计算机图形学实验报告
计算机图形学实验报告4
计算机图形学实验报告4一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学中的一些关键概念和技术,通过实际操作和编程实现,提高对图形生成、变换、渲染等方面的理解和应用能力。
二、实验环境本次实验使用的软件环境为_____,编程语言为_____,硬件环境为_____。
三、实验内容1、二维图形的绘制使用基本的绘图函数,如直线、矩形、圆形等,绘制简单的二维图形。
通过设置线条颜色、填充颜色等属性,增强图形的表现力。
2、图形的几何变换实现图形的平移、旋转和缩放操作。
观察不同变换参数对图形的影响。
3、三维图形的生成构建简单的三维模型,如立方体、球体等。
应用光照和材质效果,使三维图形更加逼真。
四、实验步骤1、二维图形的绘制首先,在编程环境中导入所需的图形库和相关模块。
然后,定义绘图窗口的大小和坐标范围。
接下来,使用绘图函数按照指定的坐标和参数绘制直线、矩形和圆形。
最后,设置图形的颜色和填充属性,使图形更加美观。
2、图形的几何变换对于平移操作,通过修改图形顶点的坐标值来实现水平和垂直方向的移动。
对于旋转操作,根据旋转角度计算新的顶点坐标,实现图形的绕中心点旋转。
对于缩放操作,将图形的顶点坐标乘以缩放因子,达到放大或缩小图形的效果。
3、三维图形的生成首先,定义三维模型的顶点坐标和三角形面的连接关系。
然后,设置光照的位置、颜色和强度等参数。
接着,为模型添加材质属性,如颜色、反射率等。
最后,使用渲染函数将三维模型显示在屏幕上。
五、实验结果与分析1、二维图形的绘制成功绘制出了各种简单的二维图形,并且通过颜色和填充的设置,使图形具有了更好的视觉效果。
例如,绘制的矩形和圆形边缘清晰,颜色鲜艳,填充均匀。
2、图形的几何变换平移、旋转和缩放操作都能够准确地实现,并且变换效果符合预期。
在旋转操作中,发现旋转角度的正负会影响旋转的方向,而缩放因子的大小直接决定了图形的缩放程度。
3、三维图形的生成生成的三维模型具有一定的立体感和真实感。
计算机图形学第五次实验报告
《计算机图形学》实验报告实验十一真实感图形一、实验教学目标与基本要求初步实现真实感图形, 并实践图形的造型与变换等。
二、理论基础运用几何造型, 几何、投影及透视变换、真实感图形效果(消隐、纹理、光照等)有关知识实现。
1.用给定地形高程数据绘制出地形图;2.绘制一(套)房间,参数自定。
三. 算法设计与分析真实感图形绘制过程中, 由于投影变换失去了深度信息, 往往导致图形的二义性。
要消除这类二义性, 就必须在绘制时消除被遮挡的不可见的线或面, 习惯上称之为消除隐藏线和隐藏面, 或简称为消隐, 经过消隐得到的投影图称为物体的真实图形。
消隐处理是计算机绘图中一个引人注目的问题, 目前已提出多种算法, 基本上可以分为两大类:即物体空间方法和图象空间方法。
物体空间方法是通过比较物体和物体的相对关系来决定可见与不可见的;而图象空间方法则是根据在图象象素点上各投影点之间的关系来确定可见与否的。
用这两类方法就可以消除凸型模型、凹形模型和多个模型同时存在时的隐藏面。
1).消隐算法的实现1.物体空间的消隐算法物体空间法是在三维坐标系中, 通过分析物体模型间的几何关系, 如物体的几何位置、与观察点的相对位置等, 来进行隐藏面判断的消隐算法。
世界坐标系是描述物体的原始坐标系, 物体的世界坐标描述了物体的基本形状。
为了更好地观察和描述物体, 经常需要对其世界坐标进行平移和旋转, 而得到物体的观察坐标。
物体的观察坐标能得到描述物体的更好视角, 所以物体空间法通常都是在观察坐标系中进行的。
观察坐标系的原点一般即是观察点。
物体空间法消隐包括两个基本步骤, 即三维坐标变换和选取适当的隐藏面判断算法。
选择合适的观察坐标系不但可以更好地描述物体, 而且可以大大简化和降低消隐算法的运算。
因此, 利用物体空间法进行消隐的第一步往往是将物体所处的坐标系转换为适当的观察坐标系。
这需要对物体进行三维旋转和平移变换。
常用的物体空间消隐算法包括平面公式法、径向预排序法、径向排序法、隔离平面法、深度排序法、光线投射法和区域子分法。
计算机图形学实验报告
计算机图形学 实验报告实验一:二维线画图元的生成实验目的:掌握直线段的生成算法,并用C/WIN-TC/VC++实现算法,包括中点法生成直线,微分数值法生成直线段等。
实验内容:用不同的方法生成斜率不同的直线段,比较各种方法的效果。
Bresenham 算法的思想Bresenham 画法与中点法相似,都是通过每列象素中确定与理想直线最近的像素来进行直线的扫描的转换的。
通过各行、各列的象素中心构造一组虚拟网格线的交点,然后确定该列象素中与此交点最近的像素。
该算法的巧妙之处在于可以采用增量计算,使得对于每一列,只需要检查一个误差项的符号,就可以确定该列的所有对象。
1.1方法一:直线的中点算法 算法的主要思想:讨论斜率k ∈[1,+∞)上的直线段的中点算法。
对直线01p p ,左下方的端点为0p (x0,y0),右上方的端点为1p (x1,y1)。
直线段的方程为: y m x B =+⇔yy x B x y y x x B x∆=+⇔∆=∆+∆∆ (,)0F x y xy yx xB ⇔=∆-∆-∆= 现在假定已求得像素(,,i r i x y ),则如图得,,11(,]22i i r i r x x x ∈-+ 由于直线的斜率k ∈[1,+∞),故m=1/k ∈(0,1],则1,,13(,]22i i r i r x x x +∈-+ 在直线1i y y =+上,区间,,13(,]22i r i r x x -+内存在两个像素NE 和E 。
根据取整原则,当11(,)i i x y ++在中点M 11(,)2i i x y ++右方时,取像素NE ,否则取像素E ,即,11,,1()()01()()0i r i i r i r i x E F M x x x NE F M x +++⎧⇔≤=⎨+⇔>⎩i i 点当(,y +1)在左方时点当(,y +1)在右方时若取2()i d F M =,则上式变为 ,1,,()01(0i r i i r i r i x E d x x NE d +⎧≤=⎨+>⎩点当点)当计算i d 的递推公式如下:,11,12[(2)()]0122(,2)0122[(2)(1)]2i i r i i i i i i i rx y y x xB d d F x y d x y y x xB ++⎧∆+-∆+-∆⎪≤⎪=++=⎨>⎪∆+-∆++-∆⎪⎩=202()i i i i d xd d x y d +∆≤⎧⎨+∆-∆>⎩算法的初始条件为:00,00,0(,)(0,0)12(,1)22r r x y x y d F x y x y =⎧⎪⎨=++=∆-∆⎪⎩ 相应的程序示例:建立成员函数:void MidPointLine4(CDC*pDC,int x0,int y0,int x1,int y1,int color) { /*假定x0<x1,直线斜率m>1*/int dx,dy,incrE,incrNE,d,x,y; dx=x1-x0; dy=y1-y0; d=2*dx-dy; incrE=2*dx;incrNE=2*(dx-dy); x=x0;y=y0;pDC->SetPixel(x,y,color); while (x<x1) {if (d<=0) d+=incrE; else{ d+=incrNE; x++; } y++;p->SetPixel(x,y,color);} }编写OnDraw 函数:void CMy1_1View::OnDraw(CDC* pDC) { CMy1_1Doc* pDoc = GetDocument(); ASSERT_VALID(pDoc); // TODO: add draw code for native data here MidPointLine4(pDC,200,200,300,300,RGB(0,0,0)); MidPointLine4(pDC,300,200,400,300,RGB(0,0,0)); MidPointLine4(pDC,400,200,500,300,RGB(0,0,0)); }编译运行程序得到如下结果:1.2方法二:直线的数值微分法 算法的主要思想:由于课本上已经给出了斜率m ∈[-1,1]上的算法,故此处给出斜率m ∈[1,+∞〕上的算法,m ∈(-∞,-1]上的可同理推导。
《计算机图形学》实验报告
《计算机图形学》实验报告一、实验目的计算机图形学是一门研究如何利用计算机生成、处理和显示图形的学科。
通过本次实验,旨在深入理解计算机图形学的基本原理和算法,掌握图形的生成、变换、渲染等技术,并能够运用所学知识解决实际问题,提高对图形学的应用能力和编程实践能力。
二、实验环境本次实验使用的编程语言为 Python,使用的图形库为 Pygame。
开发环境为 PyCharm。
三、实验内容1、直线的生成算法DDA 算法(Digital Differential Analyzer)Bresenham 算法DDA 算法是通过计算直线的斜率来确定每个像素点的位置。
它的基本思想是根据直线的斜率和起始点的坐标,逐步计算出直线上的每个像素点的坐标。
Bresenham 算法则是一种基于误差的直线生成算法。
它通过比较误差值来决定下一个像素点的位置,从而减少了计算量,提高了效率。
在实验中,我们分别实现了这两种算法,并比较了它们的性能和效果。
2、圆的生成算法中点画圆算法中点画圆算法的核心思想是通过判断中点的位置来确定圆上的像素点。
通过不断迭代计算中点的位置,逐步生成整个圆。
在实现过程中,需要注意边界条件的处理和误差的计算。
3、图形的变换平移变换旋转变换缩放变换平移变换是将图形在平面上沿着指定的方向移动一定的距离。
旋转变换是围绕一个中心点将图形旋转一定的角度。
缩放变换则是改变图形的大小。
通过矩阵运算来实现这些变换,可以方便地对图形进行各种操作。
4、图形的填充种子填充算法扫描线填充算法种子填充算法是从指定的种子点开始,将相邻的具有相同颜色或属性的像素点填充为指定的颜色。
扫描线填充算法则是通过扫描图形的每一行,确定需要填充的区间,然后进行填充。
在实验中,我们对不同形状的图形进行了填充,并比较了两种算法的适用情况。
四、实验步骤1、直线生成算法的实现定义直线的起点和终点坐标。
根据所选的算法(DDA 或Bresenham)计算直线上的像素点坐标。
计算机图形学实验报告
实验结果与结论
• 在本次实验中,我们成功地实现了复杂场景的渲染,得到了具有较高真实感和视觉效果的图像。通过对比 实验前后的效果,我们发现光线追踪和着色器的运用对于提高渲染质量和效率具有重要作用。同时,我们 也发现场景图的构建和渲染脚本的编写对于实现复杂场景的渲染至关重要。此次实验不仅提高了我们对计 算机图形学原理的理解和实践能力,也为我们后续深入研究渲染引擎的实现提供了宝贵经验。
2. 通过属性设置和变换操作,实现了对图形的定 制和调整,加深了对图形属性的理解。
4. 实验的不足之处:由于时间限制,实验只涉及 了基本图形的绘制和变换,未涉及更复杂的图形 处理算法和技术,如光照、纹理映射等。需要在 后续实验中进一步学习和探索。
02
实验二:实现动画效果
实验目的
掌握动画的基本原 理和实现方法
04
实验四:渲染复杂场景
实验目的
掌握渲染复杂场景的基本流程和方法 理解光线追踪和着色器在渲染过程中的作用
熟悉渲染引擎的实现原理和技巧 提高解决实际问题的能力
实验步骤
• 准备场景文件 • 使用3D建模软件(如Blender)创建或导入场景模型,导出为常用的3D格式(如.obj或.fbx)。 • 导入场景文件 • 在渲染引擎(如Unity或Unreal Engine)中导入准备好的场景文件。 • 构建场景图 • 根据场景的层次结构和光照需求,构建场景图(Scene Graph)。 • 设置光照和材质属性 • 为场景中的物体设置光照和材质属性(如漫反射、镜面反射、透明度等)。 • 编写渲染脚本 • 使用编程语言(如C或JavaScript)编写渲染脚本,控制场景中物体的渲染顺序和逻辑。 • 运行渲染程序 • 运行渲染程序,观察渲染结果。根据效果调整光照、材质和渲染逻辑。 • 导出渲染图像 • 将渲染结果导出为图像文件(如JPEG或PNG),进行后续分析和展示。
图形学 实验报告
图形学实验报告一、实验介绍图形学是计算机科学中的一个重要领域,主要研究计算机图形的生成、显示和处理。
本次实验旨在通过学习图形学的基本概念和算法,深入理解计算机图形的原理与应用。
二、实验内容本次实验主要包含以下内容:1. 图形学的基本概念和历史发展2. 图形学中常用的几何变换和投影算法3. 光栅化算法及其在图形渲染中的应用4. 着色和光照模型的原理及实现方法5. 三维场景建模与渲染技术三、实验步骤和结果1. 图形学的基本概念和历史发展首先我们了解了图形学的基本概念和历史发展。
图形学起源于20世纪60年代,当时主要用于计算机辅助设计(CAD)和计算机辅助制造(CAM)领域。
随着计算机技术的不断发展,图形学逐渐应用于计算机图形的显示和处理领域。
2. 几何变换和投影算法接下来我们学习了图形学中常用的几何变换和投影算法。
几何变换包括平移、旋转和缩放等操作,通过改变图形的位置、角度和尺寸,实现对图形的变换和组合。
投影算法主要用于将三维空间中的图形投影到二维屏幕上,实现透视效果。
3. 光栅化算法及其应用在图形渲染中,光栅化算法是非常常用的技术。
光栅化算法将连续的几何图形转化为离散的像素,实现图形在屏幕上的显示。
常见的光栅化算法包括扫描线算法和边界填充算法。
4. 着色和光照模型的原理与实现为了实现真实感的图形渲染,着色和光照模型是不可或缺的。
着色模型描述了在光照条件下物体表面的颜色,常见的着色模型包括平面着色模型和高洛德着色模型。
光照模型则描述了光线在物体表面的反射和折射过程,常见的光照模型包括冯氏光照模型和布林-菲菲尔德模型。
5. 三维场景建模与渲染技术最后我们学习了三维场景建模与渲染技术。
三维场景建模主要包括建立三维模型和场景的几何结构信息。
三维渲染技术则是将建模得到的三维场景转换为可显示的二维图像。
四、实验总结通过本次实验的学习,我们深入了解了图形学的基本概念和算法。
图形学在计算机图形的生成、显示和处理中具有重要应用,对于计算机科学专业学生来说,学习图形学是必不可少的。
计算机图形学实验报告
计算机图形学实验二维填充图的生成1. 图元填充利用多种图元填充的方法绘制一面五星红旗。
方法有: 扫描转换多边形的逐点判断法(编码算法), 扫描线算法, 区域填充的扫描线算法, 自创的向内复制边法。
1.1说明:1.1.1 宏定义和类型定义:#define max 400#define pi 3.14159265#define STACK_INIT_SIZE 100#define STACKINCREMENT 10#define false 0#define true 1#define ok 1#define error 0#define infeasible -1#define overflow -2typedef int Status;typedef int bool;typedef struct {int y,xLeft,xRight;}SElemType;typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;typedef struct Edge{int ymax;float x,deltax;struct Edge *nextEdge;}Edge;Edge *EL[max];typedef struct{float x,y;}point;Status SetStackEmpty(SqStack *s){s->base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType));if(!s->base) return overflow;s->top=s->base;s->stacksize=STACK_INIT_SIZE;return ok;}Status PushStack(SqStack *s,SElemType e){if(s->top-s->base>=s->stacksize){s->base=(SElemType*)(s->base,(s->stacksize+STACKINCREMENT)*sizeof(SElemType));if(!s->base) return error;s->top=s->base+s->stacksize;s->stacksize+=STACKINCREMENT;}*s->top++=e;return ok;}Status PopStack(SqStack *s,SElemType *e){ if(s->top==s->base) return error;*e=*(--s->top);return ok;}Status IsStackEmpty(SqStack *s){if(s->base==s->top) return true;else return false;}1.1.2其他由于要填充五角星, 我们就要得到五角星的十个顶点。
计算机图形学实验报告
姓名:学号:目录实验一直线的DDA算法一、【实验目的】1.掌握DDA算法的基本原理。
2.掌握DDA直线扫描转换算法。
3.深入了解直线扫描转换的编程思想。
二、【实验内容】1.利用DDA的算法原理,编程实现对直线的扫描转换。
2.加强对DDA算法的理解和掌握。
三、【测试数据及其结果】四、【实验源代码】#include<stdlib.h>#include<math.h>#include<GL/glut.h>#include<stdio.h>GLsizei winWidth=500;GLsizei winHeight=500;void Initial(void){glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0);}void DDALine(int x0,int y0,int x1,int y1) {glColor3f(1.0,0.0,0.0);int dx,dy,epsl,k;float x,y,xIncre,yIncre;dx=x1-x0; dy=y1-y0;x=x0; y=y0;if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy);xIncre=(float)dx/(float)epsl;yIncre=(float)dy/(float)epsl;for(k=0;k<=epsl;k++){glPointSize(3);glBegin(GL_POINTS);glVertex2i(int(x+0.5),(int)(y+0.5));glEnd();x+=xIncre;y+=yIncre;}}void Display(void){glClear(GL_COLOR_BUFFER_BIT); DDALine(100,100,200,180); glFlush();}void winReshapeFcn(GLint newWidth, GLint newHeight){glMatrixMode(GL_PROJECTION);glLoadIdentity();gluOrtho2D(0.0, GLdouble(newWidth), 0.0, GLdouble(newHeight));glClear(GL_COLOR_BUFFER_BIT);winWidth=newWidth;winHeight=newHeight;}int main(int argc,char*argv[]){glutInit(&argc,argv);glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); glutInitWindowSize(400,300);glutInitWindowPosition(100,120);glutCreateWindow("line");Initial();glutDisplayFunc(Display);glutReshapeFunc(winReshapeFcn);glutMainLoop();return 0;}实验二Bresenham绘制直线和圆一、【实验目的】1.掌握Bresenham算法扫描转换圆和直线的基本原理。
计算机图形学作业实验报告
计算机图形学实验报告班级:学号:姓名:指导教师:完成日期:实验一:多边形填充一、实验目的了解多边形属性,熟悉相关函数的调用。
二、实验内容步骤和实现:首先进行初始化工作,进行显示模式(单缓冲区)和窗口等设定,主要实现根据两个函数,一个是指定场景绘制函数,glutDisplayFunc(Paint),paint函数中设置了两个三角形,一个填充,一个不填充。
用到了启用多边形点画模式glEnable(GL_POL YGON_STIPPLE)的函数,和指定多边形点画模式(填充) glPolygonStipple(fly)的函数。
另外一个就是循环执行OpenGl命令的glutMainLoop()函数。
三、实验结果四、源程序// POL Y_STIPPLE.C#include <gl/glut.h>void makeObject() // 定义一个三角形{ glBegin(GL_TRIANGLES); // 开始定义三角形// 按逆时针方向指定三角形的顶点坐标glVertex2f(-0.95, -0.95);glVertex2f(0.95, -0.95);glVertex2f(0, 0.95);glEnd(); // 三角形定义结束}void display(){ GLsizei w = glutGet(GLUT_WINDOW_WIDTH); // 程序窗口宽度GLsizei h = glutGet(GLUT_WINDOW_HEIGHT); // 程序窗口高度GLubyte fly[] = // 第二个三角形点画模式的mask值{ 0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00, // 0X03, 0X80, 0X01, 0XC0, 0X06, 0XC0, 0X03, 0X60, //0X04, 0X60, 0X06, 0X20, 0X04, 0X30, 0X0C, 0X20, //0X04, 0X18, 0X18, 0X20, 0X04, 0X0C, 0X30, 0X20, //0X04, 0X06, 0X60, 0X20, 0X44, 0X03, 0XC0, 0X22, //0X44, 0X01, 0X80, 0X22, 0X44, 0X01, 0X80, 0X22, //0X44, 0X01, 0X80, 0X22, 0X44, 0X01, 0X80, 0X22, //0X44, 0X01, 0X80, 0X22, 0X44, 0X01, 0X80, 0X22, //0X66, 0X01, 0X80, 0X66, 0X33, 0X01, 0X80, 0XCC, //0X19, 0X81, 0X81, 0X98, 0X0C, 0XC1, 0X83, 0X30, //0X07, 0XE1, 0X87, 0XE0, 0X03, 0X3F, 0XFC, 0XC0, //0X03, 0X31, 0X8C, 0XC0, 0X03, 0X33, 0XCC, 0XC0, //0X06, 0X64, 0X26, 0X60, 0X0C, 0XCC, 0X33, 0X30, //0X18, 0XCC, 0X33, 0X18, 0X10, 0XC4, 0X23, 0X08, //0X10, 0X63, 0XC6, 0X08, 0X10, 0X30, 0X0C, 0X08, //0X10, 0X18, 0X18, 0X08, 0X10, 0X00, 0X00, 0X08 };glClear(GL_COLOR_BUFFER_BIT); // 清除颜色缓冲区glViewport(0, 0, w / 2, h); // 第一个视口,显示第一个三角形glColor3f(1, 1, 1); // 设置颜色,白色,默认值makeObject(); // 第一个三角形glViewport(w / 2, 0, w / 2, h); // 第二个视口,显示第二个三角形glColor3f(1, 0, 0); // 设置颜色,红色glEnable(GL_POL YGON_STIPPLE); // 启用多边形点画模式glPolygonStipple(fly); // 指定多边形点画模式(填充)makeObject(); // 第二个三角形glDisable(GL_POL YGON_STIPPLE); // 关闭多边形点画模式glFlush(); // 强制OpenGL命令序列在有限的时间内完成执行}int main(){ glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);// 设置程序窗口的显示模式(单缓冲区、RGBA颜色模型)glutInitWindowPosition(100, 100); // 程序窗口的位置glutInitWindowSize(300, 150); // 程序窗口的大小glutCreateWindow("一个填充多边形的例子!"); // 窗口的标题glutDisplayFunc(display); // 指定场景绘制函数glutMainLoop(); // 开始循环执行OpenGL命令}实验二:基本图元绘制二、实验目的了解OpenGL图形软件包绘制图形的基本过程及其程序框架,并在已有的程序框架中添加代码实现直线和圆的生成算法,演示直线和圆的生成过程,从而加深对直线和圆等基本图形生成算法的理解。
计算机图形学 有效边表填充算法实验报告
实验题目: 实验二有效边表填充算法1.实验目的:设计有效边表结点和边表结点数据结构设计有效边表填充算法编程实现有效边表填充算法2.实验描述:下图 1 所示多边形覆盖了12 条扫描线, 共有7 个顶点和7 条边。
7 个顶点分别为:P0(7, 8), P1(3, 12), P2(1, 7), P3(3, 1), P4(6, 5), P5(8, 1), P6(12, 9)。
在1024×768 的显示分辩率下, 将多边形顶点放大为P0(500,400), P1(350, 600), P2(250, 350), P3(350, 50), P4(500, 250), P5(600, 50), P6(800, 450)。
请使用有效边表算法填充该多边形。
图1示例多边形图2 屏幕显示多边形3.算法设计:(1)建立AET和BUCKET类;(2)初始化桶, 并在建立桶结点时为其表示的扫描线初始化为带头结点的链表;(3)对每个桶结点进行循环, 将桶内每个结点的边表合并为有效边表, 并进行有效边表循环;(4)按照扫描线从小到大的移动顺序, 计算当前扫描线与多边形各边的交点, 然后把这些交点按X值递增的顺序进行排序, 配对, 以确定填充区间;(5)用指定颜色点亮填充区间内的所有像素, 即完成填充工作。
4.源程序:1)//AET.hclass AET{public:AET();virtual ~AET();double x;int yMax;double k;//代替1/kAET *next;};//AET..cppAET::AET(){}AET::~AET(){}2) //Bucket.h#include "AET.h"class Bucket{public:Bucket();virtual ~Bucket();int ScanLine;AET *p;//桶上的边表指针Bucket *next;};// Bucket.cppBucket::Bucket(){}Bucket::~Bucket(){}3)//TestView.h#include "AET.h"//包含有效边表类#include "Bucket.h"//包含桶类#define Number 7//N为闭合多边形顶点数, 顶点存放在整型二维数组Point[N]中class CTestView : public CView{。
计算机图形学实验报告
计算机图形学实验报告计算机图形学实验报告引言计算机图形学是研究计算机生成和处理图像的学科,它在现代科技和娱乐产业中扮演着重要的角色。
本实验报告旨在总结和分享我在计算机图形学实验中的经验和收获。
一、实验背景计算机图形学实验是计算机科学与技术专业的一门重要课程,通过实践操作和编程,学生可以深入了解图形学的基本原理和算法。
本次实验主要涉及三维图形的建模、渲染和动画。
二、实验内容1. 三维图形建模在实验中,我们学习了三维图形的表示和建模方法。
通过使用OpenGL或其他图形库,我们可以创建基本的几何体,如立方体、球体和圆柱体,并进行变换操作,如平移、旋转和缩放。
这些基本操作为后续的图形处理和渲染打下了基础。
2. 光照和着色光照和着色是图形学中重要的概念。
我们学习了不同的光照模型,如环境光、漫反射和镜面反射,并了解了如何在三维场景中模拟光照效果。
通过设置材质属性和光源参数,我们可以实现逼真的光照效果,使物体看起来更加真实。
3. 纹理映射纹理映射是一种将二维图像映射到三维物体表面的技术。
通过将纹理图像与物体的顶点坐标相对应,我们可以实现更加细致的渲染效果。
在实验中,我们学习了纹理坐标的计算和纹理映射的应用,使物体表面呈现出具有纹理和细节的效果。
4. 动画和交互动画和交互是计算机图形学的重要应用领域。
在实验中,我们学习了基本的动画原理和算法,如关键帧动画和插值技术。
通过设置动画参数和交互控制,我们可以实现物体的平滑移动和变形效果,提升用户体验。
三、实验过程在实验过程中,我们首先熟悉了图形库的使用和基本的编程技巧。
然后,我们按照实验指导书的要求,逐步完成了三维图形建模、光照和着色、纹理映射以及动画和交互等任务。
在实验过程中,我们遇到了许多挑战和问题,但通过不断的尝试和调试,最终成功实现了预期的效果。
四、实验结果通过实验,我们成功实现了三维图形的建模、渲染和动画效果。
我们可以通过键盘和鼠标控制物体的移动和变形,同时观察到真实的光照效果和纹理映射效果。
工作报告之计算机图形学实验报告
工作报告之计算机图形学实验报告计算机图形学实验报告【篇一:计算机图形学实验报告及代码】第1 章概述一、教学目标通过本章的学习,使学生能够了解计算机图形学的基本概念、研究内容;当前的发展概况;本门课程的特点和应用。
二、教学要求1. 了解计算机图形学的概念和研究内容;2. 了解本门课程的发展概况。
三、教学内容提要1. 计算机图形学的研究内容2. 计算机图形学发展概况3. 计算机图形学特点和应用4. 计算机图形学当前研究的课题5. 计算机图形生成和输出的流水线四、教学重点、难点及解决方法本章将主要围绕计算机图形学的基本概念进行介绍,介绍研究内容;当前的发展概况;本门课程的特点和应用等等。
五、课时安排2学时六、教学设备多媒体七、检测教学目标实现程度的具体措施和要求通过课堂提问的方式来检测学生对基本概念的掌握程度。
八、教学内容1.1 计算机图形学的研究内容计算机图形学(computer graphics): 研究通过计算机将数据转换为图形,并在专用显示设备上显示的原理、方法和技术的学科。
计算机图形表现形式(1).线条式(线框架图)用线段来表现图形,容易反映客观实体的内部结构,如各类工程技术中结构图的表示,机械设计中零件结构图及电路设计中的电路原理图等。
具有面模型、色彩、浓淡和明暗层次效应,适合表现客观实体的外形或外貌,如汽车、飞机、轮船等的外形设计以及各种艺术品造型设计等。
(2).真实感面模型图形跑车靓照计算机图形分类(空间)(1).二维图形(2d):在平面坐标系中定义的图形(2).三维图形(3d):在三维坐标系中定义的图形计算机图形产生方法(1).矢量法(短折线法)任何形状的曲线都用许多首尾相连的短直线(矢量)逼近。
(2).描点法(像素点串接法)每一曲线都是由一定大小的像素点组成计算机绘图方式:(1)交互式绘图允许操作者以某种方式(对话方式或命令方式)来控制和操纵图形生成过程,使得图形可以边生成、边显示、边修改,直至符合要求为止。
计算机图形学实验报告三
《计算机图形学》实验报告glClear(GL_COLOR_BUFFER_BIT);//glEnable(GL_SCISSOR_TEST);//glScissor(0.0f,0.0f,500,300);glutWireTeapot(0.4);glFlush();}//窗口调整子程序void myReshape(int w, int h){glViewport(500, -300, (GLsizei)w, (GLsizei)h);glMatrixMode(GL_PROJECTION);glLoadIdentity();if (w <= h)glOrtho(-1, 1, -(float)h / w, (float)h / w, -1, 1);elseglOrtho(-(float)w / h, (float)w / h, -1, 1, -1, 0.5);}2,使用opengl函数写一个图形程序,要求分别使用三个光源从一个茶壶的前右上方(偏红色),正左侧(偏绿色)和前左下方(偏蓝色)对于其进行照射,完成程序并观察效果。
}//绘图子程序void display(void){glColor3f(1.0, 1.0, 0.0);glClear(GL_COLOR_BUFFER_BIT);//glMatrixMode(GL_MODELVIEW);//glLoadIdentity();//设置光源的属性1GLfloat LightAmbient1[] = { 1.0f, 0.0f, 0.0f, 1.0f }; //环境光参数 ( 新增 )GLfloat LightDiffuse1[] = { 1.0f, 0.0f, 0.0f, 1.0f }; // 漫射光参数 ( 新增 )GLfloat Lightspecular1[] = { 1.0f, 0.0f, 0.0f, 1.0f }; // 镜面反射GLfloat LightPosition1[] = { 500.0f, 500.0f, 500.0f, 1.0f }; // 光源位置 ( 新增 ) glLightfv(GL_LIGHT0, GL_POSITION, LightPosition1);glViewport(0, 0, (GLsizei)w, (GLsizei)h);glMatrixMode(GL_PROJECTION);glLoadIdentity();3,使用opengl函数完成一个图形动画程序,显示一个球沿正弦曲线运动的过程,同时显示一个立方体沿抛物线运动过程。
《计算机图形学》实验3实验报告
实验3实验报告格式《计算机图形学》实验3实验报告实验题目:直线(光栅化)实数型Bresenham 算法在用户坐标系和Java AWT 坐标系下显示图像实验内容:1 直线(光栅化)实数型Bresenham 算法原理及程序。
2 直线(光栅化)DDA 算法原理及程序。
3 在用户坐标系和Java AWT 坐标系下显示图像的算法原理及实现。
写程序调用验证之。
参考资料:1 课件:光栅图形生成算法.PP T2 Bresenham 算法演示程序已经在MyCanvas 包里,DDA 算法applet 演示程序DDA.java3 有一个示范程序imageDrawApplet.java基本概念:(详细叙述自己对实验内容的理解) 直线(光栅化):画一条从(x1, y1)到(x2, y2)的直线,实质上是一个发现最佳逼近直线的像素序列、并填入色彩数据的过程。
这过程称为直线光栅化。
Bresenham 算法:Bresenham 直线算法是用来描绘由两点所决定的直线的算法,它会算出一条线段在 n 维光栅上最接近的点。
这个算法只会用到较为快速的整数加法、减法和位元移位,常用于绘制电脑画面中的直线。
DDA 算法:DDA 算法(Digital Differential Analyzer ),又称数值微分法,是计算机图形学中一种基于直线的微分方程来生成直线的方法。
算法设计:(详细叙述自己设计的Bresenham 算法以及程序的功能、不同坐标系下图像显示的算法)程序功能:用DDA 算法画出直线,在不同的坐标系下显示图像。
Bresenham 算法:用坐标为(xi ,yi,r)的象素来表示直线上的点,则第i+1个点只能在C 和D 中选取。
令d1=BC ,d2=DBd1-d2=(yi+1–yi,r)-( yi,r+1-yi+1)=2yi+1–yi,r –(yi,r+1)= 2yi+1–2yi,r –1x i x i+1令ε(xi+1)= yi+1–yi,r–0.5=BC-AC=BA=B-A= yi+1–(yi,r+ yi,r+1)/2当ε(xi+1)≥0时,yi+1,r= yi,r+1,即选D点,即下个点(xi+1,yi+1 )对应的象素(xi +1,yi+1,r )为(xi+1,yi,r+1 )当ε(xi+1)<0时,yi+1,r= yi,r,即选C点,即下个点(xi+1,yi+1 )对应的象素(xi +1,yi+1,r )为(xi+1,yi,r )ε(xi+1)= yi+1–yi,r–0.5ε(xi+1)≥0时,yi+1,r= yi,r+1ε(xi+1)<0时,yi+1,r= yi,r用户坐标系下图像显示算法:定义自己的坐标系,将用户坐标系转换为Java awt坐标,调用Graphics类的drawImage方法即可。
计算机图形学实验报告
计算机图形学实验报告一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学的基本原理、算法和技术,通过实际操作和编程实现,提高对图形生成、处理和显示的能力,培养解决实际图形问题的思维和实践能力。
二、实验环境本次实验使用的编程语言为 Python,借助了相关的图形库如Pygame 或 matplotlib 等。
开发环境为 PyCharm 或 Jupyter Notebook。
三、实验内容(一)二维图形的绘制1、直线的绘制使用 DDA(Digital Differential Analyzer)算法或 Bresenham 算法实现直线的绘制。
通过给定直线的起点和终点坐标,在屏幕或图像上绘制出直线。
比较两种算法的效率和准确性,分析其优缺点。
2、圆的绘制采用中点画圆算法或 Bresenham 画圆算法绘制圆。
给定圆心坐标和半径,生成圆的图形。
研究不同半径大小对绘制效果和计算复杂度的影响。
(二)图形的填充1、多边形填充实现扫描线填充算法,对任意多边形进行填充。
处理多边形的顶点排序、交点计算和填充颜色的设置。
测试不同形状和复杂度的多边形填充效果。
2、图案填充设计自定义的填充图案,如纹理、条纹等,并将其应用于图形填充。
探索如何通过改变填充图案的参数来实现不同的视觉效果。
(三)图形的变换1、平移、旋转和缩放对已绘制的图形(如矩形、三角形等)进行平移、旋转和缩放操作。
通过矩阵运算实现这些变换。
观察变换前后图形的位置、形状和方向的变化。
2、组合变换将多个变换组合应用于图形,如先旋转再平移,或先缩放再旋转等。
分析组合变换的顺序对最终图形效果的影响。
(四)三维图形的表示与绘制1、三维坐标变换学习三维空间中的平移、旋转和缩放变换矩阵,并将其应用于三维点的坐标变换。
理解如何将三维坐标映射到二维屏幕上显示。
2、简单三维图形绘制尝试绘制简单的三维图形,如立方体、球体等,使用线框模型或表面模型。
探讨不同的绘制方法和视角对三维图形显示的影响。
计算机图形学报告
else if((c[0]==b[0])&&(c[1]==b[1])&&(c[2]==b[2])&&(c[3]==b[3]))
{
setcolor(0);
setlinestyle(0,0,3);
setwritemode(0);
line(x2,y2,x11,y11);
x2=x11;y2=y11;
getcode(x11,y11,b);
专业班级
学号
学生姓名
实验日期
2010年5月28日
成绩
课程名称
图形学
实验名称
实验四VC++图形程序设计
一、实验目的:
1.掌握VC++进行图形程序设计的基本方法;
2.了解VC++的图形功能,了解常见的图形库函数,请读者参见VC++帮助;
3.能设计较复杂的动、静态图形。
二、实验环境:
普通PC386以上微机; VC++语言程序设计环境。
}
else if(c[2]==1)
{
x11=(int)((x2-x1)*(bottom-y1)/(y2-y1)+x1);
y11=bottom;
}
else if(c[3]==1)
{
x11=(int)((x2-x1)*(top-y1)/(y2-y1)+x1);
y11=top;
} /*3:求交运算结束*/
{
e=d*(1+*cos(8*a));
f=e*(1+sin(16*a));
x1=150+f*cos(a);
x2=150+f*cos(a+pi/16);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机图形学实验报告一、实验题目:利用计算机编程语言绘制图形,主要实现以下内容:(1)、中点算法生成任意斜率直线,并设置线型线宽。
(2)、中点算法生成圆(3)、中点算法生成椭圆(4)、扫描算法实现任意多边形填充(5)、C o h e n_S u t h e r l a n d裁剪(6)、自由曲线与曲面的绘制(7)、二维图形变换(8)、三视图变换二、系统分析与设计本实验采用C语言编程,运行环境为T u r b o C;三、算法思想及程序实现1、中点算法生成任意斜率直线,并设置线型线宽。
(1).算法思想假定直线斜率k在0~1之间(k的其它取值可以类似处理),当前象素点为(x p,y p),则下一个象素点有两种可选择点P1(x p+1,y p)或P2(x p+1,y p+1)。
若P与P2的中点(x p+1,y p+0.5)称为M,Q为理想直线与x=x p+1垂线的交点。
当M 1在Q的下方时,则取P2应为下一个象素点;当M在Q的上方时,则取P1为下一个象素点。
这就是中点画线法的基本原理。
下面讨论中点画线法的实现。
过点(x0,y0)、(x1, y1)的直线段L的方程式为F(x, y)=ax+by+c=0,其中,a=y-y1, b=x1-x0, c=x0y1-x1y0,欲判断中点M在Q点的上方还是下方,只要把M代入F(x,y),并判断它的符号即可。
为此,我们构造判别式:d=F(M)=F(x+1, y p+0.5)=a(x p+1)+b(y p+0.5)+cp当d<0时,M在L(Q点)下方,取P2为下一个象素;当d>0时,M在L(Q点)上方,取P1为下一个象素;当d=0时,选P1或P2均可,约定取P1为下一个象素;注意到d是x p, y p的线性函数,可采用增量计算,提高运算效率。
若当前象素处于d³0情况,则取正右方象素P1(x p+1, y p),要判下一个象素位置,应计算d1=F(x p+2, y p+0.5)=a(x p+2)+b(y p+0.5)=d+a,增量为a。
若d<0时,则取右上方象素P2(x p+1, y p+1)。
要判断再下一象素,则要计算d2= F(x+2, y p+1.5)=a(x p+2)+b(y p+1.5)+c=d+a+b ,增量为a+b。
画线从(x0, y0)开p始,d的初值d0=F(x0+1, y0+0.5)=F(x0, y0)+a+0.5b,因 F(x0, y0)=0,所以d=a+0.5b。
由于我们使用的只是d的符号,而且d的增量都是整数,只是初始值包含小数。
因此,我们可以用2d代替d来摆脱小数。
(2)程序实现void putpixels(int x,int y,int color,int n){ int i,j;for(i=-n/2;i<=n/2;i++)for(j=-n/2;j<=n/2;j++)putpixel(x+j,y+i,color);}void Midpointline(int x0,int y0,int x1,int y1,int color,int n){int a,b,dx,dy,d,x,y,incrP1,incrP2;if(x0==x1){if(y0<y1)for(y=y0;y<=y1;y++)putpixel(x0,y,color);elsefor(y=y0;y>=y1;y--)putpixel(x0,y,color);}else if(x0<x1){if(y0<y1){dy = y1-y0; dx = x1-x0;d = dx-2*dy;incrP1 = -2*dy; incrP2 = 2*(dx-dy); x = x0; y = y0;putpixels(x,y,color,n);while (x<x1){if (d<0){y++; d +=incrP2;}elsed +=incrP1;x++;putpixels(x,y,color,n);}}else{dy = y1-y0; dx = x1-x0;d=-2*dy-dx;incrP1 = -2*(dx+dy); incrP2 = -2*dy; x = x0; y = y0;putpixels(x,y,color,n);while(x<x1){if (d>0){ y--;d +=incrP1;}elsed +=incrP2;x++;putpixels(x,y,color,n);}}}elseif(x0>x1){ if(y0<y1){dy = y0-y1; dx = x0-x1;d=-2*dy-dx;incrP1 = -2*(dx+dy); incrP2 = -2*dy; x = x1; y = y1;putpixels(x,y,color,n);while (x<x0){if(d>0){ y--;d +=incrP1;}elsed +=incrP2;x++;putpixels(x,y,color,n);}}else{dy = y0-y1; dx = x0-x1;d = dx-2*dy;incrP1 = -2*dy; incrP2 = 2*(dx-dy); x = x1; y = y1;putpixels(x,y,color,n);while (x<x0){if (d<0){y++; d +=incrP2;}elsed +=incrP1;x++;putpixels(x,y,color,n);}}}}2、用中点算法实现画圆(1). 算法思想如果我们构造函数F(x,y)=x2+y2-R2,则对于圆上的点有F(x,y)=0,对于圆外的点有F(x,y)>0,对于圆内的点F(x,y)<0 。
与中点画线法一样,构造判别式:d=F(M)=F(x+1,y p-0.5)=(x p+1)2+(y p-0.5)2-R2p若d<0,则应取P1为下一象素,而且再下一象素的判别式为:d=F(x+2,y p-0.5)=(x p+2)2+(y p-0.5)2-R2=d+2x p+3p若d≥0,则应取P2为下一象素,而且下一象素的判别式为d=F(x+2,y p-1.5)=(x p+2)2+(y p-1.5)2-R2=d+2(x p-y p)+5p我们这里讨论的第一个象素是(0,R),判别式d的初始值为:d=F(1,R-0.5)=1.25-R为了进一步提高算法的效率,将上面的算法中的浮点数改写成整数,将乘法运算改成加法运算,即仅用整数实现中点画圆法。
(2)程序实现:void midpointcircle(int R){int x,y,deltax,deltay,d;x=0;y=R;d=1-R;deltax=3;deltay=5-R-R;putpixel(x+300,y+300,GREEN);while(x<y){if(d<0){d+=deltax;deltax+=2;x++;}else{d+=deltax+deltay;deltax+=2;deltay+=2;x++; y--; }putpixel(x+300,y+300,RED); putpixel(y+300,x+300,GREEN); putpixel(-x+300,y+300,BLUE); putpixel(y+300,-x+300,WHITE); putpixel(x+300,-y+300,YELLOW); putpixel(-y+300,x+300,CYAN); putpixel(-x+300,-y+300,MAGENTA); putpixel(-y+300,-x+300,BROWN); } }3、用中点算法实现椭圆:(1)、算法思想生成椭圆弧的中点算法和直线的中点算法类似,只是初始化条件和判别式的递推公式不同,并且在确定判别式的时候要消去浮点运算和尽量减少乘法的次数,对于椭圆,还要注意,在第一像限内斜率大于1的情况与直线|m|>1时相同,要以y 为自变量,在此不再详细叙述。
对于椭圆:考虑分界点的上部的弧段,此段的斜率[1,0]m ∈-,由像素(,)i i x y 递推出后继的像素11,(,)i i r x y ++。
根据条件得到,,1,,1131[,)[,)2222i i r i r i i r i r y y y y y y +∈-+⇒∈-+,1,, 01 0i r i ri ry y y +≤⎧⎪⇒=⎨-≥⎪⎩i i 当d 当d 2122,4(23) 04(23)8(1) 0i i i i i i i r i d b x d d d b x a y d +⎧++≤⎪=⎨++-->⎪⎩当当初始条件为00,222(,)(0,)14(1,)442{rx y bd F b b a b a==-=-+,对于分界点下方的弧段,可类似求得。
(2)程序实现void putpixels(int x,int y,int color,int n){ int i,j;for(i=-n/2;i<=n/2;i++)for(j=-n/2;j<=n/2;j++)putpixel(x+j,y+i,color);}void ellipsepoint(long x0,long y0,long x,long y,long color,int n) {putpixels((int)(x0+x),(int)(y0+y),(int)color,n);putpixels((int)(x0-x),(int)(y0+y),(int)color,n);putpixels((int)(x0+x),(int)(y0-y),(int)color,n);putpixels((int)(x0-x),(int)(y0-y),(int)color,n);}void midpointellipse(long x0,long y0,long a,long b,long color,int n) {long x,y,d,sa,sb,xp,yp;sa=a*a,sb=b*b;xp=(long)((float)sa/(float)sqrt((float)(sa+sb)));yp=(long)((float)sb/(float)sqrt((float)(sa+sb)));x=0,y=b,d=sa+4*sb-4*sa*b;while(x<xp){if(d<0){d=d+4*sb*(2*x+3);x++;}else{d=d+4*sb*(2*x+3)+4*sa*(2-2*y); x++;y--;}ellipsepoint(x0,y0,x,y,color,n); }x=a,y=0,d=4*sa+sb-4*a*sb;while(y<yp){if(d<0){d=d+4*sa*(2*y+3);y++;}else{d=d+4*sa*(2*y+3)+4*sb*(2-2*x); y++;x--;}ellipsepoint(x0,y0,x,y,color,n); }}4、用扫描线算法实现多边形填充:(1)算法思想:用水平扫描线从上到下扫描由点线段构成的多段定义的多边形。