伺服电子齿轮比设置

合集下载

一文看懂伺服电机电子齿轮比设置方法

一文看懂伺服电机电子齿轮比设置方法

一文看懂伺服电机电子齿轮比设置方法伺服电机是一种采用反馈控制技术的电机,能够精确地控制电机的位置、速度和力矩。

电子齿轮比则是伺服驱动器中的一个参数,用于调节电机的转速和输出力矩。

伺服电机的电子齿轮比设置方法如下:1.确定所需的电子齿轮比值。

电子齿轮比是指通过改变电机的驱动波形周期或频率来达到改变电机转速和输出力矩的目的。

一般情况下,电子齿轮比的取值范围为0.1至100之间,取值越大,电机的输出速度越慢,输出力矩越大。

2.进入伺服驱动器的参数设置界面。

不同型号的伺服驱动器具有不同的参数设置方式,一般通过控制面板、计算机软件或编程来进行设置。

根据具体的驱动器型号和操作方法,进入参数设置界面。

3. 找到电子齿轮比参数。

在参数设置界面中,找到电子齿轮比的参数,一般以“Gear Ratio”或“Gear Factor”等名称表示。

这个参数通常是一个浮点数,可以输入或选择合适的数值来设置电子齿轮比。

4.输入或选择电子齿轮比值。

根据实际需求,输入或选择合适的电子齿轮比值。

输入时,可以通过控制面板或键盘输入数值;选择时,可以通过菜单或旋钮等方式进行选择。

设置完成后,保存参数设置。

5.测试和调整电子齿轮比。

设置完成后,进行测试和调整。

通过观察和测量电机的转速和输出力矩,判断是否符合实际需求。

如果不符合,可以再次进行参数设置,调整电子齿轮比的数值,直至满足要求。

需要注意的是,不同的伺服驱动器可能有不同的参数设置名称和方式,以上只是一种常见的设置方法。

在实际操作中,应根据伺服驱动器的具体说明书和操作指南进行设置,以确保设置的准确性和安全性。

总之,伺服电机的电子齿轮比设置能够精确调整电机的转速和输出力矩,为实际应用提供更好的性能和控制效果。

通过以上步骤,可以一步一步地进行设置和调整,以满足不同的应用需求。

电子齿轮比的设置

电子齿轮比的设置

刘金桂电子齿轮比的设置方法•1.以电机最高转速为目的的设置•2.以机构分辨率为目的的设置•3.设置举例•4.电子齿轮比设置讨论1. 以电机最高转速为目的的设置•P command (位置伺服)驱动器必须有电子齿轮比功能,才能顺利地与伺服控制器配合,其设置有不同的方法及目的。

电子齿轮比一般分成分母及分子两项参数设置。

•伺服电机旋转时,速度表现重于精度表现,希望能将伺服电机速度性能完全表现出来;而对旋转分辨率要求较低时,建议采用下列设置方法。

假设欲设置的伺服电机额定转速为 3000r/ min ,编码器每圈脉冲数为 8192 pulse/revo,当控制器的脉冲输出最高频率只能为 l00kHz 时本例中,暂时忽略结构条件 ,故所有操作数中均未使用长度操作数 ; 而实际应用中必须考虑最终传动机构的分辨率问题 ,不可只追求速度而 忽略分辨率 ,否则此伺服系统终将无法使用 。

为安全考虑,用 10kHz 输入脉冲进行转速测量为好 ,慢速测试可降 低风险 。

电子齿轮比为:451441--==P P CDV CMX 分母分子2 .以机构分辨率为目的的设置• 伺服电机普遍应用于加工控制及操作 ,此时的要求应于进给速度 ,当加工精度达到后再考虑速度问题。

因此,建议优先考虑分辨率进行电子齿轮比设置 。

因输出脉冲频率将影响分辨率 ,电子齿轮比的设置还必须考虑控制器输出脉冲频率 ,不可任意放大 。

•假设欲设置的伺服电机额定转速为 3000r/ min ,编码器每圈脉冲数 为 8192pulse/rev;控制器脉冲输出最高频率为 l00kHz;伺服电机输出轴连接减速机构 ,输入转速 :输出转速 m : n= 3;减速机构输出轴连接机构为导程( pitch) 10mm 的滚珠丝杠 ,如图 1. 38 所示 。

若希望控制器的输出分辨率为 lµm/pulse ,试设计电子齿轮比。

①理论计算2. 以机构分辨率为目的的设置步骤总结217131072•练习 1•1)条件及要求•欲设置的伺服电机额定转速为 2000r/ min ,编码器每圈脉冲数为4096pu lse/ rev ,控制器脉冲输出最高频率为 l00k Hz 。

伺服驱动器8大参数设置

伺服驱动器8大参数设置

伺服驱动器8大参数设置摘要:在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考。

然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。

并给出故障排查技巧。

一、伺服驱动器的8大参数设置:(1)位置比例增益设定位置环调节器的比例增益。

设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。

但数值太大可能会引起振荡或超调。

参数数值由具体的伺服系统型号和负载情况确定。

(2)位置前馈增益设定位置环的前馈增益。

设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。

不需要很高的响应特性时,本参数通常设为0表示范围:0~100% (3)速度比例增益设定速度调节器的比例增益。

设置值越大,增益越高,刚度越大。

参数数值根据具体的伺服驱动系统型号和负载值情况确定。

一般情况下,负载惯量越大,设定值越大。

在系统不产生振荡的条件下,尽量设定较大的值。

(4)速度积分常数设定速度调节器的积分时间常数。

设置值越小,积分速度越快。

参数数值根据具体的伺服驱动系统型号和负载情况确定。

一般情况下,负载惯量越大,设定值越大。

在系统不产生振荡的条件下,尽量设定较小的值。

(5)速度反馈滤波因子设定速度反馈低通滤波器特性。

数值越大,截止频率越低,电机产生的噪音越小。

如果负载惯量很大,可以适当减小设定值。

数值太大,造成响应变慢,可能会引起振荡。

数值越小,截止频率越高,速度反馈响应越快。

如果需要较高的速度响应,可以适当减小设定值。

(6)最大输出转矩设置设置伺服驱动器的内部转矩限制值。

伺服驱动器重要参数的设置方法和技巧

伺服驱动器重要参数的设置方法和技巧

伺服驱动器重要参数的设置方法和技巧随着市场的发展和国内功率电子技术、微电子技术、计算机技术及控制原理等技术的进步,国内数控系统、交流伺服驱动器及伺服电动机这两年有了较大的发展,在某些应用领域打破了国外的垄断局面。

笔者因多年从事数控技术工作,使用了多套日本安川、松下、三洋等数字伺服,但最近因国产伺服性价比好,使用了一些数控技术公司生产的交流伺服驱动及电动机,对使用中某些方面总结了一些简单实用的技巧。

1KNDSD100基本性能1.1基本功能SD100采用国际上先进的数字信号处理器(DSP)TM320(S240)、大规模可编程门阵列(FPGA)、日本三菱的新一代智能化功率模块(1PM),集成度高,体积小,具有超速、过流、过载、主电源过压欠压、编码器异常和位置超差等保护功能。

与步进电动机相比,交流伺服电动机无失步现象。

伺服电动机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。

调速比宽1:5000,转矩恒定,1 r和2000r的扭矩基本一样,从低速到高速都具有稳定的转矩特性和很快的响应特性。

采用全数字控制,控制简单灵活。

用户通过参数修改可以对伺服的工作方式、运行特性作出适当的设置。

目前价格仅比步进电动机高2000~3000元。

1.2 参数调整SD100为用户提供了丰富的用户参数0~59个,报警参数1~32个,监视方式(电动机转速,位置偏差等)22个。

用户可以根据不同的现场情况调整参数,以达到最佳控制效果。

几种常用的参数的含义是:(1)“0”号为密码参数,出厂值315,用户改变型号必须将此密码改为385。

(2)“1”号为型号代码,对应同系列不同功率级别的驱动器和电动机。

(3)“4”号为控制方式选择,改变此参数可设置驱动器的控制方式。

其中,“0”为位置控制方式;“1”为速度控制方式;“2”为试运行控制方式;“3”为JOG控制方式;“4”为编码器调零方式;“5”为开环控制方式(用户测试电压及编码器);“6”为转矩控制方式。

伺服电机电子齿轮比设置方法

伺服电机电子齿轮比设置方法

那么我们在设伺服控制器参数的时候就可以将电子齿轮比的分子永远设为10000,电子齿轮比的分母设为PLC控制伺服转一圈所希望的脉冲数。假设电子齿轮比为10。那么通过这种方式转换以后就可以很直观的描述出分子为10000,分母为1000,PLC每发出1000个脉冲伺服电机旋转一圈。
计算反馈脉冲的当量(一个脉冲走多少)?
(1) 计算反馈脉冲的当量(一个脉冲走多少)?
一个脉冲走多少 △Lo= 8mm/131072
(2) 要求指令脉冲当量为0.1um/p ,电子齿轮比应为多少?
分母代表伺服控制器驱动电机一圈接受的脉冲数 10 给伺服电机转一圈
例子1:已知伺服电机编码器为2000线,分辨率为8000,PLC发脉冲频率为200K
伺服电机额定转速为3000转/分钟可以算出电子齿轮比
CMX分子 3000转
1、什么是机械减速比(m/n)
答:机械减速比的定义是减速器输入转速与输出转速的比值,也等于从动轮齿数与 主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速之比。
2、什么是电子齿轮比
答:电子齿轮比就是对伺服接受到上位机的脉冲频率进行放大或者缩小,其中一个参数为分子,一个为分母。如分子大于分母就是放大,如分子小于分母就是缩小。例如上位机输入频率100HZ,电子齿轮比分子设为1,分母设为2,那么伺服实际运行速度按照
每转脉冲数(f):丝杠转动一圈所需脉冲数。
脉冲当量(p):数控系统(上位机)发出一个脉冲时,丝杠移动的直线距离或旋转轴转动的度数,也是数控系统所能控制的最小距离。这个值越小,经各种补偿后越容易到更高的加工精度和表面质量。脉冲当量的设定值决定机床的最大进给速度,当进给速度速度满足要求的情况下,可以设定较小的脉冲当量。

伺服电子齿轮比的计算方法

伺服电子齿轮比的计算方法

伺服电子齿轮比的计算方法电子齿轮比主要功能:1、可以任意地设置每单位指令脉冲对应的电机的速度和位移量(脉冲当量);2、当上位控制器的脉冲发生能力(最高输出频率)不足以获得所需速度时,可以通过电子齿轮功能(指令脉冲倍频)来对指令脉冲进行×N倍频。

当伺服电机用在电脑绣花机的框架上时,控制上的要求为主控发送1个脉冲框架得移动0.1mm。

对电子齿轮比的计算有影响的主要为以下几个因素:电机编码器的分辨率;机械装置的二级传动比;框架皮带齿轮大小。

电机编码器的分辨率:伺服电机的编码器一般为2000线或者是2500线,也就是转一圈能产生2000或者2500个脉冲,而伺服驱动器对此脉冲进行4倍频处理,所以电机转一圈就能产生8000或者10000个脉冲,也就是分辨率为8000或者10000。

电机型号编码器线数电机编码器的分辨率三洋P2、P5电机20008000大豪伺服250010000以三洋伺服电机为例:当控制器给驱动器发送一个脉冲时,伺服电机转过的角度为经过二级传动装置后,框架运动的角度折算到电机上角度和二级传动比是成反比的,比如二级传动比为1/4,那么电机转过的角度就是传动轴转过的4倍。

框架齿轮大小:目前市场上主要有两种齿轮:绣框移动0.1mm时所需转过的角度为0.36°和0.45°。

大部分机器都是采用0.36°的齿轮。

综上所述可以得知电子齿轮比的公式如下采用丝杆结构的话,电子齿轮比的计算方式稍微有些不同因为一般的,电机和丝杆轴之间是1:1的皮带传动,丝杆的螺距为M毫米/圈,那么计算公式为框架伺服电机“电子齿轮比”的计算方法电子齿轮比主要功能:1、可以任意地设置每单位指令脉冲对应的电机的速度和位移量(脉冲当量);2、当上位控制器的脉冲发生能力(最高输出频率)不足以获得所需速度时,可以通过电子齿轮功能(指令脉冲倍频)来对指令脉冲进行×N倍频。

当伺服电机用在电脑绣花机的框架上时,控制上的要求为主控发送1个脉冲框架得移动0.1mm。

伺服控制中电子齿轮比

伺服控制中电子齿轮比

伺服控制中电子齿轮比是什么伺服系统的精度由编码器的线数决定,而通过电子齿轮设定可以使指令脉冲设为任意值.怎么理解??答:伺服系统的精度是编码启的线数决定,这个不假,但这个仅仅是伺服电机的精度在实际运用中,连接不同的机械结构,如滚珠丝杠,蜗轮蜗杆副,螺距、齿数等参数不同,移动最小单位量所需的电机转动量是不同的电子齿轮比是匹配电机脉冲数与机械最小移动量的举个例子:车床用10mm丝杠,那么电机转一圈机械移动10mm,每移动0.001mm就需要电机旋转1/10000圈而如果连接5mm丝杠,且直径编程的话,每0.001的移动量就需要1/5000转这个是电子齿轮的作用。

电子齿轮设置的是驱动给电机的,编码器精度是电机反馈给驱动的。

假如电子齿轮比设为3,上位控制器发出100个脉冲,经过伺服驱动器后实际发给伺服电机的脉冲数应该为100*3=300个脉冲。

同样,上位控制器发出的脉冲速度和脉冲加速度都要乘以这个比例电子齿轮功能是指可将相当于指令控制器输入指令1脉冲的工件移动量设定为任意值的功能,分为电子齿轮(分子)Pn 202、电子齿轮(分母)Pn 203两部分参数。

在无减速比条件下设定时,根据当前电机的编码器规格把相对应的编码器脉冲数13位:2048P/R 16位:16384P/R 17位:32768P/R乘以分频比4后,写入Pn 202。

将负载轴旋转一圈的脉冲数写入Pn 203。

例如:电机的编码器规格为16位时,把16384*4=65535写入电子齿轮(分子)Pn 202想要36000个脉冲转一圈的话,在电子齿轮(分母)Pn 203中写入36000 注:Pn 202/ Pn 203的值必须在[0.01,100],并且当Pn 202或Pn 203内的值超过65535后,请进行约分。

电子齿轮就电机编码器反馈脉冲与指令脉冲的一个比值简单实用地介绍伺服电子齿轮比的计算方法电子齿轮比是伺服中经常要用到的,初学者对这个参数的设置有时会不解,先介绍两个伺服电子齿轮设置方面的2个小例子,供大家参考下。

伺服驱动器参数设置方法

伺服驱动器参数设置方法

伺服驱动器参数设置方法(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除伺服驱动器参数设置方法在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考,然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。

1.位置比例增益:设定位置环调节器的比例增益。

设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。

但数值太大可能会引起振荡或超调。

参数数值由具体的伺服系统型号和负载情况确定。

2.位置前馈增益:设定位置环的前馈增益。

设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。

不需要很高的响应特性时,本参数通常设为0表示范围:0~100%3.速度比例增益:设定速度调节器的比例增益。

设置值越大,增益越高,刚度越大。

参数数值根据具体的伺服驱动系统型号和负载值情况确定。

一般情况下,负载惯量越大,设定值越大。

在系统不产生振荡的条件下,尽量设定较大的值。

4.速度积分时间常数:设定速度调节器的积分时间常数。

设置值越小,积分速度越快。

参数数值根据具体的伺服驱动系统型号和负载情况确定。

一般情况下,负载惯量越大,设定值越大。

在系统不产生振荡的条件下,尽量设定较小的值。

5.速度反馈滤波因子:设定速度反馈低通滤波器特性。

数值越大,截止频率越低,电机产生的噪音越小。

如果负载惯量很大,可以适当减小设定值。

数值太大,造成响应变慢,可能会引起振荡。

数值越小,截止频率越高,速度反馈响应越快。

伺服驱动参数设置

伺服驱动参数设置

1,基本参数(伺服能够运行的前提)P1-00 设为2 表示脉冲+方向控制方式P1-01 设为00 表示位置控制模式P1-32 设为0 表示停止方式为立即停止P1-37 初始值10,表示负载惯量与电机本身惯量比,在调试时自动估算。

P1-44 电子齿轮比分子P1-45 电子齿轮比分母2,扩展参数(伺服运行平稳必须的参数,可自动整定,也可手动设置)P2-00 位置控制比例增益(提升位置应答性,缩小位置控制误差,太大容易产生噪音)。

P2-04 速度控制增益(提升速度应答性,太大容易产生噪音)。

P2-06 速度积分补偿(提升速度应答性,缩小速度控制误差,太大容易产生噪音)。

此外还需要把P2-15至P2-17 均设为0,分别代表正反转极限,紧急停止关闭。

否则的话会导致伺服驱动器报警。

此外如果有刹车的话还要把 P2-18设为108 (设定第一路数字量输出为电磁抱闸信号。

)这些参数都是基于对伺服驱动器的数字输入(DI)输出(DO)功能定义表来设置。

(表7 -1.表7-2)对于工程应用当中的I/O点进行端口定义。

必要的时候查表进行相应的设置。

3, 共振抑制的设置P2-23 第一组机械共振频率设定值,(开启第一组机械共振频率时,P2-24不能为零)P2-25 共振抑制低通滤波。

P2-26 外部干扰抵抗增益。

P2-47 自动共振抑制设为1 抑振后自动固定。

P2-49 速度检测滤波及微振抑制。

设置完以上的参数就开始自动增益P2-32 设为1或2,伺服在运行过程中每半个小时估测负载惯量比至P1-37.再结合P2-3 1 的刚性及频宽设定,自动修改P2-00,P2-04,P2-06,P2-25,P2-26,P2-49等参数。

当P2-33为1时,P1-37惯量比估算完成,以上相应的控制参数值固定。

伺服电机电子齿轮比设置方法

伺服电机电子齿轮比设置方法

伺服电机电子齿轮比设置方法电子齿轮比是用来调整伺服电机的速度和转矩的一种方法。

通过改变电子齿轮比,可以实现不同的输出效果。

下面将介绍一种常见的伺服电机电子齿轮比设置方法。

首先,我们需要了解电子齿轮比的概念。

电子齿轮比是指伺服控制器输出轴与电机轴之间的速度比。

例如,一个齿轮比为10:1的伺服电机,当控制器输出旋转一圈时,电机只转动1/10圈。

这意味着,通过改变齿轮比,我们可以调整电机的转速和转矩。

设置电子齿轮比的方法如下:1.确定所需的转速和转矩:首先,我们需要确定伺服电机的所需转速和转矩。

这可以根据具体的应用来确定。

例如,如果需要一个高转速、低转矩的输出,那么我们需要选择一个较大的齿轮比。

相反,如果需要一个低转速、高转矩的输出,那么我们需要选择一个较小的齿轮比。

2.获取电机的技术参数:了解电机的技术参数对于设置电子齿轮比非常重要。

通常,电机的技术参数包括额定速度、额定转矩、额定电流等。

这些参数将有助于我们确定所需的齿轮比。

3.调整齿轮比:调整齿轮比需要通过编程来实现。

通常,伺服控制器都提供了相应的编程接口,可以通过编程来设置齿轮比。

在编程时,我们需要将所需的速度和转矩转化为电机的输入信号。

然后,通过调整输出信号的频率和占空比来设置所需的齿轮比。

4.测试和调整:在设置齿轮比之后,我们需要对电机进行测试和调整。

通过测试,我们可以验证所设置的齿轮比是否符合要求,并根据需要进行进一步的调整。

如果转速或转矩不满足要求,我们可以调整齿轮比,重新编程并进行测试。

总结起来,伺服电机电子齿轮比的设置方法包括确定所需的转速和转矩、获取电机的技术参数、调整齿轮比和测试和调整。

通过这些步骤,我们可以实现对伺服电机速度和转矩的调整和控制。

台达伺服基本参数设置

台达伺服基本参数设置

台达伺服基本参数设置1.新伺服驱动器一般会报警。

如:ALE13(紧急停止)解除方法P2-15参数值设为122ALE14(逆向极限异常)解除方法P2-16参数值设为0ALE15(正向极限异常)解除方法P2-17参数值设为0 2.脉冲设置P1-00设为2 (伺服OFF时设置有效)3.电子齿轮比设置。

(1)台达伺服速比12.5 丝杆导程10mm P1-44分子=编码器线数X减速比=2500X12.5P1-45分母=每毫米脉冲数X螺距=1000X10 (2)山洋速比150 旋转轴P1-44分子=编码器线数X减速比=131072X150P1-45分母=每毫米脉冲数X360=1000X360 (3)台达伺服速比20 同步带314 m m /转P1-44分子=编码器线数X减速比=2500X20P1-45分母=每毫米脉冲数X314=1000X314 4.马达平滑度调节,主要调P2-00 (位置控制比例增益初值35)(速度控制增益初值500 ),使P2-00 P2-04值慢慢调大。

(参考值P2-00 80-120 P2-04 800-1400)山洋RS2伺服基本参数设置1.Group C 00设为01(00为绝对式,01为相对式)2.Gr1 02设为60(位置环比例增益1,初值35,调整马达平滑度,慢慢调整)3.Gr1 03设为600(位置环比积分时间常数1,初值1000,调整马达反应,慢慢调整)4.Gr1 13设为100(速度环比例增益1,初值50,调整马达平滑度,慢慢调整)5. Gr1 14设为30(速度环比积分时间常数1,初值20.0,调整马达反应,慢慢调整)6.Gr8 00设为00(位置,速度,转矩指令输入极性)7.Gr8 10设为02(位置指令脉冲选择)8.Gr8 13设为电子齿轮比的分子9.Gr8 14设为电子齿轮比的分子10.Gr9 00设为0C(正转超程功能)11.Gr9 01设为0A(逆转超程功能)12.Gr9 05设为01(伺服ON功能)。

伺服驱动器重要参数的设置方法和技巧

伺服驱动器重要参数的设置方法和技巧

伺服驱动器重要参数的设置方法和技巧随着市场的发展和国内功率电子技术、微电子技术、计算机技术及控制原理等技术的进步,国内数控系统、交流伺服驱动器及伺服电动机这两年有了较大的发展,在某些应用领域打破了国外的垄断局面。

笔者因多年从事数控技术工作,使用了多套日本安川、松下、三洋等数字伺服,但最近因国产伺服性价比好,使用了一些数控技术公司生产的交流伺服驱动及电动机,对使用中某些方面总结了一些简单实用的技巧。

1KNDSD100基本性能1.1基本功能SD100采用国际上先进的数字信号处理器(DSP)TM320(S240)、大规模可编程门阵列(FPGA)、日本三菱的新一代智能化功率模块(1PM),集成度高,体积小,具有超速、过流、过载、主电源过压欠压、编码器异常和位置超差等保护功能。

与步进电动机相比,交流伺服电动机无失步现象。

伺服电动机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。

调速比宽1:5000,转矩恒定,1 r和2000r的扭矩基本一样,从低速到高速都具有稳定的转矩特性和很快的响应特性。

采用全数字控制,控制简单灵活。

用户通过参数修改可以对伺服的工作方式、运行特性作出适当的设置。

目前价格仅比步进电动机高2000~3000元。

1.2参数调整SD100为用户提供了丰富的用户参数0~59个,报警参数1~32个,监视方式(电动机转速,位置偏差等)22个。

用户可以根据不同的现场情况调整参数,以达到最佳控制效果。

几种常用的参数的含义是:(1)“0”号为密码参数,出厂值315,用户改变型号必须将此密码改为1 / 6385。

(2)“1”号为型号代码,对应同系列不同功率级别的驱动器和电动机。

(3)“4”号为控制方式选择,改变此参数可设置驱动器的控制方式。

其中,“0”为位置控制方式;“1”为速度控制方式;“2”为试运行控制方式;“3”为JOG控制方式;“4”为编码器调零方式;“5”为开环控制方式(用户测试电压及编码器);“6”为转矩控制方式。

小白伺服电子齿轮比计算方法

小白伺服电子齿轮比计算方法

小白伺服电子齿轮比计算方法齿轮传动是机械传动中常用的一种方式,通过两个或多个相互啮合的齿轮,将动力和运动传递给其他机构,从而达到改变转速、扭矩和转向的目的。

在伺服系统中,齿轮传动是非常常见的一种传动方式,可以实现高速高精度运动。

伺服电机齿轮传动是指在伺服系统中,将电机的输出轴与执行机构连接,通过齿轮传动实现能量的传递和力量的放大。

在伺服电机齿轮传动中,一个关键的参数是齿轮比。

齿轮比是指两个齿轮之间的齿轮齿数的比值,通常表示为N1/N2,其中N1是传动齿轮的齿数,N2是被传动齿轮的齿数。

齿轮比可以决定输出齿轮的转速、扭矩和转向与输入齿轮的关系。

在计算伺服电机齿轮比时,首先需要明确两个关键参数:需要输出的转速和需要输出的扭矩。

对于转速的计算,可以通过下面的公式计算:输出转速=输入转速÷齿轮比其中,输入转速是伺服电机的转速,齿轮比是齿轮的压力角和啮合角的函数,可以通过齿轮参数手册或者设计手册查找到。

对于扭矩的计算,可以通过下面的公式计算:输出扭矩=齿轮比×输入扭矩其中,输入扭矩是伺服电机的扭矩。

通过以上两个公式,就可以轻松计算出伺服电机齿轮比。

此外,还需要注意一些其他因素。

首先,齿轮副的啮合是通过齿轮的齿数确定的,因此在选择齿轮比的时候需要注意齿轮的齿数以及模数等参数。

其次,选用适当的材料和齿轮传动方式(如齿轮、齿条、蜗杆等),以确保伺服系统的可靠性和耐久性。

通常情况下,伺服电机齿轮比的选择是一个工程问题,需要综合考虑多个因素,比如输出的机械特性、系统的要求、成本等等。

有时也会采用多级齿轮传动来实现更大的齿轮比。

总结起来,小白伺服电子齿轮比计算方法主要包括确定输入转速和输入扭矩,使用相应的公式进行计算,同时注意选择适当的齿轮和材料。

齿轮比是伺服电机齿轮传动系统中的一个重要参数,对于系统的性能和运行效果有着关键影响。

因此,合理选择齿轮比是伺服电机设计的关键一步。

伺服电机电子齿轮比的算法完整版

伺服电机电子齿轮比的算法完整版

伺服电机电子齿轮比的算法HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】伺服电机电子齿轮比的算法一般来说主要由三大因素组成:1、要知道电机转一圈雕刻机的X/Y/Z走多少距离;2、上位机脉冲当量的单位:“毫米/脉冲”还是“脉冲/毫米”;3、伺服电机电子齿轮比的分子与分母。

而分子的基数一般是固定的,只需输入此值就行,而常见的国内分体的伺服电机,它的分子的值与编码器精度有关,精度说法不外乎有两种:一、讲多少线的,比如常见的为2500线,那么它的分子的值为2500的四倍,即10000,如我司分体的就是这样算的。

二、讲多少位,位是指2的幂次方,比如安川的17位、20位就是2的17或20次方。

第1个:要知道电机转一圈雕刻机的X/Y/Z走多少距离1、丝杆机:这个简单,只要知道丝杆的导程(现场一般叫螺距,但书面上来说两者的是不一样的概念。

我们可从它们的相同点来说只要是单头螺纹的丝杆这两者的说法就无区别),然后知道传动比(这又分为减速的传动比还是加速的传动比),然后按以下算法:电机转一圈距离=导程X传动比注:减速传动比一般分子比分母小,如1/3、1/5等等,加速传动比般为分子比分母大,如3/1、5/1等等。

2、齿轮齿条机;按以下算法:电机转一圈距离=齿轮模数X齿轮齿数传动第2个:“毫米/脉冲”与“脉冲/毫米”转换关系如下:“毫米/脉冲”转“脉冲/毫米”:脉冲/毫米=1 /输入的“毫米/脉冲”数值,比如输入值为,那么就等于100脉冲/毫米。

“脉冲/毫米”转“毫米/脉冲”:毫米/脉冲=1 //输入的“脉冲/毫米”数值,比如输入值为100,那么就等于毫米/脉冲第3个:电子齿轮比的分母或脉冲当量(单位为毫米/脉冲)的算法电子齿轮比的分母=电机转一圈距离/脉冲当量从这个算法公式可看出,电子齿轮比的分母或脉冲当量这两者必须有一个是人为任意设置一个数值(只要不超过说明书的许可范围,一般电子齿轮比的分母不超过分子,脉冲当量不超过),另一个才可能求出。

伺服电子齿轮比的计算方法

伺服电子齿轮比的计算方法

伺服电子齿轮比的计算方法电子齿轮比主要功能:1、可以任意地设置每单位指令脉冲对应的电机的速度和位移量(脉冲当量);2、当上位控制器的脉冲发生能力(最高输出频率)不足以获得所需速度时,可以通过电子齿轮功能(指令脉冲倍频)来对指令脉冲进行×N倍频。

当伺服电机用在电脑绣花机的框架上时,控制上的要求为主控发送1个脉冲框架得移动0.1mm。

对电子齿轮比的计算有影响的主要为以下几个因素:电机编码器的分辨率;机械装置的二级传动比;框架皮带齿轮大小。

电机编码器的分辨率:伺服电机的编码器一般为2000线或者是2500线,也就是转一圈能产生2000或者2500个脉冲,而伺服驱动器对此脉冲进行4倍频处理,所以电机转一圈就能产生8000或者10000个脉冲,也就是分辨率为8000或者10000。

电机型号编码器线数电机编码器的分辨率三洋P2、P5电机20008000大豪伺服250010000以三洋伺服电机为例:当控制器给驱动器发送一个脉冲时,伺服电机转过的角度为经过二级传动装置后,框架运动的角度折算到电机上角度和二级传动比是成反比的,比如二级传动比为1/4,那么电机转过的角度就是传动轴转过的4倍。

框架齿轮大小:目前市场上主要有两种齿轮:绣框移动0.1mm时所需转过的角度为0.36°和0.45°。

大部分机器都是采用0.36°的齿轮。

综上所述可以得知电子齿轮比的公式如下采用丝杆结构的话,电子齿轮比的计算方式稍微有些不同因为一般的,电机和丝杆轴之间是1:1的皮带传动,丝杆的螺距为M毫米/圈,那么计算公式为框架伺服电机“电子齿轮比”的计算方法电子齿轮比主要功能:1、可以任意地设置每单位指令脉冲对应的电机的速度和位移量(脉冲当量);2、当上位控制器的脉冲发生能力(最高输出频率)不足以获得所需速度时,可以通过电子齿轮功能(指令脉冲倍频)来对指令脉冲进行×N倍频。

当伺服电机用在电脑绣花机的框架上时,控制上的要求为主控发送1个脉冲框架得移动0.1mm。

V90的电子齿轮比设置

V90的电子齿轮比设置

V90的电子齿轮比设置显示订货号1.电子齿轮比1.1 电子齿轮比的作用电子齿轮比就是对伺服接收到的上位机脉冲频率进行放大或者缩小。

其中一个参数为分子,为电机编码器的分辨率;一个为分母,为电机旋转一圈所需要的脉冲数。

如果分子大于分母就是放大,如果分子小于分母就是缩小。

在实际应用中,连接不同的机械结构,移动最小单位量所需的电机转动量是不同的,例如:同样一个伺服电机,如果连接了一个螺距为10mm的丝杠,那么电机转一圈机械移动10mm,每移动0.001mm就需要电机转1/10000圈;而如果连接螺距为5mm的丝杠,每移动0.001mm需要电机转1/5000 圈。

而电机编码器的分辨率是相同的,因此可以通过设置电子齿轮比来使电机脉冲数和机械最小移动量相匹配,这就是电子齿轮比的作用。

1.2 相关概念介绍(1)编码器分辨率:伺服电机轴旋转编码器反馈脉冲数。

V90的伺服电机有增量编码器和绝对值编码器,其分辨率如下图:图01. V90伺服电机编码器的分辨率(2)每转脉冲数:丝杠转动一圈所需脉冲数。

(3)最小长度单位(LU):上位机发出一个脉冲时,丝杠移动的直线距离或旋转轴转动的度数,也是控制系统所能控制的最小距离。

这个值越小,经各种补偿后越容易得到更高的加工精度和表面质量。

当进给速度满足要求的情况下,可以设定较小的长度单位。

也称作“脉冲当量”。

(4)螺距:螺纹上相邻两牙对应点之间的轴向距离。

2.1 V90电子齿轮比的设置V90电子齿轮比的设置方法如图2所示:图02. V90的电子齿轮比设置从图中可以看出V90的电子齿轮比的设置有两种方法,这两种方法的本质都是算出编码器分辨率与期望每转脉冲数的比值。

(1)电子齿轮比=编码器分辨率 / P29011。

P29011即为期望每转脉冲数;(2)当P29011设定为0时,电子齿轮比=P29012 / P29013。

这几个参数的说明如图3所示:图03. 相关参数说明四个电子齿轮比分子可通过数字量输入信号的组合EGEAR1和EGEAR2来选择,如图4所示:图4. 电子齿轮比分子的选择还有两点需要注意的是:(1)电子齿轮比的取值范围是0.02到200;(2)仅可在伺服关闭状态下设置电子齿轮比。

伺服电机电子齿轮比的算法

伺服电机电子齿轮比的算法

伺服电机电子齿轮比的算法
1.齿轮比计算:
1.1确定速度要求:
通过分析系统要求,确定所需的速度范围和精度。

可以考虑最大速度、最小速度、加速度和减速度等。

1.2确定实际系统参数:
确定伺服电机的最大速度和最大加速度。

这些参数通常可以从电机的
技术规格中获得。

1.3计算电子齿轮比:
通过将速度要求和实际系统参数进行比较,可以计算出电子齿轮比。

一种常见的方法是使用比例关系,例如:
电子齿轮比=(速度要求/实际系统参数)*缩放系数
缩放系数是一个因素,用于根据具体应用的需求进行调整。

例如,如
果需要更高的精度,则可以降低缩放系数。

2.控制器实现:
2.1设计控制器:
根据具体的应用需求,选择适当的控制器类型,例如PID控制器。


据传感器反馈和电机输出的误差,调整控制器参数以实现所需的控制性能。

2.2实现控制算法:
将电子齿轮比应用到控制算法中,以实现所需的速度控制。

例如,如果输入速度是1000rpm,而电子齿轮比是2,则输出到伺服电机的速度应是2000rpm。

2.3评估和调整:
实施控制算法后,通过实际测试和分析系统响应,评估控制性能并进行必要的调整。

这可能涉及到调整电子齿轮比、控制器参数或其他系统参数。

以上是一个基本的伺服电机电子齿轮比算法的框架。

具体的实现细节会因应用的不同而有所差异。

为了实现更高的精度和性能,可能需要考虑更复杂的算法和控制器设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-50
 以滚珠丝杠驱动机械为例示例。

设滚珠丝杠螺距为L [mm],则相对移动量指令P1[P]的滚珠丝杠实际移动量M [mm]如下式(1)所示。

M =P1×(D/E)×(1/R)×L …………………………(1)因此,位置分辨率(每1指令脉冲的移动量△M)如下式(2)所示。

ΔM =(D/E)×(1/R)×L …………………………(2)将公式(2)变形,指令分倍频比D 可由式(3)求得。

D =(ΔM×E×R)/L (3)
此外,相对于移动速度指令F 的滚珠丝杠实际移动速度V[mm /s]如式(4)所示,此时电机转速N 如下式(5)所示。

V =F×(D/E)×(1/R)×L (4)
N =F×(D/E)×60 …………………………(5)将公式(5)变形,指令分倍频比D 可由式(6)求出。

D =(N×E)/(F×60) …………………………(6)①.位置分辨率ΔM 应考虑机械误差,参考值请为机械定位精度Δε的1/5〜1/10左右。

②.Pr0.09、Pr0.10值在1〜230范围内可任意设定。

③.设定值可用分母、分子值进行任意设定,但若设定为过分的分频比或倍频比,则无法保证该动作。

关于可取分频、倍频比范围,请在1/1000〜1000倍的范围之内使用。

.此外,即使为以上范围之内,若倍频比较高时,由于指令脉冲输入的不一致及噪音的影响,可能发生
Err27.2(指令脉冲倍频异常保护)的情况。


驱动器
编码器脉冲数:E [P/r]
*1048576(=20bit)
*131072(=17bit)电机的滚珠丝杠驱动示意图
2-511

使用

前3 连 接4 设 定5 调 整6 出现问题时7 资 料
关联页面・P.4-8「参数详情」。

相关文档
最新文档