七年级上学期第七周数学测试卷
第七周测试卷七年级数学
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √-92. 下列代数式中,含有未知数的是()A. 2x + 3B. 5 - 3xC. 2x - 4yD. 53. 若 a = 3,b = -2,则代数式 2a - 3b 的值是()A. 1B. -1C. 7D. -74. 下列图形中,是轴对称图形的是()A. 长方形B. 平行四边形C. 等腰三角形D. 梯形5. 已知一个等腰三角形的底边长为 6cm,腰长为 8cm,则该三角形的面积是()A. 24cm²B. 30cm²C. 36cm²D. 48cm²6. 下列函数中,自变量x的取值范围是全体实数的是()A. y = x + 1B. y = 2/xC. y = √(x - 3)D. y = x² - 2x + 17. 已知一次函数 y = kx + b 的图象经过点 (1, 2) 和 (2, 4),则该函数的解析式是()A. y = 2x + 1B. y = 2x - 1C. y = 3x + 1D. y = 3x - 18. 下列方程中,解得 x = -2 的是()A. 2x + 3 = 5B. 3x - 4 = 2C. x + 1 = -3D. 4x - 5 = -79. 下列不等式中,不正确的是()A. 2x > 4B. 3x ≤ 9C. 4x + 1 > 3D. 5x - 2 < 110. 下列图形中,周长最大的是()A. 正方形,边长为 4cmB. 长方形,长为 6cm,宽为 2cmC. 等腰三角形,底边长为 6cm,腰长为 8cmD. 梯形,上底长为 4cm,下底长为 6cm,高为 3cm二、填空题(每题3分,共30分)1. 若 a = -3,b = 2,则 3a - 2b 的值是 _______。
2. 一个等腰三角形的底边长为 8cm,腰长为 10cm,则该三角形的周长是 _______。
人教版2022--2023学年度第一学期七年级数学上册期中测试卷及答案
已知: ,
(1)将A按照x的降幂进行排列是:;
(2)仿照上面的方法列竖式计算A+B;
(3)小丽说也可以用类似方法列竖式计算A-B,请你试试看;
(4)请写一个多项式C=,使其与B的和是二次单项式.
24.(10分)我们知道, 的几何意义是:在数轴上数a对应的点到原点的距离,类似的, 的几何意义就是:数轴上数 对应点之间的距离;比如:2和5两点之间的距离可以用 表示,通过计算可以得到他们的距离是3
【解析】
【分析】先判断各个几何体正面看的几何图形,节日进而即可求解.
【详解】从正面看,1号,6号,7号的图形相同,
故选B.
【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,进行分析.
6. B
【解析】
【分析】根据有理数的有关性质,对选项逐个判断即可.
【详解】解:A、负数的绝对值都是正数,选项正确,不符合题意;
参考答案与试题解析
一、选择题.(每小题2分,共16分)
1. B
【解析】
【分析】根据正、负数的定义对各数进行判断即可得解.
【详解】解:−5、+3、−0.2、 、0、 、−11、2.4中,
负数有:−5、−0 2、 、−11,共4个.
故选:B.
【点睛】本题考查了正数和负数,是基础题,熟记概念是解题的关键.
【详解】解:多项式 的最高次项是 ,
最高次项的系数为 ,多项式的次数为4,常数项为−1,
∴它是四次五项式,
∴A正确,不符合题意;
B错误,符合题意;
C正确,不符合题意;
D正确,不符合题意;
故选:B.
【点睛】本题主要考查了多项式,熟练掌握常数项、多项式 次数、b次a项式有关定义是解题关键.
七年级数学上册期中考试卷及答案人教版
七年级数学上册期中考试卷及答案人教版人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 比小的数是 ( )A. B. C. D.2. 在式子 , , , , , 中 , 整式有 ( )A. 个B. 个C. 个D. 个3. 算式的值为 ( )A. B. C. D.4. 若和相减的结果是, 则的值是 ( ) A. B. C.D.5. 下列计算正确的是 ( )A.B.C.D.6. 若 , 互为相反数 , , 互为倒数 ,.则的值为 ( )A. B. C. 或 D.7. 若, 则 a-b 的值是 ( ) A. B. C.D. 8. 如图 , 在数轴上 , 点 , 所表示的数分别为,, 则 , 两点之间表示整数的点一共有 ( )A. 个B. 个C. 个D. 个9. 按如图所示程序流程计算 , 若开始输入的值.则最后输出的结果是 ( )A. B. C. D.10. 如图 , 把张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形的盒子底部 , 盒子底面未被覆盖的部分用阴影部分表示则图中两块阴影部分的周长的和是 ( )A.B.C.D.二、填空题(每小题3分,共15分)11.的相反数是 ____ . 12. 多项式的次数是____. 13. 目前 , 第五代移动通信技术正在阔步前行 , 按照产业间关联关系测算 , 2020 年 ,间接拉动增长将超过亿元数据“亿”用科学记数法表示为_____. 14. 已知数 , 在数轴上的位置如图所示 , 则 , , ,的大小关系是____.15. 观察下列式子:, , 它们是按照一定规律排列的 , 依照此规律 , 则第个式子为 _______ .三.解答题(本大题共8个小题,满分75分)16. 计算:( 1 ); ( 2 ).17. 化简:( 1 ); ( 2 ). 18. 化简并求值:, 其中,.19. 小王在新藏公路某路段设置了一个加水站 , 他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负 , 加水车当天的行驶记录如下 ( 单位:千米 ) :+8 , -9 , +7 , -4 , -3 , +5 , -6 , -8 , +6 , +7 .( 1 ) 加水车最后到达地方在出发点的哪个方向 ? 距出发点多远 ?( 2 ) 若加水车行驶过程中每千米耗油量为升 , 求这天加水车共耗油多少升 ?20. 小刚同学做一道题:“已知两个多项式 , , 计算.”小刚同学误将看作, 求得结果.若多项式. ( 1 ) 请你帮助小刚同学求出的正确答案; ( 2 ) 若的值与的取值无关 , 求的值.21. 学校让综合实践活动课外学习小组参与学校校办工厂的足球生产活动 , 在工人师傅的指导和帮助下 , 综合实践活动课外学习小组一周计划生产 700 个足球 , 平均每天生产 100 个 , 由于各种原因实际每天生产产量与计划量相比有出入 , 下表是某周的生产情况 ( 超产为正、减产为负 ) :( 1 ) 根据记录可知前四天共生产个;( 2 ) 产量最多的一天比产量最少的一天多生产个;( 3 ) 该校办工厂实行每周计件奖励制 , 生产一个足球奖励给综合实践活动课外学习小组元.超额完成任务超额部分每个再奖元 , 那么该校的综合实践活动课外学习小组这一周得到的奖励总额是多少元 ?22. 某校准备到服装超市购一批演出服装 ( 男 , 女服装价格相同 ) 以供文艺汇演使用 , 一套服装定价元 , 领结 ( 花 ) 每条定价元 , 适逢新中国成立周年 , 服装超市开展促销活动 , 向客户提供两种优惠方案:①买一套服装送一条领结 ( 花 ) ;②服装和领结 ( 花 ) 都按定价的销售. 现该校要到该服装超市购买服装套 , 领结 ( 花 ) 条.( 1 ) 若该校按方案①购买.需付款 _______ 元 ( 用含的式子表示 ) ;若该校按方案②购买.需付款元 ( 用含的式子表示 ) ;( 2 ) 若, 通过计算说明此时按哪种方案付款比较合算; ( 3 ) 当时 , 你能给出一种更为省钱的购买方案吗 ? 试写出你的购买方案 , 并计算出需付款多少元.23. ( 1 ) 如图 , 点 M 在数轴上对应数为 -4 .点 N 在点 M 右边距 M 点 6 个单位长度 , 求点 N 对应的数;( 2 ) 在 ( 1 ) 的条件下.保持 N 点静止不动 , 点 M 沿数轴以每秒 1 个单位长度的速度匀速向右运动 , 经过多长时间 M , N 两点相距 4 个单位长度;( 3 ) 若已知点 M , N 在数轴上对应的数分别为 -6 、 2 .点 M 以每秒 3 个单位长度的速度沿数轴向右运动 , N 以每秒 2 个单位长度的速度同时沿数轴向右运动 , 当 M , N 两点相距个单位长度时 , 请直接写出点 M 所对应的数.初一数学21个必考知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
七年级上册数学第七周周考试题
绵阳中学育才学校三初一第七周周清卷班级__________ 姓名___________ 得分___________一、选择题(每小题3分,共36分)1、-3的相反数是( )A.-3B.C.D.3 2、下列有理数大小关系判断正确的是( )A. B. C. D.4、 3、如图,,两个数在数轴上的位置如图所示,则下列各式正确的是( )A .B .C .D .4、数轴上到点5-的距离为6的点表示的数为( )A.1B.1-C.11-D.111-或5、在代数式中,整式有( ) A.3个 B.4个 C.5个 D.6个6、由四舍五入法得到的近似数53.2010⨯,下列说法中正确的是( )A.有3个有效数字,精确到百位B.有6个有效数字,精确到个位C.有2个有效数字,精确到万位D. 有3个有效数字,精确到千位7、我国最长的河流长江全长约千米,用科学计数法表示为( )A .千米B .千米C .千米D .千米8.下列单项式书写不正确的有( ).①3a 2b ; ②2x 1y 2; ③-x 2; ④-1a 2b . A .1个 B .2个 C .3个 D .4个9.按图程序计算,若开始输入的值为x=3,则最后输出的结果是( ).A .6B .21C .156D .23113-13101)91(-->--100->33+<-01.01->-ab 0<+b a 0<ab 0<-a b 0>b a 222515,1,32,,,1x x x x x x π+--+++63002103.6⨯21063⨯3103.6⨯4103.6⨯123210、已知a 与b 互为相反数,c 与d 互为倒数,︱m ︱=1,2(a +b )-2m cd 的值是( ) A、-1 B 、2 C 、1 D 、-2 11.多项式7)2(21++-x n x n 是关于x 的二次三项式,则n 的值是( ) A.2 B.2- C.2或2- D.312.已知一个数为三位数,十位数字是a,个位数字比a 小2,百位数字是a 的2倍,则这个三位数可表示( )A.21a-2B.211a-2C.200a-2D.3a-2二、填空题(每题6分,共18分)13、若|a+2|+=0,则a+b=____________. 14、相反数等于本身的是______,绝对值等于本身的数是______,倒数等于本身的数是_______15、-836 000 000可用科学计数法表示为 一个数用科学计数法表示为5.27×610 则这个数是 。
七年级数学上学期周练卷试题
南长实验中学2021-2021学年七年级数学上学期周练卷制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日选择题:〔3′×10=30′〕 1、-5的相反数是( ) A.15B. 15-C. 5D. -52、在()()22007228,1,3,1,0,,53π--------中,负有理数一共有〔 〕 A .4个个个个3、以下各组单项式中,不是同类项的是( )2x y 与2xy B. 22a b 与52baC. 13与32-D. -3x 与7x4、以下四个图形中, 能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形是 ( )5、如图,表示点D到AB所在直线的间隔 的是〔〕A.线段AD的长度 B.线段AE的长度 C.线段BE的长度 D.线段DE 的长度第5题图6、如图,将正方体的平面展开图重新折成正方体后,“祝〞字对面的字是〔〕A.新 B.年 C.快 D.乐7、以下说法正确的选项是〔〕A.两点之间的间隔是两点间的线段;B.与同一条直线垂直的两条直线也垂直.C.同一平面内,过一点有且只有一条直线与直线平行;D.同一平面内,过一点有且只有一条直线与直线垂直;8、某人只带了20元和50元的两种纸币,他要买一件270元的商品,而商场不给找钱,问此人的付款方式一一共有( )种。
A. 1B. 2C. 3D. 49、自行车的轮胎安装在前轮上行驶6000千米后报废,安装在后轮上,只能行驶4000千米,为了行驶尽可能多的路程,采取在自行车行驶一定路程后,用前后轮调换使用的方法,那么安装在自行车上的这对轮胎最多可行驶多少千米?〔〕A.6000千米 B.5000千米 C.4800千米 D.4000千米10、有一些黑.白两种颜色的小正方体积木,把它们摆成如下图的形状.相邻的积木颜色不同〔有公一共面的两块积木叫做相邻的积木〕,标有A的积木为黑色.图中一共有黑色积木多少块?〔〕A.15块B.16块C.17块D.18块二、填空题:〔2′×10=20′〕11、假如零上18℃记作18℃,那么零下5℃记作____________。
周周测试卷七年级上数学
一、选择题(每题2分,共20分)1. 下列数中,属于正数的是()A. -3B. 0C. 1.5D. -2.32. 下列各数中,有理数是()A. √2B. πC. 1/3D. 0.1010010001…3. 下列各数中,无理数是()A. √9B. √16C. √25D. √1004. 若 |a| = 5,则 a 的值可能是()A. 5B. -5C. 10D. -105. 下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 06. 下列方程中,正确的是()A. 2x + 3 = 7B. 3x - 2 = 8C. 4x + 5 = 10D. 5x - 6 = 127. 下列各数中,偶数是()A. 3B. 4C. 5D. 68. 下列各数中,质数是()A. 2B. 3C. 4D. 59. 下列各数中,合数是()A. 4B. 5C. 6D. 710. 下列各数中,正整数是()A. 0B. 1C. 2D. 3二、填空题(每题2分,共20分)11. -2 + 3 - 4 的结果是 ________ 。
12. 0.5 × 4 + 0.3 × 2 的结果是 ________ 。
13. 下列各数中,最小的数是 ________ 。
14. 下列各数中,最大的数是 ________ 。
15. 下列各数中,有理数是 ________ 。
16. 下列各数中,无理数是 ________ 。
17. 下列各数中,偶数是 ________ 。
18. 下列各数中,质数是 ________ 。
19. 下列各数中,合数是 ________ 。
20. 下列各数中,正整数是 ________ 。
三、解答题(每题10分,共30分)21. 解方程:2x - 3 = 7。
22. 解方程:3x + 4 = 15。
23. 计算下列各式的值:0.4 × 5 - 0.2 × 3 + 0.1 × 10。
2019秋人教版七年级数学上册周周清七
检测内容:3.4得分________卷后分________评价________一、选择题(每小题5分,共30分)1.(绥化中考)一个长方形的周长为30 cm,若这个长方形的长减少1 cm,宽增加2 cm 就可成为一个正方形,设长方形的长为x cm,可列方程为( D )A.x+1=(30-x)-2 B.x+1=(15-x)-2C.x-1=(30-x)=2 D.x-1=(15-x)+22.(福建·中考)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是( A )A.x+2x+4x=34 685 B.x+2x+3x=34 685C.x+2x+2x=34 685 D.x+x+x=34 6853.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店( B )A.不盈不亏B.盈利10元C.亏损10元D.盈利50元4.为减少雾霾天气对身体的伤害,班主任王老师在某网站为班上的每一位学生购买防雾霾口罩,每个防霾口罩的价格是15元,在结算时卖家说:“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”,王老师说:“那好吧,我就再给自己买一个,谢谢.”根据两人的对话,判断王老师的班级学生人数应为( B )A.38 B.39 C.40 D.415.(邵阳·中考)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( A )A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人6.(宁德中考)如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a是方框①,②,③,④中的一个数,则数a所在的方框是( C )A.①B.②C.③D.④二、填空题(每小题5分,共30分)7.儿子今年13岁,父亲今年40岁,则__4__年前父亲年龄是儿子年龄的4倍.8.某校七年级学生有a人,已知七、八、九年级学生人数比为2∶3∶3,则该校学生共有__4a__人.9.(牡丹江·中考)小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为__160__元.10.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,安排__25__名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.11.(天门·中考)某公司积极开展“爱心扶贫”的公益活动,现准备将6 000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1 000件,则发往A区的生活物资为__3_200__件.12.一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是__16__.三、解答题(共40分)13.(9分)(信阳月考)有一个三位数,百位上的数字比十位上的数字大1,个位上的数比十位上的数字的3倍少2,若将这个三位数的百位与个位数字调换后,所得的三位数与原来的和是1 171,则这三位数是多少?解:设十位上的数字为x,则百位上的数字为x+1,个位上的数字为3x-2,根据题意,得100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1 171,解得x=3,则x+1=4,3x-2=7.答:原三位数是43714.(9分)A,B两列火车长分别是120 m和144 m,A车比B车每秒多行5 m.(1)两列相向行驶,从相遇到两车全部错开需8秒,问两车的速度各是多少?(2)在(1)的条件下,若同向行驶,A车的车头从B车的车尾追及到A车全部超出B车,需要多少秒?解:(1)设B车的速度为x m/s,则A车的速度为(x+5)m/s.由题意可,得8[x+(x+5)]=120+144,解得x=14,则x+5=19.答:A车、B车的速度分别为19 m/s,14 m/s(2)设A、B两车同向行驶,A车的车头从B车的车尾追及到A车全部超出B车,需要t秒.依题意,得19t=14t+120+144,解得t=52.8.答:若A、B两车同向行驶,A车的车头从B车的车尾追及到A车全部超出B车,需要52.8秒15.(10分) 小赵和小王交流暑假中的活动,小赵说:“我参加了科技夏令营,外出一个星期,这七天的日期之和为84,你知道我是几号出去的吗?”小王想了一会说:“你是9号出去的.”小王又说:“我假期去参加上海世博会,也去了七天,日期和再加上月份数也是84,你能猜出我是几号回家的吗?”小赵是9号出去的吗?小王回家的日期是几月几日?解:(1)小赵是x 号出去的,那么列出方程式x +(x +1)+(x +2)+(x +3)+(x +4)+(x +5)+(x +6)=84,简化7x +21=84,解得x =9.所以说小赵是9号出去的;(2)因为小王是暑假出去的,所以他去的月份可能是7月份或8月份.假设他去的月份是7月时.设小王是x 号回家的,那么列出方程式x +(x -1)+(x -2)+(x -3)+(x -4)+(x -5)+(x -6)+7=84,整理得,7x -21+7=84,解得:x =14,假设他去的月份是8月时,设小王是x 号回家的,那么珍方程式x +(x -1)+(x -2)+(x -3)+(x -4)+(x -5)+(x -6)+8=84②整理得7x -21+8=84,解得x =977(日期是整数,不合题意,舍去), 所以小王的回家日期是7月14号16.(12分)某省公民的居民用电阶梯电价听证方案如下:例:若某户月用电量400度,则需交电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元).(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档? 解:(1)因为210×0.52+(350-210)×(0.52+0.05)=189(元),138.84元<189元,所以小华家5月份用电量不超过350度,设小华家5月份用电量为x 度,则210×0.52+(x -210)×(0.52+0.05)=138.84,解得x =262,即小华家5月份用电量为262度 (2)当a ≤109.2,属第一档电量;当109.2<a ≤189,属第二档电量;当a >189,属第三档电量。
2020-2021学年江苏省淮安市第一中学苏科版数学七年级上第七周周末提优训练(有答案)
苏科版2020-2021学年度江苏省淮安市第一中学七上第七周周末提优训练班级:___________姓名:___________得分:___________一、选择题1.已知y=ax7+bx5+cx3+dx+e,其中a、b、c、d、e为常数,当x=2时,y=23;当x=−2时,y=−35,那么e的值是().A. −6B. 6C. −12D. 122.有两桶水,甲桶装有a升水,乙桶中的水比甲桶中的水多3升.现将甲桶中倒一半倒给甲桶,假定桶足够大,水不会溢岀.我到乙桶中,然后再将此时乙桶中总水量的13们将上述两个步骤称为一次操作,进行重复操作,则()A. 每操作一次,甲桶中的水量都会减小,最后甲桶中的水会全部倒入乙桶B. 每操作一次,甲桶中的水量都会减小,但永远倒不完C. 每操作一次,甲桶中的水量都会增加,反复操作,最后甲桶中的水会比乙桶多D. 每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少3.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2018B. 2019C. 2040D. 20494.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为a,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)A. −aB. −12a C. 12a D. a5.如图是一个长方形,它被分割成4个大小不同的正方形①、②、③、④和一个长方形⑤,若要计算这个大长方形的周长,则只需知道哪个正方形的边长即可()A. ①B. ②C. ③D. ④6.某同学计算一个多项式加上xy−3yz−2xz时,误认为减去此式,计算出的结果为xy−2yz+3xz,则正确的结果是()A. 2xy−5yz+xzB. 3xy−8yz−xzC. yz+5xzD. 3xy−8yz+xz7.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm,宽为bcm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A. 4acmB. 4bcmC. 2(a+b)cmD. 4(a−b)cm二、填空题8.比3+a2−4a小2(5a−8+3a2)的整式是.9.根据如图所示的程序计算,若输入x的值为1,则输出的y的值为____________.10.规定a∗b=3a+2b−1,则(−4)∗6的值为______ .11.某小区一块长方形绿地如图所示(单位:m),其中两个扇形表示绿地,两块绿地用五彩石隔开,需要铺五彩石的部分面积为______m2.12. 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第2n个图形中白色正方形的个数是(用含n 的式子表示)______.13. 定义计算“△”,对于两个有理数a ,b ,有a △b =ab −(a +b),例如:−3△2=−3×2−(−3+2)=−6+1=−5,则[(−1)△(m −1)]△4=______. 三、解答题14. 阅读材料:对于任何有理数,我们规定符号∣∣∣ab cd ∣∣∣的意义是∣∣∣a b c d ∣∣∣=ad −bc . 例如:∣∣∣1234∣∣∣=1×4−2×3=−2. (1)按照这个规定,请你计算∣∣∣56−28∣∣∣的值.(2)按照这个规定,请你计算当|x +12|+(y −2)2=0时,∣∣∣2x 2−y x 2+y 3−1∣∣∣值.15. 每年“双11”天猫商城都会推出各种优惠活动进行促销.今年,张阿姨在“双11”到来之前准备在三家天猫店铺中选择一家购买原价均为1000元/条的被子若干条.已知三家店铺在非活动期间,均在原价基础上优惠20%销售,活动期间在此基础上再分别给予以下优惠:A 店铺:“双11”当天购买可以再享受8折优惠;B 店铺:商品每满800元可使用店铺优惠券50元,同时每满400元可使用商城“双11”购物津贴券50元,同时“双11”当天下单每单还可立减60元(例如:购买2条被子需支付800×2−50×2−50×4−60=1240元);C店铺:“双11”当天下单可享立减活动:①每条立减100元(购买10条以内,不包括10条);②每条立减160元(10条及10条以上).享受“立减”优惠后,店铺还可实行分期付款,先付总购物款的一半,一年后再一次性付清余下的货款(注:银行一年定期的年利率为3%).(1)若在A店铺5条被子作一单购买,需支付______元;若在B店铺5条被子作一单购买,需支付______元;若在C店铺5条被子作一单购买,至一年后全部付清共用去______元.(2)若张阿姨在“双11”当天下单,且购买了a条同款被子,请分别用含a的代数式表示在这三家店铺的购买费用.(说明:张阿姨要买的a条被子作一单购买) 16.观察下列单项式:−x,3x2,−5x3,7x4,…−37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.(1)这组单项式的系数依次为多少,绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2016个,第2017个单项式.17.已知数轴上有A、B、C三个点,分别表示有理数−24、−10、10,动点P从A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______ ,PC=______ ;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为4个单位长度?如果能,请求出此时点P表示的数;如果不能,请说明理由.18.已知关于x的整式A=2x2−mx+4,B=mx2+5x−m,其中m为常数.(1)若m=−7,化简A−B;(2)若A+B的结果中不含x项.①求A+B;②当x=−1时,求A+B的值.19.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,−2.5,−3观察数轴,B,C两点之间的距离为______;与点A的距离为3的点表示的数是______;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是______;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则MM两点表示的数分别是:M:______,N:______.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P______,Q______.(用含m,n的式子表示这两个数)20.观察下列等式:11×2=1−12,12×3=12−13,13×4=13−14,将以上三个等式两边分别相加的:11×2+12×3+13×4=1−12+12−13+13−14=1−14=34(1)猜想1n(n+1)= ____.(2)已知(ab−2)2与(b−1)2互为相反数,试求代数式:1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋅⋅⋅+1(a+2019)(b+2019)的值.(3)计算:12×4+14×6+16×8+⋅⋅⋅+12018×2020答案和解析1.A解:把x=2,y=23代入原式得,23=27a+25b+23c+2d+e…①,当x=−2时,y=−35分别代入−35=(−2)7a+(−2)5b+(−2)3c+(−2)d+e…②,①+②得,2e=−12,e=−6.2.D解:第一次操作后甲桶有水:12a+13(a+3+12a)=(a+1)(升),乙桶有水:23(a+3+12a)=(a+2)(升);第二次操作后甲桶有水:12(a+1)+13[a+2+12(a+1)]=(a+43)(升),乙桶有水:2 3[a+2+12(a+1)]=(a+53)(升);第三次操作后甲桶有水:12(a+43)+13[a+53+12(a+43)]=(a+139)(升),乙桶有水:2 3[a+53+12(a+43)]=(a+149)(升);以此类推,可知每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少.3.D解:根据题意得:任意三个连续的数之和为中间的数的三倍,三数之和分别为2019、2018、2040、2049,可得:中间的数分别为673,67223(舍去),680,683.∵673=84×8+1,∴2019不合题意,舍去;∵680=85×8,∴2040不合题意,舍去;∵683=85×8+3,∴三个数之和可能为2049.故选:D.4.B解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=14a,图①中阴影部分的周长为:2(b−2y+a)=2b−4y+2a,图②中阴影部分的周长为:2b+2y+2(a−x)=2b+2y+2a−2x=2b+2a−x,则图①阴影部分周长与图②阴影部分周长之差为2b−4y+2a−(2b+2a−x)=x−4y=a2−a=−12a.故选B.5.C解:设正方形②的边长为x,正方形①的边长为a,则正方形③的边长为x+a,正方形④的边长为x+2a,矩形⑤的长为x+3a,宽为x−a;那么2(x+x+a+x+a+x+2a)=8(x+a),所以若要计算整个木板的周长,则只需知道正方形③的边长即可.6.B解:xy−2yz+3xz+2(xy−3yz−2xz)=xy−2yz+3xz+2xy−6yz−4xz=3xy−8yz−xz.7.B解:设小长方形卡片的长为xcm,宽为ycm,∴L上面的阴影=2(a−x+b−x),L下面的阴影=2(b−2y+a−2y),∴L总的阴影=L上面的阴影+L下面的阴影=2(a−x+b−x)+2(b−2y+a−2y)=4a+4b−4(x+2y),又∵x+2y=a,∴4a+4b−4(x+2y)=4a+4b−4a=4b(cm).8.−5a2−14a+19解:根据题意得:3+a2−4a−2(5a−8+3a2)=3+a2−4a−10a+16−6a2=−5a2−14a+19,故答案为−5a2−14a+19.9.−30解:输入x=1>0,1×(−3)=−3,|−3|=3<20;−3<0,(−3)2+1=10,|10|<20;10>0,10×(−3)=−30,|−30|=30>20,输出y=−30.10.−1解:由题意,得(−4)∗6=3×(−4)+2×6−1=−12+12−1=−1.11.(a2+ab−πa2+πb24)解:由图可得,需要铺五彩石的部分面积为:(a+b)a−π⋅a2×14−π⋅b2×14=(a2+ab−πa2+πb24)(m2),故答案为:(a2+ab−πa2+πb24).12.6n+2解:观察图形,可知:第1个图形中白色正方形的个数为5=2×3−1第2个图形中白色正方形的个数为8=3×3−1第3个图形中白色正方形的个数为11=4×3−1…第n个图形中白色正方形的个数为3(n+1)−1=3n+2第2n个图形中白色正方形的个数为3(2n+1)−1=6n+2故答案为6n+2.13.−6m+5解:∵a△b=ab−(a+b),∴[(−1)△(m−1)]△4=[(−1)×(m−1)−(−1+m−1)]△4=(3−2m)△4=[(3−2m)×4−(3−2m+4)]=(12−8m−7+2m)=−6m+5.14.解:(1)原式=5×8+6×2=52(2)由题意可知:x+12=0,y−2=0,∴x=−12,y=2∴原式=−2x2+y−3(x2+y)=−2x2+y−3x2−3y=−5x2−2y=−5×14−4=−21415.3200 3190 3447.5解:(1)由题意可得,在A店铺5条被子作一单购买,需支付:5×1000×0.8×0.8=3200(元),在B店铺5条被子作一单购买,需支付:5×1000×0.8−50×5−50×10−60= 3190(元),在C店铺5条被子作一单购买,至一年后全部付清共用去:[5×1000×0.8−5×100]×12+[5×1000×0.8−5×100]×12×(1−3%)=3447.5(元),故答案为:3200;3190;3447.5;(2)由题意可得,在A店铺a条被子作一单购买,需支付:1000a×0.8×0.8=640a(元),在B店铺a条被子作一单购买,需支付:1000a×0.8−50a−50×2a−60=(650a−60)(元),当0<a<10时,在C店铺a条被子作一单购买,至一年后全部付清共用去:[1000a×0.8−a×100]×12(1+1−3%)=689.5a(元),当a≥10时,在C店铺a条被子作一单购买,至一年后全部付清共用去:[1000a×0.8−a×160]×12(1+1−3%)=630.4a(元).16.解:(1)这组单项式的系数依次为:−1,3,−5,7,…系数为奇数且奇次项为负数,故单项式的系数的符号是:(−1)n,绝对值规律是:2n−1;(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n 个单项式是:(−1)n (2n −1)x n .(4)第2016个单项式是4031x 2016,第2017个单项式是−4033x 2017.17. 解:(1)t ;34−t(2)可以;①∵−10−(−24)=−10+24=14.(14−4)÷(3−1)=5(秒),5×1=5,−10+5=−5;②(14+4)÷(3−1)=9(秒),9×1=9,−10+9=−1;③10−(−24)=34,34÷3=1113,1113×1=1113,1113+(−10)=113,10−113=823,(823−4)÷(3+1) =423÷4 =76, 113+76=212;④(823+4)÷(3+1)=1223÷4=196, 113+196=412,答:P 表示数为−5,−1,212,412.解:(1)∵动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,∴P到点A的距离为:PA=t,P到点C的距离为:PC=(24+10)−t=34−t;故答案为t,34−t;18.解:(1)当m=−7时,A=2x2+7x+4,B=−7x2+5x+7,所以A−B=2x2+7x+4−(−7x2+5x+7)=2x2+7x+4+7x2−5x−7=9x2+2x−3;(2)①A+B=2x2−mx+4+mx2+5x−m=(2+m)x2+(5−m)x+4−m,因为A+B的结果中不含x项,所以5−m=0,所以m=5,所以A+B=(2+5)x2+4−5=7x2−1;②当x=−1时,原式=7×(−1)2−1=6.19.0.54或−20.5−10111009 n−m2n+m2解:(1)观察数轴可知:B、C两点之间的距离为−2.5−(−3)=0.5,与点A的距离为3的点表示的数是1+3=4或1−3=−2.故答案为0.5,4或−2.(2)与点B重合的点表示的数是:−1+[−1−(−2.5)]=0.5;M=−1−20202=−1011,N=−1+20202=1009;故答案为−1011,1009.(3)根据题意,得P=n−m2,Q=n+m2.故答案为n−m2,n+m2.20.(1)1n −1n+1;(2)∵|ab−2|与(b−1)2互为相反数,∴|ab−2|+(b−1)2=0,∴ab−2=0,b−1=0,解得a=2,b=1,1 ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2019)(b+2019)=11×2+12×3+⋯+12020×2021=1−12+12−13+⋯+12020−12021=1−12021=20202021;(3)原式=14(11×2+12×3+13×4+⋯+11009×1010)=14(1−12+12−13+13−14+⋯+11009−11010)=14(1−11010)=14×10091010=10094040.解:(1)1n(n+1)=1n−1n+1;故答案为1n −1n+1;。
七年级上册数学周测试卷
一、选择题(每题4分,共20分)1. 下列数中,不是有理数的是()A. -2.5B. √4C. 0D. π2. 如果a=3,b=-2,那么a²+b²的值是()A. 7B. 9C. 5D. 13. 下列哪个图形是轴对称图形?()A. 长方形B. 等腰三角形C. 正方形D. 等边三角形4. 下列哪个选项不是方程?()A. 2x+3=7B. x²=4C. 5y-2=3D. 3a=95. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)二、填空题(每题5分,共20分)6. 3的平方根是______,5的立方根是______。
7. 若a=4,b=-6,那么a²+b²的值是______。
8. 在直角三角形中,若两直角边的长度分别为3和4,则斜边的长度是______。
9. 如果x²-5x+6=0,那么x的值是______。
10. 在直角坐标系中,点B(-1,-2)关于原点的对称点是______。
三、解答题(每题10分,共30分)11. 解下列方程:(1) 2x-5=7(2) 3x²-9x+6=012. 计算下列各式的值:(1) (a+b)² - (a-b)²(2) (2x+3y)² - (x+y)²13. 在平面直角坐标系中,已知点A(-2,3)和点B(4,-1),求线段AB的中点坐标。
四、应用题(10分)14. 某商店为了促销,将一件标价为200元的商品打八折出售,顾客购买时还享有满100减20元的优惠活动。
请问顾客购买此商品实际需要支付多少钱?答案:一、选择题1. D2. B3. D4. D5. A二、填空题6. ±√3,√5/37. 498. 59. 2或3 10. (1,2)三、解答题11. (1) x=6 (2) x=2或x=3/212. (1) 4a² (2) 3x²+5xy+3y²13. 线段AB的中点坐标为(1,1)四、应用题14. 实际支付金额= 200 × 0.8 - 20 = 140元。
七年级上册数学全册单元试卷测试卷附答案
七年级上册数学全册单元试卷测试卷附答案一、初一数学上学期期末试卷解答题压轴题精选(难)1.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。
北师大版七年级数学上册全套试卷
北师大版七年级数学上册全套试卷本试卷为最新北师大版中学生七年级达标测试卷。
全套试卷共7份。
试卷内容如下:1. 第一单元使用2. 第二单元使用3. 第三单元使用4. 第四单元使用5. 第五单元使用6. 第六单元使用7. 期末检测卷第一章达标测试卷一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于()A.棱柱B.圆柱C.圆锥D.长方体2.下面的几何图形:①棱柱;②正方形;③圆锥;④圆;⑤长方体;⑥三角形.其中属于立体图形的是()A.①②③B.②④⑥C.①③⑤D.③④⑤3.将半圆绕它的直径所在的直线旋转一周形成的几何体是() A.圆柱B.圆锥C.球D.正方体4.一个无盖的正方体盒子的表面展开图可以是下列图形中的()(第4题) A.①B.①②C.②③D.①③5.下列说法不正确的是()A.圆锥和圆柱的底面都是圆B.棱柱的所有侧棱长都相等C.棱柱的上、下底面形状完全相同D.长方体是四棱柱,四棱柱是长方体6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来是“祝福祖国万岁”,把它折成正方体后,与“万”相对的字是()A.祖B.岁C.国D.福(第6题)7.在一个正方体容器内分别装入不同量的水,再把容器按不同方式倾斜一点,容器内水面的形状不可能是()8.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()(第8题)9.由5个大小相同的正方体拼成的几何体如图所示,则下列说法正确的是() A.从正面看到的图形面积最小B.从左面看到的图形面积最小C.从上面看到的图形面积最小D.从三个方向看到的图形面积相等(第9题)10.如图表示一个由相同小立方块搭成的几何体从上面看到的图形,小正方形中的数字表示该位置上小立方块的个数,那么从正面看到的图形为()(第10题)二、填空题(每题3分,共24分)11.一个正方体有________个面,________个顶点.12.快速旋转一枚竖立的硬币一周(假定旋转轴在原地不动),旋转形成的立体图形是__________.13.用数学知识解释下列现象:一只蚂蚁行走的路线可以解释为____________;直升机的螺旋桨转起来形成一个圆形的面,这说明了____________.14.下列几何体(如图),属于柱体的有____________;属于锥体的有__________;属于球体的有__________.(填序号)(第14题) 15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.(第15题)16.用一个平面去截一个圆柱(如图),图①中截面的形状是________,图②中截面的形状是__________.(第16题)17.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).(第17题)18.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为__________(结果保留π).14.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.(第18题)三、解答题(19,22题每题8分,24题14分,其余每题12分,共66分) 19.图②中的几何体分别是由图①中哪个平面图形旋转一周得到的?用线连起来.(第19题)20.如图是从不同方向看一个几何体得到的图形及部分数据.(1)写出这个几何体的名称;(2)求这个几何体的侧面积.(第20题)21.观察如图所示的直六棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为25 cm,侧棱长为8 cm,则它的侧面积为多少?(第21题)22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x +y+z的值.(第22题)23.把棱长为1 cm的若干个小正方体摆放成如图所示的几何体,然后将露出的部分都涂上颜色(不涂底面).(1)该几何体中有多少个小正方体?(2)画出从正面观察所得到的平面图形.(3)求涂色部分的总面积.(第23题)24.把如图①所示的正方体切去一块,得到如图②~⑤所示的几何体.(第24题)(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,v,e应满足什么关系式?答案1.B2.C3.C4.D5.D6.B7.A8.A9.B10.C二、11.6;812.球13.点动成线;线动成面14.①③⑤⑥;④;②15.圆锥;正方体;三棱锥;圆柱16.圆;长方形17.6π18.63π三、19.1—c;2—b;3—d;4—a20.解:(1)这个几何体是三棱柱.(2)这个几何体的侧面积为3×16×9=432 (cm2).21.解:(1)它有8个面,2个底面,底面是六边形,侧面是长方形.(2)侧面的个数与底面多边形的边数相等.(3)它的侧面积为25×8=200(cm2).22.解:由题意知x+5=10,2+y=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)该几何体中小正方体的个数为9+4+1=14(个).(2)如图所示.(第23(2)题)(3)由题意知该几何体的上面需涂色的面积为9个小正方形的面积和,前面、后面、左面、右面需涂色的面积和为6个小正方形面积和的4倍,故涂色部分的总面积为(9+6×4)×12=33(cm2).24.解:(1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2)例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(第24(2)题)(3)所求关系式为f +v -e =2.第二章达标测试卷一、选择题(每题3分,共30分)1.如果“盈利10%”记为+10%,那么“亏损6%”记为( )A .-16%B .-6%C .+6%D .+4%2.-15的相反数是( )A.15B .-15C .5D .-53. 太阳的温度很高,其表面温度大约有6 000 ℃,而太阳中心的温度达到了19200 000 ℃,用科学记数法可将19 200 000表示为( ) A .1.92×106 B .1.92×107 C .19.2×106D .0.192×1074.在数23,1,-3,0中,最大的数是( )A.23B .1C .-3D .05.下列算式正确的是( )A .-32=9B.⎝ ⎛⎭⎪⎫-14÷(-4)=1 C .(-8)2=-16D .-5-(-2)=-36.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的有( )A .4个B .3个C .2个D .1个7.学校、文具店、书店依次坐落在一条南北走向的大街上,学校在文具店的南边20 m 处,书店在文具店的北边100 m 处,张明同学从文具店出发,向北走了50 m ,接着又向北走了-70 m ,此时张明的位置在( ) A .文具店B .学校C .书店D .以上都不对8.数a ,b ,c 在数轴上对应的点的位置如图所示,表示0的点为原点,则下列各式正确的是( )A .abc <0B .a +c <0C .a +b <0D .a -c <09.学完有理数后,a ,b ,c ,d 四名同学分别聊起来了,a 说:“没有最大的正数,但有最大的负数.”b 说:“有绝对值最小的数,没有绝对值最大的数.”c 说:“有理数包括正有理数和负有理数.”d 说:“相反数是它本身的数是正数.”你认为谁说得对呢?( ) A .aB .bC .cD .d10.探索规律,71=7,72=49,73=343,74=2 401,75=16 807,…,那么72 018+1的个位数字是( ) A .8 B .4 C .2 D .0 二、填空题(每题3分,共24分)11.在有理数-3.7,2,213,-34,0,0.02中,正数有______________,负分数有______________.12.一种食用盐包装袋上标有(500±5)g ,表示这种食用盐的质量不超过________,不少于________.13.比较大小(填“>”“<”或“=”):(1)-45________-34; (2)|-5|________0;(3)-(-0.01)________⎝ ⎛⎭⎪⎫-1102.14.如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有________个.15.若|a -11|+(b +12)2=0,则(a +b )2 018=________.16.按下面程序计算(如图),输入x =-5,则输出的答案是________ .输入x ―→平方―→-x ―→÷2―→输出答案17.在算式1-⎪⎪⎪⎪-2 3中的 里,填入运算符号________,可使得算式的值最小(在符号+,-,×,÷中选择一个).18.有六张卡片,卡片正面分别写有六个数,背面分别写有六个字母,如下表:将卡片正面的数由大到小排列,然后将卡片翻转使背面朝上,卡片上的字母组成的单词是________.三、解答题(19题16分,20,22题每题8分,24题10分,其余每题12分,共66分) 19.计算:(1)-|3-5|+2×(1-3);(2)-24×⎝ ⎛⎭⎪⎫-56+38-112;(3)(-2)3-(-13)÷⎝ ⎛⎭⎪⎫-12;(4)-12-(1-0.5)÷52×15.20.已知|x -3|与|y -1|互为相反数,求式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值.21.如图,数轴上有三个点A ,B ,C ,请回答下列问题:(1)将点C 向左移动6个单位长度后,这时点B 所表示的数比点C 所表示的数大多少?(2)怎样移动A,B,C中的两个点,才能使这三个点表示相同的数?有几种移法?22.若“”表示运算a-b+c,“”表示运算x-y+z-w,求-的值.23.“十一”期间,某风景区在7天假期中,每天旅游的人数变化如下表(正数表示比前一天增加的人数,负数表示比前一天减少的人数)所示(单位:万人):日期1日2日3日4日5日6日7日人数变化+1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2万人.天内哪天游客的人数最多?哪天游客的人数最少?(2)这7天内该风景区平均每天有游客多少万人?24.如图,数轴上的点A,B,C分别表示数-3,-1,2.(1)A,B两点间的距离AB=________,A,C两点间的距离AC=________.(2)若点E表示的数为x,则AE的长等于多少?答案二、1.B 2.A 3.B 4.B 5.D 6.B7.B 8.B 9.B 10.D 二、11.2,213,0.02;-3.7,-3412.505 g ;495 g13.(1)< (2)> (3)= 14.7 15.1 16.15 17.× 18.thanks三、19.解:(1)原式=-2+2×(-2)=-2+(-4)=-6;(2)原式=20-9+2=13; (3)原式=-8-26=-34;(4)原式=-1-12×25×15=-1-125=-1125.20.解:因为|x -3|与|y -1|互为相反数,所以|x -3|+|y -1|=0.所以x =3,y =1.所以原式=⎝ ⎛⎭⎪⎫31-13÷(3+1)=⎝ ⎛⎭⎪⎫3-13÷4=23.21.解:(1)这时点B 所表示的数比点C 所表示的数大1.(2)有3种移法.①点A 右移2个单位长度,点C 左移5个单位长度; ②点A 右移7个单位长度,点B 右移5个单位长度; ③点B 左移2个单位长度,点C 左移7个单位长度.22.解:由题意知,原式=14-12+16-[-2-3+(-6)-3]=-112-(-14)=-112+14=131112.23.解:(1)由题意知,该风景区在7天假期中,每天旅游的人数如下表所示(单位:万人):由此可知,10月3日的游客人数最多,10月7日的游客人数最少.(2)这7天内该风景区平均每天的游客人数为17×(2.6+3.4+3.8+3.4+2.6+2.8+1.6)≈2.89(万人). 24.解:(1)2;5(2)|x -(-3)|=|x +3|, 即AE 的长为|x +3|.第三章达标测试卷一、选择题(每题3分,共30分)1.代数式:6x 2y +1x ,5xy +x 2,-15y 2+xy ,2y,-3中,不是整式的有( )A .4个B .3个C .2个D .1个2.下列各式中,与2a 是同类项的是( )A .3aB .2abC .-3a 2D .a 2b3.下列代数式中符合书写要求的是( )A.a 2b4B .213cbaC .a ×b ÷cD .ayz 34.在下列表述中,不能表示代数式“4a ”的意义的是( )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘5.多项式y -x 2y +25的项数、次数分别是( )A .3,2B .3,5C .3,3D .2,3 6.下列运算正确的是( )A .-()2x +5=-2x +5B .-12()4x -2=-2x +2 C.13()2m -3n =23m +nD .-⎝ ⎛⎭⎪⎫23m -2x =-23m +2x 7.将有理数m 减小5后,再乘3,最后的结果是( )A .3(m -5)B .m -5×3mC .m -5+3mD .m -5+3(m -5)8.若m +n =-1,则(m +n )2-2m -2n 的值是( )A .3B .0C .1D .29.多项式12x |n |-(n +2)x +7是关于x 的二次三项式,则n 的值是( )A .2B .-2C .2或-2D .310.有一种石棉瓦,每块宽60 cm ,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10 cm ,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A .60n cmB .50n cmC .(50n +10)cmD .(60n +10)cm二、填空题(每题3分,共24分)11.单项式-x 2y3的系数是________,次数是________.12.-xy 22+3xy -23是________次________项式,最高次项的系数为________.13.计算:a 2b -2a 2b =________.14.若-x 3y 与x a y b -1是同类项,则(b -a )2 017=________.15.张老师带了100元钱去给学生买笔记本和笔.已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩______________元钱(用含a ,b 的代数式表示). 16.定义新运算“”,规定ab =13a -4b ,则12(-1)=________.17.一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,请观察它们的构成规律,用你发现的规律写出第9个等式:____________________.18.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.按照如图所示的规律,摆第n 个图形,需用火柴棒的根数为__________.(第18题)三、解答题(20~22题每题10分,其余每题12分,共66分) 19.计算:(1)(-5a 3)-a 3-(-7a 3); (2)()5a 2+2a -1-2()3-8a +2a 2;(3)(2xy-y)-(-y+yx); (4)3a2b-2[ab2-2(a2b-2ab2)].20.(1)先化简,再求值:12x+⎝⎛⎭⎪⎫13y2-x-⎝⎛⎭⎪⎫-32x+43y2,其中x=-12,y=-3.(2)已知A=-a2+2a-1,B=3a2-2a+4,求当a=-2时,2A-3B的值.21.如图是一个长方形广场,四角都有一块边长为x m的正方形草地,若长方形的长为a m,宽为b m.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为350 m,宽为200 m,正方形草地的边长为10 m,求阴影部分的面积.(第21题)22.对于代数式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题:当k为何值时,代数式中不含xy项?第二个问题:在第一个问题的前提下,如果x=2,y=-1,那么代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,他得到的最后结果却是正确的,你知道这是为什么吗?23.某校组织学生到距离学校6 km的科技馆去参观,小华因事没能乘上学校的包车,于是准备在学校门口改乘出租车去科技馆,出租车收费标准有两种类型,如下表:里程甲类收费/元乙类收费/元3 km以下(包含3 km) 7.00 6.003 km以上,每增加1 km 1.60 1.40(1)设出租车行驶的里程为x km(x≥3且x取正整数),分别写出两种类型的总收费(用含x的代数式表示);(2)小华身上仅有11元,他乘出租车到科技馆车费够不够?24.一张正方形桌子可坐4人,按如图所示的方式将桌子拼在一起,回答下列问题.(第24题)(1)两张桌子拼在一起可以坐________人,三张桌子拼在一起可以坐________人,n张桌子拼在一起可以坐________人.(2)一家酒楼有60张这样的正方形桌子,按如图所示的方式每4张桌子拼成一张大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,共可坐多少人?(4)对于这家酒楼,(2)(3)中哪种拼桌子的方式能使坐的人更多?答案一、1.C2.A3.A4.D5.C6.D 7.A8.A点拨:(m+n)2-2m-2n=(m+n)2-2(m+n).当m+n=-1时,(m+n)2-2(m+n)=(-1)2-2×(-1)=1+2=3.9.A点拨:因为多项式12x|n|-(n+2)x+7是关于x的二次三项式,所以|n|=2且n+2≠0,所以n=2. 10.C二、11.-13;312.三;三;-1213.-a2b14.-1 15.(100-3a-2b)16.8点拨:12(-1)=13×12-4×(-1)=8.17.92+102+902=912点拨:规律:n2+(n+1)2+[n(n+1)]2=[n(n+1)+1]2,故第9个等式为92+102+902=912.18.6n+2点拨:第1个图形有8根火柴棒,第2个图形有14根火柴棒,第3个图形有20根火柴棒,…,第n个图形有(6n+2)根火柴棒.三、19.解:(1)原式=-5a3-a3+7a3=a3;(2)原式=5a2+2a-1-6+16a-4a2=a2+18a-7;(3)原式=2xy-y+y-xy=xy;(4)原式=3a2b-2(ab2-2a2b+4ab2)=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:(1)原式=12x+13y2-x+32x-43y2=x-y2.当x=-12,y=-3时,x-y2=-12-(-3)2=-192.(2)2A-3B=2(-a2+2a-1)-3(3a2-2a+4)=-2a2+4a-2-9a2+6a-12=-11a2+10a-14.当a=-2时,2A-3B=-11a2+10a-14=-11×(-2)2+10×(-2)-14=-78.21.解:(1)阴影部分的面积为(ab-4x2)m2.(2)将a=350,b=200,x=10代入(1)中得到的式子,得350×200-4×102=70 000-400=69 600(m2).答:阴影部分的面积为69 600 m2.22.解:(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy,所以只要7-k=0,这个代数式中就不含xy项.所以当k=7时,代数式中不含xy项.(2)因为在第一个问题的前提下原代数式可化为3x2+8y2,当马小虎同学把y=-1错看成y=1时,y2的值不变,即8y2的值不变,所以马小虎得到的最后结果却是正确的.23.解:(1)甲类总收费为7+(x-3)×1.6=1.6x+2.2(元);乙类总收费为6+(x-3)×1.4=1.4x+1.8(元).(2)当x=6时,甲类总收费为1.6×6+2.2=11.8(元),11.8元>11元,不够;乙类总收费为1.4×6+1.8=10.2(元),10.2元<11元,够.所以他乘出租车到科技馆车费够.24.解:(1)6;8;(2n+2)(2)按题图所示的方式每4张桌子拼成一张大桌子,那么一张大桌子可坐2×4+2=10(人).所以15张大桌子共可坐10×15=150(人).(3)在(2)中,若每4张桌子拼成一张大的正方形桌子,则一张大正方形桌子可坐8人,15张大正方形桌子共可坐8×15=120(人).(4)由(2)(3)可知,按照(2)中拼桌子的方式能使坐的人更多.第四章达标测试卷一、选择题(每题3分,共30分)1.小辉同学画出了下面四个图形,你认为是四边形的是()2.对于直线AB,线段CD,射线EF,下面能相交的是()(第3题)3.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠CC.∠BCA D.∠ACD4.一个多边形从一个顶点最多能引出2 018条对角线,这个多边形的边数是()A.2 018 B.2 019 C.2 020 D.2 0215.下列有关画图的表述中,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MXC.过P,Q,R三点画直线D.延长线段MN到点P,使NP=MN6.∠α=40.4°,∠β=40°4′,则∠α与∠β的大小关系是()A.∠α=∠βB.∠α>∠βC.∠α<∠βD.以上都不对7.如图,观察图形,下列说法或结论中不正确的是()(第7题)A.直线BA和直线AB是同一条直线B.射线AC和射线AD是同一条射线C.AC+CD=ADD.图中有4条线段8.下列说法正确的有()①角的大小与所画角的两边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线;④如果∠AOC=12∠AOB,那么OC是∠AOB的平分线.A.1个B.2个C.3个D.4个9.已知∠AOB=50°,∠BOC=30°,那么∠AOC的度数是() A.20°B.40°C.80°D.20°或80°10.如图,一条流水生产线上L1,L2,L3,L4,L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()(第10题)A.L2处B.L3处C.L4处D.生产线上任何地方都一样二、填空题(每题3分,共24分)11.开学整理教室时,老师总是先把每一列最前面和最后面的课桌摆好,然后依次摆中间的课桌,一会儿一列课桌便摆在一条线上,整整齐齐,这是因为______________________.12.如图,小于平角的角有________个.(第12题)(第14题)(第17题)(第18题)13.把一个直角4等分,每一个角的度数是________度________分.14.如图,阴影部分扇形的圆心角的度数是________.15.一支水笔正好与一把直尺平靠放在一起,小明发现:水笔的笔尖正好对着直尺刻度约为5.6 cm处,另一端正好对着直尺刻度约为20.6 cm处,则水笔的中点位置对着的直尺刻度约为________cm.16.在学习了“线段、射线、直线”后,小李发现:许多汉字就是由这些基本的图形组成的,例如:“一”“二”可以分别看成是一条线段和两条线段组成的,那么汉字“王”中有________条线段.17.如图,某轮船在O处测得灯塔A在北偏东40°的方向上,灯塔B在南偏东60°的方向上,则∠AOB=________.18.如图,艺术节期间某班数学兴趣小组设计了一个长方形时钟作品,其中心为O,数字3,6,9,12标在各边中点处,数字2在长方形顶点处,则数字1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).三、解答题(19~22题每题10分,其余每题13分,共66分)19.计算:(1)48°39′+67°41′-37°12′11″;(2)32°45′20″×4-40°35′50″.20.尺规作图,如图,已知线段a,b,作出线段c,使c=a-b.(要求:不写作法,保留作图痕迹)(第20题)21.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第21题)22.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.(第22题)23.如图,A,B,C是一条笔直的公路上的三个村庄,A,B之间的路程为100 km,A,C之间的路程为40 km,现在要在A,B之间建一个车站P,设P,C之间的路程为x km.(1)用含x的代数式表示车站P到三个村庄的路程之和.(2)若路程之和为102 km,则车站P应建在何处?(3)若要使车站P到三个村庄的路程之和最小,则车站P应建在何处?此时路程之和是多少?(第23题)24.如图,正方形ABCD的内部有若干个点,利用这些点以及正方形ABCD的顶点A,B,C,D把原正方形分割成一些小三角形(互相不重叠):(第24题)(1)填写下表:正方形ABCD内点的个数1234…n分割成的小三角形的个数46…(2)原正方形能否被分割成2 018个小三角形?若能,求此时正方形ABCD的内部有多少个点.若不能,请说明理由.答案一、1.B2.B3.B4.D5.C6.B7.D8.B点拨:从角的顶点出发的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线,故③错误;如果∠AOC=12∠AOB,当OC在∠AOB的内部时,OC是∠AOB的平分线,但当OC在∠AOB的外部时,OC不是∠AOB的平分线,故④错误.①②正确,所以选B.9.D点拨:①当射线OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=50°+30°=80°;②当射线OC在∠AOB的内部时,∠AOC=∠AOB-∠BOC=50°-30°=20°.故选D.10.B二、11.两点确定一条直线12.713.22;3014.36°15.13.116.1217.80°18.②三、19.解:(1)原式=(48°+67°-37°)+(39′+41′-13′)+(60″-11″)=78°67′49″=79°7′49″;(2)原式=131°1′20″-40°35′50″=90°25′30″.20.解:如图所示.(第20题)则线段BC=c=AB-AC=a-b.21.解:由题意可知∠AOB=180°-45°+30°=165°,165°÷2-30°=52.5°.所以渔船C在观测站南偏东52.5°方向.22.解:因为∠FOC=90°,∠1=40°,∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3+∠AOD=180°,所以∠AOD=180°-∠3=130°.因为OE 平分∠AOD , 所以∠2=12∠AOD =65°.23.解:(1)路程之和为P A +PB +PC =(100+x )km .(2)令100+x =102,解得x =2, 即车站P 建在C 村两侧2 km 处均可.(3)当x =0时,x +100最小,此时x +100=100,即车站P 建在C 村处时,车站P 到三个村庄的路程之和最小,此时路程之和为100 km . 24.解:(1)填表如下:(2)能.当2n +2=2 018,即n =1 008时,原正方形能被分割成2 018个小三角形,此时正方形ABCD 的内部有1 008个点.第五章达标测试卷一、选择题(每题3分,共30分) 1.下列方程是一元一次方程的是( )A .x 2+x =3B .5x +2x =5y +3 C.12x -9=3 D.2x +1=22.下列方程中,解是x =2的方程是( )A .3x +6=0 B.23x =2 C .5-3x =1 D .3(x -1)=x +1 3.若代数式x +4的值是2,则x 等于( )A .2B .-2C .6D .-6 4.下列变形中,正确的是( )A .若ac =bc ,则a =bB .若a c =bc ,则a =b C .若|a |=|b |,则a =b D .若-2x -2=3,则x =12 5.将方程3x -23+1=x2去分母,正确的是( )A .3x -2+1=xB .2(3x -2)+1=3xC .2(3x -2)+6=3xD .2(3x -2)+1=x6.某公园要修建一个周长为48 m 的长方形花坛,已知该花坛的长比宽多2 m ,设花坛的宽为x m ,那么列出的方程为( )A .2x =48B .x +2=48C .(x +x +2)×2=48D .x (x +2)=48 7.若12m +1与m -2互为相反数,则m 的值为( )A .-23 B.23 C .-32 D.328.如果x +12 017=-3,那么3x +32 017等于( )A .6B .-9C .3D .-19.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.对于有理数a ,b ,c ,d 规定一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如⎪⎪⎪⎪⎪⎪1 02 -2=1×(-2)-0×2=-2,那么当⎪⎪⎪⎪⎪⎪2 -43-x 5=25时,x 等于( ) A .-34 B.274 C .-234 D .-134 二、填空题(每题3分,共24分)11.如果(a -1)x -13=2是关于x 的一元一次方程,则a __________. 12.写出一个解为x =2的一元一次方程:______________.13.已知关于x 的方程2x +a -5=0的解是x =2,则a =________. 14.若规定“*”的意义为a *b =a -2b ,则方程3*x =5的解是____________. 15.若方程3x -4=0与关于x 的方程3x +4k =12的解相同,则k =________. 16.如图是一个计算程序,当输入某数后,得到的结果为5,则输入的数值x =________.(第16题)17.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜________袋.18.我们知道,无限循环小数都可以转化为分数.例如:将0.3·转化为分数时,可设0.3·=x ,则x =0.3+110x ,解得x =13,即0.3·=13.仿照此方法,将0.4·5·化成分数是________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)3x -3=x +2; (2)x +14-1=2x -16.(3)4x -3(20-x )=4;(4)3(x +2)4=x +23+5.20.m为何值时,代数式2m-5m-13的值与代数式7-m2的值的和等于5?21.某月,小江去某地出差,回来时发现日历有好几天没翻了,就一次翻了6张,这6天的日期数之和是123.小江回来的日期应该是多少号?22.某地为了打造风光带,将一段长为360 m的河道整治任务交给甲、乙两个工程队接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m,求甲、乙两个工程队分别整治了多长的河道.23.有一种用来画圆的工具板(如图),工具板长21 cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3 cm,其余圆的直径从左到右依次递减x cm,最大圆的左侧距工具板左侧边缘1.5 cm,最小圆的右侧距工具板右侧边缘1.5 cm,且相邻两圆的间距均为d cm.(1)用含x的代数式表示出其余四个圆的直径;(2)若最小圆与最大圆的直径之比为11∶15,求相邻两圆的间距.(第23题)24.某市居民生活用电基本价格为每千瓦时0.60元,若每月用电量超过a kW·h,超出部分按基本电价的120%收费.(1)某用户6月用电150 kW·h,共交电费93.6元,求a的值;(2)若该用户7月的电费平均每千瓦时为0.66元,则7月用电多少千瓦时?应交电费多少元?答案一、1.C 2.D 3.B4.B 点拨:当c =0,a ≠b 时,ac =bc 也成立,故A 选项不正确;若a c =bc ,则c 不能为0,由等式的基本性质得a =b ,故B 选项正确;若|a |=|b |,则a =b 或a =-b ,故C 选项不正确;若-2x -2=3,则x =-52,故D 选项不正确. 5.C 6.C 7.B 8.B9.A 点拨:设被移动的玻璃球的质量为x g ,根据题意,得2x =20,解得x =10. 10.A二、11.≠1 12.x -2=0(答案不唯一) 13.114.x =-1 点拨:由已知得3*x =3-2x =5,即2x =-2,解得x =-1. 15.216.10 点拨:输入某数后,得到的结果为5,而输入的数值可能是奇数,也可能是偶数.当输入的数值是奇数时,可得x +3=5,解得x =2(不合题意,舍去);当输入的数值是偶数时,可得12x =5,解得x =10.17.33 点拨:设王经理带回孔明菜x 袋,根据题意列方程,得x -35=x +36.解这个方程,得x =33.18.511 点拨:设0.4·5·=y ,则y =0.45+1100y ,解得y =511.所以0.4·5·化成分数是511.三、19.解:(1)移项,得3x -x =2+3.合并同类项,得2x =5. 系数化为1,得x =52.(2)去分母,得3(x +1)-12=2(2x -1). 去括号,得3x +3-12=4x -2. 移项,得3x -4x =-2-3+12. 合并同类项,得-x =7. 系数化为1,得x =-7.(3)去括号,得4x-60+3x=4. 移项、合并同类项,得7x=64.系数化为1,得x=64 7.(4)去分母,得9(x+2)=4(x+2)+60. 移项,得9(x+2)-4(x+2)=60.合并同类项,得5(x+2)=60.所以x+2=12.解得x=10.20.解:由题意知,2m-5m-13+7-m2=5.去分母,得12m-2(5m-1)+3(7-m)=30.去括号,得12m-10m+2+21-3m=30.移项,得12m-10m-3m=30-2-21.合并同类项,得-m=7.系数化为1,得m=-7.21.解:设这6天的日期数分别为x-2,x-1,x,x+1,x+2,x+3.根据题意,可得(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=123.解得x=20.20+3+1=24.答:小江回来的日期应该是24号.22.解:设甲工程队整治了x天,则乙工程队整治了(20-x)天.由题意,得24x+16(20-x)=360,解得x=5.所以乙工程队整治了20-5=15(天).甲工程队整治的河道长为24×5=120 (m);乙工程队整治的河道长为16×15=240 (m).答:甲、乙两个工程队分别整治了120 m,240 m的河道.23.解:(1)其余四个圆的直径分别为(3-x)cm,(3-2x)cm,(3-3x)cm,(3-4x)cm.(2)由题易得(3-4x)∶3=11∶15,解得x=0.2.将x=0.2代入2×1.5+[3+(3-x)+(3-2x)+(3-3x)+(3-4x)]+4d=21,解得d=1.25.答:相邻两圆的间距为1.25 cm.24.解:(1)因为0.60×150=90(元)<93.6元,所以a<150.由题意,得0.60a+(150-a)×0.60×120%=93.6,解得a=120.(2)设7月用电x kW·h.由题意,得0.66x=0.60×120+0.60×(x-120)×120%,解得x=240.所以0.66x=0.66×240=158.4.答:7月用电240 kW·h,应交电费158.4元.第六章达标测试卷一、选择题(每题3分,共30分)1.下列调查中,适合用普查方式的是()A.调查佛山市市民的吸烟情况B.调查佛山市电视台某节目的收视率C.调查佛山市市民家庭日常生活支出情况D.调查佛山市某校某班学生对“文明佛山”的知晓率2.为了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,在这个问题中,下列说法正确的是()A.1 500名学生的体重是总体B.1 500名学生是总体C.每名学生是个体D.100名学生是所抽取的一个样本3.下列选项中,显示部分在总体中所占百分比的统计图是() A.扇形统计图B.条形统计图C.折线统计图D.频数直方图4.为了了解某初中学校学生的健康状况,对该校学生进行抽样调查,下列抽样的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中随机抽取10%的学生5.四种统计图:①条形统计图;②扇形统计图;③折线统计图;④频数直方图.四个特点:(a)易于比较数据之间的差异;(b)易于显示各组之间的频数的差别;(c)易于显示数据的变化趋势;(d)易于显示每组数据相对于总数的大小.统计图与特点选配方案分别是①与(a);②与(c);③与(d);④与(b).其中选配方案正确的有()A.1个B.2个C.3个D.4个6.某公司某产品的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌(第6题)(第7题)(第8题)7.某次考试中,某班级的数学成绩统计图如图所示(每组的分数包含最小值,不包含最大值).下列说法错误的是()A.得分在70~80分的人数最多B.该班共有40人C.得分在90~100分的人数最少D.及格(≥60分)的有26人8.某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”这个问题,对部分学生进行了调查,调查结果如图所示,其中“不知道”的学生有8人.下列说法不正确的是()。
七年级数学周考测试卷
七年级数学周考测试卷一、选择题:1.以下图形中,能够折叠成正方体的是( )A B C D2.假设a 是有理数,那么4a 与3a 的大小关系是( )A.4a>3aB.4a=3aC.4a<3aD.不能确定3.以下各对数中互为相反数的是( )A.32与-23B.-23与(-2)3;C.-32与(-3)2D.(-3×2)2与23×(-3)4.某班有40名学生,将他们的身高分成4组,在160~165cm 区间的有8名学生,那么这个小组的人数占全体的( )A.10%B.15%C.20%D.25%5.一个数的倒数的相反数是135,这个数是( ) A.165 B.516 C.-165 D.-5166.为了了解1万台某种电视机的使用寿命,从中抽出10台进行测试, 以下表达正确的选项是( )A.1万台某种电视机是总体;B.每台电视机是个体;C.10台电视机的使用寿命是样本;D.以上说法都不正确7.当a<0,化简a a a,得( ) A.-2 B.0 C.1 D.28.把27430按四舍五入取近似值,保存两个有数数字, 并用科学记数法表示应是( )A.2.8×104B.2.8×103C.2.7×104D.2.7×1039.某养鱼专业户年初在鱼塘中投放了500条草鱼苗,6个月后从中随机捞取17条草鱼,称重如下:估计这鱼塘中年初投放的500条草鱼此时的总质量大约为( )千克.A.845B.854C.846D.847 10.一条船在灯塔的北偏东030方向,那么灯塔在船的什么方向〔 〕A .南偏西030;B .西偏南040;C .南偏西060;D .北偏东030O C ABD 11.假设2x+3=5,那么6x+10等于〔 〕A .15;B .16;C .17;D . 3412.∠AOB=3∠BOC,假设∠BOC=30°,那么∠AOC 等于( )A.120°B.120°或60°C.30°D.30°或90°13.某商店有两个进价不同的计算器都卖了80元,其中一个 赢利60%,另一个亏本20%,在这次买卖中,A .不赔不赚;B .赚了10元;C .赔了10元;D .赚了50元 14.城镇人口占总人口比例的大小表示城镇化水平的上下,由下面统计图可知, 我国城镇化水平提升最快的时期是( )A.1953年~1964年;B. 1964年~1982年;C. 1982年~1990年;D. 1990年~2022年;二、填空题:15.调查某城市的空气质量,应选择_______(填抽样或全面)调查.16.假设│x+2│+〔y-3〕2=0,那么xy=____. 17.∠α=72°36′,那么∠α的余角的补角是_____度.18.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=︒36,那么∠AOB=_ __. 19.观察以下数字的排列规律,然后在括号内填入适当的数:3,-7,11,15-,19,-23,〔 〕,( ).20.假设线段AB=10cm,在直线AB 上有一点C,且BC=4cm,M 是线段AC 的中点,那么AM=______cm.三、解做题:21. 计算:(1) 22350(5)1--÷--; (2) 2211210.53(2)3⎡⎤⎛⎫⎡⎤----⨯⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦.22.解方程:(1) 6)5(34=--x x ; (2)53210232213+--=-+x x x .39.1%1982年1964年807060504030果树数挂果树23.一条射线OA,如果从点O 再引两条射线OB 和OC,使∠AOB=60°, ∠BOC=20°, 求∠AOC 的度数.24.某果农承包了一片果林,为了了解整个果林的挂果情况, 果家随机抽查了局部果树挂果树进行分析.以下图是根据这组数据绘制的统计图,图中从左到右各长方形之比为5:6:8:4:2,又知挂果数大于60的果树共有48棵.(1)果农共抽查了多少棵果树?(2)在抽查的果树中,挂果树在40~60之间的树 有多少棵,占百分之几?25. 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该假设何分配工人?26.甲、乙、丙三人在长400米的环形跑道上,同时同地分别以每秒6米、4米、8米的速度跑步出发,并且甲、乙反向,甲、丙同向,当丙遇到乙时,即反向迎甲而跑,遇上甲时,又反向迎乙,如此练习下去,直到甲、乙、丙三人相遇为止,当这一过程结束时,求丙跑了多少米?27.“五一〞长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便马上带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?28. 某学校班主任暑假带着该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠.〞乙旅行社说:“教师在内全部按票价的6折优惠.〞假设全部票价是240元.〔1〕如果有10名学生,应参加哪个旅行社,并说出理由.〔2〕当学生人数是多少时,两家旅行社收费一样多?]29. 某地的一种绿色蔬菜,在市场上假设直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产水平是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一局部蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.答案:一、选择题:C D C C D C A C C A B B B D二、填空题:15. 抽样调查;16.-617.162.618.144019.27,-31;20.3或7cm三、解做题:21.解:当OC 在∠AOB 的内部时,如答图(1),此时∠AOC=∠AOB-∠BOC=60°- 20°=40°. 当OC 在∠AOB 的外部时,如图(2),此时∠AOC=∠AOB+∠BOC=60°+20°=80°, ∴∠AOC 等于40°或80°.(1)OCA B (2)O C A B 22.略. 23.(1) -12,(2)416-; 24.(1) x=3, (2)167=x ; 25.(1)200棵,(2)56%;26. 解:设哥哥追上弟弟需要x 小时,由题意得:x x 226+=解这个方程得: 21=x 所以,弟弟行走了211+小时小于1小时45分,未到外婆家,哥哥能够追上. 27. 解:〔1〕甲 240×10×0.5+240=1440乙 240×〔10+1〕×0.6=1584〔2〕设当学生人数为 x 人时.240·x ·0.5+240=240(x+1) ·0.6x=428. 解:方案一:4000×140=560000〔元〕;方案二:15×6×7000+〔140-15×6〕×1000=680000〔元〕;方案三:设精加工x 吨,那么 14015616x x-+= 解得,x=60,7000×60+4000×〔140-60〕=740000〔元〕 答:选择第三种.。
七年级上册数学全册单元试卷测试卷附答案
七年级上册数学全册单元试卷测试卷附答案一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.【答案】(1)解:设x秒点P、Q两点相遇根据题意得:2x+3x=20,解得x=4答:4秒后,点P、Q两点相遇。
(2)解:①当点P.Q在OB与圆的交点处相遇时:P点运动所用的时间为:① (秒),P点的运动速度为:(20-4)÷2=8cm/秒②当点P,Q在A点处相遇时:P点运动所用的时间为:②(60+180)÷30=8(秒),P点运动的速度为:20÷8-2.5cm/秒【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P点所走的路程+Q点运动的路程等于AB两地之间的距离,列出方程,求解即可;(2)分①当点P.Q在OB与圆的交点处相遇时,②当点P,Q在A点处相遇时两类讨论,分别根据路程除以速度等于时间算出P点运动的时间,即Q点运动的时间,再根据路程除以时间等于速度即可算出Q点的运动速度。
2.如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°,∴∠AOD= ∠AOE= ×90°=30°,∴∠AOC=2∠AOD=60°,∴∠COE=90°﹣∠AOC=30°【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。
青岛版七年级数学上册全册单元测试题(带答案)
青岛版七年级数学上册单元测试题全套(含答案)青岛版七年级青岛版七年级数学上册单元测试题全套(含答案)第 1 章检测卷一 . 选择题1. 某工程队,在修建兰宁高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程() .A. 直线的公理B. 直线的公理或线段的公理C. 线段最短的公理D. 平行公理2.10 个棱长为 1 的正方体木块堆成如图所示的形状,则它的表面积是()(第 2 题图)A. 30B. 34C. 36D. 483. 延长线段 AB 到 C ,下列说法正确的是()A. 点 C 在线段 AB 上B. 点 C 在直线 AB 上C. 点 C 不在直线 AB 上D. 点 C 在直线 BA 的延长线上4. 如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()(第 4 题图)A. 创B. 教C. 强D. 市5. 如图,点 C 为线段 AB 的中点,点 D 为线段 AC 的中点、已知 AB=8 ,则 BD= ()(第 5 题图)A. 2B. 4C. 6D. 86. 如图,点 C 是线段 AB 上的点,点 D 是线段 BC 的中点, AB=10 , AC=6 ,则线段 CD 的长是()(第 6 题图)A.4B.3C.2D.17. 下面四个图形是如图的展开图的是()(第 7 题图)A. B. C. D.8. 如图,从 A 到 B 的四条路径中,最短的路线是()(第 8 题图)A. A ﹣ E ﹣ G ﹣ BB. A ﹣ E ﹣ C ﹣ BC. A ﹣ E ﹣ G ﹣ D ﹣ BD. A ﹣ E ﹣ F ﹣ B9. 下列图形中,经过折叠可围成长方体的是()10. 观察图形,下列说法正确的个数是()① 直线和直线是同一条直线;② 射线和射线是同一条射线;③ .A.1B.2C.3D.0二 . 填空题11. 笔尖在纸上快速滑动写出英文字母 C ,这说明了 ________ .12. 如图,点 E , F 分别是线段 AC , BC 的中点,若 EF=3 厘米,则线段 AB= 厘米.(第 12 题图)13. 下列图形中,是柱体的有 ________ .(填序号)14. 用 6 根火柴最多组成 ________ 个一样大的三角形,所得几何体的名称是________ .15. 将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去 ____ (填序号) .(第 15 题图)16. 如图是一个长方体的表面展开图,其中四边形 ABCD 是正方形,根据图中标注的数据可求得原长方体的体积是 ________cm 3 .(第 16 题图)17. 如图,线段 AC=BD ,那么 AB=________ .(第 17 题图)18. 如图所示, C 和 D 是线段的三等分点, M 是 AC 的中点,那么 CD=________BC ,AB=________MC .(第 18 题图)3. 解答题19. 如图,各图中的阴影图形绕着直线 I 旋转 360 °,各能形成怎样的立体图形 ?(第 19 题图)20. 将长为 10 厘米的一条线段用任意方式分成 5 小段,以这 5 小段为边可以围成一个五边形.问其中最长的一段的取值范围.21. 如图,一个正五棱柱的底面边长为 2cm ,高为 4cm .( 1 )这个棱柱共有多少个面?计算它的侧面积;( 2 )这个棱柱共有多少个顶点?有多少条棱?( 3 )试用含有 n 的代数式表示 n 棱柱的顶点数、面数与棱的条数.(第 21 题图)22. 如图是由 6 个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另 5 个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).(第 22 题图)23. 如图,在无阴影的方格中选出两个画出阴影,使它们与图中 4 个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图 1 和图 2 中任选一个进行解答,只填出一种答案即可)(第 23 题图)24. 如图, A 、 B 是公路 L 两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到 A 、 B 两村的距离和最小,试在 L 上标注出点 P 的位置,并说明理由.(第 24 题图)25. 如图,已知 AD=5cm , B 是 AC 的中点, CD= AC .求 AB 、 BC 、 CD 的长.(第 25 题图)26. 已知,如图,线段 AD=10cm ,点 B , C 都是线段 AD 上的点,且 AC=7cm ,BD=4cm ,若 E , F 分别是线段 AB , CD 的中点,求 BC 与 EF 的长度.(第 26 题图)答案一 . 1.C 【解析】由题意修建兰宁高速公路时,有时需将弯曲的道路改直,修路肯定要尽量缩短两地之间的里程,从而减少成本,就用到两点间线段最短公理.故选C.2.C 【解析】第一层露出 5 个面;第二层露出 4 × 2+2 个面;第三层露出 4 ×2+3+2 × 1+2 ;底面 6 个面.所以露出的面积 =5+4 × 2+2+4 × 2+3+2 ×1+2+6=36 .故选 C.3.B 【解析】延长线段 AB 到 C ,则点 C 在直线 AB 上 . 故选 B.4.C 【解析】因为正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“建”与“强”是相对面.故选 C .5.C 【解析】因为点 C 为线段 AB 的中点, AB=8 ,则 BC=AC=4 .点 D 为线段 AC 的中点,则 AD=DC=2 .所以 BD=CD+BC=6 .故选 C .6.C 【解析】因为 AB=10 , AC=6 ,所以 BC=AB ﹣ AC=10 ﹣ 6=4 ,又因为点 D 是线段 BC 的中点,所以 CD= BC= × 4=2 .故选 C .7.A 【解析】 A 、能折叠成原正方体的形式,符合题意; B 、 C 带图案的三个面不相邻,没有一个公共顶点,不能折叠成原正方体的形式,不符合题意; D 、折叠后带圆圈的面在上面时,带三角形的面在左边与原正方体中的位置不同,不符合题意.故选 A .8.D 【解析】最短的路线是 A ﹣ E ﹣ F ﹣ B .故选 D .9.B 【解析】 A 、 C 、 D 不能折叠成长方体,只有 B 符合条件 .10.C 【解析】① 直线和直线是同一条直线,正确;② 射线和射线是同一条射线,都是以为端点,同一方向的射线,正确;③ 由“两点之间,线段最短”知,故此说法正确 . 所以共有 3 个正确的.故选 C .二 . 11. 点动成线【解析】笔尖在纸上快速滑动写出英文字母 C ,这说明了点动成线;故答案为:点动成线.12. 6 【解析】因为点 E , F 分别是线段 AC , BC 的中点,所以 CE=12AB ,BF=12BC ,所以 EF=CE ﹣ CF=12AC ﹣ 12BC=12 ( AC ﹣ BC ) =3 ,所以 AC ﹣ BC=6 ,即 AB=6 .13. ②③⑥ 【解析】①是圆锥,②是正方体,属于棱柱,③是圆柱,④是棱锥,⑤是球,⑥是三棱柱.所以是柱体的有②③⑥.14. 4 ;三棱锥或四面体【解析】要使搭的个数最多,就要搭成三棱锥,这时最多可以搭 4 个一样的三角形.图形如下:故答案为: 4 ,三棱锥或四面体.(第 14 题答图)15. 1 或 2 或 6 【解析】根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去 1 或 2 或 6 ,答案不唯一.16. 12 【解析】因为四边形 ABCD 是正方形,所以 AB=AE=4cm ,所以立方体的高为:( 6 ﹣ 4 )÷ 2=1 ( cm ),所以 EF=4 ﹣ 1=3 ( cm ),所以原长方体的体积是: 3 × 4 × 1=12( cm 3 ).(第 16 题答图)17.CD 【解析】由题意得: AB ﹣ BC=BD ﹣ BC ,故可得: AB=CD .故答案为:CD .18. ; 6 【解析】【由已知条件可知 CD= AB , BC= AB ,所以 CD= BC ;又因为 AB=3AC , MC= AC ,所以 AB=6MC .故答案为 CD= BC ; AB=6MC .三 . 19. 第一个可以得到圆柱;第二个可以得到圆锥;第三个可以得到球.20. 【解】设最长的一段 AB 的长度为 x 厘米(如图),则其余 4 段的和为( 10 ﹣x )厘米.因为它是最长的边,假定所有边相等,则此时它最小为 2 .又由线段基本性质知 x < 10 ﹣ x ,所以 x < 5 ,所以2 ≤ x < 5 .即最长的一段 AB 的长度必须大于等于 2 厘米且小于 5 厘米.(第 20 题答图)21. 【解】( 1 )侧面有 5 个,底面有 2 个,共有 5+2=7 个面;侧面积: 2 × 5 × 4=40 ( cm 2 ).( 2 )顶点共 10 个,棱共有 15 条;( 3 ) n 棱柱的顶点数 2n ;面数 n+2 ;棱的条数 3n .22. 【解】答案如下:或或等.23. 【解】只写出一种答案即可.图 1 :图 2 :24. 【解】点 P 的位置如下图所示:作法是:连接 AB 交 L 于点 P ,则 P 点为汽车站位置,理由是:两点之间,线段最短.25. 【解】设 AC=x ,有 x+ x=5 ,解得: x=3 ,即 AC=3cm ,所以 CD=2 ,又 B 是 AC 的中点, AB=BC= cm26. 【解】由线段的和差,得 AC+BD=AC+BC+CD=AD+BC=7+4=11cm ,由 AD=10cm ,得 10+BC=11 ,解得 BC=1cm ;由线段的和差,得AB+CD=AD ﹣ BC=10 ﹣ 1=9cm ,由 E , F 分别是线段 AB , CD 的中点,得AE= AB , DF= CD .由线段得和差,得EF=AD ﹣( AE+DF ) =AD ﹣(AB+ CD ) =10 ﹣( AB+CD ) =10 ﹣= cm .第2章检测卷一.选择题1.- 的绝对值是()A. -B.C. 3D. -32.如果m表示有理数,那么|m|+m的值()A. 可能是负数;B. 不可能是负数;C. 必定是正数;D. 可能是负数也可能是正数3.下列各数中:+3、-2.1、−、9、、-(-8)、0、-|+3|负有理数有()A. 2个B. 3个C. 4个D. 5个4.2的相反数是()A. 2B.C. -2D. -5.﹣3的绝对值是()A. -3B.C.D. 36.﹣的绝对值为()A. -2B. -C.D. 17.数轴上的点A到原点的距离是4,则点A表示的数为()A. 4B. -4C. 4或﹣4D. 2或﹣28.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A. 100gB. 150gC. 300gD. 400g9.在纪念“中国人民抗日战争暨世界反法西斯战争胜利70周年”知识竞赛中,如果把加10分记为“+10分”,那么扣20分应记为()A. 10分B. ﹣20分C. ﹣10分D. +20分10.若向东走15米记为+15米,则向西走28米记为()A. ﹣28米B. +28米C. 56米D. ﹣56米二.填空题11.如果a﹣3与a+1互为相反数,那么a=________12.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是________(2)数轴上表示x与2的两点之间的距离可以表示为________(3)如果|x﹣2|=5,则x=________(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是________13.比较大小:﹣________ ﹣|﹣|.14.数轴上离开原点3个单位长的点所表示的数是________.15.在数轴上,﹣2对应的点为A,点B与点A的距离为,则点B表示的数为________.16.如果“盈利5%”记作+5%,那么亏损3%记作________.17.用“>”“<”或“=”连接:﹣π________﹣3.14.18.数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.三.解答题19.某校对七年级男生进行定跳远测试,以能跳1.7m及以上为达标.超过1.7m的厘米数用正数表示,不足1.7m的厘米数用负数表示.第一组10名男生成绩如下(单位:cm):+2 -1 0 -5 +8 0 +4 -7 +10 -3问:第一组有百分之几的学生达标?20.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.21.随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”,记录数据如下表:时间第一天第二天第三天第四天第五天第六天第七天路程(km)﹣8 ﹣11 ﹣14 0 ﹣16 +41 +8(1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km需用汽油8L,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元?22.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣2.5|,112 , 0,﹣(﹣212),﹣(﹣1) 100 ,﹣2 2 .23.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数7 6 7 8 2售价(元)+5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?24.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录下:+2,﹣4,+2,+1,﹣2,﹣1,0,﹣2当它卖它这8套儿童服装后是盈利还是亏损?盈利(亏损)多少钱?答案一. 1.B 【解析】 |- |= .故- 的绝对值是.故选B.2.B 【解析】当m>0时,原式=2m>0.当m=0时,原式=0.当m<0时,原式=0.故选B.3.B 【解析】把各式化简得:3,-2.1,- ,9,1.4,8,0,-3.-2.1为负数有限小数,- 为负数无限循环小数,-|+3|是负整数,所以是负有理数.共3个.故选B.4.C 【解析】根据相反数的含义,可得2的相反数是:﹣2.故选C.5.D 【解析】:因为﹣3的绝对值表示﹣3到原点的距离,所以|﹣3|=3.故选D.6.C 【解析】因为|﹣|= ,所以﹣的绝对值为.故选C.7.C 【解析】在数轴上,4和﹣4到原点的距离为4.所以点A所表示的数是4和﹣4.故选C.8.D 【解析】根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选D.9.B 【解析】把加10分记为“+10分”,那么扣20分应记为﹣20分.故选B.10.A 【解析】向东走15米记为+15米,则向西走28米记为﹣28米.故选A.二. 11. 1 【解析】由题意得,a﹣3+a+1=0,解得a=1.故答案为1.12. 7;|x﹣2|;7或﹣3;﹣3、﹣2、﹣1、0、1 【解析】(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)因为|x﹣2|=5,所以x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)因为|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,所以这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;13.<【解析】因为﹣|﹣34|=﹣34 ,所以两数均为负,取其相反数做商,即45÷34=1615>1.即45>34 ,所以﹣45<﹣34=﹣|﹣34|.故答案为:<.14.±3 【解析】设数轴上离开原点3个单位长的点所表示的数是x,则|x﹣0|=3,解得x=±3.故答案为:±3.15. 7 ﹣2或﹣7 ﹣2 【解析】设B点表示的数是x,因为﹣2对应的点为A,点B 与点A的距离为 7 ,所以|x+2|= 7 ,解得x= 7﹣2或x=﹣7﹣2.故答案为:7﹣2或﹣7﹣2.16.﹣3% 【解析】“盈利5%”记作+5%,那么亏损3%记作﹣3%,故答案为:﹣3%.17. <【解析】因为|﹣π|=π,|﹣3.14|=3.14,而π>3.14,所以﹣π<﹣3.14.故答案为<.18. ,【解析】当点 B 在点 A 的右侧时,点 B 所表示的实数是;当点 B 在点 A 的左侧时,点 B 表示的实数是;所以点 B 所表示的实数是或.三. 19. 【解】根据题意,得超过1.7m的用正数表示,不足的用负数表示.由表格可知这10名男生的成绩是正数的有4个,刚好为0m的有2个,所以一共有6名成绩达标,则6÷10×100%=60%.答:第一组有60%的学生达标.20. 【解】(1)根据所给图形可知A:1,B:﹣2.5 .(2)依题意得:AB之间的距离为:1+2.5=3.5 .(3)设这两点为C、D,则这两点为C:1﹣2=﹣1,D:1+2=3.21. 【解】(1)=50,50×30=1500(km).答:小明家的小轿车一月要行驶1500千米 .(2)×8×7.14×12=10281.6(元),答:小明家一年的汽油费用是10281.6元.22. 【解】:因为﹣|﹣2.5|﹣2.5,﹣(﹣212)=212=2.5,﹣(﹣1) 100 =﹣1,﹣2 2 =﹣4,所以如图所示:所以用“<”连接各数为:﹣2 2 <﹣|﹣2.5|<﹣(﹣1) 100 <0<112<﹣(﹣212).23. 【解】 7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元) .答:共赚了555元 .24. 【解】售价:55×8+(2﹣4+2+1﹣2﹣1+0﹣2)=440﹣4=436,盈利:436﹣400=36(元).答:当它卖完这8套儿童服装后盈利36元 .第3章检测卷一.选择题1.计算:(﹣)×(﹣2)的结果等于()A. 1B. -1C. 4D. -2.计算:的结果是()A. -1B. 1C.D. -493.(﹣1) 2015 的值是()A. -1B. 1C. 2015D. -20154.形如式子叫作二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A.-5B.-11C.5D.115.长汀冬季的某天的最高气温是8℃,最低气温是﹣1℃,则这一天的温差是()A. 9℃B. ﹣7℃C. 7℃D. ﹣9℃6.计算:﹣1﹣1的值为()A. 0B. -1C. -2D. -37.计算:1﹣1×(﹣3)=()A. 0B. 4C. -4D. 58.下列计算正确的是()A.2 3 =6B.﹣4 2 =﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣39.计算(﹣20)+16的结果是()A.4B.4C.﹣2016D.201610.马小虎做了6道题:①(﹣1) 2013 =﹣2013;②0﹣(﹣1)=1;③﹣+ =﹣;④ ÷(﹣)=﹣1;⑤2×(﹣3) 2 =36;⑥﹣3÷ ×2=﹣3.那么,他做对了()题.A. 1道B.2道C.3道D.4道二.填空题11.-6×0×10=________ .12.小芳在用计算器计算“14.9×73”时,发现计算器的小数点键坏了,你还能用这个计算器把正确的结果算出来吗?请把你想到的方法用算式表示出来:________ .13.若m<n<0,则(m+n)(m﹣n)________ 0.(填“<”、“>”或“=”)14.如图是一个计算程序,若输入的值为﹣1,则输出的结果应为________.15.为了求1+3+3 2 +3 3 +…+3 100 的值,可令M=1+3+3 2 +3 3 +…+3 100 ,则3M=3+3 2 +3 3 +…+3 101 ,因此3M﹣M=3 101 ﹣1,所以M= ,即1+3+32 +3 3 +…+3 100 = ,仿照以上推理计算:1+5+5 2 +5 3 +…+5 2016 的值是________.16.计算:﹣5÷ ×5=________,(﹣1) 2000 ﹣0 2015 +(﹣1) 2016 =___ _,(﹣2) 11 +(﹣2) 10 =________.17.规定a*b=5a+2b﹣1,则(﹣3)*7的值为________ .三.解答题18.一个病人每天下午需要测量一次血压,下表是该病人周一至周五高压变化情况,该病人上个周日的高压为160单位.星期一二三四五高压的变化(与前一天比较)升25单位降15单位升13单位升15单位降20单位(1)该病人哪一天的血压最高?哪一天血压最低?(2)与上周比,本周五的血压是升了还是降了?19.你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?20.用简便方法计算:(﹣﹣+ )÷(﹣).21.小强有5张卡片写着不同的数字的卡片,他想从中取出2张卡片,使这2张卡片上数字乘积最大.(1)使数字的积最小,应如何抽?最小积是多少?(2)使数字的积最大,应如何抽?最大积是多少?22.(1)计算下列各题:①2 2 ×3 2 与(2×3) 2 ;②(﹣2) 4 ×3 4 与(﹣2×3) 4 ;③2 7 ×2与2 8 .(2)比较(1)中的结果,由此可以推断a n ×b n (a×b) n , a n+1 a n ×a.(3)试根据(2)的结论,不用计算器计算0.125 2010 ×8 2011 的值.23.已知|x|=3,y 2 =4,且x+y<0,求的值.答案一. 1.A 【解析】(﹣)×(﹣2)=1.故选A.2.C 【解析】原式=﹣1× × =﹣.故选C.3.A 【解析】(﹣1) 2015 =﹣1.故选A.4.A 【解析】根据题意,得=2×(﹣4)﹣(﹣3)×1=﹣8+3=﹣5.故选A.5.A 【解析】 8﹣(﹣1)=9(℃).故选:A.6.C 【解析】﹣1﹣1=﹣2.故选C.7.B 【解析】 1﹣1×(﹣3)=1﹣(﹣3)=4.故选:B.8.B 【解析】 A、2 3 =8≠6,错误; B、﹣4 2 =﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误.故选B.9.A 【解析】(﹣20)+16 =﹣(20﹣16)=﹣4.故选A.10.C 【解析】因为(﹣1) 2013 =﹣1,所以①不正确;因为0﹣(﹣1)=1,所以②正确;因为﹣+ =﹣,所以③正确;因为÷(﹣)=﹣1,所以④正确;因为2×(﹣3) 2 =18,所以⑤不正确;因为﹣3÷ ×2=﹣12,所以⑥不正确.综上,可得他做对了3题:②、③、④.故选C.二. 11. 0 【解析】原式=0×(-10)=0,0和任何数相乘都等于0.12. 149÷10×73 【解析】根据题意得:149÷10×73.13. >【解析】解:因为m<n<0,所以m+n<0,m﹣n<0,所以(m+n)(m﹣n)>0.故答案是>.14. 7 【解析】依题意,所求代数式为(a 2 ﹣2)×(﹣3)+4=[(﹣1) 2 ﹣2]×(﹣3)+4=[1﹣2]×(﹣3)+4=﹣1×(﹣3)+4=3+4=7.15. 【解析】设M=1+5+5 2 +5 3 +…+5 2016 ,则5M=5+5 2 +5 3 +54 …+5 2017 ,两式相减得:4M=5 2017 ﹣1,则M= .16.﹣125;2;﹣2 10 【解析】原式=﹣5×5×5=﹣125,原式=1﹣0+1=2,原式=(﹣2) 10 ×(﹣2+1)=﹣2 10 .故答案为:﹣125;2;﹣2 1017. -2 【解析】(﹣3)*7 =5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2.18. 8 【解析】因为a+8+b﹣5=8+b﹣5+c=b﹣5+c+d=﹣5+c+d+4,所以a+8+b﹣5=8+b﹣5+c①,8+b﹣5+c=b﹣5+c+d②,b﹣5+c+d=﹣5+c+d+4③,所以a﹣5=c﹣5,8+c=c+d,b﹣5=﹣5+4,所以b=4,d=8,a=c.故答案为8.三. 19. 【解】(1)因为第一天,185;第二天,170;第三天,183;第四天,198;第五天,178,所以该病人周四的血压最高,周二的血压最低低;(2)因为+25﹣15+13+15﹣20=18,所以与上周比,本周五的血压升了.20. 【解】对折一次拉出的面条根数是,2 1 =2 ;对折二次拉出的面条根数是,2 2 =4 ;对折三次拉出的面条根数是,2 3 =8 ;……对折10次拉出的面条根数是,2 10 =1024 ;所以对折10次,会拉出1024根面条.21. 【解】原式=(﹣﹣+ )×(﹣36)=16+15﹣6=25.22. 【解】(1)抽取﹣8和4,数字的积最小,﹣8×4=﹣32;(2)抽取﹣8和﹣3.5,数字的积最大,﹣8×(﹣3.5)=28.23. 【解】(1)①2 2 ×3 2 =36,(2×3) 2 =36;②(﹣2) 4 ×3 4 =1296,(﹣2×3) 4 =1296;③2 7 ×2=256,2 8 =256;(2)由(1)可以推断a n ×b n =(a×b) n , a n+1 =a n ×a;(3)0.125 2010 ×8 2011 =(18×8) 2010 ×8=8.24. 【解】因为|x|=3,y 2 =4,所以x=±3,y=±2.因为x+y<0,所以当x=﹣3时,y=2或x=﹣3,y=﹣2,所以当x=﹣3,y=2时,=﹣;当x=﹣3,y=﹣2时,= .第 4 章检测卷一 . 选择题1. 为了了解我市城区某一天的气温变化情况,应选择()A. 条形统计图B. 折线统计图C. 扇形统计图D. 以上图形均可2. 要了解一批电视机的使用寿命,从中任意抽取 40 台电视机进行试验,在这个问题中,样本是()A. 每台电视机的使用寿命B. 40 台电视机C. 40 台电视机的使用寿命D. 403. 如图的两个统计图,女生人数多的学校是()(第 3 题图)A. 甲校B. 乙校C. 甲、乙两校女生人数一样多D. 无法确定4. 八年级( 1 )班有 60 位学生,秋游前,班长把全班学生对秋游地点的意向绘制成了扇形统计图,其中想去“动物园”的学生数的扇形的圆心角为 60 °,则下列说法正确的是()A. 想去动物园的学生占全班学生的 60%B. 想去动物园的学生有 36 人C. 想去动物园的学生肯定最多D. 想去动物园的学生占全班学生的5. 某市从参加数学质量检测的 4355 名学生中,随机抽取了部分学生的成绩为研究对象,结果如表所示:分数段0 ~ 60 60 ~ 72 72 ~ 84 84 ~ 96 96 ~ 108 108 ~ 120 人数(人) 5 8 35 42 15百分比20% 40%则被抽取的学生人数是()A. 70 人B. 105 人C. 175 人D. 200 人6. 下列调查中,适宜采用全面调查(普查)方式的是()A. 调查长江流域的水污染情况B. 调查重庆市民对中央电视台 2016 年春节联欢晚会的满意度C. 为保证我国首艘航母“瓦良格”的成功试航,对其零部件进行检查D. 调查一批新型节能灯泡的使用寿命7. 今天我们全区约 1500 名初二学生参加数学考试,拟从中抽取 300 名考生的数学成绩进行分析,则在该调查中,样本指的是()A. 300 名考生的数学成绩B. 300C. 1500 名考生的数学成绩D. 300 名考生8. 为直观反映某种股票的涨跌情况,选择()最合适.A. 扇形统计图B. 条形统计图C. 折线统计图D. 统计表9. 下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征( MERS )确诊病人同一架飞机乘客的健康情况;③为保证“神舟 9 号”成功发射,对其零部件进行检查;④调查某班 50 名同学的视力情况.A. ①B. ②C. ③D. ④10. 某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有 2560 人,被调查的学生中骑车的有21 人,则下列四种说法中,不正确的是()(第 10 题图)A. 被调查的学生有 60 人B. 被调查的学生中,步行的有 27 人C. 估计全校骑车上学的学生有 1152 人D. 扇形图中,乘车部分所对应的圆心角为 54 °二 . 填空题11. 小亮对 60 名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是________ .(第 11 题图)12. 如图是某城市 2010 年以来绿化面积变化折线图,根据图中所给信息可知,2011 年、 2012 年、 2013 年这三年中,绿化面积增加最多的是年.(第 12 题图)13. 清明期间,某校师生组成 200 个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为 2 至 5 棵,活动结束后,校方随机抽查了其中 50 个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(第 13 题图)( 1 )请把条形统计图补充完整,并算出扇形统计图中,植树量为“ 5 棵树”的圆心角是 °.( 2 )请你帮学校估算此次活动共种 ________ 棵树.14. 根据环保公布的重庆市 2014 年至 2015 年 PM2.5 的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是 ________ (观察图形填主要来源的名称).(第 14 题图)15. 调查某城市的空气质量,应选择(填抽样或全面)调查.16. 从某市不同职业的居民中抽取 200 户调查各自的年消费额,在这个问题中样本是 ________.17. 为了考察某区 3500 名毕业生的数学成绩,从中抽出 20 本试卷,每本 30 份,在这个问题中,样本容量是 ________ .18. 某市为了了解七年级学生的身体素质情况,随机抽取了 500 名七年级学生进行检测,身体素质达标率为 92% ,请你估计该市 6 万名七年级学生中,身体素质达标的大约有 ________ 万人.三 . 解答题19. 某市为了了解七年级学生的身体素质情况,随机抽取了本市七年级部分学生的身体素质测试成绩为样本,按 A (优秀)、 B (良好)、 C (合格)、 D (不合格)四个等级进行统计,并将统计结果绘制成如图的统计图表,请你结合图表所给的信息解答下列问题:等级 A (优秀) B (良好) C (合格) D (不及格)人数80 200 160 60(1)请你根据图表中的信息计算出所抽取的样本容量是多少;( 2 )请将表格中缺少的数据补充完整;( 3 )如果本市共有 50000 名七年级学生,试估计出合格以上(包括合格)的学生有多少人.(第 19 题图)20. 从 2013 年 1 月 7 日起,中国中东部大部分地区持续出现雾霾天气,某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放nD 工厂造成污染120E 其他60请根据图表中提供的信息解答下列问题:(Ⅰ)求接受调查的总人数;(Ⅱ) m 、 n 各等于多少?扇形统计图中 E 组所占的百分比是多少?(Ⅲ)若该市人口约有 100 万人,请你估计其中持 D 组“观点”的市民人数.(第 20 题图)21. 三名同学想了解所在城市的小学生是否感觉学习压力大,他们各自提出了自己的调查设想.甲:周末去公园,随机询问 10 个小学生,就可以知道大致情况了.乙:我有个弟弟,正在上小学,成绩中等,问问他就可以了解绝大部分学生的感受了.丙:我妈妈是小学老师,向她询问就可以了.你觉得这三位同学提出的调查方式,能比较客观地反映“他们所在城市的小学生是否感觉学习压力大”吗?为什么?22. 小华在 A 班随机询问了 30 名同学,其中有 10 人患有近视,他又在同年级的 B 班询问了 2 名同学,发现其中有 1 人患有近视,于是,他认为 B 班的近视率比 A 班高,你同意他的观点吗?23. 某学生组织全体学生参加了“走出校门,服务社会”的活动,八年级一班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据该班同学所作的两个图形解答:( 1 )八年级一班有多少名学生?( 2 )求去敬老院服务的学生人数,并补全直方图的空缺部分.( 3 )若八年级有 800 名学生,估计该年级去敬老院的人数.(第 23 题图)24. 某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为 n ,并按以下规定分为四档:当 n < 3 时,为“偏少”;当3 ≤ n < 5 时,为“一般”;当 5 ≤ n < 8 时,为“良好”;当n ≥ 8 时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数 n (本) 1 2 3 4 5 6 7 8 9 人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:( 1 )求出本次随机抽取的学生总人数;( 2 )分别求出统计表中的 x , y 的值;( 3 )估计该校九年级 400 名学生中为“优秀”档次的人数.(第 23 题图)答案一 . 1.B 【解析】天气的温度变化会随着每天的基本情况进行变化,故,只有折线统计图适合题意。
七年级数学上学期周测试题(含解析) 新人教版-新人教版初中七年级全册数学试题
某某省某某市北大附中为明实验学校2015-2016学年七年级数学上学期周测试题一、精心选一选(本大题共10小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各数中,最小的数为()2.向东走80米,记为+80米,向西走60米,记为()A.+60米B.﹣60米C.﹣20米D.+20米3.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.34.有理数的相反数是()A.﹣B.﹣3 C.D.35.有理数a,b,c在数轴上的位置如图所示,则下列结论正确的是()A.a>b>0>c B.b>0>a>c C.b<a<0<c D.a<b<c<06.已知|a|=1,|b|=3,则|a+b|的值为()A.2 B.4 C.2或4 D.±2或±4.7.在数轴上把﹣3对应的点移动5个单位长度后,所得到的对应点表示的数是()A.2 B.﹣8 C.2或﹣8 D.不能确定8.下列计算正确的个数是()(﹣4)+(﹣5)=﹣9,5+(﹣6)=﹣11,(﹣7)+10=3,(﹣2)+2=4.A.1 B.2 C.3 D.49.室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃10.已知|x|表示数轴上某一点到原点的距离,|x﹣3|表示数轴上某一点到表示数3的点的距离,|x+2|表示数轴上某一点到表示数﹣2的点的距离.设S=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.S没有最小值B.有限个x(不止一个)使S取最小值C.只有一个x使S取最小值D.有无穷个x使S取最小值二、耐心填一填(本大题共6小题,每小题3分,共12分,请将你的答案写在“______”处)11.计算﹣2﹣3的结果为.12.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,.13.若x=﹣x,则x=;若|﹣x|=5,则x=.14.若定义一种新的运算“△”,规定有理数a△b=a﹣b,如2△3=2﹣3=1,则(﹣2)△(﹣3)=.15.若a,b互为相反数,m是最大的负整数,n是最小的正整数,则a+b﹣m+n=.16.若a<0,b>0,c>0,|a|>|b|+|c|,则a+b+c0.三、细心算一算(共52分)17.在数轴上表示下列各有理数,并用“<”号把它们按从小到大的顺序排列起来.﹣3,0,1,4.5,﹣1.18.计算题(1)﹣150+250(2)﹣5﹣65(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)8+(﹣)﹣5﹣(﹣0.25)(5)﹣18+(﹣14)+18﹣13(6)3.7﹣6.9﹣9﹣5.19.若|a+1|+|b﹣2|=0,则a+b﹣1的值为多少?20.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?21.已知点A、B为数轴上的两点,A点表示的数为﹣8,B点表示的数为10,则A、B之间的距离为.(2)若A点表示的数为,B点表示的数为﹣2,且A、B之间的距离为12,即|AB|=12,则点A表示的数是多少?(3)在(1)的条件下,点A、B都向右运动,点A的速度为2单位长度/秒,点B的速度为1单位长度/秒,多少秒后A、B相距2个单位长度?2015-2016学年某某省某某市北大附中为明实验学校七年级(上)周测数学试卷(2)参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各数中,最小的数为()【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<0.5,∴各数中,最小的数为﹣2.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.向东走80米,记为+80米,向西走60米,记为()A.+60米B.﹣60米C.﹣20米D.+20米【考点】正数和负数.【分析】根据正负数表示相反意义的量,向东记为正,可得向西的表示方法.【解答】解:向东走80米,记为+80米,向西走60米,记为﹣60米,故选:B.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.3.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.3【考点】有理数大小比较.【分析】求出大于﹣3.5,小于2.5的整数,然后可求解.【解答】解:大于﹣3.5,小于2.5的整数有﹣3,﹣2,﹣1,0,1,2,所以共有6个.故答案为A.【点评】比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.有理数的相反数是()A.﹣B.﹣3 C.D.3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5.有理数a,b,c在数轴上的位置如图所示,则下列结论正确的是()A.a>b>0>c B.b>0>a>c C.b<a<0<c D.a<b<c<0【考点】有理数大小比较;数轴.【分析】根据数轴上数的排列特点:右边的数总比左边数大,很容易解答.【解答】解:根据数轴上右边的数总是比左边的数大可得b<a<0<c.故选C.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.已知|a|=1,|b|=3,则|a+b|的值为()A.2 B.4 C.2或4 D.±2或±4.【考点】绝对值.【分析】首先根据|a|=1,|b|=3,分别求出a、b的值各是多少;然后根据绝对值的求法,分类讨论,把a、b的值代入|a+b|,求出算式的值是多少即可.【解答】解:∵|a|=1,|b|=3,∴a=﹣1或1,b=﹣3或3,(1)当a=﹣1,b=3时,|a+b|=|﹣1+3|=2;(2)当a=﹣1,b=﹣3时,|a+b|=|﹣1﹣3|=4;(3)当a=1,b=3时,|a+b|=|1+3|=4;(4)当a=1,b=﹣3时,|a+b|=|1﹣3|=2;∴|a|=1,|b|=3,则|a+b|的值为2或4.故选:C.【点评】此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.7.在数轴上把﹣3对应的点移动5个单位长度后,所得到的对应点表示的数是()A.2 B.﹣8 C.2或﹣8 D.不能确定【考点】数轴.【分析】此题需注意考虑两种情况:点向左移动和点向右移动;数的大小变化规律:左减右加.【解答】解:当数轴上﹣3的对应点向左移动5个单位时,对应点表示数是﹣3﹣5=﹣8;当向右移动5个单位时,对应点表示数﹣3+5=2.故选C.【点评】数轴上点的移动分为向左和向右两种情况,对应的数也就会有两个结果.8.下列计算正确的个数是()(﹣4)+(﹣5)=﹣9,5+(﹣6)=﹣11,(﹣7)+10=3,(﹣2)+2=4.A.1 B.2 C.3 D.4【考点】有理数的加法.【分析】根据有理数加法的运算方法逐项判断即可.【解答】解:∵(﹣4)+(﹣5)=﹣9,∴(﹣4)+(﹣5)=﹣9正确;∵5+(﹣6)=﹣1,∴5+(﹣6)=﹣11不正确;∵(﹣7)+10=3,∴(﹣7)+10=3正确;∵(﹣2)+2=0,∴(﹣2)+2=4不正确.∴计算正确的有2个:(﹣4)+(﹣5)=﹣9,(﹣7)+10=3.故选:B.【点评】此题主要考查了有理数加法的运算方法,要熟练掌握,解答此题的关键是要明确:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.9.室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃【考点】有理数的减法.【专题】应用题.【分析】求室内温度比室外温度高多少度,就是用室内温度减去室外温度,列出算式.【解答】解:用室内温度减去室外温度,即10﹣(﹣3)=10+3=13.故选D.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.10.已知|x|表示数轴上某一点到原点的距离,|x﹣3|表示数轴上某一点到表示数3的点的距离,|x+2|表示数轴上某一点到表示数﹣2的点的距离.设S=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.S没有最小值B.有限个x(不止一个)使S取最小值C.只有一个x使S取最小值D.有无穷个x使S取最小值【考点】绝对值.【分析】根据题意,可得|x﹣1|+|x+1|表示数轴上某一点到点﹣1、点1的距离的和,S的最小值是2,x 取[﹣1,1]之间的任意一个值时,S都能取到最小值2,据此解答即可.【解答】解:如图,,∵S=|x﹣1|+|x+1|,1﹣(﹣1)=2,∴S的最小值是2,∵x取[﹣1,1]之间的任意一个值时,S都能取到最小值2,∴有无穷个x使S取最小值.故选:D.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.二、耐心填一填(本大题共6小题,每小题3分,共12分,请将你的答案写在“______”处)11.计算﹣2﹣3的结果为﹣5 .【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣2﹣3=﹣5.故答案为:﹣5.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.12.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,.【考点】规律型:数字的变化类.【分析】分子是从1开始连续的自然数,分母比对应的分子多1,奇数位置为负,偶数位置为正,由此得出第n个数为(﹣1)n,进一步代入求得答案即可.【解答】解:∵第n个数为(﹣1)n,∴第6个数为.故答案为:.【点评】此题考查数字的变化规律,找出分子分母之间的联系,得出数字之间的运算规律与符号规律解决问题.13.若x=﹣x,则x= 0 ;若|﹣x|=5,则x= ﹣5或5 .【考点】绝对值.【分析】首先根据绝对值的含义和求法,可得0的相反数还是0,所以若x=﹣x,则x=0;然后根据|﹣x|=5,可得﹣x=5或﹣x=﹣5,据此求出x的值是多少即可.【解答】解:∵x=﹣x,∴x=0;∵|﹣x|=5,∴﹣x=5或﹣x=﹣5,解得x=﹣5或x=5,∴若|﹣x|=5,则x=﹣5或5.故答案为:0;﹣5或5.【点评】此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.14.若定义一种新的运算“△”,规定有理数a△b=a﹣b,如2△3=2﹣3=1,则(﹣2)△(﹣3)= 1 .【考点】有理数的减法.【专题】新定义.【分析】根据新定义运算,用运算符号前面的数减去运算符号后面的数,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)△(﹣3),=(﹣2)﹣(﹣3),=﹣2+3,=1.故答案为:1.【点评】本题考查了有理数的减法,是基础题,熟记运算法则并理解新定义的运算方法是解题的关键.15.若a,b互为相反数,m是最大的负整数,n是最小的正整数,则a+b﹣m+n= 2 .【考点】代数式求值;有理数;相反数.【分析】由a,b互为相反数,m是最大的负整数,n是最小的正整数,得出a+b=0,m=﹣1,n=1,进一步代入求得答案即可.【解答】解:∵a,b互为相反数,m是最大的负整数,n是最小的正整数,∴a+b=0,m=﹣1,n=1,∴a+b﹣m+n=0﹣(﹣1)+1=2.故答案为:2.【点评】此题考查代数式求值,掌握相反数、负整数、正整数的定义及性质是解决问题的关键.16.若a<0,b>0,c>0,|a|>|b|+|c|,则a+b+c <0.【考点】有理数的加法;绝对值.【分析】首先根据a<0,b>0,c>0,可得|a|=﹣a,|b|=b,|c|=c,然后根据|a|>|b|+|c|,可得﹣a >b+c,据此判断出a+b+c的正负即可.【解答】解:∵a<0,b>0,c>0,∴|a|=﹣a,|b|=b,|c|=c,又∵|a|>|b|+|c|,∴﹣a>b+c,∴a+b+c<0.故答案为:<.【点评】(1)此题主要考查了有理数加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.三、细心算一算(共52分)17.在数轴上表示下列各有理数,并用“<”号把它们按从小到大的顺序排列起来.﹣3,0,1,4.5,﹣1.【考点】有理数大小比较;数轴.【分析】把各个数在数轴上表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按从小到大的顺序用“<”连接起来.【解答】解:在数轴上表示为:按从小到大的顺序排列为:﹣3<﹣1<0<1<4.5.【点评】此题考查了数轴,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.18.计算题(1)﹣150+250(2)﹣5﹣65(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)8+(﹣)﹣5﹣(﹣0.25)(5)﹣18+(﹣14)+18﹣13(6)3.7﹣6.9﹣9﹣5.【考点】有理数的加减混合运算.【分析】有理数加减混合运算的方法:有理数加减法统一成加法,据此求出每个算式的结果是多少即可.【解答】解:(1)﹣150+250=100(2)﹣5﹣65=﹣70(3)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=18﹣(20+14+13)=18﹣47=﹣29(4)8+(﹣)﹣5﹣(﹣0.25)=8﹣5+[(﹣)+0.25)]=3+0=3(5)﹣18+(﹣14)+18﹣13=﹣18+18﹣14﹣13=0﹣27=﹣27(6)3.7﹣6.9﹣9﹣5=3.7﹣(6.9+9+5)【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确有理数加减混合运算的方法:有理数加减法统一成加法.19.若|a+1|+|b﹣2|=0,则a+b﹣1的值为多少?【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,代入代数式进行计算即可.【解答】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,则a+b﹣1=0.【点评】本题考查的是非负数的性质,有限个非负数的和为零,那么每一个加数也必为零.20.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?【考点】有理数的加法;正数和负数.【专题】应用题.【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0答:守门员最后回到了球门线的位置.(2)由观察可知:5﹣3+10=12米.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54米.答:守门员全部练习结束后,他共跑了54米.【点评】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.21.已知点A、B为数轴上的两点,A点表示的数为﹣8,B点表示的数为10,则A、B之间的距离为18 .(2)若A点表示的数为,B点表示的数为﹣2,且A、B之间的距离为12,即|AB|=12,则点A表示的数是多少?(3)在(1)的条件下,点A、B都向右运动,点A的速度为2单位长度/秒,点B的速度为1单位长度/秒,多少秒后A、B相距2个单位长度?【考点】一元一次方程的应用;数轴.【分析】(1)用B点表示的数减去A点表示的数即可得到A,B之间的距离;(2)设A点表示的数为x,根据A、B之间的距离为12列出方程|x﹣(﹣2)|=12,解方程即可;(3)设t秒后A、B相距2个单位长度,首先表示出t秒后A、B两点表示的数,再根据A、B相距2个单位长度列出方程,解方程即可.【解答】解:(1)A,B之间的距离=10﹣(﹣8)=10+8=18.故答案为18;(2)设A点表示的数为x,根据题意,得|x﹣(﹣2)|=12,即x+2=12,或x+2=﹣12,解得x=10或﹣14.答:点A表示的数是10或﹣14;(3)设t秒后A、B相距2个单位长度,此时A点表示的数为10+2t或﹣14+2t,B点表示的数为﹣2+t,根据题意得|10+2t﹣(﹣2+t)|=2,或|﹣14+2t﹣(﹣2+t)|=2,即t+12=±2,或t﹣12=±2,解得t=﹣10或﹣14或14或10(负值舍去).答:14或10秒后A、B相距2个单位长度.【点评】本题考查了一元一次方程的应用以及数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
七年级上册数学 周测试卷
三、解答题(本题共 4 小题,其中 17、18、19 题各 9 分,20 题 12 分,共 39 分)
17.将下列各数填在相应的大括号里.
3.14, -(+2), (1)整数集合: {
+43, -0.6
, -10%, 5 3
, 0, ︱-23︱, }
-(-1)2
(2)负分数集合: {
2
(3)聪聪家向西 210 米是体育场,体育场所在点所表示的数是多少?
22. 任意写出一个数位不含零的三位数,任取三个数字中的两个,组合成所有可能的两位数(有 6 个),求出 所有这些两位数的和,然后将它除以原三位数的各个数位上的数的和.例如,对三位数 223,取其两个数字组 成所有可能的两位数:22,23,22,23,32,32.它们的和是 154.三位数 223 各位数的和是 7,.再换几个数 试一试,你发现了什么?请写出你按上面方法的探索过程和所发现的结果,并运用代数式的知识说明所发现 的结果的正确性.
+10 -3 -8 +11 -10 +12 +4 -15 -16 +15 (1)将最后一名乘客送到目的地时,小李距下午出车地点的距离是多少?
26.已知:b 是最小的正整数,且 a、b 满足,请回答问题
(1)请直接写出 a、b、c 的值。
a=__________
b=__________
(第 26 题)
3 13. 某旅游景点 11 月 5 日的最低气温为-2℃,最高气温为 8℃,那么该景点这天的温差是___________℃.
14. 比较大小:0___________(m>2019) (在横线上填写“>”“<”或“等于”)
15.绝对值小于 3 的整数的积是___________ .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上学期数学7周测试卷 姓名__________
一、选择题:
1、下列说法正确的是( )
A.0不是单项式
B.a b
是单项式 C. 2x y 的系数是0 D.3
2x -是整式
2、下列单项式中,次数是5的是( )
A.53
B. 322x
C. 23y x
D. 2y x
3、多项式3244327x x y m -+-的项数与次数分别是( )
A.4,9
B.4,6
C. 3,9
D. 3,10
4、长方形的一边长为a 3,另一边比它小b a -,则其周长为( )。
A. b a 210+
B. a 6
C. b a 46+
D.以上答案都不对。
5、下列各组单项式中属于同类项的是( )
A.2222m n a b 和
B.66xyz xy 和
C.2234x y y x 和
D.ab ba -和
6、若代数式473b a x + 与代数式 y b a 24- 是同类项,则 y x 的值是( )
A 、9
B 、9-
C 、4
D 、4-
7、)]([n m ---去括号得 ( )
A 、n m -
B 、n m --
C 、n m +-
D 、n m +
8、下列各题去括号所得结果正确的是( )
A 、22(2)2x x y z x x y z --+=-++
B 、(231)231x x y x x y --+-=+-+
C 、3[5(1)]351x x x x x x ---=--+
D 、22(1)(2)12x x x x ---=---
9、将)(4)(2)(y x y x y x +-+++合并同类项得( )
A 、)(y x +
B 、)(y x +-
C 、y x +-
D 、y x -
10、把-x-x 合并同类项得( )
A 、0
B 、-2
C 、-2x
D 、-2x 2
11、下面的式子,正确的是( )
A 、3a 2+5a 2=8a 4
B 、5a 2b-6ab 2=-ab 2
C 、6xy-9yx=-3xy
D 、2x+3y=5xy
12、一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( )
A 、3x 2y-4xy 2;
B 、x 2y-4xy 2;
C 、x 2y+2xy 2;
D 、-x 2y-2xy 2
二、填空题
11、单项式22
37xy π-的系数是_______,次数是_______。
多项式623523-+-x x x 是__________次________项式。
12、多项式232
1323x y x y π-+-的次数是___,它的最高项的系数是__
13、单项式25x y 、223x y 、24xy -的和为 ;
14、三个连续偶数中,2n 是最小的一个,这三个数的和为______ _;
15、一个多项式与222x x -+的和是2321x x -+,则这个多项式为______
16、6
2m x y -与3235n x y 是同类项,则n m =______ 17、去括号:=---)2675(2b a x 。
18、某班共有学生x 人,其中女生人数占35%,那么男生人数是
19、在代数式26358422-+-+-x x x x 中,24x 和 是同类项,x 8-和 是同类项,2-和 也是同类项。
合并后是 。
20、计算:22224(2)(2)a b ab a b ab --+= ;
三、计算
1、 222213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭
2、 ()()323712p p p p p +---+
3、 7-3x-4x 2+4x-8x 2-15
4、 2(2a 2-9b)-3(-4a 2+b)
四、先化简,后求值;
(1)(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y
3、()()222234,1,1x y xy x y xy x y x y +---==-其中
五、.已知22222,3A a ab b B a ab b =-+=---,求:23A B
-
六、已知某船顺水航行3小时,逆水航行2小时:
(1)已知轮船在静水中前进的速度是m千米/时,水流的速度是a千米/时,则轮船共航行多少千米?
(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?
七、观察右面的图案,每条边上有n(n≥2)个方点,每个图案中方点的总数是S.
(1)请写出n=5时, S= ;
(2)请写出n=18时,S= ;
(3)按上述规律,写出S与n的关系式S= .。