RK-Means Clustering K-Means with Reliability
请简述k-means算法的流程
请简述k-means算法的流程K均值聚类算法(k-means clustering algorithm)是数据挖掘中常用的一种聚类算法之一。
它是一种无监督学习算法,能够将样本数据分成K个不同的簇。
本文将简述K均值聚类算法的流程,包括初始中心点的选择、簇分配和中心点更新等步骤,具体分为以下几个部分进行描述。
一、初始中心点的选择K均值聚类算法的第一步是选择初始中心点。
中心点的选择对聚类结果有一定的影响,因此选择合适的初始中心点十分重要。
最常用的方法是随机选择K个样本作为初始中心点,也可以通过其他方法选择。
二、簇分配初始中心点确定后,下一步是将每个样本分配给最近的中心点所属的簇。
计算样本到每个中心点的距离,然后将样本分配给离它最近的中心点所属的簇。
三、中心点更新所有样本都被分配到了簇后,接下来的步骤是更新每个簇的中心点。
将属于同一簇的所有样本的坐标取平均值,得到该簇的新的中心点。
这个新的中心点将被用于下一次迭代的簇分配。
簇分配和中心点更新这两个步骤会不断重复,直到收敛。
四、收敛条件K均值聚类算法的收敛条件通常是中心点不再发生明显变动,即所有的样本分配到的簇不再发生变化,或者中心点的移动距离小于一个给定的阈值。
五、算法复杂度分析K均值聚类算法的时间复杂度主要取决于簇分配和中心点更新这两个步骤的计算量。
在每次簇分配中,对于每个样本需要计算与K个中心点的距离,因此时间复杂度为O(N*K*d),其中N为样本数目,K为簇的数目,d为样本的维度。
在每次中心点更新中,需要对每个簇中的样本进行平均计算,因此时间复杂度为O(N*d)。
总的时间复杂度为O(T*N*K*d),其中T为迭代次数。
当样本数目较大时,计算量会显著增加。
六、优化方法K均值聚类算法还有一些优化方法,可以提高算法的运行效率和准确性。
其中包括:修改初始中心点的选择方法,使用k-d 树等数据结构来加速簇分配过程,引入加权距离等。
总结而言,K均值聚类算法的流程包括初始中心点的选择、簇分配和中心点更新等步骤。
kmeans色彩聚类算法
kmeans色彩聚类算法
K均值(K-means)色彩聚类算法是一种常见的无监督学习算法,用于将图像中的像素分组成具有相似颜色的集群。
该算法基于最小
化集群内部方差的原则,通过迭代寻找最优的集群中心来实现聚类。
首先,算法随机初始化K个集群中心(K为预先设定的参数),然后将每个像素分配到最接近的集群中心。
接下来,更新集群中心
为集群内所有像素的平均值,然后重新分配像素直到达到收敛条件。
最终,得到K个集群,每个集群代表一种颜色,图像中的像素根据
它们与集群中心的距离被归类到不同的集群中。
K均值色彩聚类算法的优点是简单且易于实现,对于大型数据
集也具有较高的效率。
然而,该算法也存在一些缺点,例如对初始
集群中心的选择敏感,可能收敛于局部最优解,对噪声和异常值敏
感等。
在实际应用中,K均值色彩聚类算法常被用于图像压缩、图像
分割以及图像检索等领域。
同时,为了提高算法的鲁棒性和效果,
通常会结合其他技术和方法,如颜色直方图、特征提取等。
此外,
还有一些改进的K均值算法,如加权K均值、谱聚类等,用于解决
K均值算法的局限性。
总之,K均值色彩聚类算法是一种常用的图像处理算法,通过对图像像素进行聚类,实现了图像的颜色分组和压缩,具有广泛的应用前景和研究价值。
K-Means解析
Clustering中文翻译作“聚类”,简单地说就是把相似的东西分到一组,同Classification(分类)不同,对于一个classifier,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个classifier会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning(监督学习),而在聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此clustering通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning(无监督学习)。
举一个简单的例子:现在有一群小学生,你要把他们分成几组,让组内的成员之间尽量相似一些,而组之间则差别大一些。
最后分出怎样的结果,就取决于你对于“相似”的定义了,比如,你决定男生和男生是相似的,女生和女生也是相似的,而男生和女生之间则差别很大”,这样,你实际上是用一个可能取两个值“男”和“女”的离散变量来代表了原来的一个小学生,我们通常把这样的变量叫做“特征”。
实际上,在这种情况下,所有的小学生都被映射到了两个点的其中一个上,已经很自然地形成了两个组,不需要专门再做聚类了。
另一种可能是使用“身高”这个特征。
我在读小学候,每周五在操场开会训话的时候会按照大家住的地方的地域和距离远近来列队,这样结束之后就可以结队回家了。
除了让事物映射到一个单独的特征之外,一种常见的做法是同时提取N种特征,将它们放在一起组成一个N维向量,从而得到一个从原始数据集合到N维向量空间的映射——你总是需要显式地或者隐式地完成这样一个过程,因为许多机器学习的算法都需要工作在一个向量空间中。
那么让我们再回到clustering的问题上,暂且抛开原始数据是什么形式,假设我们已经将其映射到了一个欧几里德空间上,为了方便展示,就使用二维空间吧,如下图所示:从数据点的大致形状可以看出它们大致聚为三个cluster,其中两个紧凑一些,剩下那个松散一些。
r语言的kmeans方法
r语言的kmeans方法R语言中的k均值聚类方法(k-means clustering)是一种常用的无监督学习方法,用于将数据集划分为K个不相交的类别。
本文将详细介绍R语言中的k均值聚类算法的原理、使用方法以及相关注意事项。
原理:k均值聚类算法的目标是将数据集划分为K个簇,使得同一簇内的样本点之间的距离尽可能小,而不同簇之间的距离尽可能大。
算法的基本思想是:首先随机选择K个初始质心(簇的中心点),然后将每个样本点分配到与其最近的质心所在的簇中。
接下来,计算每个簇的新质心,再次将每个样本点重新分配到新的质心所在的簇中。
不断重复这个过程,直到质心不再发生变化或达到最大迭代次数。
最终,得到的簇就是我们需要的聚类结果。
实现:在R语言中,我们可以使用kmeans(函数来实现k均值聚类。
该函数的基本用法如下:kmeans(x, centers, iter.max = 10, nstart = 1)-x:要进行聚类的数据集,可以是矩阵、数据框或向量。
- centers:指定聚类的个数K,即要划分为K个簇。
- iter.max:迭代的最大次数,默认为10。
- nstart:进行多次聚类的次数,默认为1,选取最优结果。
聚类结果:聚类的结果包含以下内容:- cluster:每个样本所属的簇的编号。
- centers:最终每个簇的质心坐标。
- tot.withinss:簇内平方和,即同一簇内各个样本点到质心的距离总和。
示例:为了更好地理解k均值聚类的使用方法,我们将通过一个具体的示例来进行演示:```R#生成示例数据set.seed(123)x <- rbind(matrix(rnorm(100, mean = 0), ncol = 2),matrix(rnorm(100, mean = 3), ncol = 2))#执行k均值聚类kmeans_res <- kmeans(x, centers = 2)#打印聚类结果print(kmeans_res)```上述代码中,我们首先生成了一个包含两个簇的示例数据集x(每个簇100个样本点),然后使用kmeans(函数进行聚类,指定了聚类的个数为2、最后,通过print(函数来打印聚类的结果。
kmeans的聚类依据
kmeans的聚类依据摘要:一、kmeans 聚类的基本原理二、kmeans 聚类的应用场景三、kmeans 聚类的优缺点正文:一、kmeans 聚类的基本原理kmeans(K-means)聚类是一种基于距离的聚类方法,其主要思想是将数据集中的点分为K 个簇(cluster),使得每个簇的内部点之间的距离尽可能小,而不同簇之间的点之间的距离尽可能大。
kmeans 聚类的具体步骤如下:1.随机选择K 个数据点作为初始聚类中心。
2.将数据集中的每个点分配到距离它最近的聚类中心所在的簇。
3.根据上一步的结果,更新每个簇的聚类中心。
新的聚类中心是其所在簇内所有点的均值。
4.重复步骤2 和3,直到聚类中心的变化小于某个阈值或达到迭代次数限制。
二、kmeans 聚类的应用场景kmeans 聚类算法广泛应用于各种数据挖掘和分析任务中,例如:1.光伏和风力发电的典型场景分析。
通过kmeans 聚类可以找出光伏和风力发电的典型场景,从而优化能源配置和提高发电效率。
2.客户细分。
在市场营销中,通过分析客户的消费行为、偏好等数据,可以使用kmeans 聚类方法对客户进行细分,以便精准定位目标客户并制定有效的营销策略。
3.文本聚类。
在自然语言处理领域,kmeans 聚类可以用于对文本进行分类,例如新闻分类、情感分析等。
三、kmeans 聚类的优缺点kmeans 聚类算法具有以下优点:1.算法简单易懂,实现起来较为容易。
2.可以处理大规模数据集。
3.对于一些特定的数据分布,kmeans 聚类可以得到较好的结果。
然而,kmeans 聚类也存在一些缺点:1.算法的收敛性无法保证。
虽然迭代过程中聚类中心会不断更新,但无法确保最终结果是最优的。
2.对于某些数据分布,例如圆形分布,kmeans 聚类可能无法得到合理的结果。
3.需要事先指定聚类数量K,这在实际应用中可能较为困难。
k-means参数
k-means参数详解K-Means 是一种常见的聚类算法,用于将数据集划分成K 个不同的组(簇),其中每个数据点属于与其最近的簇的成员。
K-Means 算法的参数包括聚类数K,初始化方法,迭代次数等。
以下是一些常见的K-Means 参数及其详细解释:1. 聚类数K (n_clusters):-说明:K-Means 算法需要预先指定聚类的数量K,即希望将数据分成的簇的个数。
-选择方法:通常通过领域知识、实际问题需求或通过尝试不同的K 值并使用评估指标(如轮廓系数)来确定。
2. 初始化方法(init):-说明:K-Means 需要初始的聚类中心点,初始化方法决定了这些初始中心点的放置方式。
-选择方法:常见的初始化方法包括"k-means++"(默认值,智能地选择初始中心点以加速收敛)和"random"(从数据中随机选择初始中心点)。
3. 最大迭代次数(max_iter):-说明:K-Means 算法是通过迭代优化来更新聚类中心的。
max_iter 参数定义了算法运行的最大迭代次数。
-调整方法:如果算法没有收敛,你可以尝试增加最大迭代次数。
4. 收敛阈值(tol):-说明:当两次迭代之间的聚类中心的变化小于阈值tol 时,算法被认为已经收敛。
-调整方法:如果算法在较少的迭代后就收敛,可以适度增加tol 以提高效率。
5. 随机种子(random_state):-说明:用于初始化算法的伪随机数生成器的种子。
指定相同的种子将使得多次运行具有相同的结果。
-调整方法:在调试和复现实验时,可以使用相同的随机种子。
这些参数通常是实现K-Means 算法时需要关注的主要参数。
在实际应用中,还可以根据数据的特性和问题的需求来选择合适的参数值。
通常,通过尝试不同的参数组合并使用评估指标(如轮廓系数)来评估聚类结果的质量。
k均值分类
k均值分类(原创实用版)目录1.K 均值分类简介2.K 均值分类原理3.K 均值分类步骤4.K 均值分类应用实例5.K 均值分类优缺点正文1.K 均值分类简介K 均值分类(K-means Clustering)是一种基于划分的聚类方法,它是通过将数据集划分为 K 个不同的簇(cluster),使得每个数据点与其所属簇的中心点(均值)距离最小。
这种方法被广泛应用于数据挖掘、模式识别以及图像处理等领域。
2.K 均值分类原理K 均值分类的原理可以概括为以下两个步骤:(1)初始化:首先选择 K 个数据点作为初始簇的中心点。
这些中心点可以是随机选择的,也可以是通过一定方法进行选择的。
(2)迭代:计算每个数据点与各个簇中心点的距离,将数据点划分到距离最近的簇。
然后重新计算每个簇的中心点,并重复上述过程,直至中心点不再发生变化。
3.K 均值分类步骤K 均值分类的具体步骤如下:(1)确定 K 值:根据数据特点和需求确定聚类的数量 K。
(2)初始化中心点:随机选择 K 个数据点作为初始簇的中心点,也可以通过一定方法进行选择。
(3)计算距离:计算每个数据点与各个簇中心点的距离。
(4)划分簇:将数据点划分到距离最近的簇。
(5)更新中心点:重新计算每个簇的中心点。
(6)迭代:重复步骤(3)至(5),直至中心点不再发生变化。
4.K 均值分类应用实例K 均值分类在许多领域都有广泛应用,例如在图像处理中,可以将图像划分为不同的区域,以便进行后续的处理;在数据挖掘中,可以将客户划分为不同的群体,以便进行精准营销。
5.K 均值分类优缺点优点:(1)简单、易于理解;(2)可以应用于大规模数据集;(3)不需要先验知识。
kmeans 文本聚类 原理
kmeans 文本聚类原理
K均值(K-means)是一种常用的文本聚类算法,它的原理是基
于样本之间的相似度来将它们分成不同的簇。
在文本聚类中,K均
值算法首先需要将文本表示为特征向量,常用的方法包括词袋模型、TF-IDF权重等。
然后,算法随机初始化K个簇中心,接着将每个样
本分配到最近的簇中心,然后更新每个簇的中心为该簇所有样本的
平均值。
重复这个过程直到簇中心不再发生变化或者达到预定的迭
代次数。
K均值算法的核心思想是最小化簇内样本的方差,最大化簇间
样本的方差,从而实现簇内的相似度高、簇间的相似度低。
这样做
的目的是将相似的文本聚集到一起形成一个簇,并且使得不同簇之
间的文本尽可能地不相似。
需要注意的是,K均值算法对初始簇中心的选择比较敏感,可
能会收敛到局部最优解。
因此,通常会多次运行算法并选择最优的
聚类结果。
此外,K均值算法还需要事先确定簇的个数K,这通常需
要领域知识或者通过一些启发式方法来确定最佳的K值。
总的来说,K均值算法通过不断迭代更新簇中心来实现文本聚
类,其原理简单直观,易于实现。
然而,对初始簇中心的选择和簇个数的确定需要一定的经验和技巧。
简述k均值聚类的实现步骤
k均值聚类的实现步骤1. 简介k均值聚类(k-means clustering)是一种常用的无监督学习算法,用于将数据集划分为k个不重叠的类别。
该算法通过寻找数据集中各个样本之间的相似性,将相似的样本归为一类,从而实现聚类分析。
2. 算法步骤k均值聚类算法主要包含以下几个步骤:步骤1:初始化首先需要确定要划分的类别数k,并随机选择k个样本作为初始聚类中心。
这些聚类中心可以是随机选择的,也可以根据领域知识或经验来确定。
步骤2:分配样本到最近的聚类中心对于每个样本,计算它与各个聚类中心之间的距离,并将其分配到距离最近的聚类中心所代表的类别。
步骤3:更新聚类中心对于每个聚类,计算该类别内所有样本的平均值,作为新的聚类中心。
步骤4:重复步骤2和步骤3重复执行步骤2和步骤3,直到满足停止条件。
停止条件可以是达到最大迭代次数、聚类中心不再发生变化等。
步骤5:输出聚类结果k均值聚类算法输出每个样本所属的类别,即完成了对数据集的聚类分析。
3. 距离度量在k均值聚类算法中,需要选择合适的距离度量方法来计算样本之间的相似性。
常用的距离度量方法包括欧氏距离、曼哈顿距离和余弦相似度等。
欧氏距离欧氏距离是最常用的距离度量方法之一,它表示两个点在n维空间中的直线距离。
假设有两个点A(x1, y1)和B(x2, y2),则它们之间的欧氏距离为:d(A, B) = sqrt((x2 - x1)^2 + (y2 - y1)^2)曼哈顿距离曼哈顿距离是另一种常用的距离度量方法,它表示两个点在n维空间中沿坐标轴方向的绝对差值之和。
假设有两个点A(x1, y1)和B(x2, y2),则它们之间的曼哈顿距离为:d(A, B) = |x2 - x1| + |y2 - y1|余弦相似度余弦相似度是用于衡量两个向量之间的相似性的度量方法,它通过计算两个向量的夹角余弦值来确定它们的相似程度。
假设有两个向量A和B,则它们之间的余弦相似度为:sim(A, B) = (A·B) / (||A|| * ||B||)其中,A·B表示向量A和向量B的内积,||A||和||B||分别表示向量A和向量B 的模长。
簇 聚类算法
簇聚类算法簇聚类算法(Clustering Algorithm)是一种无监督学习算法,它通过对数据集进行分析,将相似的数据点划分到同一类别(簇)中。
相似度的度量通常是基于数据点之间的距离或相似性指标。
簇聚类算法的目标是找到数据集中的内在结构,从而挖掘数据之间的隐含关系。
常见的簇聚类算法有以下几种:1. K均值聚类(K-means):K均值聚类是一种基于距离的聚类算法,它将数据点划分为K 个簇,使得每个数据点与其所属簇的中心点距离最小。
算法流程包括初始化中心点、计算数据点到中心点的距离、分配数据点至所属簇、更新中心点等。
K均值聚类算法的结果取决于初始中心点的选择,可能存在多个聚类结果。
2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于距离的聚类算法,它通过不断合并相近的数据点或簇来构建树状层次结构。
层次聚类算法可分为自底向上(凝聚)和自顶向下(分裂)两种类型。
常见的层次聚类算法有凝聚层次聚类(Agglomerative Clustering)和划分层次聚类(Divisive Clustering)。
3. 密度聚类(Density-Based Clustering):密度聚类算法是一种基于密度的聚类方法,它通过计算邻域内的密度来划分簇。
常见的密度聚类算法有DBSCAN(Density-Based Spatial Clustering of Applications with Noise)、OPTICS(Ordering Points To Identify the Clustering Structure)等。
4. 模型聚类(Model-Based Clustering):模型聚类算法基于统计模型来对数据进行划分。
常见的模型聚类算法有高斯混合模型(Gaussian Mixture Model,简称GMM)和隐马尔可夫模型(Hidden Markov Model,简称HMM)等。
k-means介绍
k-means介绍
K-means是一种基于聚类的分析方式,其主要用于在给定数据集中寻找相似的数据。
K-means算法旨在将数据分为不同的簇,以便深入研究每个簇的特点。
举个例子,假设我们有一个文本数据集,其中包括1000条新闻报道。
我们无法人工阅读每一条新闻,但我们可以使用K-means算法将
相似性高的新闻组合在一起,并向用户显示每个簇中的关键字,以便
用户可以快速了解这个主题的描述和内容。
K-means的思想是,以其中一个数据点为中心,选取固定数量的K
个点,将数据点分配到最近的中心点。
将每个中心点与其所分配的数
据点的平均值作为新的中心点。
重复这个步骤,直到达到最终收敛值。
这个算法会将当前的数据分为多个簇,每个簇包含了最近的中心点及
其分配的所有数据点。
K-means算法的优缺点
K-means算法有以下优点:
1.快速:K-means算法速度非常快,易于实现。
2.有效性:效果非常好,可以很好地识别相似的数据点并将它们分配到定义的簇中。
3.适用范围广:K-means适用于几乎所有类型的数据,因此被认为是一种广泛使用的算法。
但是,K-means算法也有一些缺点,如下所示:
1.初始点的选择非常重要:如果选取的K个点不是很好,那么整个算法的结果也不会很准确。
2.对数据密度敏感:K-means对于不同密度的数据不能进行很好地处理。
3.不适用于大型数据集:当数据集很大时,K-means的算法执行效率会非常低,而且可能会产生不可接受的结果。
简述k均值聚类算法的流程
简述k均值聚类算法的流程K均值聚类算法(K-meansclusteringalgorithm)是一种基于距离计算的聚类分析算法,它是一种最广泛使用的聚类算法。
K均值算法通过计算距离确定给定数据集中样本与样本之间的相似度,进而将样本分组到类似的聚类中。
K均值聚类算法的主要流程包括数据准备、类中心的初始化、类中心的计算及划分样本的四个步骤。
第一步:数据准备K均值聚类算法的最初步是准备相应的数据。
首先,数据需要有可比较的特征,可以通过某种特征空间或者属性空间来表示。
这些特征空间可以是一维、二维、三维或者多维的,既可以是数值型的,也可以是符号型的,甚至可以是混合的,但最终要转换成数值型的,以便计算距离。
第二步:类中心的初始化当算法具备相应的数据后,就可以开始计算K均值聚类算法的第二步--类中心的初始化。
在这一步,需要根据数据类型自动确定聚类的个数K,并随机选取K个对象作为初始的聚类中心,这些随机选取的对象就被视为类中心,用来代表各个聚类。
第三步:类中心的计算第三步是类中心的计算,是K均值聚类算法的核心。
这一步的目的是计算每个聚类的中心,并以此更新类中心,从而确定数据点归属的类别。
计算类中心的算法如下:其中N表示所有数据点的个数,Ci表示第i个类中心,xi表示第i个样本点。
第四步:划分样本第四步是划分样本,即根据类中心进行样本的划分。
在划分样本之前,通常先将所有样本点距离中心最近的聚类标记出来,以确定其归属的类别。
计算每个样本点距离类中心的距离,即可以确定该样本点所在的类。
K均值聚类算法的核心在于不断的计算类中心,不断的更新类中心,以及不断重新划分样本点归属的类别,直到类中心不能再更新,或者更新的类中心重合的情况下,迭代终止。
K均值聚类算法可以智能有效地对大量复杂数据进行聚类,解决聚类分析问题。
K均值聚类算法是一种很有效的多维数据分析方法,它能够将数据集中的相似元素进行聚类,从而帮助用户更加容易地理解和管理数据。
聚类算法:K-Means和谱聚类的比较
聚类算法:K-Means和谱聚类的比较随着数据量的快速增长,聚类已成为一种最受欢迎的机器学习方法之一。
聚类算法是一种将具有类似特征的数据对象聚集在一起的技术。
这种方法通过将数据对象分组并将它们归类,可以提供数据的有意义的洞察,因为类似对象总是彼此靠近,而彼此远离不相似的对象。
在聚类中,两种最流行的算法是K-Means和谱聚类。
在这篇文章中,我们将比较这两种算法并讨论它们的优缺点。
K-Means聚类算法K-Means算法是一种非监督学习技术,它可以将数据集划分为K个不同的簇。
该算法的目的是将所有数据点划分为K组,其中每个组作为单个簇。
K-Means算法的过程包括以下步骤:1.随机选择K个中心点,这些中心点将代表数据集中的每个簇。
2.将每个数据点分配到最近的中心点,并将其划分为该簇。
3.根据每个簇中数据点的均值重新计算中心点。
4.重复步骤2,直到中心点不再发生变化或达到最大迭代次数。
谱聚类算法谱聚类是一种基于图论的聚类方法,它的主要思想是将原始数据转换为图形结构,然后通过将节点分组来执行聚类。
谱聚类包括以下步骤:1.构建相似度矩阵,它是原始数据的函数。
此步骤通常采用高斯核函数构建相似度矩阵。
2.构建拉普拉斯矩阵,它是相似度矩阵的函数。
拉普拉斯矩阵可以分为两个部分,即度矩阵D和邻接矩阵W的差值,其中度矩阵D是一个对角矩阵,它包含每个节点的度数(即与之相连的边数)。
3.对拉普拉斯矩阵进行特征分解,将其转换为对角矩阵和正交矩阵的乘积。
4.将正交矩阵的每一行作为节点表示,并对表示进行聚类。
K-Means和谱聚类的比较性能在性能方面,K-Means算法将数据分为K个簇,每次计算都需要进行迭代。
当数据集变大时,它的计算成本也相应增加。
相比之下,谱聚类方法的计算成本较高,但在数据集较小且维度较高时更有效。
可扩展性K-Means算法是一种容易实现和扩展的算法,在数据集较大时,它也非常有效。
然而,当数据的分布不同、形状不同、密度不同或噪声不同时,它的效果就变得不稳定。
k均值聚类(k-meansclustering)
k均值聚类(k-meansclustering)k均值聚类(k-means clustering)算法思想起源于1957年Hugo Steinhaus[1],1967年由J.MacQueen在[2]第⼀次使⽤的,标准算法是由Stuart Lloyd在1957年第⼀次实现的,并在1982年发布[3]。
简单讲,k-means clustering是⼀个根据数据的特征将数据分类为k组的算法。
k是⼀个正整数。
分组是根据原始数据与聚类中⼼(cluster centroid)的距离的平⽅最⼩来分配到对应的组中。
例⼦:假设我们有4个对象作为训练集,每个对象都有两个属性见下。
可根据x,y坐标将数据表⽰在⼆维坐标系中。
object Atrribute 1 (x):weight indexAttribute 2 (Y):pHMedicine A11Medicine B21Medicine C43Medicine D54表⼀原始数据并且我们知道这些对象可依属性被分为两组(cluster 1和cluster 2)。
问题在于如何确定哪些药属于cluster 1,哪些药属于cluster 2。
k-means clustering实现步骤很简单。
刚开始我们需要为各个聚类中⼼设置初始位置。
我们可以从原始数据中随机取出⼏个对象作为聚类中⼼。
然后k means算法执⾏以下三步直⾄收敛(即每个对象所属的组都不改变)。
1.确定中⼼的坐标2.确定每个对象与每个中⼼的位置3.根据与中⼼位置的距离,每个对象选择距离最近的中⼼归为此组。
图1 k means流程图对于表1中的数据,我们可以得到坐标系中的四个点。
1.初始化中⼼值:我们假设medicine A和medicine B作为聚类中⼼的初值。
⽤c1和c2表⽰中⼼的坐标,c1=(1,1),c2=(2,1)。
2对象-中⼼距离:利⽤欧式距离(d = sqrt((x1-x2)^2+(y1-y2)^2))计算每个对象到每个中⼼的距离。
机器学习中的聚类算法与降维算法
机器学习中的聚类算法与降维算法聚类算法与降维算法是机器学习中常用的技术手段,用于数据分析与预测。
聚类算法通过将数据分成不同的组别,使得同一组内的数据相似度较高,组间数据的相似度较低,降维算法则通过压缩数据维度,保留数据的主要特征,减少数据的冗余信息。
聚类算法聚类算法是一种无监督学习的方法,它将数据根据相似度进行分组。
常用的聚类算法包括K-means、层次聚类和密度聚类等。
K-means算法是一种迭代的聚类算法,它将数据分成K个不同的簇,每个簇具有相似的特征。
算法的工作原理是随机选择K个质心,然后将数据点分配到最近的质心,重新计算质心位置,直到质心位置不再变化或达到停止条件。
层次聚类算法通过不断合并或分割数据点来构建聚类层次结构。
该算法从每个数据点开始,逐步合并相似的数据点或簇,形成越来越大的簇群。
密度聚类算法以数据点的密度为基础,将高密度区域作为簇的中心。
它通过确定数据点周围的邻近点数量来判断密度,将具有足够邻近点数量的区域定义为一个簇。
降维算法降维算法通过减少数据的维度,保留数据的主要特征,以提高计算效率和模型的训练性能。
经典的降维算法有主成分分析(PCA)、线性判别分析(LDA)和t-SNE等。
主成分分析(PCA)是一种常用的降维方法,它通过线性转换将原始数据映射到一个新的坐标系上,使得新坐标系的维度低于原始数据。
PCA的目标是使得转换后的特征具有最大的方差,即保留了原始数据的主要信息。
线性判别分析(LDA)是一种监督降维方法,它通过线性变换将原始数据映射到一个新的低维空间,使得不同类别的样本尽可能地分开。
LDA的目标是最大化不同类别之间的距离,同时最小化相同类别之间的距离。
t-SNE算法是一种非线性降维方法,它通过将高维数据映射到一个低维空间,保持样本之间的相似关系。
t-SNE通过优化目标函数,使得低维空间中的样本对应于高维空间中的近邻样本。
聚类算法和降维算法在机器学习中扮演着重要的角色。
简述k-means聚类算法
简述k-means聚类算法k-means 是一种基于距离的聚类算法,它通常被用于将数据集中的对象分成若干个不同的组(簇),每个簇中的对象彼此相似,而不同簇中的对象则彼此差别较大。
该算法最早由美国数学家 J. MacQueen 在 1967 年提出,被称为“是一种对大规模数据集进行聚类分析的算法”。
K-means 算法的步骤如下:1. 随机选取 k 个中心点(centroid)作为起点。
这些中心点可以是来自于数据集的 k 个随机点,或者是由领域知识人员事先指定的。
2. 对于数据集中的每一个点,计算它和 k 个中心点之间的距离,然后将该点分配给距离最短的中心点(即所属簇)。
3. 对于每个簇,重新计算中心点的位置。
中心点位置是该簇中所有点的平均位置。
4. 重复步骤 2 和 3,直到中心点的位置不再发生变化或者达到了预设的最大迭代次数。
最终,k-means 算法会生成 k 个簇,每个簇中包含了若干个相似的对象。
使用 k-means 算法时需要注意的几点:1. 确定 k 值。
K 值的选择至关重要,因为它直接影响到聚类的效果。
如果 k 值过大,可能会导致某些簇内只有极少数的数据点,甚至完全没有数据点。
如果 k 值过小,则簇之间的差别可能会被忽略,影响聚类的精度。
因此,需要通过试错法和业务需求等多方面考虑,选择一个合适的 k 值。
2. 初始中心点的选取。
在 k-means 算法中,初始中心点的位置对聚类结果有很大的影响。
如果它们被随机选取,可能会导致算法陷入局部最优解。
因此,有些研究者提出了一些改进方法,如 K-means++ 算法等,来优化初始中心点的选取。
3. 处理异常值。
由于 k-means 算法是基于距离的,因此对于离群点(outliers)可能会产生较大的影响。
一种处理方法是将它们剔除或者加权处理。
总的来说,k-means 算法是一种简单而有效的聚类算法,可以应用于许多领域,如图像处理、自然语言处理、数据挖掘等。
k-means算法的步骤
k-means算法的步骤
K-means算法是一种常用的聚类算法,它的步骤如下所述:
1. 选择K个初始的聚类中心点。
这些中心点可以是随机选择的数据点,或者通过一些启发式方法选择。
2. 将数据集中的每个数据点分配到离它最近的聚类中心点所代表的类别中。
3. 根据分配给每个数据点的类别,重新计算每个类别的聚类中心点。
通常是取属于该类别的所有数据点的均值。
4. 重复步骤2和3,直到聚类中心点不再发生变化,或者达到预先设定的迭代次数。
5. 最终得到K个聚类中心点,以及每个数据点所属的类别。
需要注意的是,K-means算法的结果取决于初始的聚类中心点的选择,因此可能会得到局部最优解。
为了解决这个问题,可以多次运行算法并选择效果最好的结果,或者使用K-means++等改进的
初始中心点选择方法。
此外,K-means算法对异常值敏感,对初始聚类中心的选择也比较敏感,因此在使用时需要注意这些问题并进行适当的处理。
k-Means-Clustering
合肥工业大学—数学建模组k-Means ClusteringOn this page…Introduction to k-Means Clustering Create Clusters and Determine Separation Determine the Correct Number of Clusters Avoid Local MinimaIntroduction to k-Means Clusteringk-means clustering is a partitioning method. The function kmeans partitions data into k mutuallyexclusive clusters, and returns the index of the cluster to which it has assigned each observation. Unlike hierarchical clustering, k-means clustering operates on actual observations (rather than the larger set of dissimilarity measures), and creates a single level of clusters. The distinctions mean that k-means clustering is often more suitable than hierarchical clustering for large amounts of data.kmeans treats each observation in your data as an object having a location in space. It finds apartition in which objects within each cluster are as close to each other as possible, and as far from objects in other clusters as possible. You can choose from five different distance measures, depending on the kind of data you are clustering.Each cluster in the partition is defined by its member objects and by its centroid, or center. The centroid for each cluster is the point to which the sum of distances from all objects in that clusteris minimized. kmeanscomputes cluster centroids differently for each distance measure, tominimize the sum with respect to the measure that you specify.kmeans uses an iterative algorithm that minimizes the sum of distances from each object to itscluster centroid, over all clusters. This algorithm moves objects between clusters until the sum cannot be decreased further. The result is a set of clusters that are as compact and well-separated as possible. You can control the details of the minimization using several optional inputparameters to kmeans, including ones for the initial values of the cluster centroids, and for themaximum number of iterations.Create Clusters and Determine SeparationThe following example explores possible clustering in four-dimensional data by analyzing the results of partitioning the points into three, four, and five clusters.Note Because each part of this example generates random numbers sequentially, i.e., without setting a new state, you must perform all steps in sequence to duplicate the results shown. If you perform the steps out of sequence, the answers will be essentially the same, but the intermediate results, number of iterations, or ordering of the silhouette plots may differ.王刚合肥工业大学—数学建模组 First, load some data:rng('default'); % For reproducibility load kmeansdata; size(X) ans =560 4 Even though these data are four-dimensional, and cannot be easily visualized, kmeans enables you to investigate whether a group structure exists in them. Call kmeans with k, the desired number of clusters, equal to 3. For this example, specify the city block distance measure, and usethe default starting method of initializing centroids from randomly selected data points.idx3 = kmeans(X,3,'distance','city');To get an idea of how well-separated the resulting clusters are, you can make a silhouette plotusing the cluster indices output from kmeans. The silhouette plot displays a measure of howclose each point in one cluster is to points in the neighboring clusters. This measure ranges from +1, indicating points that are very distant from neighboring clusters, through 0, indicating points that are not distinctly in one cluster or another, to -1, indicating points that are probably assignedto the wrong cluster. silhouette returns these values in its first output. [silh3,h] = silhouette(X,idx3,'city'); set(get(gca,'Children'),'FaceColor',[.8 .8 1]) xlabel('Silhouette Value') ylabel('Cluster')王刚合肥工业大学—数学建模组From the silhouette plot, you can see that most points in the second cluster have a large silhouette value, greater than 0.6, indicating that the cluster is somewhat separated from neighboring clusters. However, the third cluster contains many points with low silhouette values, and the first contains a few points with negative values, indicating that those two clusters are not well separated.Determine the Correct Number of ClustersIncrease the number of clusters to see if kmeans can find a better grouping of the data. This time, use the optional 'display' parameter to print information about each iteration.idx4 = kmeans(X,4, 'dist','city', 'display','iter');iter phasenumsum115602077.4321511778.643131771.14201771.1Best total sum of distances = 1771.1Notice that the total sum of distances decreases at each iteration as kmeans reassigns pointsbetween clusters and recomputes cluster centroids. In this case, the second phase of the algorithm did not make any reassignments, indicating that the first phase reached a minimum after five iterations. In some problems, the first phase might not reach a minimum, but the second phase always will.A silhouette plot for this solution indicates that these four clusters are better separated than the three in the previous solution.[silh4,h] = silhouette(X,idx4,'city'); set(get(gca,'Children'),'FaceColor',[.8 .8 1]) xlabel('Silhouette Value') ylabel('Cluster')王刚合肥工业大学—数学建模组A more quantitative way to compare the two solutions is to look at the average silhouette values for the two cases.cluster3 = mean(silh3) cluster4 = mean(silh4) cluster3 =0.5352 cluster4 =0.6400Finally, try clustering the data using five clusters.idx5 = kmeans(X,5,'dist','city','replicates',5); [silh5,h] = silhouette(X,idx5,'city'); set(get(gca,'Children'),'FaceColor',[.8 .8 1]) xlabel('Silhouette Value') ylabel('Cluster') mean(silh5) ans =0.5266王刚合肥工业大学—数学建模组This silhouette plot indicates that this is probably not the right number of clusters, since two of the clusters contain points with mostly low silhouette values. Without some knowledge of howmany clusters are really in the data, it is a good idea to experiment with a range of values for k.Avoid Local MinimaLike many other types of numerical minimizations, the solution that kmeans reaches often depends on the starting points. It is possible for kmeans to reach a local minimum, wherereassigning any one point to a new cluster would increase the total sum of point-to-centroid distances, but where a better solution does exist. However, you can use theoptional 'replicates' parameter to overcome that problem. For four clusters, specify five replicates, and use the 'display' parameter to print out the finalsum of distances for each of the solutions.[idx4,cent4,sumdist] = kmeans(X,4,'dist','city',... 'display','final','replicates',5);Replicate 1, 4 iterations, total sum of distances = 1771.1. Replicate 2, 7 iterations, total sum of distances = 1771.1. Replicate 3, 8 iterations, total sum of distances = 1771.1. Replicate 4, 5 iterations, total sum of distances = 1771.1. Replicate 5, 6 iterations, total sum of distances = 1771.1. Best total sum of distances = 1771.1王刚合肥工业大学—数学建模组In this example, kmeans found the same minimum in all five replications. However, even forrelatively simple problems, nonglobal minima do exist. Each of these five replicates began from adifferent randomly selected set of initial centroids, so sometimes kmeans finds more than one local minimum. However, the final solution that kmeans returns is the one with the lowest totalsum of distances, over all replicates.sum(sumdist) ans =1.7711e+03王刚。
k-means聚类顺序额原理
k-means聚类顺序额原理k-means聚类是一种常用的无监督学习算法,它可以将数据样本划分成多个类别,并且每个类别内的样本之间的相似度较高,而不同类别之间的相似度较低。
k-means聚类的原理是通过迭代计算来不断更新聚类的中心点,直到达到收敛的条件。
我们需要确定聚类的个数k。
k-means聚类算法将样本划分为k个类别,每个类别都有一个中心点,即质心。
我们需要事先确定k的取值,这需要根据具体问题和数据集的特点进行选择。
一般来说,可以通过观察数据的分布情况、经验或者使用一些评估指标来确定k 的取值。
我们需要初始化k个聚类的中心点。
一种常用的初始化方法是随机选择k个样本作为聚类的中心点。
另外还有一些其他的初始化方法,如k-means++算法,可以更好地选择初始的聚类中心点,提高聚类的效果。
接下来,我们需要计算每个样本与每个聚类中心点之间的距离,并将样本分配给距离最近的聚类中心点所对应的类别。
常用的距离度量方法有欧氏距离、曼哈顿距离等。
对于每个样本,我们计算其与每个聚类中心点的距离,然后将其分配给距离最近的聚类中心点所对应的类别。
然后,我们需要根据分配的类别重新计算每个类别的中心点。
对于每个类别,我们将其包含的样本的特征值求平均,得到该类别的新的中心点。
这个过程称为更新聚类中心点。
接着,我们需要判断聚类的中心点是否发生了变化。
如果中心点没有发生变化,即聚类已经收敛,算法结束。
否则,我们需要继续迭代计算。
在迭代过程中,我们将不断更新聚类中心点,重新分配样本,直到达到收敛的条件。
我们得到了k个聚类中心点,以及每个样本所属的类别。
我们可以根据需要对聚类结果进行进一步的分析和应用。
例如,可以根据聚类结果进行数据可视化、模式识别、推荐系统等。
总结一下,k-means聚类算法的原理是通过迭代计算来不断更新聚类的中心点,直到达到收敛的条件。
它是一种常用的无监督学习算法,可以将数据样本划分成多个类别,并且每个类别内的样本之间的相似度较高,而不同类别之间的相似度较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
96IEICE TRANS.INF.&SYST.,VOL.E91–D,NO.1JANUARY2008PAPERRK-Means Clustering:K-Means with ReliabilityChunsheng HUA†∗,Qian CHEN†,Nonmembers,Haiyuan WU†a),and Toshikazu W ADA†,MembersSUMMARY This paper presents an RK-means clustering algorithmwhich is developed for reliable data grouping by introducing a new reli-ability evaluation to the K-means clustering algorithm.The conventionalK-means clustering algorithm has two shortfalls:1)the clustering resultwill become unreliable if the assumed number of the clusters is incorrect;2)during the update of a cluster center,all the data points belong to thatcluster are used equally without considering how distant they are to thecluster center.In this paper,we introduce a new reliability evaluation toK-means clustering algorithm by considering the triangular relationshipamong each data point and its two nearest cluster centers.We applied theproposed algorithm to track objects in video sequence and confirmed itseffectiveness and advantages.key words:robust clustering,reliability evaluation,K-means clustering,data classification1.IntroductionClustering algorithms can partition a data set into c groupsto reveal its nature structure.K-means(KM)[25]is a“Hard”algorithm that un-equivocally assign each vector in the data set into one ofc subsets,where c is a natural number.Given a data setX={x1,x2,...,x n},the K-means algorithm computes c pro-totypes w=(w c)which minimize the average distance be-tween each vector and its closest prototype:E(w)=ni=1(x i−w s i(w))2,(1)where s i(w)denotes the subscript of the closest prototype to vector x i.The prototypes can be computed iteratively with the following equation until w reaches afixed point.w k =1N ki:k=s i(w)x i,(2)K-means clustering has been widely applied to the image segmentation[22]–[24].Recently,it has also been used for object tracking[17],[18],[20].Fuzzy and possibilistic clustering generate a member-ship matrix U,where its elements u ik indicates that the mem-bership of x k in cluster i.The Fuzzy C-Means algorithm Manuscript received May2,2006.Manuscript revised December5,2006.†The authors are with the Faculty of System Engineering, Wakayama University,Wakayama-shi,640–8510Japan.∗Presently,with the Institute of Scientific and Industrial Re-search,Osaka University.a)E-mail:wuhy@sys.wakayama-u.ac.jpDOI:10.1093/ietisy/e91–d.1.96(FCM)[1],[2],[16]is the most popular fuzzy clustering al-gorithm.It assumes that the number of clusters c,is known as a priori,and minimizesE f cm=ci=1nk=1u mikx k−w i 2,(3)subject to the n probabilistic constrains,ci=1u ik=1;k=1,...,n,(4)here,m>1is the fuzzifier.FCM provides the matrices U and W(W=(w1,w2,...,w c))that indicate the membership of each vector in each cluster and the center of each cluster respectively.The conditions for local extreme for Eqs.(3) and(4)are,u ik=⎛⎜⎜⎜⎜⎜⎝cj=1m−1d2ikd2jk⎞⎟⎟⎟⎟⎟⎠−1,(5) andw i=nk=1u mikx knk=1u mik.(6)In many applications of K-means or FCM clustering, the data set contains noisy ing the above cluster-ing methods,every vector in the data set is assigned to one or more clusters,even if it is a noisy one.These clustering methods are not able to distinguish the noisy vectors from the rest vectors in the data set,and those noisy vectors will attract the cluster centers towards them.Therefore,these clustering methods are sensitive to noise.A good K-means (or C-means)clustering method should be robust so that it can determine good clusters for noisy data sets.Several ro-bust clustering methods have been proposed[3]–[15],and a comprehensive review can be found in[3].The Noise Cluster Approach[4]introduces an addi-tional cluster called noise cluster to collect the outliers(an outlier is a distant vector from all the clusters).The distance between any vectors and the noise cluster is assumed to be the same.This distance can be considered as a threshold.If the distance between a vector and all the clusters is longer than this threshold,it will be attracted to the noise cluster thus classified as an outlier.When all the c clusters have about the same sizes and the size is known,the noise clusterCopyright c 2008The Institute of Electronics,Information and Communication EngineersHUA et al.:RK-MEANS CLUSTERING:K-MEANS WITH RELIABILITY97approach is very effective.When the clusters have different sizes or the size is unknown,this approach will not perform well because it only has one threshold and there is not a method tofind a good threshold value for a given data set.The Possibilistic C-Means Algorithm(PCM)[5],[6] computes a matrix of possibilistic membership T.The el-ement t i j of T indicates the possibilistic membership of vec-tor x j belongs to i th cluster.Although PCM seems better than FCM and hard K-means clustering approach,it often finds identical clusters.Jolion[13]proposed an approach called the General-ized Minimum V olume Ellipsoid Method(GMVE).In the GMVE approach,onefinds a minimum volume ellipsoid that covers(at least)h vectors of the data set X.After that, itfinds the best cluster by reducing the value of h gradu-ally.This approach is computationally expensive and needs to specify several threshold parameters.Moreover,when the cluster shapes to be detected cannot be described by ellip-soids,this approach would not work.Chintalapudi[10]proposed an approach called Credi-bility Fuzzy C-Means method(CFCM).It assigns a cred-ibility value for each vector x k according the ratio of the distance between it and its closest cluster to the distance between the farthest vector and its closest cluster.If the farthest outlier is much farther than the rest outliers,this approach will assign high credibility values to most of the outliers.In this case,CFCM would not work well.2.RK-Means Clustering2.1ReliabilityBoth the K-means and fuzzy C-means clustering(FCM)al-gorithm(including its extensions)assume that the number (c)of the clusters of a data set is known.In the real world, a data set may contain many noisy vectors and the number of clusters of it is often unknown.The noisy vectors and the data vectors that do not belong to any of the assumed clusters are often very distant from any of the c prototypes (thus called outliers),so it would not be meaningful to as-sign them a cluster number for K-means algorithm or a high membership value to any of the c clusters for FCM.We attempt to decrease the outlier sensitivity in K-means clustering by introducing a new variable reliability to distinguish an outlier from a non-outlier.Since outliers are distant from any of the c prototypes,the distance between a data vector and its closest prototype should be taken into ac-count in order to tell whether the vector is an outlier or not. Existing methods such as noise cluster approach[4]or cred-ibility fuzzy C-means algorithm use that distance to tell an outlier from a non-outlier.However,the distance between a data vector and its nearest cluster center can not be a mea-sure of outlier by itself.To tell if a data vector is an outlier or not,one should consider both the distance between a data vector and its nearest cluster center and the structure of the cluster centers,that is the distance between cluster centers.As shown in Fig.1,where w1and w2are twoclusterFig.1Introduce the concept of reliability. centers,and x1and x2are two data vectors.In thefigure, if we only look at the distance from a vector(x1or x2) to its closest cluster center(w1),we can only say that x2 is closer to w1than x1.However,no conclusions can be drawn from the value d11and d21as which of the vectors is more like an outlier.By considering the shape of the trian-gle x1w1w2and x2w1w2,that is the relation among three distances(d11,d12,d w12),and the one among(d21,d22,d w12),we can say that x1should be considered as an outlier while x2should not be.In this paper we denote the data set as X,its n vectors as{x k}n k=1and the cluster centers w i,i=1,...,c.We define reliability for a data vector x k asR k=w f(xk)−w s(x k)d f k+d sk,(7) whered k f= x k−w f(x k) ,d ks= x k−w s(x k) ,(8)f(x k)and s(x k)are the subscript of the closest and the sec-ondly closest cluster centers to vector x k:f(x k)=argmini=1,...,c( x k−w i ),s(x k)=argmini=1,...,c,i f( x k−w i ).(9)The farther x k is from its nearest cluster center,the lower is its reliability.The value of this reliability is not determined by the distance between x k and its nearest clus-ter center itself.Instead,it is determined by using the dis-tance between the two nearest cluster centers to measure how distant that x k from the two nearest cluster centers.This makes the reliability evaluation becoming more reasonable than only use the distance from a data vector to its nearest cluster center.2.2Degree of ReversionFor each data vector,fuzzy C-means algorithm computes c memberships that indicate the degrees of the vector belong to the c clusters.This is computationally expensive,espe-cially for real-time video image processing.In this research,98IEICE TRANS.INF.&SYST.,VOL.E91–D,NO.1JANUARY2008we use a simple method to evaluate the degree of a vectorbelongs to its closest cluster to achieve realistic clusteringthan“hard”techniques while keeping the computation costto be low.The degreeμk of a vector x k belongs to its closestcluster is computed from the distance from it to its closest(d k f)and the secondly closest(d ks)cluster centers:μk=d ksd k f+d ks,(10)Since R k–the reliability of x k–indicates how reliable that x kcan be classified,the possibility that x k belongs to its closestcluster can be computed as the product of R k andμk.t k=R k∗μk.(11)2.3RK-Means Clustering AlgorithmRK-means clustering algorithm partitions X by minimizingthe following objective function:J rkm(w)=nk=1t k x k−w f(x k) 2,(12)The cluster centers w can be obtained by solving the equa-tion∂J rkm(w)∂w=0(13)The existence of the solution to Eq.(13)can be proved eas-ily if the Euclidean distance is assumed.To solve this equa-tion,wefirst compute an approximate w with the following equation:w j=nk=1δj(x k)t k x knk=1δj(x k)t k(x k).(14)whereδj(x k)=1if j=f(x k)0otherwise(15)Then w can be obtained by applying Newton’s algo-rithm using the result of Eq.(14)as the initial values.The RK-means clustering algorithm is summarized as follows:1)Initializationi)given the number of clusters c andii)given an initial value to each cluster center w i,i= 1,...,c.The initialization can be done by applying K-means or fuzzy c-means approaches,or performed manually.2)Iterationwhile w i,i=1,...,c do not reachfixed points,Doi)calculate f(x k)and s(x k)for each x k.ii)update w i,i=1,...,c by solving Eq.(13).3.Object Tracking Using RK-Means AlgorithmThe RK-means can be used for realizing robust object track-ing in video sequences.(see Fig.2).Because the most im-portant thing while object tracking is to classify the un-known pixels into target or background clusters,object tracking can be considered as a binary classification.There-fore,thefirst and second closest clusters in RK-means clus-tering algorithm will be replaced by the target and back-ground clusters.Since it is more important to tell if the unknown pixel belongs to the target cluster or not,thefirst closest cluster will be considered as the target cluster,and naturally second closest cluster is the background cluster.Each pixel within the search area will be classified into target and background clusters with the RK-means cluster-ing algorithm.Noise pixels that neither belong to target nor background clusters will be given low reliability and ig-nored.Pixels belong to the target group is farther divided into N target clusters,each of them describes the target pix-els having similar color.The pixels belonging to the back-ground clusters is also divided into m background clusters.We use a5D uniform feature space to describe im-age features.In the5D feature space,both the color and the position of a pixel is described by a vector f=[c p]T uniformly.Here c=[Y U V]T describes the color and p=[x y]T describes the position on image plane.In the5D feature space,we describe the target centers asf T(i)=[c T(i)p T(i)]T,(i=1∼N),N is the number of target clusters.Each target cluster de-scribes the target pixels having similar color.The back-ground pixels are represented asf B(j)=[c B(j)p B(j)]T,(j=1∼m),m is the number of the background clusters.An unknown pixel is described by f u=[c u p u]T.Thus we can get the subscript of the closest target and background cluster centers to f u as follows.s T(f u)=argmini=1∼N{ f T(i)−f u },s B(f u)=argminj=1∼m{ f B(j)−f u }.(16)Fig.2Explanation for target clustering with multiple colors.HUA et al.:RK-MEANS CLUSTERING:K-MEANS WITH RELIABILITY99(a)Inputimage.(b)K-means.(c)RK-Means:The red area has low reliability.Fig.3A comparative result of object tracking with the K-Means andRK-Means algorithms.Since f u is requested to be classified into target or back-ground clusters,it can be considered that only two candidateclusters(target and background clusters)exist while objecttracking.Therefore,obviously one cluster will be thefirstnearest cluster,and another will be the second nearest one.Because it is more important to check if f u is a target pixelor not,s T is considered as thefirst nearest cluster and s Bas the second nearest cluster.By applying s T and s B toEqs.(9),(8),the RK-means algorithm can be used to removethe noise data(as shown in Fig.3)and update the target cen-ters f T(i),i=1,...,N.Because the background clusters aredefined and selected from the ellipse contour and updatingbackground clusters with Eq.(14)will move them from theellipse contour,we update the background clusters(also theellipse contour)by the method mentioned in[17].4.Experiment and Discussion4.1Evaluating the Efficiency of RKMIn the following parts of this paper,we abbreviate the Hard(or conventional)K-means clustering as CKM,Fuzzy C-means as FKM and the reliability K-means as RKM.Toevaluate the proposed RKM algorithm,we compare it withthe CKM and FKM clustering under different conditions,inthe following illustrations the large“•”represents the targetcenter.In Figs.4,5,the initial value of K is two(onecluster(a)CKM.(b)FKM.(c)RKM.Fig.4Clustering with separatedclusters.(a)CKM.(b)FKM.(c)RKM.Fig.5Clustering with completely overlappedclusters.(a)CKM.(b)FKM.(c)RKM.Fig.6Clustering with missing cluster problem.is indicated by red,another by green),the position of ini-tial points is the same and all the algorithms run at the sameiterations.In Fig.4,since the distribution of two clusters is wellseparated,all methods give the similar good result.In Fig.5,the distributions of two clusters merge as onecluster.In such case,it is reasonable to consider them as onecluster.The CKM and FKM algorithm still brutally divide itinto two separated clusters.With Eq.(7),the proposed RKMcan gradually move the initial centers together and give theresult as shown in(c).Although the result of our RKMalgorithm works better than the CKM and FKM methods,the whole clustering procedure becomes unreliable.Thatis because the cluster centers tend to move together,thusEqs.(11),(7)will produce low reliability for each data item.In our future work,we consider the function of merging isnecessary for our RKM algorithm.Figure6shows a case where four clusters exist but theinitial value of K is three(hereafter we call the phenomenonlike this as the missing cluster problem).Here,the yellow“ ”denotes the initial position of cluster centers which ismanually defined,and the red“•”means thefinal clusteringresult.The CKM only puts one cluster center correctly andmakes the completely wrong results of the other two clustercenters.The FKM is heavily affected by the missing cluster,because it brutally allocates a membership to each input dataitem.With Eqs.(7),(11),our RKM correctly classifies theinitial three centers by giving an extremely low reliability tothe missing cluster.In Fig.7,we show the comparative experimental result100IEICE TRANS.INF.&SYST.,VOL.E91–D,NO.1JANUARY2008Fig.7Experiment when the given number of K is larger than the real number of clusters.Cluster1:red points;Cluster2:green points;Clus-ter3:blue points.All three clustering algorithms give the same results to Cluster1and3.They give different conclusion on Cluster2.Table1When the given number of K is larger than the real number of clusters,the clustering result of CKM,FKM and RKM for cluster2.The real center of cluster2is located at(230,80).Point1Point2Initial Given Position(285,140)(245,60)Result of CKM(240,75)(218,86)Result of FKM(238,75)(220,86)Result of RKM(235,84)(229,81)of the CKM,FKM and RKM in the case that the given initial number of K(K=4)is larger than that of the real input data (3clusters).In this image,the pink hollow“ ”is the initial given point and the solid“ ”of sky blue color,the red hol-low“◦”and the black“•”denote thefinal result of CKM, FKM and RKM clustering algorithms,respectively.In this experiment,three of the initial points are correctly located within the corresponding clusters,but one additional initial point is assigned to the right-top of cluster2.In such case, because both the CKM and FKM will allocate one data to one or several clusters without considering if the clustering process for such data is reliable or not,either of them will assign some data of cluster2to that additional initial point. Thus,their clustering result is heavily affected.As for the RKM algorithm,it becomes insensitive to the initial given points by evaluating the reliability of clustering data to the additional initial point.Andfinally,the additional cluster center is removed towards the real center of cluster2.Al-though the result of RKM when clustering data to cluster2 is not the perfect result,compared with CKM and FKM,the RKM gives the best result.Through Table1,we can see that there is just a little dif-ference between the result of CKM and that of FKM.Both of them are heavily affected by the additional given initial point(285,140)which is located out of cluster2.Although CKM and FKM try to merge the two given centers into one cluster,the performance of them is not satisfying.Contrast to CKM and FKM,although the proposed RKM doesnotFig.8Convergence of the CKM and RKM algorithms. really convert the two initial points into one cluster,it seems to merge them most successfully.4.2Convergence of the RKMOne important characteristic of the RKM clustering algo-rithm is whether it converges or not.As for this question,the objective function of RKM is a good index to check whether it converges or not.If the value of the objective function re-mains unchanged(or the changes are so small that such they can be ignored)after afinite iteration number,that denotes that the RKM algorithm converges.Otherwise,the RKM diverges.To perform this experiment of convergence,we apply the RKM to the IRIS dataset to check its convergence.The IRIS dataset has150data points.It is divided into three groups and two of them are overlapping.Each group con-tains50data points.Each point has four attributes.In Fig.8,because the objective functions of the CKM and RKM are different from each other,we can not say that the RKM converges better than the CKM,but we could say that the RKM algorithm could converge as well as the CKM algorithm.Since the RKM adds the reliability estimation to the clustering process,as the speed of convergence,it can converge faster than the CKM algorithm.4.3Object Tracking Experiment4.3.1Manual InitializationIt is necessary to assign the number of clusters when using the K-means algorithm to classify a data set.In our tracking algorithm,in thefirst frame,we manually select N points on the object to be tracked and use them as the N initial target cluster centers.We let the initial ellipse(search area)be a circle.The center of circle is put at the centroid of the N initial target cluster centers.We manually select one point out of the object and let the circle cross it.In the following frames,the ellipse center is updated according to the result of target detection.Here,we use m representative background samples se-lected from the ellipse contour.Theoretically,it is best to use all pixels on the boundary of the search area(ellipse contour)as representative background samples.However,HUA et al.:RK-MEANS CLUSTERING:K-MEANS WITH RELIABILITY101Frame010Frame145Frame285The missing target center and similar color of background make CKMfailed.In Frame305(a)CKM-based tracking.(b)RKM-based tracking.Fig.9Comparative experiment with CKM and RKM under complex background.since there are many pixels on the ellipse contour(severalhundreds in common cases),the number of the clusters willbecome a huge one.This dramatically reduces the process-ing speed of pixel classification during tracking.In orderto realize real-time processing speed,we let m be a smallnumber.Through extensive experiment of tracking objectsof wide classes,we found that m=9is a good choice forfast tracking while keeping the stable tracking performance.Of the9points,8points are resolved by the8-equal divisionof the ellipse contour,and the9th one is the cross point be-tween the ellipse contour and the line connecting the pixelto be classified and the center of the ellipse center.The target in Fig.9is a hand.During tracking,the handfreely changes between the palm and the back.Although thecolors of palm and back of a hand look similar,they are notexactly the same colors.At the beginning of this compara-tive experiment,the hand is showing the palm,so the initialtarget colors are those of the palm.Such object is difficult102IEICE TRANS.INF.&SYST.,VOL.E91–D,NO.1JANUARY2008 Frame003Frame165Frame75Frame036Frame250Frame238Frame053Frame280Frame370In Frame053,the color was suddenly changed by theflash ofcamera.Frame083Frame358Frame495In Frame358,the target was partially occluded by anotherpedestrian.Frame110Frame361Frame673In Frame673,the target was blurred because of its high-speed movement.Fig.10Experiment result with the RKM tracking algorithm.The left column shows a case with thenon-rigid object.The middle column shows a result with scaling and occlusion.The right one showsthe experiment with illumination variance.for tracking because:1)many background areas have quitesimilar color to the target;2)the arbitrary deformation ofnon-rigid target shows different shape in the image.To eval-uate the performance of the CKM and RKM fairly,the twotracking algorithm are tested with the same sequence,giventhe same initial points,and both CKM and RKM are run atHUA et al.:RK-MEANS CLUSTERING:K-MEANS WITH RELIABILITY103the same iterations.As for the CKM-based tracking algorithm[17]in the left column,the tracking failed since frame285.In frame 285,the hand turned to show the back and the interfused background contained quite similar color to the initial target color(the color of the palm selected from thefirst frame). As mentioned in Fig.6(a),the CKM-based tracking al-gorithm greatly suffers from the missing cluster problem. Since the background interfusion and missing cluster hap-pened simultaneously,the CKM-based tracking algorithm mistakenly took the interfused background area that con-tains similar color to the target as the target area.So the search area was wrongly updated,which caused the CKM-based tracking algorithm to fail in frame305.As for the RKM-based tracking algorithm in the right column,as men-tioned in Fig.6(c),the RKM-based tracking algorithm is insensitive to the missing cluster problem by assigning the missing cluster with a low reliability.Therefore,in frame 285,the RKM-based tracking algorithm could correctly de-tect the target area and update the search area,which ensures the robust object tracking.We also applied the proposed RKM-based tracking al-gorithm to many other sequences.Figure10shows some ex-periment results,which indicates our tracking algorithm can deal with the deformation of non-rigid object,color variance caused by the illumination changes and occlusion.More-over,this tracking algorithm can also deal with the rotation and size change of the target.All the experiments were performed with a desktop PC with3.06GHz Intel XEON CPU,and the image size was640×480pixels.When the target size varied from 140×140∼200×200pixels,the processing speed of our algorithm was about9∼15ms/frame.5.ConclusionIn this paper,we presented a reliability-based K-means clus-tering algorithm which is insensitive to the initial value of K.By applying the proposed algorithm to object track-ing,we realized a robust tracking algorithm.Through the comparative experiments with the CKM-based tracking al-gorithm[17],we confirmed the proposed RKM-based track-ing algorithm can work more robustly when the background contains similar colors to the target.Besides object tracking,we also confirmed the pro-posed RKM clustering algorithm can be applied to image segmentation.AcknowledgementThis research is partially supported by the Ministry of Ed-ucation,Culture,Sports,Science and Technology,Grant-in-Aid for Scientific Research(A)(2),16200014and (C)18500131and(C)19500150.References[1]J.C.Dunn,“A fuzzy relative of the ISODATA process and its use indetecting compact well-separated clusters,”Journal of Cybernetics, vol.3,pp.32–57,1973.[2]J.C.Bezdek,Pattern Recognition with Fuzzy Objective Function Al-gorithm,Plenum Press,New York,1981.[3]R.N.Dave and R.Krishnapuram,“Robust clustering methods:Aunified review,”IEEE Trans.Fuzzy Syst.,vol.5,no.2,pp.270–293, May1997.[4]R.N.Dave,“Characterization and detection of noise,”PatternRecognit.Lett.,vol.12,no.11,pp.657–664,1991.[5]R.Krishnapuram and J.M.Keller,“A possibilistic approach to clus-tering,”IEEE Trans.Fuzzy Syst.,vol.1,no.2,pp.98–110,1993. [6]R.Krishnapuram and J.M.Keller,“The possibilistic c-means algo-rithm:Insights and recommendations,”IEEE Trans.Fuzzy Syst., vol.4,no.3,pp.98–110,1996.[7] A.Schneider,“Weighted possibilistic c-means clustering algo-rithms,”Ninth IEEE International Conference on Fuzzy Systems, vol.1,pp.176–180,May2000.[8]N.R.Pal,K.Pal,J.M.Keller,and J.C.Bezdek,“A new hybrid c-means clustering model,”IEEE International Conference on Fuzzy Systems,vol.1,pp.179–184,July2004.[9]N.R.Pal,K.Pal,J.M.Keller,and J.C.Bezdek,“A possibilistic fuzzyc-means clustering algorithm,”IEEE Trans.Fuzzy Syst.,vol.13, no.4,pp.517–530,Aug.2005.[10]K.K.Chintalapudi and M.Kam,“A noise-resistant fuzzy C meansalgorithm for clustering,”1998IEEE International Conference on Fuzzy Systems,vol.2,pp.1458–1463,May1998.[11]J.-L.Chen and J.-H.Wang,“A new robust clustering algorithm-density-weighted fuzzy c-means,”IEEE International Conference on Systems,Man,and Cybernetics,vol.3,pp.90–94,1999.[12]J.M.Leski,“Generalized weighted conditional fuzzy clustering,”IEEE Trans.Fuzzy Syst.,vol.11,no.6,pp.709–715,2003.[13]J.M.Jolion,P.Meer,and S.Bataouche,“Robust clustering with ap-plications in computer vision,”IEEE Trans.Pattern Anal.Mach.In-tell.,vol.13,no.8,pp.791–802,Aug.1991.[14]M.A.Egan,“Locating clusters in noisy data:A genetic fuzzy c-means clustering algorithm,”1998Conference of the North Ameri-can Fuzzy Information Processing Society,pp.178–182,Aug.1998.[15]J.-S.Zhan and Y.-W.Leung,“Robust clustering by pruning outliers,”IEEE Trans.Syst.Man Cybern.B,Cybern,vol.33,no.6,pp.983–998,2003.[16]J.J.DeGruijter and A.B.McBratney,“A modified fuzzy K-means forpredictive classification,”in Classification and Related Methods of Data Analysis,ed.H.H.Bock,pp.97–104,Elsevier Science,Ams-terdam,1988.[17] C.Hua,H.Wu,T.Wada,and Q.Chen,“K-means tracking with vari-able ellipse model,”IPSJ Tans.CVIM,vol.46,no.Sig15(CVIM12), pp.59–68,2005.[18]T.Wada,T.Hamatsuka,and T.Kato,“K-means tracking:A robusttarget tracking against background involution,”MIRU2004,vol.2, pp.7–12,2004.[19]H.T.Nguyen and A.Semeulders,“Tracking aspects of the fore-ground against the background,”ECCV,vol.2,pp.446–456,2004.[20] B.Heisele,U.Kreßel,and W.Ritter,“Tracking non-rigid movingobjects based on color clusterflow,”CVPR,pp.253–2571997. [21]J.Hartigan and M.Wong,“Algorithm AS136:A k-means clusteringalgorithm,”Applied Statistics,vol.28,pp.100–108,1979.[22] F.Gibou and R.Fedkiw,“A fast hybrid k-means level set algorithmfor segmentation,”4th Annual Hawaii International Conference on Statistics and Mathematics,pp.281–291,2005.[23] C.Baba,et al.,“Multiresolution adaptive K-means algorithm forsegmentation of brain MRI,”ICSC1995,pp.347–354,1995. [24]P.K.Singh,“Unsupervised segmentation of medical images usingDCT coefficients,”VIP2003,pp.75–81,2003.[25]J.B.MacQueen,“Some methods for classification and analysisof multivariate observations,”Proc.5-th Berkeley Symposium on Mathematical Statistics and Probability,vol.1,pp.281–297,Berke-ley,University of California Press,1967.。