数据挖掘主要算法

合集下载

数据挖掘领域十大经典算法以及适用领域

数据挖掘领域十大经典算法以及适用领域

数据挖掘领域⼗⼤经典算法以及适⽤领域1.AdaboostAdaboost算法是⼀种提升⽅法,将多个弱分类器,组合成强分类器。

AdaBoost,是英⽂”Adaptive Boosting“(⾃适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。

它的⾃适应在于:前⼀个弱分类器分错的样本的权值(样本对应的权值)会得到加强,权值更新后的样本再次被⽤来训练下⼀个新的弱分类器。

在每轮训练中,⽤总体(样本总体)训练新的弱分类器,产⽣新的样本权值、该弱分类器的话语权,⼀直迭代直到达到预定的错误率或达到指定的最⼤迭代次数。

总体——样本——个体三者间的关系需要搞清除总体N。

样本:{ni}i从1到M。

个体:如n1=(1,2),样本n1中有两个个体。

算法原理(1)初始化训练数据(每个样本)的权值分布:如果有N个样本,则每⼀个训练的样本点最开始时都被赋予相同的权重:1/N。

(2)训练弱分类器。

具体训练过程中,如果某个样本已经被准确地分类,那么在构造下⼀个训练集中,它的权重就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提⾼。

同时,得到弱分类器对应的话语权。

然后,更新权值后的样本集被⽤于训练下⼀个分类器,整个训练过程如此迭代地进⾏下去。

(3)将各个训练得到的弱分类器组合成强分类器。

各个弱分类器的训练过程结束后,分类误差率⼩的弱分类器的话语权较⼤,其在最终的分类函数中起着较⼤的决定作⽤,⽽分类误差率⼤的弱分类器的话语权较⼩,其在最终的分类函数中起着较⼩的决定作⽤。

换⾔之,误差率低的弱分类器在最终分类器中占的⽐例较⼤,反之较⼩。

优点(1)精度很⾼的分类器(2)提供的是框架,可以使⽤各种⽅法构建弱分类器(3)简单,不需要做特征筛选(4)不⽤担⼼过度拟合实际应⽤(1)⽤于⼆分类或多分类(2)特征选择(3)分类⼈物的baseline2.C4.5C4.5是决策树算法的⼀种。

决策树算法作为⼀种分类算法,⽬标就是将具有p维特征的n个样本分到c个类别中去。

数据挖掘十大算法

数据挖掘十大算法

数据挖掘十大算法数据挖掘是通过挖掘大规模数据集以发现隐藏的模式和关联性的过程。

在数据挖掘领域,存在许多算法用于解决各种问题。

以下是数据挖掘领域中被广泛使用的十大算法:1. 决策树(Decision Trees):决策树是一种用于分类和回归的非参数算法。

它用树结构来表示决策规则,通过划分数据集并根据不同的属性值进行分类。

2. 支持向量机(Support Vector Machines,SVM):SVM是一种二分类算法,通过在数据空间中找到一个最优的超平面来分类数据。

SVM在处理非线性问题时,可以使用核函数将数据映射到高维空间。

3. 朴素贝叶斯(Naive Bayes):基于贝叶斯定理,朴素贝叶斯算法使用特征之间的独立性假设,通过计算给定特征下的类别概率,进行分类。

4. K均值聚类(K-means Clustering):K均值聚类是一种无监督学习算法,用于将数据集分割成多个类别。

该算法通过计算样本之间的距离,并将相似的样本聚类在一起。

5. 线性回归(Linear Regression):线性回归是一种用于建立连续数值预测模型的算法。

它通过拟合线性函数来寻找自变量和因变量之间的关系。

6. 关联规则(Association Rules):关联规则用于发现数据集中项集之间的关联性。

例如,购买了商品A的人也常常购买商品B。

7. 神经网络(Neural Networks):神经网络是一种模拟人脑神经元网络的算法。

它通过训练多个神经元之间的连接权重,来学习输入和输出之间的关系。

9. 改进的Apriori算法:Apriori算法用于发现大规模数据集中的频繁项集。

改进的Apriori算法通过剪枝和利用频繁项集的性质来提高算法的效率。

10. 集成学习(Ensemble Learning):集成学习是一种通过将多个学习器进行组合,从而提高分类准确率的算法。

常用的集成学习方法包括随机森林和梯度提升树。

这些算法在不同的场景和问题中有着不同的应用。

数据挖掘主要算法

数据挖掘主要算法

数据挖掘主要算法数据挖掘是从大量数据中提取有价值信息的过程,它涉及到使用各种算法和技术来发现隐藏在数据暗地里的模式、关联和趋势。

在数据挖掘中,有许多主要算法被广泛应用于不同的数据分析和预测任务。

以下是一些常见的数据挖掘主要算法:1. 决策树算法决策树是一种基于树状结构的分类和回归算法。

它通过将数据集划分为不同的子集,每一个子集对应于一个决策树节点,来预测目标变量的值。

决策树算法可用于分类和回归问题,并且易于理解和解释。

2. 随机森林算法随机森林是一种集成学习算法,它通过构建多个决策树并对它们的结果进行平均或者投票来进行预测。

每一个决策树都是通过对训练数据进行随机采样和特征选择来构建的,从而增加了模型的准确性和鲁棒性。

3. 朴素贝叶斯算法朴素贝叶斯算法基于贝叶斯定理和特征条件独立性假设。

它用于分类和文本挖掘任务,通过计算每一个类别的概率来预测新样本的类别。

朴素贝叶斯算法简单高效,适合于处理大规模数据集。

4. 支持向量机算法支持向量机是一种二分类算法,它通过在特征空间中构建一个最优的超平面来实现分类。

支持向量机算法具有较强的泛化能力和鲁棒性,适合于处理高维数据和非线性问题。

5. K均值聚类算法K均值聚类是一种无监督学习算法,用于将数据集划分为K个不重叠的簇。

它通过最小化簇内样本的平方距离和来确定簇的中心,并将每一个样本分配到最近的簇中。

K均值聚类算法广泛应用于图象分割、市场细分和异常检测等领域。

6. 神经网络算法神经网络是一种摹仿人脑神经元网络结构和功能的机器学习模型。

它由多个神经元和层级组成,通过学习权重和偏差来进行模式识别和预测。

神经网络算法适合于处理复杂的非线性问题,并在图象识别、自然语言处理和人工智能等领域取得了显著成果。

以上是一些常见的数据挖掘主要算法,它们在不同的数据分析和预测任务中发挥着重要的作用。

根据具体的问题和数据特征,选择适合的算法可以提高数据挖掘模型的准确性和效率。

数据挖掘的发展也在不断推动算法的创新和改进,为我们提供更多有效的工具来探索和利用数据的潜力。

数据挖掘十大算法

数据挖掘十大算法

数据挖掘十大算法
数据挖掘十大算法是一种关于数据挖掘的技术,其主要任务是从大量的原始数据中挖掘出有价值的信息。

其中包括关联规则挖掘、分类、聚类、关联分析、统计模型预测和时间序列分析等。

其中,最常用的是关联规则挖掘、分类和聚类。

关联规则挖掘是从大量的事务数据中发现隐藏的关联规则,以发现有价值的知识。

该算法利用数据库中的模式,发现频繁的项集或规则,以发现有价值的关联规则。

分类是一种利用数据挖掘技术,根据特定的特征对对象进行归类的方法。

它可以用来识别具有不同特征的对象,从而帮助企业更有效地管理其信息系统。

聚类是一种基于数据挖掘技术的分类技术,用于将相似的对象归类到同一个组中。

它可以帮助企业识别各种不同类别的对象,从而更好地管理信息系统。

除了上述三种算法之外,关联分析、统计模型预测和时间序列分析也是常用的数据挖掘算法。

关联分析是利用数据挖掘技术,从原始数据中挖掘出有价值的知识,从而帮助企业更好地管理其信息系统。

统计模型预测是一种基于统计模型的数据挖掘技术,用于预测未来的发展趋势和趋势,以便更好地满足企业的需求。

最后,时间序列
分析是一种基于时间序列的数据挖掘技术,用于分析时间序列数据,以发现有价值的信息。

总之,数据挖掘十大算法是一种重要的数据挖掘技术,包括关联规则挖掘、分类、聚类、关联分析、统计模型预测和时间序列分析等。

这些算法可以帮助企业发现有价值的信息,更好地管理其信息系统。

数据挖掘中的分类算法

数据挖掘中的分类算法

数据挖掘中的分类算法数据挖掘是一种通过分析大量数据来发现模式、关联和趋势的方法。

分类算法是数据挖掘中的一种核心技术,它可以将数据分为不同的类别,有助于我们理解和利用数据。

本文将介绍数据挖掘中常用的几种分类算法。

一、决策树算法决策树算法是一种基于树形结构的分类算法,它将数据集划分为多个子集,每个子集都对应一个决策节点。

通过不断选择最佳划分节点,最终形成一棵完整的决策树。

决策树算法简单易懂,可解释性强,适用于离散型和连续型数据。

常见的决策树算法包括ID3、C4.5和CART 算法。

二、朴素贝叶斯算法朴素贝叶斯算法是一种基于概率统计的分类算法,它基于贝叶斯定理和特征条件独立假设,通过计算后验概率来进行分类。

朴素贝叶斯算法在文本分类、垃圾邮件过滤等领域有广泛应用。

它的优点是简单高效,对小样本数据有较好的分类效果。

三、支持向量机算法支持向量机算法是一种通过寻找最优超平面来进行分类的算法。

它的核心思想是将数据映射到高维特征空间,找到能够最好地将不同类别分开的超平面。

支持向量机算法适用于高维数据和样本较少的情况,具有较好的泛化能力和鲁棒性。

四、K近邻算法K近邻算法是一种基于距离度量的分类算法,它的原理是通过计算新样本与训练样本的距离,选取K个最近邻的样本来进行分类。

K近邻算法简单直观,适用于多样本情况下的分类问题。

然而,K近邻算法计算复杂度高,对异常值和噪声敏感。

五、神经网络算法神经网络算法是一种模拟人脑神经元连接方式的分类算法。

它通过构建多层网络、定义激活函数和调整权重来实现分类。

神经网络算法能够处理非线性问题,但对于大规模数据和参数调整比较困难。

六、集成学习算法集成学习算法是一种通过组合多个分类器的预测结果来进行分类的方法。

常见的集成学习算法有随机森林、AdaBoost和梯度提升树等。

集成学习算法能够有效地提高分类准确率和鲁棒性,适用于大规模数据和复杂问题。

在选择分类算法时,需要综合考虑数据类型、数据量、准确性要求以及计算资源等因素。

数据挖掘十大经典算法

数据挖掘十大经典算法

数据挖掘十大经典算法一、 C4.5C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2) 在树构造过程中进行剪枝;3) 能够完成对连续属性的离散化处理;4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。

其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

1、机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。

树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。

决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。

2、从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。

3、决策树学习也是数据挖掘中一个普通的方法。

在这里,每个决策树都表述了一种树型结构,他由他的分支来对该类型的对象依靠属性进行分类。

每个决策树可以依靠对源数据库的分割进行数据测试。

这个过程可以递归式的对树进行修剪。

当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。

另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。

决策树是如何工作的?1、决策树一般都是自上而下的来生成的。

2、选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。

3、从根到叶子节点都有一条路径,这条路径就是一条―规则4、决策树可以是二叉的,也可以是多叉的。

对每个节点的衡量:1) 通过该节点的记录数2) 如果是叶子节点的话,分类的路径3) 对叶子节点正确分类的比例。

有些规则的效果可以比其他的一些规则要好。

由于ID3算法在实际应用中存在一些问题,于是Quilan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。

数据挖掘算法种类

数据挖掘算法种类

数据挖掘算法种类数据挖掘是从大量的数据中提取有用信息的过程,而数据挖掘算法则是实现数据挖掘的关键。

随着数据量的增大和计算能力的提升,数据挖掘算法也得到了广泛应用和发展。

本文将介绍一些常见的数据挖掘算法种类。

一、关联规则挖掘算法关联规则挖掘算法用于挖掘数据集中的频繁项集和关联规则。

频繁项集是指在数据集中经常同时出现的一组项的集合,而关联规则则是描述这些项之间的关系。

常见的关联规则挖掘算法包括Apriori 算法、FP-Growth算法等。

二、分类算法分类算法用于将数据集中的样本划分到不同的类别中。

常见的分类算法有决策树算法、朴素贝叶斯算法、支持向量机算法等。

决策树算法通过构建一颗树状结构来进行分类,朴素贝叶斯算法基于贝叶斯定理进行分类,支持向量机算法则通过寻找一个超平面将不同类别的样本分开。

三、聚类算法聚类算法用于将数据集中的样本划分为若干个相似的簇。

常见的聚类算法有K-means算法、层次聚类算法、DBSCAN算法等。

K-means算法通过迭代的方式将样本划分到K个簇中,层次聚类算法则基于层次划分的原则进行聚类,DBSCAN算法通过寻找样本的密度来进行聚类。

四、异常检测算法异常检测算法用于发现数据集中的异常样本。

常见的异常检测算法包括基于统计的算法、基于聚类的算法、基于密度的算法等。

基于统计的算法通过统计样本的分布情况来判断是否异常,基于聚类的算法则通过判断样本与簇的相似程度来判断是否异常,基于密度的算法则通过判断样本的密度来判断是否异常。

五、回归算法回归算法用于建立变量之间的数学模型,用于预测数值型的变量。

常见的回归算法有线性回归算法、逻辑回归算法、决策树回归算法等。

线性回归算法基于线性关系来建立模型,逻辑回归算法则用于分类问题,决策树回归算法则通过构建决策树来进行回归预测。

六、推荐算法推荐算法用于根据用户的历史行为和偏好来推荐感兴趣的物品。

常见的推荐算法有基于内容的推荐算法、协同过滤算法、深度学习推荐算法等。

数据挖掘的常用算法

数据挖掘的常用算法

数据挖掘的常用算法数据挖掘是通过对大量数据进行分析和挖掘,发现其中隐藏的模式、规律和知识的过程。

在数据挖掘中,常用的算法有很多种,每种算法都有其特点和适用场景。

本文将介绍数据挖掘中常用的算法,并对其原理和应用进行简要说明。

一、聚类算法聚类算法是将数据集中的对象分组或聚类到相似的类别中,使得同一类别的对象相似度较高,不同类别的对象相似度较低。

常用的聚类算法有K-means算法和层次聚类算法。

1. K-means算法K-means算法是一种基于距离的聚类算法,它将数据集分为K个簇,每个簇以其质心(簇中所有点的平均值)为代表。

算法的过程包括初始化质心、计算样本点到质心的距离、更新质心和重复迭代,直到质心不再变化或达到最大迭代次数。

2. 层次聚类算法层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算样本点之间的相似度来构建聚类树(或聚类图),最终将数据集划分为不同的簇。

常用的层次聚类算法有凝聚层次聚类和分裂层次聚类。

二、分类算法分类算法是将数据集中的对象分为不同的类别或标签,通过学习已知类别的样本数据来预测未知类别的数据。

常用的分类算法有决策树算法、朴素贝叶斯算法和支持向量机算法。

1. 决策树算法决策树算法是一种基于树形结构的分类算法,它通过对数据集进行划分,构建一棵决策树来进行分类。

决策树的节点表示一个特征,分支表示该特征的取值,叶子节点表示一个类别或标签。

2. 朴素贝叶斯算法朴素贝叶斯算法是一种基于概率模型的分类算法,它假设特征之间相互独立,并利用贝叶斯定理来计算后验概率。

朴素贝叶斯算法在处理大规模数据时具有较高的效率和准确率。

3. 支持向量机算法支持向量机算法是一种基于统计学习理论的分类算法,它通过将数据映射到高维空间中,找到一个超平面,使得不同类别的样本点尽可能远离该超平面。

支持向量机算法具有较强的泛化能力和较好的鲁棒性。

三、关联规则挖掘算法关联规则挖掘算法用于发现数据集中的频繁项集和关联规则,揭示数据中的相关关系。

数据挖掘的10大算法

数据挖掘的10大算法

数据挖掘的10大算法数据挖掘的10大算法1-决策树算法●简介:决策树是一种基于树结构的预测模型,通过分析数据集中的特征和目标变量之间的关系,来进行分类或回归分析。

●实现步骤:根据数据集中的特征和目标变量,构建一个树结构,在每个节点上根据某个特征的取值将数据集划分为子集,然后根据某个准则选择最佳的特征进行划分,继续构建子树,直到满足停止条件。

●应用场景:决策树算法常用于金融风险评估、医疗诊断、客户行为分析等领域。

2-K均值算法●简介:K均值算法是一种聚类分析的方法,通过将数据集中的样本划分为K个簇,使得簇内的样本相似度最大化,簇间的相似度最小化。

●实现步骤:随机选择K个样本作为簇的中心点,然后对每个样本计算与各簇中心的距离,将样本划分到距离最近的簇中,更新簇的中心点,重复以上过程直到簇的中心点不再改变。

●应用场景:K均值算法常用于客户分群、文本聚类、图像分割等领域。

3-支持向量机算法●简介:支持向量机是一种二分类模型,通过构造一个超平面来将不同类别的样本分开,同时最大化样本与超平面之间的间隔。

●实现步骤:选择合适的核函数,转化样本特征空间,构造目标函数并进行优化,最终得到一个能够将样本正确分类的超平面。

●应用场景:支持向量机算法常用于图像识别、文本分类、异常检测等领域。

4-朴素贝叶斯算法●简介:朴素贝叶斯算法是一种基于贝叶斯理论的分类算法,通过计算样本的后验概率来进行分类。

●实现步骤:基于训练数据集计算类别的先验概率和条件概率,然后根据贝叶斯公式计算样本属于各个类别的后验概率,选择后验概率最大的类别作为预测结果。

●应用场景:朴素贝叶斯算法常用于垃圾邮件过滤、情感分析、文本分类等领域。

5-神经网络算法●简介:神经网络是一种模拟人脑神经元网络结构的算法,通过构造多层神经元网络,通过学习调整网络中的权重和偏置,从而实现对数据的分类或回归分析。

●实现步骤:选择合适的网络结构和激活函数,通过前向传播计算网络的输出,通过反向传播更新网络中的参数,不断迭代直到网络收敛。

数据挖掘算法

数据挖掘算法

数据挖掘算法数据挖掘是一门涉及从大量数据中提取信息和知识的学科,而数据挖掘算法则是实现这一目标的核心工具。

本文将介绍常用的数据挖掘算法,包括分类、聚类、关联规则挖掘和异常检测。

一、分类算法分类算法是数据挖掘中最常见的算法之一,主要用于将数据样本分为不同的类别。

以下是几种常用的分类算法:1. 决策树算法:基于树的数据结构,通过划分特征空间来实现分类。

决策树算法的优点是易于理解和实现,但对于数据的变化和噪声敏感。

2. 朴素贝叶斯算法:基于贝叶斯理论,假设特征之间相互独立,通过计算概率来进行分类。

朴素贝叶斯算法的优点是计算速度快,但对于特征之间的相关性要求较低。

3. 逻辑回归算法:基于线性回归模型,通过逻辑函数将线性回归结果转化为分类结果。

逻辑回归算法的优点是模型简单,但对于特征之间的非线性关系较难处理。

二、聚类算法聚类算法是将数据样本划分为若干个组(簇),使同一组内的样本相似度较高,而不同组之间的样本相似度较低。

以下是几种常用的聚类算法:1. K均值算法:将数据样本划分为K个簇,使每个样本与所属簇的中心点距离最小化。

K均值算法的优点是简单、高效,但对于异常点较敏感。

2. 层次聚类算法:通过计算样本之间的相似度或距离来构建层次化的簇结构。

层次聚类算法的优点是不需要预先指定簇的数量,但计算复杂度较高。

3. 密度聚类算法:基于样本点的密度来划分簇,通过定义样本点的领域和密度来进行聚类。

密度聚类算法的优点是可以发现任意形状的簇,但对于参数的选择较为敏感。

三、关联规则挖掘关联规则挖掘是从大规模数据集中发现事物之间的关联关系。

以下是几种常用的关联规则挖掘算法:1. Apriori算法:基于频繁项集的性质,逐层生成候选项集,并通过剪枝策略减少搜索空间。

Apriori算法的优点是简单、易于实现,但对于大规模数据集计算速度较慢。

2. FP-Growth算法:通过构建FP树(频繁模式树)来挖掘频繁项集,通过路径压缩和条件模式基的计数来加速挖掘过程。

数据挖掘的10大算法

数据挖掘的10大算法

数据挖掘的10大算法数据挖掘的10大算法数据挖掘是指通过分析大量数据,并利用各种算法和技术,从中提取有用信息的过程。

在数据挖掘的过程中,有许多经典的算法被广泛应用。

下面介绍了数据挖掘领域中的10大算法。

1. 决策树算法决策树算法是一种基于树状结构的分类和回归算法。

它通过一系列的规则判断来对数据进行分类或者预测。

决策树算法可解释性强,适用于处理离散型和连续型数据。

2. 随机森林算法随机森林算法是一种集成学习的方法,通过构建多个决策树,取多个决策树的结果进行投票或取平均值得到最终的分类结果。

随机森林算法通过使用随机样本和属性选择,可以有效减少过拟合的风险。

3. 朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理的分类算法。

它假设每个特征与其他特征独立,并通过计算后验概率来进行分类。

朴素贝叶斯算法简单易懂,适用于处理文本分类等问题。

4. 支持向量机算法支持向量机算法是一种二分类算法,通过构建超平面来对数据进行分类。

它通过将数据映射到高维空间,使得数据集在高维空间中线性可分,从而能够处理非线性问题。

5. K均值聚类算法K均值聚类算法是一种无监督学习算法,用于将数据分成K个不同的簇。

它通过计算数据点与聚类中心的距离来确定数据点的簇归属,不断迭代直到达到收敛条件。

6. 线性回归算法线性回归算法是一种预测算法,用于建立变量间的线性关系模型。

它通过最小化残差平方和来拟合数据,并预测一个或多个连续型变量的数值。

7. 主成分分析算法主成分分析算法是一种降维算法,通过线性变换将数据转换为低维空间。

它通过保持数据的方差最大化来提取最重要的特征。

8. 关联规则算法关联规则算法用于发现数据集中的频繁项集和关联规则。

它通过计算项集之间的支持度和置信度来确定频繁项集和关联规则。

关联规则算法广泛应用于市场篮子分析和推荐系统等领域。

9. 遗传算法遗传算法是一种模拟自然界中生物进化过程的优化算法。

它通过模拟遗传操作,如选择、交叉和变异,从解空间中找到一个近似最优解。

数据挖掘十大经典算法及适用范围

数据挖掘十大经典算法及适用范围

数据挖掘⼗⼤经典算法及适⽤范围1. C4.5C4.5算法是机器学习算法中的⼀种分类决策树算法,其核⼼算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下⼏⽅⾯对ID3算法进⾏了改进:1) ⽤信息增益率来选择属性,克服了⽤信息增益选择属性时偏向选择取值多的属性的不⾜;2) 在树构造过程中进⾏剪枝;3) 能够完成对连续属性的离散化处理;4) 能够对不完整数据进⾏处理。

C4.5算法有如下优点:产⽣的分类规则易于理解,准确率较⾼。

其缺点是:在构造树的过程中,需要对数据集进⾏多次的顺序扫描和排序,因⽽导致算法的低效(相对的CART算法只需要扫描两次数据集,以下仅为决策树优缺点)。

优点:计算复杂度不⾼,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据缺点:可能会产⽣过度匹配问题适⽤数据类型:数值型和标称型数据2. The k-means algorithm 即K-Means算法k-means algorithm算法是⼀个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。

算法的核⼼就是要优化失真函数J,使其收敛到局部最⼩值但不是全局最⼩值。

其中N 为样本数,K 是簇数,rnk b 表⽰n 属于第k 个簇,uk 是第k 个中⼼点的值。

然后求出最优的uk。

优点:易于实现缺点:可能收敛到局部最⼩值,在⼤规模数据集上收敛较慢。

适⽤数据类型:数值型数据3. Support vector machines⽀持向量机,英⽂为Support Vector Machine,简称SV机(论⽂中⼀般简称SVM)。

它是⼀种監督式學習的⽅法,它⼴泛的应⽤于统计分类以及回归分析中。

⽀持向量机将向量映射到⼀个更⾼维的空间⾥,在这个空间⾥建⽴有⼀个最⼤间隔超平⾯。

在分开数据的超平⾯的两边建有两个互相平⾏的超平⾯。

分隔超平⾯使两个平⾏超平⾯的距离最⼤化。

假定平⾏超平⾯间的距离或差距越⼤,分类器的总误差越⼩。

数据挖掘十大经典算法

数据挖掘十大经典算法

数据挖掘之经典算法1 决策树算法机器学习中,决策树是一个预测模型;它代表的是对象属性值与对象值之间的一种映射关系。

树中每个节点表示某个对象,每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应具有上述属性值的子对象。

决策树仅有单一输出;若需要多个输出,可以建立独立的决策树以处理不同输出。

从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。

决策树学习也是数据挖掘中一个普通的方法。

在这里,每个决策树都表述了一种树型结构,它由它的分支来对该类型的对象依靠属性进行分类。

每个决策树可以依靠对源数据库的分割进行数据测试。

这个过程可以递归式的对树进行修剪。

当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。

另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。

决策树同时也可以依靠计算条件概率来构造。

决策树如果依靠数学的计算方法可以取得更加理想的效果。

1.1 决策树的工作原理决策树一般都是自上而下的来生成的。

选择分割的方法有多种,但是目的都是一致的,即对目标类尝试进行最佳的分割。

从根节点到叶子节点都有一条路径,这条路径就是一条“规则”。

决策树可以是二叉的,也可以是多叉的。

对每个节点的衡量:1) 通过该节点的记录数;2) 如果是叶子节点的话,分类的路径;3) 对叶子节点正确分类的比例。

有些规则的效果可以比其他的一些规则要好。

1.2 ID3算法1.2.1 概念提取算法CLS1) 初始化参数C={E},E包括所有的例子,为根;2) 如果C中的任一元素e同属于同一个决策类则创建一个叶子节点YES终止;否则依启发式标准,选择特征Fi={V1, V2, V3,……, Vn}并创建判定节点,划分C为互不相交的N个集合C1,C2,C3,……,Cn;3) 对任一个Ci递归。

1.2.2 ID3算法1) 随机选择C的一个子集W (窗口);2) 调用CLS生成W的分类树DT(强调的启发式标准在后);3) 顺序扫描C搜集DT的意外(即由DT无法确定的例子);4) 组合W与已发现的意外,形成新的W;5) 重复2)到4),直到无例外为止。

数据挖掘最常用的算法

数据挖掘最常用的算法

数据挖掘最常用的算法数据挖掘是指从大量数据中挖掘出有价值的信息和知识的过程。

在数据挖掘过程中,使用各种算法来实现数据的预处理、特征提取、模型构建和结果评估等任务。

下面是数据挖掘中最常用的算法:1.决策树算法决策树是一种基于树状结构的分类算法,它通过构建一系列的决策节点和对应的条件判断,将数据集划分为不同的类别。

决策树具有易于理解和解释的特点,广泛应用于各种领域,如医疗、金融和营销等。

2.K近邻算法K近邻算法通过使用样本之间的距离度量,将新的样本分类为与之最相似的K个已知类别中的一类。

该算法简单易懂,并且可以应用于多分类任务。

3.朴素贝叶斯算法朴素贝叶斯算法基于贝叶斯定理,通过计算样本在给定类别下的概率,来判断新样本的类别。

该算法具有简单高效的特点,在垃圾邮件过滤、文本分类等任务中应用广泛。

4.逻辑回归算法逻辑回归算法是一种广义线性模型,用于二分类问题。

该算法通过构建一个线性模型和一个逻辑函数,将输入特征映射到概率输出。

逻辑回归在广告点击率预测、客户流失预测等领域有较好的应用效果。

5.支持向量机算法支持向量机算法是一种二分类模型,通过构建一个边界超平面,将不同类别的样本分开。

该算法具有良好的泛化能力和对高维数据的适应性,在图像分类、文本分类等任务中广泛应用。

6.随机森林算法随机森林是一种集成学习算法,通过集成多个决策树的结果来进行分类或回归。

该算法通过随机选择特征子集和样本子集的方法,减少过拟合的风险,并且具有较强的抗噪声能力。

7.神经网络算法神经网络是一种模仿人脑结构和功能的计算模型,通过构建多层神经元和权重连接,学习输入数据的复杂模式。

神经网络在图像识别、语音识别等领域有着广泛应用。

8.关联规则算法关联规则算法用于在大规模数据集中挖掘出有趣的关联规则。

该算法通过计算项目之间的频繁度和支持度,发现不同项集之间的关联关系。

关联规则在市场篮子分析、推荐系统等领域具有重要应用。

除了上述算法,还有一些其他的算法也被广泛应用于数据挖掘,如聚类算法、主成分分析算法、梯度提升算法等。

数据挖掘常用的4种算法

数据挖掘常用的4种算法

数据挖掘常用的4种算法
数据挖掘是指利用各种算法和技术从大量数据中提取有价值的
信息,以支持业务决策或优化流程。

在实际应用中,数据挖掘的算法是必不可少的工具。

以下是数据挖掘常用的4种算法:
1. 分类算法:分类是指将数据分为不同的类别或标签。

分类算法可以帮助我们识别出哪些数据属于哪个类别。

常见的分类算法包括朴素贝叶斯、决策树、支持向量机等。

2. 聚类算法:聚类是指将数据分为不同的组或簇。

聚类算法可以帮助我们发现数据中的不同模式,从而更好地理解数据。

常见的聚类算法包括K均值、DBSCAN等。

3. 关联规则算法:关联规则是指在数据集合中发现不同项之间的关系。

关联规则算法可以帮助我们了解不同变量之间的相互关系,从而更好地预测未来的趋势。

常见的关联规则算法包括Apriori、FP-Growth等。

4. 偏差-方差分解算法:偏差-方差分解是指将模型误差分解为偏差和方差两部分。

偏差-方差分解算法可以帮助我们了解模型的表现以及如何优化模型。

常见的偏差-方差分解算法包括交叉验证、正则化等。

以上是数据挖掘常用的4种算法,不同算法适用于不同的场景和数据类型。

在实际应用中,需要根据具体情况选择合适的算法来解决问题。

- 1 -。

数据挖掘中的十大算法

数据挖掘中的十大算法

数据挖掘中的十大算法数据挖掘是当今最火热的技术之一,而算法则是数据挖掘的核心,其中有十大算法是数据挖掘领域中最常用的,这十大算法分别是:C4.5决策树算法、朴素贝叶斯算法、k-近邻算法、支持向量机算法、Apriori算法、EM算法、PageRank算法、AdaBoost算法、k-均值聚类算法以及PCA算法。

1. C4.5决策树算法决策树算法是以树形结构来模拟分析决策过程的一类算法,C4.5决策树算法是一种非常常见的决策树算法,它可以适用于多分类、连续值和缺失值情况,同时还可以通过剪枝技术降低过拟合现象。

2. 朴素贝叶斯算法朴素贝叶斯算法是一种基于贝叶斯定理的概率模型,它通常用于解决分类和回归问题。

朴素贝叶斯算法可以通过估计概率来预测结果,因此需要大量的训练数据。

3. k-近邻算法k-近邻算法是一种基于距离的分类算法,它通过比较样本之间的距离来确定它们之间的相似度。

k-近邻算法通常在训练数据已知的情况下使用,它使用最近邻居的标签来预测新的标签。

4. 支持向量机算法支持向量机算法是一种最优化算法,它通常用于解决分类和回归问题。

支持向量机算法通过找到最大间隔超平面来进行分类,同时还可以使用核函数来处理非线性问题。

5. Apriori算法Apriori算法是一种关联规则算法,它通过寻找频繁项集来确定标签之间的关联性。

Apriori算法通常用于市场分析和推荐系统中。

6. EM算法EM算法是一种用于模型参数估计的迭代算法,它被广泛应用于未观测数据的概率推断中。

EM算法通常用于高斯混合模型和隐马尔科夫模型中。

7. PageRank算法PageRank算法是一种用于网页排名的算法,它基于网页的链接结构确定网页的权重。

PageRank算法被广泛应用于搜索引擎中。

8. AdaBoost算法AdaBoost算法是一种基于多个弱分类器构建强分类器的算法,它通常用于解决分类问题。

AdaBoost算法可以通过加权算法使得数据分布发生变化,从而提高分类的精度。

数据挖掘的10大算法

数据挖掘的10大算法

数据挖掘的10大算法数据挖掘是从海量数据中发现有意义的模式、关联和规律的过程。

在数据挖掘的实践中,有许多经典的算法被广泛应用。

本文将介绍数据挖掘领域的10大算法,这些算法在处理分类、预测、聚类和关联规则挖掘等任务中都具有较高的效果和可靠性。

1. 决策树决策树是一种基于树状结构的分类和回归方法。

它通过将数据集和属性进行划分,构建一棵树,每个节点代表一个属性,每个叶子节点代表一个分类结果或回归值。

决策树算法简单直观,易于理解和解释,在处理大规模数据集时也能保持较高的性能。

2. 支持向量机支持向量机是一种二分类模型,通过在高维特征空间中找到一个超平面,将不同类别的样本分隔开。

支持向量机在处理线性可分和近似线性可分的问题上表现良好,它不依赖于数据分布,对于高维数据和小样本也适用。

3. 最大熵模型最大熵模型是一种概率模型,它通过最大化熵的原理来构建模型,使得模型能够表达尽可能多的不确定性。

最大熵模型广泛应用于分类、标注和机器翻译等任务中,具有较好的泛化能力和鲁棒性。

4. K近邻算法K近邻算法是一种基于实例的学习方法,它通过寻找训练集中与待测样本最近的K个样本,来进行分类和回归。

K近邻算法简单有效,但在处理大规模数据集时性能较差。

5. 朴素贝叶斯算法朴素贝叶斯算法是一种基于概率的分类方法,它通过利用贝叶斯定理来计算后验概率,从而进行分类。

朴素贝叶斯算法假设所有特征之间相互独立,忽略了特征之间的相互关系,但在处理高维数据和大规模数据集时表现出色。

6. 随机森林随机森林是一种集成学习算法,它通过对多个决策树进行训练,再将它们的结果进行集成,来进行分类和回归。

随机森林具有较好的鲁棒性和泛化能力,可以有效避免过拟合和欠拟合问题。

7. AdaBoostAdaBoost是一种提升算法,它通过迭代训练一系列弱分类器,然后将它们进行加权组合,构建一个强分类器。

AdaBoost具有较好的性能,能够在处理复杂问题时提供较高的准确性。

数据挖掘十大算法及案例

数据挖掘十大算法及案例

数据挖掘十大算法及经典案例一、数据挖掘十大经典算法国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。

(一)C4.5C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。

C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:1. 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2. 在树构造过程中进行剪枝;3. 能够完成对连续属性的离散化处理;4. 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。

其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

(二)The k-means algorithm 即K-Means算法k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。

它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。

它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。

(三)Support vector machines支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。

它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。

支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。

数据挖掘10大算法

数据挖掘10大算法

数据挖掘10大算法数据挖掘是一种从大量数据中提取有用信息的过程。

数据挖掘算法是用于在数据集中查找模式和规律的计算机程序。

数据挖掘算法可以帮助我们发现隐藏在海量数据背后的有价值的信息,从而为决策提供支持。

在这篇文章中,我们将介绍10大常用的数据挖掘算法。

一、聚类分析聚类分析是一种将相似对象归为一类的方法。

聚类分析可以帮助我们发现数据集中隐藏的模式和规律,从而更好地理解数据集。

聚类分析通常被用于市场细分、客户分类、图像处理等领域。

二、分类分类是将事物划分为不同类别的过程。

分类可以帮助我们对新事物进行预测和判断,从而更好地做出决策。

分类通常被用于垃圾邮件过滤、信用评级、医学诊断等领域。

三、关联规则关联规则是一种发现不同变量之间关系的方法。

关联规则可以帮助我们了解变量之间的联系,从而更好地理解数据集。

关联规则通常被用于购物篮分析、交叉销售等领域。

四、回归分析回归分析是一种建立变量之间关系的方法。

回归分析可以帮助我们预测未来趋势,从而更好地做出决策。

回归分析通常被用于股票预测、房价预测等领域。

五、决策树决策树是一种将数据集划分为不同类别的方法。

决策树可以帮助我们发现数据集中隐藏的模式和规律,从而更好地理解数据集。

决策树通常被用于医学诊断、金融风险评估等领域。

六、神经网络神经网络是一种模拟人类大脑工作方式的方法。

神经网络可以帮助我们发现数据集中隐藏的模式和规律,从而更好地理解数据集。

神经网络通常被用于语音识别、图像处理等领域。

七、支持向量机支持向量机是一种分类算法,它通过寻找最佳分类界面来进行分类。

支持向量机可以帮助我们在高维空间中进行分类,从而更好地理解数据集。

支持向量机通常被用于人脸识别、文本分类等领域。

八、朴素贝叶斯朴素贝叶斯是一种基于贝叶斯定理的分类算法。

朴素贝叶斯可以帮助我们预测未来趋势,从而更好地做出决策。

朴素贝叶斯通常被用于垃圾邮件过滤、文本分类等领域。

九、遗传算法遗传算法是一种模拟生物进化过程的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

朴素贝叶斯:有以下几个地方需要注意:1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。

2. 计算公式如下:其中一项条件概率可以通过朴素贝叶斯条件独立展开。

要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知,=,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。

3. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace 光滑, 分母加k的原因是使之满足全概率公式)。

朴素贝叶斯的优点:对小规模的数据表现很好,适合多分类任务,适合增量式训练。

缺点:对输入数据的表达形式很敏感。

决策树:决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

信息熵的计算公式如下:其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。

分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。

现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。

很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。

以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。

决策树的优点:计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征;缺点:容易过拟合(后续出现了随机森林,减小了过拟合现象);Logistic回归:Logistic是用来分类的,是一种线性分类器,需要注意的地方有:1. logistic函数表达式为:其导数形式为:2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为:到整个样本的后验概率:其中:通过对数进一步化简为:3. 其实它的loss function为-l(θ),因此我们需使loss function最小,可采用梯度下降法得到。

梯度下降法公式为:Logistic回归优点:1、实现简单;2、分类时计算量非常小,速度很快,存储资源低;缺点:1、容易欠拟合,一般准确度不太高2、只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分;线性回归:线性回归才是真正用于回归的,而不像logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解,结果为:而在LWLR(局部加权线性回归)中,参数的计算表达式为:因为此时优化的是:由此可见LWLR与LR不同,LWLR是一个非参数模型,因为每次进行回归计算都要遍历训练样本至少一次。

线性回归优点:实现简单,计算简单;缺点:不能拟合非线性数据;KNN算法:KNN即最近邻算法,其主要过程为:1. 计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);2. 对上面所有的距离值进行排序;3. 选前k个最小距离的样本;4. 根据这k个样本的标签进行投票,得到最后的分类类别;如何选择一个最佳的K值,这取决于数据。

一般情况下,在分类时较大的K值能够减小噪声的影响。

但会使类别之间的界限变得模糊。

一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。

另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。

近邻算法具有较强的一致性结果。

随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。

对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。

注:马氏距离一定要先给出样本集的统计性质,比如均值向量,协方差矩阵等。

关于马氏距离的介绍如下:KNN算法的优点:1. 思想简单,理论成熟,既可以用来做分类也可以用来做回归;2. 可用于非线性分类;3. 训练时间复杂度为O(n);4. 准确度高,对数据没有假设,对outlier不敏感;缺点:1. 计算量大;2. 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);3. 需要大量的内存;SVM:要学会如何使用libsvm以及一些参数的调节经验,另外需要理清楚svm算法的一些思路:1. svm中的最优分类面是对所有样本的几何裕量最大(为什么要选择最大间隔分类器,请从数学角度上说明?网易深度学习岗位面试过程中有被问到。

答案就是几何间隔与样本的误分次数间存在关系:,其中的分母就是样本到分类间隔距离,分子中的R是所有样本中的最长向量值),即:经过一系列推导可得为优化下面原始目标:2. 下面来看看拉格朗日理论:可以将1中的优化目标转换为拉格朗日的形式(通过各种对偶优化,KKD条件),最后目标函数为:我们只需要最小化上述目标函数,其中的α为原始优化问题中的不等式约束拉格朗日系数。

3. 对2中最后的式子分别w和b求导可得:由上面第1式子可以知道,如果我们优化出了α,则直接可以求出w了,即模型的参数搞定。

而上面第2个式子可以作为后续优化的一个约束条件。

4. 对2中最后一个目标函数用对偶优化理论可以转换为优化下面的目标函数:而这个函数可以用常用的优化方法求得α,进而求得w和b。

5. 按照道理,svm简单理论应该到此结束。

不过还是要补充一点,即在预测时有:那个尖括号我们可以用核函数代替,这也是svm经常和核函数扯在一起的原因。

6. 最后是关于松弛变量的引入,因此原始的目标优化公式为:此时对应的对偶优化公式为:与前面的相比只是α多了个上界。

SVM算法优点:可用于线性/非线性分类,也可以用于回归;低泛化误差;容易解释;计算复杂度较低;缺点:对参数和核函数的选择比较敏感;原始的SVM只比较擅长处理二分类问题;Boosting:主要以Adaboost为例,首先来看看Adaboost的流程图,如下:从图中可以看到,在训练过程中我们需要训练出多个弱分类器(图中为3个),每个弱分类器是由不同权重的样本(图中为5个训练样本)训练得到(其中第一个弱分类器对应输入样本的权值是一样的),而每个弱分类器对最终分类结果的作用也不同,是通过加权平均输出的,权值见上图中三角形里面的数值。

那么这些弱分类器和其对应的权值是怎样训练出来的呢?下面通过一个例子来简单说明。

书中(machine learning in action)假设的是5个训练样本,每个训练样本的维度为2,在训练第一个分类器时5个样本的权重各为0.2. 注意这里样本的权值和最终训练的弱分类器组对应的权值α是不同的,样本的权重只在训练过程中用到,而α在训练过程和测试过程都有用到。

现在假设弱分类器是带一个节点的简单决策树,该决策树会选择2个属性(假设只有2个属性)的一个,然后计算出这个属性中的最佳值用来分类。

Adaboost的简单版本训练过程如下:1. 训练第一个分类器,样本的权值D为相同的均值。

通过一个弱分类器,得到这5个样本(请对应书中的例子来看,依旧是machine learning in action)的分类预测标签。

与给出的样本真实标签对比,就可能出现误差(即错误)。

如果某个样本预测错误,则它对应的错误值为该样本的权重,如果分类正确,则错误值为0. 最后累加5个样本的错误率之和,记为ε。

2. 通过ε来计算该弱分类器的权重α,公式如下:3. 通过α来计算训练下一个弱分类器样本的权重D,如果对应样本分类正确,则减小该样本的权重,公式为:如果样本分类错误,则增加该样本的权重,公式为:4. 循环步骤1,2,3来继续训练多个分类器,只是其D值不同而已。

测试过程如下:输入一个样本到训练好的每个弱分类中,则每个弱分类都对应一个输出标签,然后该标签乘以对应的α,最后求和得到值的符号即为预测标签值。

Boosting算法的优点:低泛化误差;容易实现,分类准确率较高,没有太多参数可以调;缺点:对outlier比较敏感;聚类:根据聚类思想划分:1. 基于划分的聚类:K-means, k-medoids(每一个类别中找一个样本点来代表),CLARANS.k-means是使下面的表达式值最小:k-means算法的优点:(1)k-means算法是解决聚类问题的一种经典算法,算法简单、快速。

(2)对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。

通常k<<n。

这个算法通常局部收敛。

(3)算法尝试找出使平方误差函数值最小的k个划分。

当簇是密集的、球状或团状的,且簇与簇之间区别明显时,聚类效果较好。

缺点:(1)k-平均方法只有在簇的平均值被定义的情况下才能使用,且对有些分类属性的数据不适合。

(2)要求用户必须事先给出要生成的簇的数目k。

(3)对初值敏感,对于不同的初始值,可能会导致不同的聚类结果。

(4)不适合于发现非凸面形状的簇,或者大小差别很大的簇。

(5)对于"噪声"和孤立点数据敏感,少量的该类数据能够对平均值产生极大影响。

2. 基于层次的聚类:自底向上的凝聚方法,比如AGNES。

自上向下的分裂方法,比如DIANA。

3. 基于密度的聚类:DBSACN,OPTICS,BIRCH(CF-Tree),CURE.4. 基于网格的方法:STING, WaveCluster.5. 基于模型的聚类:EM,SOM,COBWEB.以上这些算法的简介可参考聚类(百度百科)。

推荐系统:推荐系统的实现主要分为两个方面:基于内容的实现和协同滤波的实现。

基于内容的实现:不同人对不同电影的评分这个例子,可以看做是一个普通的回归问题,因此每部电影都需要提前提取出一个特征向量(即x值),然后针对每个用户建模,即每个用户打的分值作为y值,利用这些已有的分值y和电影特征值x就可以训练回归模型了(最常见的就是线性回归)。

这样就可以预测那些用户没有评分的电影的分数。

(值得注意的是需对每个用户都建立他自己的回归模型)从另一个角度来看,也可以是先给定每个用户对某种电影的喜好程度(即权值),然后学出每部电影的特征,最后采用回归来预测那些没有被评分的电影。

当然还可以是同时优化得到每个用户对不同类型电影的热爱程度以及每部电影的特征。

相关文档
最新文档