广:对角线互相垂直的四边形面积等于对角线乘积的一半.菱形判定 1:有一组邻边相等的平行四边形是菱形.菱形判定 2:四条边都相等的四边形是菱形.菱形判定 3:对角线互相垂直的平行四边形是菱形.菱形判定 4:每条对角线平分一组对角的四边形是菱形.18.2.3 正方形正方形定义 1:有一组邻边相等的矩形叫做正方形.正方形定义 2:有一个角是直角的菱形叫做正方形.正方形定义 3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线和对角线所在的直线.正方形性质 1:正方形的四个角都是直角.正方形性质 2:正方形的四条边都相等.正方形性质 3:正方形的两条对角线互相垂直平分且相等.正方形判定 1:有一组邻边相等的矩形是正方形.正方形判定 2:有一个角是直角的菱形是正方形.正方形判定 3:有一组邻边相等并且有一个角是直角的平行四边形是正方形 正方形判定 4:对角线垂直平分且相等的四边形是正方形. 例、如图,四边形 ABCD 是菱形,对角线 AC =8 cm ,BD =6 cm , DH ⊥AB 于 H ,求:DH 的长.∵四边形 ABCD 是菱形,∴ A C ⊥ BD ,OA = OC =∴AB=5cm ,1 2AC = 4cm ,OB = OD = 3cm ,∴ S 菱形ABCD = AC ⋅ BD = AB ⋅ DH ,∴ DH = AC ⋅ BD= 4.8cm .2 A B例、已知:如图,菱形ABCD 的周长为 16 cm ,∠ABC =60°,对角线 AC 和 BD相交于点 O ,求 AC 和 BD 的长.解:∵菱形 ABCD 的周长为 16cm , ∠ABC = 600∴AB=BC=4cm △, ABC 是等边三角形,∴AC=4cm ,∵AC ,BD 互相垂直平分,∴OA=2∴OB = 42 - 22 = 2 3cm∴ BD = 4 3cm例、如图,在正方形 ABCD 中,P 为对角线 BD 上一点,PE ⊥BC ,垂足为 E , PF ⊥CD ,垂足为 F ,学习-----好资料求证:EF=AP证明:连接PC,∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,∠PDA=∠PDC,在△P AD和△PCD中,AD=CD,∠PDA=∠PDC,PD=PD,∴△P AD≌△PCD,∴P A=PC,∴EF=AP,例、在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.试说明:DE=DF解:∵AB=AC,∠B=∠C∵DE⊥AB,DF⊥AC∴∠DEB≌DFC=90°∵D是BC的中点∴BD=DC∴△BDE≌△CDF∴DE=DF.例、如图,ABCD中,AE平分∠BAD交BC于E,EF∥AB交AD于F,试问:四边形ABEF是什么图形吗?请说明理由.解:四边形ABEF是菱形.理由:∵四边形ABCD是平行四边形,A F DB E C学习-----好资料∴AD∥BC,∵EF∥AB,∴四边形ABEF是平行四边形,∵AE平分∠BAD,∴∠BAE=∠FAE,∵AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴ABEF是菱形.。
初中数学:18.1.1 平行四边形的性质(人教版八年级数学下册第十八章平行四边形)
18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角的特征1.理解平行四边形的定义及有关概念。
2.能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。
3.了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。
重点:平行四边形的概念和性质。
难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法.1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.2.平行四边形的性质:(1)平行四边形的对角相等,邻角互补;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分.平行四边形的性质为以后证明线段平行或相等以及角相等提供了新的理论依据.3.推论:夹在两条平行线间的平行线段相等.探究点一:平行四边形的定义如图,在四边形ABCD中,∠B=∠D,∠1=∠2.求证:四边形ABCD是平行四边形.解析:根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD∥BC,AB∥CD,根据平行四边形的定义推出即可.证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.方法总结:平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.探究点二:平行四边形的边、角特征【类型一】利用平行四边形的性质求边长如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________.解析:∵四边形ADEF为平行四边形,∴DE=AF=2,AD=EF,AD∥EF,∴∠ACB =∠FEB.∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF.∴AD=BF,∵AB=5,∴BF=5+2=7,∴AD=7.方法总结:本题考查了平行四边形对边平行且相等的性质及等腰三角形的性质,熟练掌握各性质是解题的关键.【类型二】利用平行四边形的性质求角如图,在平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为A.35°B.55°C.25°D.30°解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.∵∠A=125°,∴∠B=55°.∵CE⊥AB于E,∴∠BEC=90°,∴∠BCE=90°-55°=35°.故选A.方法总结:平行四边形对角相等,邻角互补,并且已知一个角或已知两个邻角的关系,可求出其他角,所以利用该性质可以解决和角度有关的问题.【类型三】利用平行四边形的性质证明有关结论如图,点G 、E 、F 分别在平行四边形ABCD 的边AD 、DC 和BC 上,DG =DC ,CE =CF ,点P 是射线GC 上一点,连接FP ,EP .求证:FP =EP .解析:根据平行四边形的性质推出∠DGC =∠GCB ,根据等腰三角形性质求出∠DGC =∠DCG ,推出∠DCG =∠GCB ,根据“等角的补角相等”求出∠DCP =∠FCP ,根据“SAS”证出△PCF ≌△PCE 即可得出结论.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DGC =∠GCB .∵DG =DC ,∴∠DGC =∠DCG ,∴∠DCG =∠GCB .∵∠DCG +∠ECP =180°,∠GCB +∠FCP =180°,∴∠ECP =∠FCP .在△PCF 和△PCE =CE ,FCP =∠ECP ,=CP ,∴△PCF ≌△PCE (SAS),∴PF =PE .方法总结:平行四边形性质,等腰三角形的性质,全等三角形的性质和判定等常综合应用,利用平行四边形的性质可以解决一些相等的问题,在证明时应用较多.【类型四】判断直线的位置关系如图,在平行四边形ABCD 中,AB =2AD ,M 为AB 的中点,连接DM 、MC ,试问直线DM 和MC 有何位置关系?请证明.解析:由AB =2AD ,M 是AB 的中点的位置关系,可得出DM 、CM 分别是∠ADC 与∠BCD 的平分线.又由平行线的性质可得∠ADC +∠BCD =180°,进而可得出DM 与MC 的位置关系.解:DM 与MC 互相垂直.证明如下:∵M 是AB 的中点,∴AB =2AM .又∵AB =2AD ,∴AM =AD ,∴∠ADM =∠AMD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠AMD =∠MDC ,∴∠ADM =∠MDC ,则∠MDC =12∠ADC ,同理∠MCD =12∠BCD .∵AD ∥BC ,∴∠ADC +∠DCB =180°,∴∠MDC +∠MCD =12∠BCD +12∠ADC =90°.∵∠MDC +∠MCD +∠DMC =180°,∴∠DMC =90°,∴DM 与MC 互相垂直.方法总结:根据平行四边形的性质,将已知条件转化到同一个三角形中,即可判断两条直线的关系.探究点三:两平行线间的距离如图,已知l1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴△EGO 的面积等于△FHO 的面积.方法总结:根据两平行线间的距离可知,夹在两条平行线间的任何平行线段都相等,而后可推出两三角形同底等高,面积相等.第2课时平行四边形的对角线的特征1.探索并掌握平行四边形的性质:平行四边形的对角线互相平分.2.会运用平行四边形的性质进行推理和计算.重点:平行四边形的对角线互相平分.难点:平行四边形性质的灵活运用及几何计算题的解题表达.平行四边形的性质:(1)平行四边形的对角相等,邻角互补;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分.平行四边形的性质为以后证明线段平行或相等以及角相等提供了新的理论依据.探究点一:平行四边形的对角线互相平分【类型一】利用平行四边形对角线互相平分求线段已知▱ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△DOA的周长长5cm ,求这个平行四边形各边的长.解析:平行四边形周长为60cm ,即相邻两边之和为30cm.△AOB 的周长比△DOA 的周长长5cm ,而AO 为共用,OB =OD ,因而由题可知AB 比AD 长5cm ,进一步解答即可.解:∵四边形ABCD 是平行四边形,∴OB =OD ,AB =CD ,AD =BC .∵△AOB 的周长比△DOA 的周长长5cm ,∴AB -AD =5cm ,又∵▱ABCD 的周长为60cm ,∴AB +AD =30cm ,则AB =CD =352cm ,AD =BC =252cm.方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.【类型二】利用平行四边形对角线互相平分证明线段或角相等如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF .解析:根据平行四边形的性质得出OD =OB ,DC ∥AB ,推出∠FDO =∠EBO ,证出△DFO ≌△BEO 即可.证明:∵四边形ABCD 是平行四边形,∴OD =OB ,DC ∥AB ,∴∠FDO =∠EBO .在△DFO 和△BEO ∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO (ASA),∴OE =OF .方法总结:利用平行四边形的性质解决线段的问题时,要注意运用平行四边形的对边相等,对角线互相平分的性质.【类型三】判断直线的位置关系如图,平行四边形ABCD 中,AC 、BD 交于O 点,点E 、F 分别是AO 、CO 的中点,试判断线段BE 、DF 的关系并证明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用△FOD ≌△EOB 可得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .理由如下:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E 、F 分别是OA 、OC 的中点,∴OE =OF ,又∵∠FOD =∠EOB ,∴△FOD ≌△EOB (SAS),∴BE =DF ,∠ODF =∠OBE ,∴BE ∥DF .方法总结:在解决平行四边形的问题时,如果有对角线的条件时,则首选对角线互相平分的方法解决问题.探究点二:平行四边形的面积在▱ABCD 中,(1)如图①,O 为对角线BD 、AC 的交点.求证:S △ABO =S △CBO ;(2)如图②,设P 为对角线BD 上任一点(点P 与点B 、D 不重合),S △ABP 与S △CBP 仍然相等吗?若相等,请证明;若不相等,请说明理由.解析:(1)根据“平行四边形的对角线互相平分”可得AO =CO ,再根据等底等高的三角形的面积相等解答;(2)根据平行四边形的性质可得点A 、C 到BD 的距离相等,再根据等底等高的三角形的面积相等解答.(1)证明:在▱ABCD 中,AO =CO .设点B 到AC 的距离为h ,则S △ABO =12AO ·h ,S △CBO =12CO ·h ,∴S △ABO =S △CBO ;(2)解:S △ABP =S △CBP .理由如下:在▱ABCD 中,点A 、C 到BD 的距离相等,设为h ,则S △ABP =12BP ·h ,S △CBP =12BP ·h ,∴S △ABP =S △CBP .方法总结:平行四边形的对角线将平行四边形分成四个面积相等的三角形.另外,等底等高的三角形的面积相等.本节学习总结:1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.2.平行四边形的性质:(1)平行四边形的对角相等,邻角互补;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分.平行四边形的性质为以后证明线段平行或相等以及角相等提供了新的理论依据.3.推论:夹在两条平行线间的平行线段相等.更多内容请见:资料下载汇总表(提示:按住ctrl+鼠标左键打开链接)。
平行四边形的定义、性质与判定
平行四边形的定义、性质与判定作者:田载今来源:《中学生数理化·八年级数学人教版》2015年第03期人教版初中数学教科书的第十八章《平行四边形》的主要内容有:(一)平行四边形的定义、性质和判定;(二)特殊的平行四边形(矩形、菱形和正方形)的定义、性质和判定,通过学习这些内容,同学们将对几何图形中的一类重要图形——平行四边形有更深入的认识.一、一般平行四边形的定义、性质和判定1.定义同学们在小学数学中已经接触过平行四边形.在现实世界中,形状为平行四边形的物体比比皆是.图1是一个花坛的平面图,它由三种形状不同的平行四边形组成.每种平行四边形各有4个,安排在不同的位置上,一种几何图形的内涵式定义,是对这种图形最基本的特征的揭示.尽管有形形色色的平行四边形,但它们都有共同的最基本的特征,即“两组对边分别平行”.于是,平行四边形就被定义为:两组对边分别平行的四边形.2.性质研究图形的性质,就是在确定考查的对象是某种图形后,再考虑还有哪些结论适合于它.虽然一种图形的定义给出了这种图形的最基本的特征,但是定义本身不一定能够直接反映出这种图形的所有性质.通常,我们可以利用定义进一步推导出图形所具有的最基本特征之外的其他特性,根据平行四边形是“两组对边分别平行的四边形”,利用三角形全等就可以推导出平行四边形的“对边相等”“对角相等”“对角线互相平分”等一系列性质.在这些性质的推导过程(如图2)中,三角形这一最简单的多边形发挥了重要的作用.实际上,图形的所有性质都是由图形的定义确定的.虽然定义本身并未直接表述出所有的性质,但是在定义中已经隐含了它们.以定义为出发点,可以逐步推导出所有的性质.教科书中通常在给出一种图形的定义后,会继续讨论由它能进一步推出哪些结论,即得出经常会用到的这种图形的某些主要性质.当然,这种图形很可能还有一些教科书未曾提及的其他性质.例如,平行四边形除了具有教科书中所说的“对边平行且相等”“对角相等”“对角线互相平分”等主要性质之外,还有“对角线的平方和等于四条边的平方和”这个性质.它可以证明如下,如图3,作平行四边形ABCD的高线DE.CF.利用全等三角形可以证明AE=BF.3.判定图形的判定,是讨论图形时须研究的另一类问题.这是指,当一个对象满足哪些条件时,就可以确定它属于某种图形的范畴.例如,当一个图形满足哪些条件时,就可以确定它是平行四边形.除了用是否符合定义来判断一个对象是否属于某种图形的范畴之外,还可以通过检验对象是否满足定义以外的一些其他条件,来完成这样的判断.这样的条件叫做判定条件.所谓判定条件,就是可以由其推导出“定义巾的条件”的那些条件,例如,我们看一个四边形是否为平行叫边形,可以看它是否满足“一组对边平行且相等”或者“两组对边分别相等”或者“两组对角分别相等”或者“对角线互相平分”,因为由这些条件叶1的任何一个条件,都可以推导出四边形的“两组对边分别平行”,所以满足上述任何一个条件的四边形都是平行四边形.在得出这些判定条件的推导过程中,同样利用了全等三角形,例如,由四边形的“对角线互相平分”,通过全等三角形,可以推导出“对边互相平行”(图4).4.“性质”和“判定”的关系图形的性质和判定,是两类不同的问题,讨论一种图形的性质,是在确定对象已经是某种图形的前提下进行的;讨论一种图形的判定,是为了确定对象是某种图形.有时,在分析某个问题的过程中,这两类问题都会出现.请看下面的问题.已知在四边形ABCD中,对角线AC和BD互相平分,试问:四边形ABCD的四条边与两条对角线有什么关系?由对角线AC和BD互相平分,可以知道四边形ABCD是平行四边形.由此又可以知道AB²+BC²+CD²+DA²=AC²+BD²,即四边形ABCD的四条边的平方和等于对角线的平方和.在这个问题的分析过程中,既有“判定”又有“性质”.第一步是判定四边形ABCD是平行四边形,第二步则是应用了前面说过的平行四边形的性质,一种图形具有某条性质,是否就可以反过来把这条性质当作这种图形的一个判定条件呢?不是,并不是一种图形的每个性质都可以拿来作为这种图形的判定条件的.例如,平行四边形也具有“内角和为360°”的性质,但这是任一四边形都具有的性质,所以它并不能作为平行四边形的判定条件.有些性质是平行四边形所独有的,其他图形不具备,例如“对边相等”“对角相等”“对角线互相平分”等,这样的性质才可以反过来作为平行四边形的判定条件,二、特殊平行四边形的定义、性质和判定矩形、菱形和正方形是三种特殊的平行四边形.1.定义特殊图形的定义方式,通常是以一般图形为基础,再加上特殊图形的最基本的特征.这些特征是区别特殊图形与其他图形的标志.特殊平行四边形的定义结构:同学们会发现,矩形和菱形都是以平行四边形为基础再加上特殊限定条件而定义的,所以它们是特殊的平行四边形.而正方形显然是在四边形的基础上定义的,为什么也说它是特殊的平行四边形呢?正方形即正四边形,而正n边形统一定义为“n条边都相等,n个角都相等的n 边形”,所以正方形采川了如上的定义.但由正四边形的“四条边都相等”或“四个角都相等”,都可判定正四边形是平行四边形,所以正方形是特殊的平行四边形,而且它兼具菱形和矩形的基本特征.它是特征更多的平行四边形.四边形、平行四边形、矩形、菱形和正方形之间的关系如图5所示.图6也能表示平行四边形、矩形、菱形和正方形之间的包含和从属关系.2.性质特殊平行四边形除了具有一般平行四边形的性质之外,还有它自己的特性,从特殊平行四边形的定义出发,利用它的最基本的特征,还可以进一步得出一些其他特性.这些推导要用到一般平行四边形的性质以及全等三角形的性质等.3.判定特殊的平行四边形除了可以根据定义判定之外,还有一些其他的判定条件,推导这些判定条件要用到一般平行四边形的性质以及全等三角形的性质等,边、角和对角线是四边形中的基本元素,也是判定条件中的考查对象,只有当它们满足判定条件中的全部要求时,才能作出判定.只满足判定条件中的部分要求时,则不能下结论.例如,对角线要满足“相等”“互相垂直”“互相平分”三个条件时,才能判定四边形是正方形.如果只知道一个四边形的“对角线相等且互相垂直”,则不能轻易断定该四边形是正方形,图7的筝形就是反例,它的两条对角线相等且互相垂直,但不满足“互相平分”,显然它不是正方形,也不是平行四边形.。
人教版初中数学第十八章平行四边形知识点[3]
人教版初中数学第十八章平行四边形知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版初中数学第十八章平行四边形知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版初中数学第十八章平行四边形知识点(word版可编辑修改)的全部内容。
第十八章平行四边形18。
1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形。
平行四边形用“□”表示,读作“平行四边形”。
平行四边形ABCD记作“□ABCD”.18。
1.1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点。
例、已知:□ABCD求证:AD=BC,AB=DC;∠A=∠C,∠B=∠D。
证明:连接AC,//,//AD CD AD BC∴∠=∠∠=∠12,34又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA,∴==∠=∠,,AD CB AB CD B D平行四边形性质1:平行四边形的两组对边分别相等.平行四边形性质2:平行四边形的两组对角分别相等.例、已知:如图:□ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明:四边形ABCD是平行四边形∴ AD=BC,AD∥BC。
∴∠1=∠2,∠3=∠4.∴△AOD≌△COB(ASA).∴ OA=OC,OB=OD。
平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线之间的距离特征1:平行线之间的距离处处相等。
平行线之间的距离特征2:夹在两条平行线之间的平行线段相等。
人教版八年级数学下册知识点第十八章《平行四边形》
第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。
表示:平行四边形用“□”表示。
2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。
的顺序依次排列。
点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。
平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。
如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。
∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。
人教版初中数学第十八章知识点总结
第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质1.定义:两组对边分别平行的四边形叫做平行四边形。
平行四边形用“□”表示,平行四边形ABCD记作“□ABCD”2.平行四边形的性质:(1)平行四边形的对边相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形。
3.两条平行线的距离:两条平行线中,一条直线上任意一点到另一条直线的距离叫做这两条平行线之间的距离。
18.1.2平行四边形的判定1.定义:两组对边分别平行的四边形叫做平行四边形2.判定定理:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。
3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
4.三角形中位线定理;三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
18.2特殊的平行四边形18.2.1矩形1.定义:有一个角是直角的平行四边形叫做矩形。
2.矩形的性质:①矩形的四个角都是直角②矩形的对角线相等③矩形既是中心对称图形,又是轴对称图形。
3.直角三角形斜边上的中线等于斜边的一半。
4.矩形的判定:(1)对角线相等的平行四边形是矩形;(2)有三个角是直角的四边形是矩形。
18.2.2菱形1.菱形:有一组邻边相等的平行四边形叫做菱形。
2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;(3)菱形既是轴对称图形,又是中心对称图形。
3.菱形的判定定理:(1)对角线互相垂直的平行四边形是菱形;(2)四条边相等的四边形是菱形。
4.“对角线互相垂直的四边形面积等于两对角线乘积的一半”。
18.2.3正方形1.正方形的四条边都相等,四个角都是直角。
因此,正方形既是矩形,又是菱形。
2.正方形既有矩形的性质,又有菱形的性质。
初中数学平行四边形的性质知识点总结
初中数学平行四边形的性质知识点总结,早看早受益!初中数学平行四边形的性质知识点总结(一)知识点总结1.定义:两组对边分别平行的四边形叫平行四边形2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的邻角互补,对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:第一类:与四边形的对边有关(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;第二类:与四边形的对角有关(4)两组对角分别相等的四边形是平行四边形;第三类:与四边形的对角线有关(5)对角线互相平分的四边形是平行四边形常见考法(1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。
误区提醒(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。
初中数学平行四边形的性质知识点总结(二)知识点总结一、特殊的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。
(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。
(3)判定定理:①有一个角是直角的平行四边形叫做矩形。
②对角线相等的平行四边形是矩形。
③有三个角是直角的四边形是矩形。
直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。
2.菱形:(1)定义:邻边相等的平行四边形。
(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
八年级数学下平行四边形性质知识点
平行四边形是初中数学中非常重要的一个图形,它具有独特的性质和特点。
下面我将详细介绍平行四边形的性质知识点,帮助你更好地理解和掌握这一内容。
一、平行四边形的定义及性质:1.定义:平行四边形是具有两组对边平行的四边形。
2.性质1:对角线互相平分平行四边形的对角线互相平分,也即对角线相交于各自的中点。
这一性质可以用几何证明的方法得到。
3.性质2:对角线长相等平行四边形的对角线长相等,也即两条对角线的长度相等。
4.性质3:对边相等且对边平行平行四边形的对边相等,也即对边的长度相等;同时对边也是平行的。
5.性质4:同一边界的两角互补平行四边形的同一边界的两个内角和为180度,也即两个内角互补。
6.性质5:同一边界的两个内角相等平行四边形的同一边界的两个内角相等。
7.性质6:对角线的交点是连线两点的中点平行四边形的对角线的交点是连线两点的中点。
8.性质7:与原四边形的其他边平行且等长的线段的两内角相等对平行四边形,如果有一条与原四边形的其他边平行且等长的线段,那么这两条线段的两个内角也相等。
二、平行四边形的基本性质:1.平行四边形的对边相等,也即两组对边的长度相等。
2.平行四边形的对边平行,也即两组对边都是平行的。
3.平行四边形的任意一组对角线互相平分,也即对角线相交于各自的中点。
4.平行四边形的对角线相等,也即两条对角线的长度相等。
5.平行四边形的同一边界的两个内角和为180度,也即两个内角互补,并且同一边界的两个内角相等。
6.平行四边形的对角线的交点是连线两点的中点。
7.任意一条与平行四边形的一条边平行且等长的直线经过对角线交点后,就把平行四边形分成两个全等的三角形。
8.平行四边形的俄拉斯问题:通过平行四边形的顶点引较平行四边形的边,再连接对边的中点,可以得到四个全等的平行四边形。
三、平行四边形的几何性质应用:1.判断四边形是否为平行四边形:-判断对边是否平行-判断两组对边是否相等-判断对角线是否相等2.已知平行四边形的性质求解问题:-求平行四边形的面积-求平行四边形的周长-判断平行四边形的类型(正方形、长方形、菱形等)3.平行四边形的构造:-已知连线两点构造平行四边形-已知对角线长度构造平行四边形四、平行四边形的证明:在证明平行四边形的性质时,一般需要用到平移、对称、重叠等几何变换,以及线段的相等关系、角的性质等几何知识。
平行四边形—初中数学知识点总结
大家都要知道:两组对边分别平行的四边形叫做平行四边形。
接下来为大家整合的是初中数学四边形知识点总结。
1 平行四边形的对角相等2、平行四边形性质定理2 平行四边形的对边相等3、推论夹在两条平行线间的平行线段相等4、平行四边形性质定理3 平行四边形的对角线互相平分5、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形6、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形7、平行四边形判定定理3 对角线互相平分的四边形是平行四边形温馨提示:平行四边形还有一个不常用的判定定理是一组对边平行相等的四边形是平行四边形。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为某轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的`数轴叫做某轴或横轴,铅直的数轴叫做Y轴或纵轴,某轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学重点梳理:平行四边形
平行四边形知识定位平行四边形在初中几何或者竞赛中占据非常大的地位,平行四边形是平面几何中最重要的图形,它的有关知识是今后我们学习特殊四边形、多边形乃至立体几何的重要基础。
平行四边形的证明性质以及应用,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中平行四边形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“”表示平行四边形,例如:平行四边形ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S==⨯底高ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③ 说明四边形ABCD 的四条相等. (3)识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角. (4)识别等腰梯形的常用方法① 先说明四边形ABCD 为梯形,再说明两腰相等.② 先说明四边形ABCD 为梯形,再说明同一底上的两个内角相等. ③ 先说明四边形ABCD 为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab . ③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a . ④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .例题精讲【试题来源】 【题目】如图所示.在ABCD 中,AE ⊥BC ,CF ⊥AD ,DN=BM .求证:EF 与MN 互相平分.【答案】如下解析【解析】 证明:因为ABCD 是平行四边形,所以ADBC ,ABCD ,∠B=∠D .又AE ⊥BC ,CF ⊥AD ,所以AECF 是矩形,从而AE=CF.所以Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以△BEM≌△DFN(SAS),ME=NF.①又因为AF=CE,AM=CN,∠MAF=∠NCE,所以△MAF≌△NCE(SAS),所以 MF=NF.②由①②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.【答案】如下解析【解析】解:作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而△ABG≌△HBG(AAS),所以 AB=HB.①在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以△ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH.下面证明四边形EHCF是平行四边形.因为AD∥GH,所以∠AEG=∠BGH(内错角相等).②又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以∠AGB=∠GEH.从而EH∥AC(内错角相等,两直线平行).由已知EF∥HC,所以EHCF是平行四边形,所以FC=EH=AE.【知识点】平行四边形【适用场合】当堂练习【难度系数】3【试题来源】【题目】如图2-34所示.ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.【答案】如下解析【解析】证明:延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知∠F=∠MDC,又由已知MC=CD,所以∠MDC=∠CMD,则∠MCF=∠MDC+∠CMD=2∠F.从而∠EMC=∠F+∠MCF=3∠F=3∠BEM【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.【答案】如下解析【解析】解:延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD.①又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以∠CHG=∠CFH+∠FCH=45°,所以∠CFH=45°-∠FCH.②由①,②∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有CA=CF.【知识点】平行四边形【适用场合】当堂练习题【难度系数】3【试题来源】【题目】设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:【答案】如下解析【解析】解:如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以FA=FH.设正方形边长为a,在Rt△ADF中,所以 Rt△ABG≌Rt△HCG(AAS),所以Rt△ABG≌Rt△ADE(SAS),【知识点】平行四边形【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.【答案】如下解析【解析】证明:因为DE BC,所以四边形BCED为平行四边形,所以∠1=∠4.又BD=FD,所以所以 BC=GC=CD.因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以又所以∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.【知识点】平行四边形【适用场合】当堂练习题【难度系数】4【试题来源】【题目】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF ⊥AC于F,那么PE+PF的值为.【答案】60/13【解析】解:延长CD至M,使DM=CD,连接AM,过P作PN⊥AM,N为AM上的点.在△ACM中,AD⊥CM且CD=DM,则AD是△ACM的角平分线.则PF=PN.又在四边形ABDM中,AB平行等于DM.则为平行四边形.AM平行BD,故PE,PN在同一直线上.那么PE+PF=PE+PN=EN平行四边形ABDM面积S=ABxAD=BDxEN而BD=√(5x5+12x12)=13则EN=ABxAD/BD=5x12/13=60/13.【知识点】平行四边形【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD【答案】如下解析【解析】证明:∵PE⊥AC于E,PF⊥BC于F,∠ACB=90°,∴CEPF是矩形(三角都是直角的四边形是矩形),∴OP=OF,∠PEF+∠3=90°,∴∠1=∠3,∵PG⊥EF,∴∠PEF+∠2=90°,∴∠2=∠3,∴∠1=∠2,∵△ABC是等腰直角三角形,∴∠A=∠ABC=45°,∴∠APE=∠BPF=45°,∴∠APE+∠2=∠BPF+∠1,即∠APG=∠CPB,∵∠BPD=∠APG(对顶角相等),∴∠BPD=∠CPB,又∵PC=PD,PB是公共边,∴△PBC≌△PBD(SAS),∴BC=BD,∠PBC=∠PBD=45°,∴∠PBC+∠PBD=90°,即BC⊥BD.故证得:BC⊥BD,且BC=BD【知识点】平行四边形【适用场合】当堂练习题【难度系数】4【试题来源】【题目】如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()【答案】2【解析】解:延长AB,DC,过P分作PE⊥AE,PF⊥DF,则CF=BE,AP2=AE2+EP2,BP2=BE2+PE2,DP2=DF2+PF2,CP2=CF2+FP2,∴AP2+CP2=CF2+FP2+AE2+EP2,DP2+BP2=DF2+PF2+BE2+PE2,即AP2+CP2=DP2+BP2,代入AP,BP,CP得DP==2,【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE 和AD交于G,求证:GF∥AC.【答案】如下解析【解析】证明:连接EF.∵∠BAC=90°,AD⊥BC.∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.∴∠ABC=∠DAC,∠BAD=∠C.∵BE、AF分别是∠ABC、∠DAC的平分线.∴∠ABG=∠EBD.∵∠AGE=∠GAB+∠GBA,∠AEG=∠C+∠EBD,∴∠AGE=∠AEG,∴AG=AE,∵AF是∠DAC的平分线,∴AO⊥BE,GO=EO,∵∴△ABO≌△FBO,∴AO=FO,∴四边形AGFE是平行四边形,∴GF∥AE,即GF∥AC.【知识点】平行四边形【适用场合】当堂练习题【难度系数】4习题演练【试题来源】【题目】如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.【答案】100°【解析】解:过D作DF∥BC,且使DF=BC,连CF、EF,则四边形BDFC是平行四边形,∴BD=CF,DA∥FC,∴∠EAD=∠ECF,∵AD=CE,AE=BD=CF,∴△ADE≌△CEF(SAS)∴ED=EF,∵ED=BC,BC=DF,∴ED=EF=DF∴△DEF为等边三角形设∠BAC=x°,则∠ADF=∠ABC=,∴∠DAE=180°﹣x°,∴∠ADE=180°﹣2∠DAE=180°﹣2(180°﹣x°)=2x°﹣180°,∵∠ADF+∠ADE=∠EDF=60°∴+(2x°﹣180°)=60°∴x=100.∴∠BAC=100°.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】5【试题来源】【题目】如图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE ⊥AC于E,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论【答案】如下解析【解析】解:△MEF是等腰直角三角形.证明如下:连接AM,∵M是BC的中点,∠BAC=90°,AB=AC,∴AM=BC=BM,AM平分∠BAC.∵∠MAC=∠MAB=∠BAC=45°.∵AB⊥AC,DE⊥AC,DF⊥AB,∴DE∥AB,DF∥AC.∵∠BAC=90°,∴四边形DFAE为矩形.∴DF=AE.∵DF⊥BF,∠B=45°.∴∠BDF=∠B=45°.∴BF=FD,∠B=∠MAE=45°,∴AE=BF.∵AM=BM∴△AEM≌△BFM(SAS).∴EM=FM,∠AME=∠BMF.∵∠AMF+∠BMF=90°,∴∠AME+∠AMF=∠EMF=90°,∴△MEF是等腰直角三角形.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【答案】如下解析【解析】解:(1)证明:连接PD、PE、QD、QE.因为CE⊥AB,P是BF的中点,所以△BEF是直角三角形,且PE是Rt△BEF斜边的中线,所以PE=BF.又因为AD⊥BC,所以△BDF是直角三角形,且PD是Rt△BDF斜边的中线,所以PD=BF=PE,所以点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,所以QD=AC=QE,所以点Q也在线段DE的垂直平分线上所以直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别Rt△BDF和Rt△BEF的中线,所以PD=BF,PE=BF,所以PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,所以点Q在线段DE的垂直平分线上.所以直线PQ垂直平分线段DE.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM 与BN相交于P,求证:∠BPM=45°.【答案】如下解析【解析】解:如图,过M作ME∥AN,使ME=AN,连NE,BE,则四边形AMEN为平行四边形,∴NE=AM,ME⊥BC,∵ME=AN=CM,∠EMB=∠MCA=90°,BM=AC,∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2,∠3=∠4,∵∠1+∠3=90°,∴∠2+∠4=90°且BE=NE,∴△BEN为等腰直角三角形,∠BNE=45°,∵AM∥NE,∴∠BPM=∠BNE=45°【知识点】平行四边形【适用场合】随堂课后练习【难度系数】3。
人教版初中数学第十八章平行四边形知识点
第十八章平行四边形18.1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形.平行四边形用“□”表示,读作“平行四边形"。
平行四边形ABCD记作“□ABCD”.18.1。
1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点.例、已知:□ABCD求证:AD=BC,AB=DC;∠A=∠C,∠B=∠D.AD CD AD BC证明:连接AC,//,//∴∠=∠∠=∠12,34又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA,AD CB AB CD B D∴==∠=∠,,平行四边形性质1:平行四边形的两组对边分别相等。
平行四边形性质2:平行四边形的两组对角分别相等.例、已知:如图:□ABCD的对角线AC、BD相交于点O。
求证:OA=OC,OB=OD。
证明:四边形ABCD是平行四边形∴AD=BC,AD∥BC.∴∠1=∠2,∠3=∠4.∴△AOD≌△COB(ASA).∴OA=OC,OB=OD。
平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。
平行线之间的距离特征1:平行线之间的距离处处相等.平行线之间的距离特征2:夹在两条平行线之间的平行线段相等.平行四边形性质3:平行四边形的两条对角线互相平分。
例、如图,□ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.解:∵四边形ABCD 是平行四边形,∴AO=CO=21AC ,OB=OD . ∵BD ⊥AB,∴在Rt △A BO 中,AB=12cm ,AO=13cm .∴BO=522=-AB AO .∴BD=2B0=10cm .∴在Rt △ABD 中,AB=12cm,BD=10cm .∴AD=61222=+BD AB (cm ).例、如图,在□ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB 的周长为25,AB=12,求对角线AC 与BD 的和。
八年级下册数学平行四边形知识点
八年级下册数学平行四边形知识点平行四边形是初中数学中比较基础的一个概念,在八年级下册的数学课程中也有涉及。
平行四边形的定义是:两组平行边相对的四边形。
根据这个定义,我们可以得出以下几个平行四边形的性质。
1. 对角线互相平分平行四边形的两条对角线互相平分,即将平行四边形的任意一条对角线分成两段,两段长度相等,并且分点的连线也是平行四边形的对角线之一。
2. 对边相等平行四边形的对边相等,即平行四边形的任意两组相对的边长相等,如图所示。
这个性质可以用来判断一个四边形是否为平行四边形。
3. 钝角相等,锐角相等平行四边形的相邻两个角中,有一个是锐角,另一个则是钝角。
而且在同一平行四边形中,钝角相等,锐角相等。
这个性质可以通过平行线之间的夹角定理证明。
4. 相邻补角相等平行四边形的相邻两个角是补角,即它们的和为180度。
在同一平行四边形中,相邻两个角是相等的,因此它们的补角也是相等的。
5. 高度定理平行四边形的高度是指从一个点到与其在同一条平行线上的另一条边的垂线长度。
平行四边形的面积可以通过底边长乘以高度来求得。
除了以上五个性质外,还有一些其他的平行四边形知识点也很重要,如平移变换、旋转变换等。
这些知识点可以通过实例来加深理解。
例如,通过将一张平行四边形的图形进行平移变换,可以得到一个与原图形形状相同、大小相同、但位置不同的新图形。
如果在原图形上标注出一些点或线段,那么在进行平移变换时,这些点或线段也会进行相应的移动。
这个知识点在解决棋盘问题、填表格等方面非常实用。
总之,平行四边形是数学中一个基础且重要的概念,掌握好它的一些基本性质和知识点,不仅可以提高数学成绩,还可以在实际生活中应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章平行四边形18.1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形.平行四边形用“□”表示,读作“平行四边形”.平行四边形ABCD记作“□ABCD”.18.1.1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点.例、已知:□ABCD求证:AD=BC,AB=DC;∠A=∠C,∠B=∠D.AD CD AD BC证明:连接AC,//,//∴∠=∠∠=∠12,34又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA,AD CB AB CD B D∴==∠=∠,,平行四边形性质1:平行四边形的两组对边分别相等.平行四边形性质2:平行四边形的两组对角分别相等.例、已知:如图:□ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明:四边形ABCD是平行四边形∴AD=BC,AD∥BC.∴∠1=∠2,∠3=∠4.∴△AOD≌△COB(ASA).∴OA=OC,OB=OD.平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线之间的距离特征1:平行线之间的距离处处相等.平行线之间的距离特征2:夹在两条平行线之间的平行线段相等.平行四边形性质3:平行四边形的两条对角线互相平分.例、如图,□ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.解:∵四边形ABCD 是平行四边形,∴AO=CO=21AC ,OB=OD . ∵BD ⊥AB ,∴在Rt △A BO 中,AB=12cm ,AO=13cm .∴BO=522=-AB AO .∴BD=2B0=10cm .∴在Rt △ABD 中,AB=12cm ,BD=10cm .∴AD=61222=+BD AB (cm).例、如图,在□ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB 的周长为25,AB=12,求对角线AC 与BD 的和.解:∵△AOB 的周长为25,∴OA+BO+AB=25,又AB=12,∴AO+OB=25-12=13,∵平行四边形的对角线互相平分,∴AC+BD=2OA+2OB=2(0A+OB)=2×13=2618.1.2 平行四边形的判定平行四边形判定1:两组对边分别平行的四边形是平行四边形.平行四边形判定2:两组对边分别相等的四边形是平行四边形.平行四边形判定3:两组对角分别相等的四边形是平行四边形.平行四边形判定4:两条对角线互相平分的四边形是平行四边形.平行四边形判定5:一组对边平行且相等的四边形是平行四边形.中位线:连接三角形两边中点的线段叫做三角形的中位线三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.例、 如图,在□ABCD 中,已知点E 和点F 分别在AD 和BC 上,且AE=CF ,连结CE 和AF ,试说明四边形AFCE 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AD//BC ,∵点E 在AD 上,点F 在BC 上,∴AE//CF ,又∵AE=CF ,∴四边形AFCE 是平行四边形.例、如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE .求证:(1)△AFD ≌△CEB .(2)四边形ABCD 是平行四边形.解:(1)∵DF ∥BE , ∴∠AFD =∠CEB . 又∵AF=CE , DF=BE ,∴△AFD ≌△CEB .(2)由(1)△AFD ≌△CEB 知AD=BC ,∠DAF =∠BCE , ∴AD ∥BC ,∴四边形ABCD 是平行四边形.例、如图,平行四边形ABCD 中,E 、F 为边AD 、BC 上的点,且AE=CF ,连结AF 、EC 、BE 、DF 交于M 、N ,试说明:MFNE 是平行四边形.解:∵四边形ABCD 是平行四边形,∴AD ∥BC , AD ∥BC又∵AE=CF ,∴ED=FB ,四边形AFCE 是平行四边形∴AF ∥EC .同理:BE ∥FD .∴四边形MFNE 是平行四边形.18.2 特殊的平行四边形18.2.1 矩形矩形定义1:有一个角是直角的平行四边形叫做矩形矩形定义2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线.矩形性质1:矩形的四个角都是直角.矩形性质2:矩形的对角线相等且互相平分.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半矩形判定1:有一个角是直角的平行四边形是矩形.矩形判定2:有三个角是直角的四边形是矩形.矩形判定3:对角线相等的平行四边形是矩形.例、如图,已知AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE ,求证:四边形BCED 是矩形.证明:在△ABD 和△ACE 中,AB AC AD AE BAD CAE ==∠=∠,,∴△ABD ≌△ACE ,∴BD=CE ,又DE=BC ,∴四边形BCED 为平行四边形.在△ACD 和△ABE 中,∵AC=AB ,AB=AE ,N M F E A B C DCAD CAB BAD CAB CAE BAE∠=∠+∠=∠+∠=∠,∴△ADC≌△AEB∴CD=BE∴四边形BCED为矩形18.2.2 菱形菱形定义1:有一组邻边相等的平行四边形叫做菱形.菱形定义2:四条边都相等的四边形叫做菱形.菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线.菱形性质1:菱形的四条边都相等.菱形性质2:菱形的对角线互相垂直平分.菱形性质3:菱形的每一条对角线平分一组对角.菱形的面积:菱形的面积等于对角线乘积的一半.推广:对角线互相垂直的四边形面积等于对角线乘积的一半.菱形判定1:有一组邻边相等的平行四边形是菱形.菱形判定2:四条边都相等的四边形是菱形.菱形判定3:对角线互相垂直的平行四边形是菱形.菱形判定4:每条对角线平分一组对角的四边形是菱形.18.2.3 正方形正方形定义1:有一组邻边相等的矩形叫做正方形.正方形定义2:有一个角是直角的菱形叫做正方形.正方形定义3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线和对角线所在的直线.正方形性质1:正方形的四个角都是直角.正方形性质2:正方形的四条边都相等.正方形性质3:正方形的两条对角线互相垂直平分且相等.正方形判定1:有一组邻边相等的矩形是正方形.正方形判定2:有一个角是直角的菱形是正方形.正方形判定3:有一组邻边相等并且有一个角是直角的平行四边形是正方形.正方形判定4:对角线垂直平分且相等的四边形是正方形.例、如图,四边形ABCD 是菱形,对角线AC =8 cm ,BD =6 cm , DH ⊥AB 于H ,求:DH 的长. ∵四边形ABCD 是菱形, 1AC BD OA OC AC 4cm OB OD 3cm 2∴⊥=====,,, ∴AB=5cm , ABCD S AC BD AB DH ∴=⋅=⋅菱形,4.82AC BD DH cm AB⋅∴==. 例、已知:如图,菱形ABCD 的周长为16 cm ,∠ABC =60°,对角线AC 和BD 相交于点O ,求AC 和BD 的长.解:∵菱形ABCD 的周长为16cm ,060ABC ∠=∴AB=BC=4cm ,△ABC 是等边三角形,∴AC=4cm ,∵AC ,BD 互相垂直平分,∴OA=2224223OB cm ∴=-=43BD cm ∴=例、如图,在正方形ABCD 中,P 为对角线BD 上一点,PE ⊥BC ,垂足为E , PF ⊥CD ,垂足为F ,求证:EF =AP证明:连接PC ,∵PE ⊥BC ,PF ⊥CD ,四边形ABCD 是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF 是矩形,∴PC=EF ,∵P 是正方形ABCD 对角线上一点,∴AD=CD ,∠PDA=∠PDC ,在△PAD 和△PCD 中, AD =CD ,∠PDA =∠PDC ,PD =PD ,∴△PAD ≌△PCD ,∴PA=PC ,∴EF=AP ,例、在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.试说明:DE=DF解:∵AB=AC,∠B=∠C∵DE⊥AB,DF⊥AC∴∠DEB≌DFC= 90°∵D是BC的中点∴BD=DC∴△BDE≌△CDF∴DE=DF.例、如图,ABCD中,AE平分∠BAD交BC于E,EF∥AB交AD于F,试问:四边形ABEF是什么图形吗?请说明理由.解:四边形ABEF是菱形.理由:∵四边形ABCD是平行四边形,∴AD∥BC,∵EF∥AB,∴四边形ABEF是平行四边形,∵AE平分∠BAD,∴∠BAE=∠FAE,∵AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴▱ABEF是菱形.AB CDEF。