淮阴区二中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮阴区二中2018-2019学年高二上学期数学期末模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________一、选择题
1.已知函数f(x)=log2(x2+1)的值域为{0,1,2},则满足这样条件的函数的个数为()A.8B.5C.9D.27
2.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等()
A.B.C.D.
3.若命题“p或q”为真,“非p”为真,则()
A.p真q真B.p假q真C.p真q假D.p假q假
4.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件
C.充分必要条件D.既不充分也不必要条件
5.某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为()A.程序流程图B.工序流程图C.知识结构图D.组织结构图
6.数列{a n}满足a1=3,a n﹣a n•a n+1=1,A n表示{a n}前n项之积,则A2016的值为()
A.﹣B.C.﹣1D.1
7.执行如图所示的程序框图,若a=1,b=2,则输出的结果是()
A .9
B .11
C .13
D .15
8. 对于复数,若集合具有性质“对任意,必有”,
则当
时,等于 ( )
A1B-1C0D
9. 已知等差数列的前项和为,且,在区间内任取一个实数作为数列{}n a n S 120a =-()3,5{}n a 的公差,则的最小值仅为的概率为( )
n S 6S A .
B .
C .
D .
1
5
1
63
14
13
10.已知函数,关于的方程()有3个相异的实数根,则的
()x e f x x
=x 2
()2()10f x af x a -+-=a R Îa 取值范围是(
)
A .
B .
C .
D .21(,)21e e -+¥-21(,21e e --¥-21(0,)21e e --2121e e ìü-ïï
íý
-ïïîþ
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
11.幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27
的x 的值是( )
A .
B .﹣
C .3
D .﹣3
12.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,
<x ,则下列说法正确的是(
)A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题
二、填空题
13.下列命题:
①集合的子集个数有16个;{},,,a b c d ②定义在上的奇函数必满足;
R ()f x (0)0f =③既不是奇函数又不是偶函数;
2
()(21)2(21)f x x x =+--
④,,,从集合到集合的对应关系是映射;A R =B R =1
:||
f x x →A B f ⑤在定义域上是减函数.1
()f x x
=
其中真命题的序号是 .
14.已知平面上两点M (﹣5,0)和N (5,0),若直线上存在点P 使|PM|﹣|PN|=6,则称该直线为“单曲型直线
”,下列直线中:
①y=x+1 ②y=2 ③y=x ④y=2x+1是“单曲型直线”的是 .
15.设函数f (x )=则函数y=f (x )与y=的交点个数是 .
16.设平面向量,满足且,则
,的最大
()1,2,3,i a i =
1i a = 120a a ⋅= 12a a += 123a a a ++
值为
.
【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.17.函数y=sin 2x ﹣2sinx 的值域是y ∈ .
18.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .
三、解答题
19.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)的市民进行问卷调查,随机抽查了50人,并将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数610121255赞成人数
3
6
10
6
4
3
(1)请估计红星路小区年龄在[15,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值;(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.
20.(本小题满分12分)已知函数().
()2
ln f x ax bx x =+-,a b ∈R (1)当时,求函数在上的最大值和最小值;
1,3a b =-=()f x 1,22⎡⎤⎢⎥⎣⎦
(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求
0a =b (]0,e x ∈e ()f x 出的值;若不存在,说明理由;
b 21.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).
已知男、女生成绩的平均值相同.(1)求的值;
(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.
22.已知椭圆C : +=1(a >b >0)的短轴长为2,且离心率e=,设F 1,F 2是椭圆的左、右焦点,
过F 2的直线与椭圆右侧(如图)相交于M ,N 两点,直线F 1M ,F 1N 分别与直线x=4相交于P ,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求△F 2PQ 面积的最小值.
23.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22.(1)求{a n }的通项公式;(2)设b n =
,求数列{b n }的前n 项和T n .
24.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;
{}n a n a n n S
(2)设是等比数列,且,求数列的前n 项和.
(){}
1n
n n b a --257,71b b =={}n b n T 【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、n 运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.
淮阴区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】C
【解析】解:令log2(x2+1)=0,得x=0,
令log2(x2+1)=1,得x2+1=2,x=±1,
令log2(x2+1)=2,得x2+1=4,x=.
则满足值域为{0,1,2}的定义域有:
{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},
{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},
{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.
则满足这样条件的函数的个数为9.
故选:C.
【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.
2.【答案】C
【解析】解:∵M、G分别是BC、CD的中点,
∴=,=
∴=++=+=
故选C
【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.
3.【答案】B
【解析】解:若命题“p或q”为真,则p真或q真,
若“非p”为真,则p为假,
∴p假q真,
故选:B.
【点评】本题考查了复合命题的真假的判断,是一道基础题.
4.【答案】B
【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;
当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;
当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.
综上可得:两条直线相互垂直的充要条件是:m=1,2.
∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.
故选:B.
【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.
5.【答案】D
【解析】解:用来描述系统结构的图示是结构图,
某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.
故选D.
【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.
6.【答案】D
【解析】解:∵a1=3,a n﹣a n•a n+1=1,
∴,得,,a4=3,
…
∴数列{a n}是以3为周期的周期数列,且a1a2a3=﹣1,
∵2016=3×672,
∴A2016 =(﹣1)672=1.
故选:D.
7.【答案】C
【解析】解:当a=1时,不满足退出循环的条件,故a=5,
当a=5时,不满足退出循环的条件,故a=9,
当a=9时,不满足退出循环的条件,故a=13,
当a=13时,满足退出循环的条件,
故输出的结果为13,
故选:C
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
8.【答案】B
【解析】由题意,可取,所以
9.【答案】D
【解析】
考点:等差数列.
10.【答案】
D
第Ⅱ卷(共90分)
11.【答案】A
【解析】解:设幂函数为y=x α,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3
所以幂函数解析式为y=x ﹣3,由f (x )=27,得:x ﹣3=27,所以x=.故选A .
12.【答案】 B
【解析】解:∃x ∈R ,x ﹣2>0,即不等式x ﹣2>0有解,∴命题p 是真命题;x <0时,<x 无解,∴命题q 是假命题;
∴p ∨q 为真命题,p ∧q 是假命题,¬q 是真命题,p ∨(¬q )是真命题,p ∧(¬q )是真命题;
故选:B .
【点评】考查真命题,假命题的概念,以及p ∨q ,p ∧q ,¬q 的真假和p ,q 真假的关系.
二、填空题
13.【答案】①②【解析】
试题分析:子集的个数是,故①正确.根据奇函数的定义知②正确.对于③为偶函数,故错误.
2n
()2
41f x x =-对于④没有对应,故不是映射.对于⑤减区间要分成两段,故错误.0x =考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于
2n
奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要0x =()00f =根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个
()()()(),f x f x f x f x -=-=-A 元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1B 14.【答案】 ①② .
【解析】解:∵|PM|﹣|PN|=6∴点P 在以M 、N 为焦点的双曲线的右支上,即,(x >0).
对于①,联立
,消y 得7x 2﹣18x ﹣153=0,
∵△=(﹣18)2﹣4×7×(﹣153)>0,∴y=x+1是“单曲型直线”.
对于②,联立,消y 得x 2=,∴y=2是“单曲型直线”.
对于③,联立,整理得144=0,不成立.∴不是“单曲型直线”.
对于④,联立,消y 得20x 2+36x+153=0,
∵△=362﹣4×20×153<0∴y=2x+1不是“单曲型直线”.
故符合题意的有①②.
故答案为:①②.
【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用.
15.【答案】 4 .
【解析】解:在同一坐标系中作出函数y=f (x )=
的图象与函数y=的图象,如下图所
示,
由图知两函数y=f (x )与y=的交点个数是4.
故答案为:4.
16.. 1+
【解析】∵,∴,
22212112221012a a a a a a +=+⋅+=++= 12a a +=
而,
222123121233123()2()21cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅<+>+≤+
∴,当且仅当与.
1231a a a ++≤+ 12a a + 3a 1+17.【答案】 [﹣1,3] .
【解析】解:∵函数y=sin 2x ﹣2sinx=(sinx ﹣1)2﹣1,﹣1≤sinx ≤1,
∴0≤(sinx ﹣1)2≤4,∴﹣1≤(sinx ﹣1)2﹣1≤3.
∴函数y=sin 2x ﹣2sinx 的值域是y ∈[﹣1,3].
故答案为[﹣1,3].
【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.
18.【答案】63
【解析】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.
因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根,
所以a 1=1,a 3=4.
设等比数列{a n }的公比为q ,则
,所以q=2.则
.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n 项和,是基础的计算题.
三、解答题
19.【答案】
【解析】(1)解:赞成率为,
被调查者的平均年龄为20×0.12+30×0.2+40×0.24+50×0.24+60×0.1+70×0.1=43
(2)解:由题意知ξ的可能取值为0,1,2,3,
,
,
,
,
∴ξ的分布列为: ξ 0 1 2 3
P
∴.【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.
20.【答案】
【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.
(2)当时,.
0a =()ln f x bx x =-假设存在实数,使有最小值3,b ()(]()
ln 0,e g x bx x x =-∈
.………7分11()bx f x b x x
-'=-=①当时,在上单调递减,(舍去).………8分0b ≤()f x (]0,e ()min 4()e 13,f x f be b e ==-==
②当时,在上单调递减,在上单调递增,10e b <<()f x 10,b ⎛⎫ ⎪⎝⎭1,e b ⎛⎤ ⎥⎝⎦
∴,满足条件.……………………………10分2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭
③当时,在上单调递减,(舍去),………11分1e b ≥()f x (]0,e ()min 4()e e 13,e
f x
g b b ==-==综上,存在实数,使得当时,函数最小值是3.……………………………12分
2e b =(]0,e x ∈()f x
21.【答案】(1) ;(2) .7a =310
P =
【解析】
试题分析: (1)由平均值相等很容易求得的值;(2)成绩高于分的学生共五人,写出基本事件共8610个,可得恰有两名为女生的基本事件的个数,则其比值为所求.其
中恰有2名学生是女生的结果是,,共3种情况.
(96,93,87)(96,91,87)(96,90,87)所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率.1310
P =
考点:平均数;古典概型.
【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,可以看成是有序的,如与不同;有),(y x ()1,2()2,1时也可以看成是无序的,如相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比)1,2)(2,1(较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好.)(1)(A P A P -=
22.【答案】
【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,
∴,解得a2=4,b2=3,
∴椭圆C的方程为=1.
(Ⅱ)设直线MN的方程为x=ty+1,(﹣),
代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,
∴,,
设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),
则直线F1M:,令x=4,得P(4,),同理,Q(4,),
∴=||=15×||=180×||,
令μ=∈[1,),则=180×,
∵y==在[1,)上是增函数,
∴当μ=1时,即t=0时,()min=.
【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.
23.【答案】
【解析】解:(1)设等差数列{a n}的公差为d,∵a3=2,S8=22.
∴,
解得,
∴{a n }的通项公式为a n =1+(n ﹣1)=
.
(2)∵b n =
==﹣,∴T n =2
+…
+
=2=.
24.【答案】
【解析】(1)设等差数列的首项为,公差为,
{}n a 1a d 则由,,得,解得,……………3分990S =15240S =11
9369015105240a d a d +=⎧⎨+=⎩12a d ==所以,即,2(n 1)22n a n =+-⨯=2n a n =,即.……………5分(1)22(1)2
n n n S n n n -=+⨯=+1n S n n =+(
)。