待定系数法求解析式

合集下载

初二函数专题5--用待定系数法求解析式+答案

初二函数专题5--用待定系数法求解析式+答案

初二函数专题6--用待定系数法求解析式一、用待定系数法求解析式 1、已知函数图象如图所示,则此函数的解析式为( ) A.2y x =- B.2(10)y x x =--<<C.12y x =-D. 1(10)2y x x =--<<2、已知一次函数的图象经过(3,2)和(1,-2)两点. 求这个一次函数的解析式.3、已知一次函数y ax b =+的图象经过点()023A -,,()143B -,,()4C c c +,. ⑴ 求c ;⑴ 求222a b c ab ac bc ++---的值.4、一条直线l 经过不同的三点A (a ,b ),B (b ,a ),C (a b -,b a -),那么直线l 经过 象限.二、根据位置关系求解析式5、已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数的解析式.6、如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .三、根据函数定义求解析式7、已知212y y y =+,其中1y 与x 成正比例,2y 与x 成反比例,且当2x =和3x =时,y 的值都为l9,求y 与变量x 的函数关系式.8、已知函数y (32)(4)a x b =+--为正比例函数。

(1)求a b 、的取值范围;(2)a b 、为何值时,此函数的图象过一、三象限。

9、已知y 与1x -成正比例,且当3x =时5y =.求y 与x 之间的函数关系式.y xO3214321A四、根据增减性求解析式10、已知一次函数y kx b =+中自变量x 的取值范围为26x -<<,相应的函数值的范围是119y -<<,求此函数的解析式。

11、已知函数(2)31y a x a =---,当自变量x 的取值范围为35x ≤≤时,y 既能取到大于5的值,又能取到小于3的值,则实数a 的取值范围为 .12、已知一次函数y kx b =+,当31x -≤≤时,对应的y 值为19y ≤≤,求kb 的值.13、一次函数y mx n =+(0m ≠),当25x -≤≤时,对应的y 值为07y ≤≤,求一次函数的解析式.14、⑴已知关于x 的一次函数()372y a x a =-+-的图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求a 的取值范围.⑴已知一次函数y kx b =+,当31x -≤≤时,对应的y 值为19y ≤≤,求kb 的值.参考答案用待定系数法求解析式1、用待定系数法求解析式【例1】 已知函数图象如图所示,则此函数的解析式为( )A.2y x =-B.2(10)y x x =--<<C.12y x =-D. 1(10)2y x x =--<<【解析】 由题意,正比例函数经过点(-1,2),求出函数解析式为2y x =-,同时根据图象看出自变量的取值范围为10x -<<答案:B【例2】 已知一次函数的图象经过(3,2)和(1,-2)两点.求这个一次函数的解析式.【解析】 设这个一次函数的解析式为:y kx b =+,由题意可知322k b k b +=⎧⎨+=-⎩,解得24k b =⎧⎨=-⎩故这个一次函数的解析式为:24y x =-.【点评】这种首先设出函数解析式,然后再根据已知条件求出函数解析式的系数的方法,称为“待定系数法”.【例3】 (09四川泸州)已知一次函数y ax b =+的图象经过点()023A -,,()143B -,,()4C c c +,. ⑴ 求c ;⑴ 求222a b c ab ac bc ++---的值.【解析】 ⑴根据已知()023A -,,()143B -,,求出一次函数解析式为223y x =+-,再把C 点坐标代入得23c =+.⑴()()()222222192a b c ab ac bc a b b c a c ⎡⎤++---=-+-+-=⎣⎦∵【点评】第二小问老师应该详细分析【例4】 (江苏省初中数学竞赛试题)一条直线l 经过不同的三点A (a ,b ),B (b ,a ),C(a b -,b a -),那么直线l 经过 象限.【解析】 设直线l 的解析式为y kx t =+,因点A 、B 在直线l 上.⑴b ka ta kb t =+⎧⎨=+⎩,⑴a b =/,解得:1k =-,故直线l 的解析式为y x =-+t . 又点C 在直线l 上.⑴()b a a b t -=--+,得0t =.即直线l 的解析式为y x =-,可知l 经过二、四象限.2、根据位置关系求解析式【例5】 已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数 的解析式.【解析】 根据题意可设此函数解析式为2y x b =+,过点P (-1,2),解得4b =,解析式为24y x =+.【例6】 (08年上海市中考题)如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .【解析】 根据题意可得OA 的解析式为2y x =,向上平移一个单位以后,可得:12y x -=,即21y x =+3、根据函数定义求解析式【例7】 已知212y y y =+,其中1y 与x 成正比例,2y 与x 成反比例,且当2x =和3x =时,y 的值都为l9,求y 与变量x 的函数关系式.【解析】 根据已知条件,设11y k x =,22k y x = (1k ,2k 均不为零),于是,得:2221212k y y y k x x=+=+将2x =,3x =代入212y y y =+得:22122121943199k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解之:122536k k =⎧⎪⎨=⎪⎩,⑴2365y x x =+【补充】已知函数y (32)(4)a x b =+--为正比例函数。

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程

题目:用待定系数法求一次函数解析式的题目和解析过程在代数学中,待定系数法是一种常用的方法,用来求解未知系数的值。

当我们需要求一次函数的解析式时,待定系数法可以帮助我们找到正确的表达式。

下面,我将和你一起探讨待定系数法在求一次函数解析式中的应用。

1. 确定一次函数的一般形式我们知道一次函数的一般形式是 y = ax + b,其中a和b分别代表斜率和截距。

在使用待定系数法时,我们需要先确定这个一般形式,以便后续进行系数的求解。

2. 根据已知条件列出方程接下来,我们需要根据题目提供的已知条件来列出方程。

如果已知函数过点(1, 2)和斜率为3,我们可以写出方程 y = 3x + b,并代入点(1, 2)来求解b的值。

3. 求解待定系数使用待定系数法,我们将已知的条件代入一般形式中,得到一个包含未知系数a和b的方程。

根据已知条件进行求解,逐步确定待定系数的值。

在已知函数过点(1, 2)和斜率为3的情况下,我们可以设定方程y = 3x + b,代入点(1, 2),得到 2 = 3*1 + b,从而求解出b的值为-1。

4. 得出一次函数的解析式根据求解得到的待定系数,我们可以得出一次函数的解析式。

在本例中,我们已知斜率为3,截距为-1,因此得出的一次函数解析式为 y = 3x - 1。

总结回顾:待定系数法作为一种常用的代数方法,可以帮助我们求解一次函数的解析式。

在使用待定系数法时,我们需要先确定一次函数的一般形式,然后根据已知条件列出方程,逐步求解待定系数的值,最终得出一次函数的解析式。

个人观点与理解:通过使用待定系数法,我们可以更快速、更准确地求解一次函数的解析式,尤其在已知条件复杂或需要精确求解时,待定系数法可以发挥其优势。

掌握待定系数法也有助于我们在代数方程的求解过程中提高效率和准确性。

希望以上内容可以帮助你更全面、深刻地理解待定系数法在求一次函数解析式中的应用。

如果有任何问题或需要进一步探讨,欢迎随时与我联系。

待定系数法求解析式

待定系数法求解析式

待定系数法求函数解析式【要点梳理】一.已知三点求抛物线解析式例1 二次函数的图象经过点(1,4),(-1,0)和(-2,5),求二次函数的解析式.例2若抛物线经过A(-1,0)和B(3,0),且与y轴交于点(0,-3),求此抛物线的解析式及顶点坐标.二.已知顶点坐标及另一点坐标求抛物线解析式例3 已知抛物线的顶点坐标是(-2,3)且过(-1,5),求抛物线的解析式.三.已知两点及对称轴,求抛物线解析式例4已知抛物线过A(1,0),B(0,-3)两点,且对称轴为直线x=2,求抛物线解析式.四.已知x轴上两点坐标及另一点坐标求抛物线解析式例5若抛物线经过A(-2,0)和B(4,0),且与y轴交点(0,-3),求此抛物线的解析式及顶点坐标.五.求平移后新抛物线解析式例6把抛物线2xy-=向左平移1个单位,然后向上平移3个单位,求平移后新的抛物线解析式.六.求沿坐标轴翻折后新抛物线解析式例7 在一张纸上作出函数322+-=xxy的图象,沿x轴把这张纸对折,描出与函数322+-=xxy的图象关于x轴对称的抛物线,并写出新抛物线解析式.【课堂操练】1.求下列条件下的二次函数解析式:(1)过点(-1,0),(0,2)和(4,0).(2)顶点为(2,-3),且过点(-1,15).2.已知二次函数cbxaxy++=2的图象如图所示,求它关于y轴对称的抛物线解析式.3.已知二次函数cbxaxy++=2的图象如图所示,求它关于x轴对称的抛物线解析式.4.已知二次函数cbxxy++=221的图象过点A(c,-2),,求证:这个二次函数图象的对称轴是直线x=3,题目中横线上方部分是被墨水污染了无法辨认的文字.(1)根据已知和结论中现有信息,你能否求出题目中的二次函数解析式?若能,请写出解题过程;若不能,请说明理由.(2)请你根据已有的信息,在原题中的横线上添加一个适当的条件,把原题补充完整.【课后巩固】1.将抛物线2y x=的图像向右平移3个单位,则平移后的抛物线的解析式为___________.2.二次函数342++=xxy的图象可以由二次函数2xy=的图象平移而得到,下列平移正确的是()A、先向左平移2个单位长度,再向上平移1个单位长度B、先向左平移2个单位长度,再向下平移1个单位长度C、先向右平移2个单位长度,再向上平移1个单位长度D、先向右平移2个单位长度,再向下平移1个单位长度3.已知2y ax bx c=++的图象过(-2,-6)、(2,10)和(3,24)三点,求函数解析式.4.已知函数2y ax bx c=++,当x=1时,有最大值-6,且经过点(2,-8),求出此抛物线的解析式.5.已知二次函数的图象与x轴的交点横坐标分别为2和3,与y轴交点的纵坐标是72,求它的解析式.6.已知抛物线22(2)4y m x mx n =--+的对称轴是x =2,且它的最高点在直线112y x =+上,求此抛物线的解析式.7.已知抛物线2y ax bx c =++(a ≠0)经过 (0,1)和(2,-3)两点. (1)如果抛物线开口向下,对称轴在y 轴的左侧,求a 的取值范围.(2)若对称轴为x =-1,求抛物线的解析式.8. 二次函数图象过A 、B 、C 三点,点A 的坐标为(-1,0),点B 的坐标为(4,0),点C 在y 轴正半轴上,且AB =OC . (1)求C 的坐标;(2)求二次函数的解析式,并求出函数最大值.9.在平面直角坐标系中,△AOB 的位置如图所示.已知∠AOB =90°,AO =BO ,点A 的坐标为 (-3,1).(1)求点B 的坐标,(2)求过A ,O ,B 三点的抛物线的解析式, (3)设点B 关于抛物线的对称轴的对称点为B l ,求△AB l B 的面积.10.已知点A (-2,-c )向右平移8个单位得到 点A ',A 与A '两点均在抛物线2y ax bx c =++上, 且这条抛物线与y 轴的交点的纵坐标为-6,求这 条抛物线的顶点坐标.11.在直角坐标平面内,二次函数图象的顶点为A (1,-4),且过点B (3,0). (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.12.一次函数y =x -3的图象与x 轴,y 轴分别交于点A ,B .一个二次函数y =x 2+bx +c 的图象经过点A ,B .(1)求点A ,B 的坐标,并画出一次函数y =x -3的图象;(2)求二次函数的解析式及它的最小值.13.在平面直角坐标系中,已知二次函数k x a y +-=2)1(的图像与x 轴相交于点A 、B ,顶点为C ,点D 在这个二次函数图像的对称轴上,若四边形ABCD 时一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.14.关于x 的函数22(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方. (1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式; (3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.。

19.2.2(4)待定系数法求解析式

19.2.2(4)待定系数法求解析式

待定系数法求解析式班级:_________ 姓名:___________一.已知两点求解析式例1.(8分)某地出租车计费方法如图,x (km )表示行驶里程,y (元)表示车费,请根据图象解答下列问题: (1)该地出租车的起步价是 元; (2)当x >2时,求y 与x 之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km ,则这位乘客需付出租车车费多少元?练习:1.根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).2.如图,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为( )A .2y x =-+B .2y x =+C .2y x =-D .2y x =-- 3.已知一次函数的图象经过点(-4,15),(6,-5)(1)求这个一次函数的解析式。

(2)求这个一次函数与x 轴、y 轴的交点坐标及图象与两轴所围成的三角形的面积。

(3)另一直线与该直线的图象相交于点(-1,m ),且与y 轴交点的纵坐标为4,求这条直线的解析式。

y OxAB1- y x =-2二.已知含参解析式例2.已知一次函数3y mx m =+-的图象经过点A(−2,−1),求该一次函数的解析式。

练习:4.已知:函数y=(m+1)x+2m+6,若函数图象过(-1,2),则此函数的解析式为_____________________; 三.由增减性求解析式例3.已知一次函数y=kx+b 中自变量x 的取值范围为-2≤x ≤6,相应的函数值范围是-11≤y ≤9,求此函数的解析式.练习:5.已知直线y=kx+b 经过第一、二、四象限,当自变量x 的取值范围为1≤x ≤4,相应的函数值范围是3≤y ≤6,求此函数的解析式.四.位置关系求解析式例4.(1)直线AB 与直线y=−2x+1平行,且经过点(−2,3),求直线AB 的解析式。

待定系数法求函数的解析式

待定系数法求函数的解析式

一次函数的解析式1、把y=kx+b (k ≠0,b 为常数)叫做一次函数的标准解析式,简称标准式。

直线过()11,y x , ()22,y x =>2121x x y y k --=,或1212x x y y k --=b:与y 轴交点的刻度( 纵坐标)1:若点A (2,4)在直线y=kx-2上,则k=( )A .2B .3C .4D .02:一条直线通过A (2,6),B (-1,3)两点,求此直线的解析式。

3:一条直线通过A (1,6),B (0,3)两点,求此直线的解析式。

4:若A (0,2),B (-2,1),C (6,a )三点在同一条直线上,则a 的值为( )A .-2B .-5C .2D .55.已知点M (4,3)和N (1,-2),点P 在y 轴上,且PM+PN 最短,则点P 的坐标是( )A .(0,0)B .(0,1)C .(0,-1)D .(-1,0)6.如图,已知一次函数y=kx+b 的图象经过A (0,1)和B (2,0),当x >0时,y 的取值范围是( )A .y <1B .y <0C .y >1D .y <27.已知一次函数y=kx+b 的图象如图所示(1)当x <0时,y 的取值范围是______。

(2)求k ,b 的值.用待定系数法求二次函数解析式二次函数的解析式有三种基本形式:1、一般式:y=ax2+bx+c (a≠0)。

C:与y轴交点刻度(纵坐标)2、顶点式:y=a(x-h)2+k (a≠0),其中点(h,k)为顶点,对称轴为x=h。

3、交点式:y=a(x-x1)(x-x2) (a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。

1.已知一个二次函数的图象过点(0,-3)(4,5),(-1, 0)三点,求这个函数的解析式?2.已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式.3. 已知抛物线的顶点为(1,-4),且过点(0,-3),求抛物线的解析式?4.过点(2,4),且当x=1时,y有最值为6;求抛物线的解析式?5.. 已知一个二次函数的图象过点(0,-3)(4,5),对称轴为直线x=1,求这个函数的解析式?6.如图,已知两点A(-8,0),(2,0),与y轴正半轴交于点C(0、4)。

待定系数法求函数解析式10题

待定系数法求函数解析式10题

待定系数法求函数解析式10题1. 题目:已知一次函数y = kx + b的图象经过点(1,3)和( - 1, - 1),求这个一次函数的解析式。

- 解答:- 因为一次函数y = kx + b的图象经过点(1,3)和( - 1, - 1),所以把这两个点分别代入函数解析式中。

- 当x = 1,y = 3时,得到3=k×1 + b,也就是k + b=3;当x=-1,y = - 1时,得到-1=k×(-1)+b,也就是-k + b=-1。

- 现在有了一个方程组k + b = 3 -k + b=-1。

- 把这两个方程相加,(k + b)+(-k + b)=3+(-1),得到2b = 2,解得b = 1。

- 把b = 1代入k + b = 3,得到k+1 = 3,解得k = 2。

- 所以这个一次函数的解析式是y = 2x+1。

2. 题目:二次函数y = ax^2+bx + c的图象经过点(0,1),(1,2),( - 1,4),求这个二次函数的解析式。

- 解答:- 因为二次函数y = ax^2+bx + c的图象经过点(0,1),(1,2),( - 1,4)。

- 当x = 0,y = 1时,代入解析式得1=a×0^2+b×0 + c,也就是c = 1。

- 当x = 1,y = 2时,得到2=a×1^2+b×1 + c,也就是a + b + c=2;当x=-1,y = 4时,得到4=a×(-1)^2+b×(-1)+c,也就是a - b + c = 4。

- 因为c = 1,所以把c = 1代入a + b + c = 2和a - b + c = 4中,得到a + b+1 = 2 a - b+1 = 4。

- 化简这两个方程得a + b = 1 a - b = 3。

- 把这两个方程相加,(a + b)+(a - b)=1 + 3,得到2a = 4,解得a = 2。

用待定系数法求一次函数解析式

用待定系数法求一次函数解析式

y=3x-30
60 元上网费用; (2)若小李 4 月份上网 20 小时,他应付________
(3)若小李 5 月份上网费用为 75 元,则他在该月份的上网时间 是__________.
35
点拨:(1)当 x≥30 时,设函数解析式为 y=kx+b,
30k b 60 k 3 则 ,解得 .所以 y=3x-30. b 30 40k b 90
k=2 ∴ y=2 x +2 ∴ x=-1 时 y=度y(厘米)在一定限度内 所挂重物质量x(千克)的一次函数,现已测得 不挂重物时弹簧的长度是6厘米,挂4千克质量 的重物时,弹簧的长度是7.2厘米,求这个一次 函数的解析式。
解:设这个一次函数的解析式为:y=kx+b 根据题意,把x=0,y=6和x=4,y=7.2代入,得: b=6 k=0.3 4k+b=7.2 解得 b=6
Page 2
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解: ∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b
解得
b=-5
∴这个一次函数的解析式为y=2x-5
Page
3
变式4:已知一次函数y=kx+b 的图象 与y=2x平行且过点(2,-1).求这个一 次函数的解析式. ∵ y=kx+b 的图象与y=2x平行. 解:
当B点的坐标为(0,4)时,则 y=kx+4
4 ∴ 0=3k+4, ∴k= - ∴ 3 4 ∴ 0=3k+4, ∴k= 3
y= -
4 x+4 3
当B点的坐标为(0,-4)时,则 y=kx-4

待定系数法求函数解析式

待定系数法求函数解析式

19.2.2一次函数(第三课时)学习目标: 1、根据所给信息确定一次函数的表达式; 2、能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实的问题。

一、温故互查正比例函数关系式: _______一次函数关系式:________ 2、一次函数的图像是一条直线,因此画一次函数的图像只需要一次函数上_ 个点的坐标,因此求一次函数关系式时,只需要 个点的坐标就可以了。

二、设问导读 例1:已知一次函数的图像经过点(3,5)与(-4,-9),求这个一次函数的解析式。

分析:求一次函数y=kx+b 的解析式,关键是求出k ,b 的值,从已知条件可以列出关于k ,b 的二元一次方程组,并求出k ,b 。

解: ∵一次函数b kx y +=经过点(3,5)与(-4,-9)∴⎩⎨⎧______________________ 解得⎩⎨⎧==__________b k∴一次函数的解析式为_______________像例1这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做 。

例2:已知一次函数的图象如图所示,求出它的函数关系式注:在求函数关系式时,只需找到函数图象上 个点的坐标即可。

三、自学检测:1、已知一次函数2+=kx y ,当x = 5时,y = 4,(1)求这个一次函数。

(2)求当2-=x 时,函数y 的值。

2、已知直线b kx y +=经过点(9,0)和点(24,20),求这条直线的函数解析式。

3、点(1,1)、(2,0)、(3,-1)是否在同一条直线上?4、已知直线y=kx+b 平行于直线y=-2x-2,并且与y 轴的交点坐标为(0,3)5、 已知y 与x -3成正比例,当x =4时,y =3.(1)写出y 与x 之间的函数关系式; (2)y 与x 之间是什么函数关系; (3)求x =2.5时,y 的值.(吨))6、某自来水公司为了鼓励市民节约用水,采取分段收费标准。

《待定系数法求解析式复习课》

《待定系数法求解析式复习课》
1.已知点P(1,2)关于x轴的对称 点为Q,且Q在直线y=kx+3上,把直 线y=kx+3的图像向上平移2个单位,
所得y=-的5x+直5 线解析式为 _____________
2.(2013巴彦淖尔)如图,已知一条直线经过点A(0, 2)、B(1,0),将这条直线向左平移与x轴y轴分别 交于点C、点D,若DB=DC,则直线CD的函数解析 为 y=-2x-2 .

人教版《义务教育教科书》八年级数学下册
第十九章 一次函数
待定系数法求解析式复习 课
归纳 : 1. 待定系数法:先设出_函__数_解__析__式_,再根据条件确 定解析式中的未知的__系__数__,从而得出解析式的方 法,叫做待定系数法。
2.待定系数法求一次函数解析式步骤: (1)设:设函数解析式y=kx+b(k, b 为常数,k≠0)
(4)向右平移a个单位 _y_=_k(_x-_a)_+b_____
二、〖拔高提升〗
1.(2017通辽)如图,将八个边长为1的小正方形
摆放在平面直角坐标系中,若过原点的直线l将
图形分成面积相等的两部分,则将直线l向右平
移3个单位后所得直线l′的函数关系式
为 y 10 x - 10 93

三〖巩固训练〗
(2) 列:将已知点的坐标或x, y的对应值代入函数 解析式,列出方程(组)
(3)解:解方程(组)求出待定系数k,b的值。 (4)写:把k,b的值代入y=kx+b,写出一次函数的 解析式
3.一次函数图像的平移:已知一次函数y=kx+b(k、 b是常数,且k≠0) (1)向上平移a个单位___y_=_kx_+_b_+_a________ (2)向下平移a个单位 __y_=_k_x_+_b_-_a_______ (3)向左平移a个单位___y_=_k(_x_+_a_)_+_b______

用待定系数法求解析式

用待定系数法求解析式

例3.
练习3: 已知一元二次函数f(x)的图象经过点(3,8),
且与x轴交于两点(-1,0),(5,0),求函数f(x)的
已解析解知:式由一。题元意可二设次函数函的数解析f式(x为)的f (图x) 象a(x经1)(过x 点5) (0,因3为)图且象经与过(X3轴,交8)于两点(1,0) ,(3,代入0)得 ,8求 a函(3数1)(3f5()x)的解析式。
所以 a 1
因此,函数的解析式为 f (x) (x 1)(x 5)
三、小结:
已知条件
已知一次函数经过两点 A(x0,y0),B(x1,y1)
可设函数解析式为
f (x) kx b(k 0)
已知二次函数经过不重
合的三点A(x0,y0),B(x1,y1),
C(x2,y2)
f (x) ax2 bx c(a 0)
这种通过求待定系数来确定变量之间关系(函
数解析式)的方法叫做待定系数法。
二、典例讲解与练习:
例1、已知一元二次函数f(x)在x=-1,0,1处的函 数值分别为7,-1,-3,求这个函数 f(x)的解析 式。
练习1:
已知一元二次函数f(x),且x=0,-1,1 处的函数值分别为3, 6, 2,求这个函数 f(x)的解析式。
思考:
问题1: 一元二次函数 f(x)的图象的对称轴是直线x=2, 并且图象经过点P(2,0),Q(0,4),求函数f(x)的解 析式。
问题2: 一元二次函数 f(x)满足 f(2+x)=f(2-x) , 且函数 有最大值2,与 y 轴交于点(0,-6),求函数 f(x)的解析式。
一、复习引入
1.已学的函数及其解析式:
①正比例函数: y k x
②反比例函数: ③一 ຫໍສະໝຸດ 函 数:y k xy kxb

用待定系数法求函数解析式用

用待定系数法求函数解析式用
1、(2011年郴州)求与直线 y x 平行,并且
经过点P(1,2)的一次函数的解析式,则这个一次
函数解析式为 y x 1 。
2、(2007年郴州)已知正比例函数y=kx经过点 P(1,2),求这个正比例函数的解析式为 y 2x 。
3、(2010年郴州)已知双曲线 (1,2)则双曲线的解析式为
y
k x
y
的图象经过A
2 。
x
展现 自我
1、(2013年郴州)已知:如图,一次函数的图
象与y轴交于C(0,3),且与反比例函数y= 2 的图象在第一象限内交于A,B两点,其中 x
A(1,a),求这个一次函数的解析式.1
这个一次函数的解析式y=-x+3

2、(2012年郴州)已知反比例函数的图象与 直线y=2x相交于A(1,a),求这个反比例 函数的解析式. 这个反比例函数的解析式为y= 2
(1)求抛物线的表达式; (2)、(3)待续
y 2 x2 11 x 4 33
方法点拔 看图找点 见形想式 建模求解
畅谈所得
感悟提升
通过本节课的复习你对用待 定系数法求函数解析式又有什么 新的认识?
轻松 应对
任选以下三个条件中的一个,求二次函数
y=ax2+bx+c的解析式; ① 0)已知直线上两个点的坐标
反比例函数
yy kk(k 0) xx
二次函数一般式 y=ax2+bx+c
已知双曲线上一个点的坐标 已知抛物线上三个点的坐标
二次函数顶点式 y=a(x-h)2+k 已知抛物线顶点坐标(h, k)
二次函数交点式
y=a(x-x1)(x-x2)
已知抛物线与x 轴的两个交 点(x1,0)、 (x2,0),

用待定系数法求二次函数解析式

用待定系数法求二次函数解析式

用待定系数法求二次函数解析式待定系数法是求解多项式解析式的有效途径,用来直接求出二次函数解析式的标准型可以以形如$ax^2+bx+c=0$来表示,其中$a,b,c$均为常数。

一、概述1.1 什么是待定系数法待定系数法是指针对未知数多项式的解析方程,通过形如$a_1x^2+a_2x+a_3=0$的解析方程的参数$a_1,a_2,a_3$的确定,来求解形如$ax^2+bx+c=0$的解析式。

1.2 待定系数法的步骤(1)将解析方程形如$ax^2+bx+c=0$的形式确定,将$a,b,c$的系数根据题目替换成未知数,形如$a_1x^2+a_2x+a_3=0$(2)据此,将问题转化为求令$Δ=b_1a_2-2a_1a_3=0$时$a_1,a_2,a_3$的值,其中$b_1$为给定数∵(3)如果$Δ ≠ 0$,有$a_1=Δ/b_1, a_2=2a_1a_3/b_1, a_3=Δ/b_1$(4)将$a_1,a_2,a_3$的值代回原式,可求出$a,b,c$的值(5)最终,得出答案。

二、例题例题1:已知$2x^2+bx+2=0$,求b的值解:由待定系数法可求解出$a_1=2,a_2=b,a_3=2$∴$b_1=2,Δ=2×b−2×2=b-4$∴令$Δ=b-4=0$,解得$b=4$∴$b=4$例题2:已知$2x^2-3x+c=0$,求c的值解:由待定系数法可求解出$a_1=2,a_2=-3,a_3=c$∴$b_1=2,Δ=2×(-3)−2×c=6-2c$∴令$Δ=6-2c=0$,解得$c=3$∴$c=3$三、探究(1)待定系数法的数据限制待定系数法用来求解的多项式解析方程为二次以下的情况,不能用来求解多次多项式方程。

(2)待定系数法的应用范围待定系数法普遍用于求解数学、物理、化学、经济学等学科中,会出现二次式解析方程的问题,它可以用来快速求解解析式,可以极大的节省计算的时间。

42.待定系数法求解析式

42.待定系数法求解析式

待定系数法求解析式一、求正比例函数解析式的常用方法---①确定一个点坐标②设一次函数为Y=kx③把点坐标代入得关于K方程,求出K ④把K代入已设的解析式中可得解析式一、选择题1.如图,某正比例函数的图象过点M(﹣2,1),则此正比例函数表达式为()x xDDx﹣DDDx y=x y=x+1二、填空题16.若正比例函数y=kx(k≠0)经过点,则k=_________.17.已知y与x成正比例,当x=2时,y=﹣4,那么比例系数k=_________.18.如果正比例函数的图象经过点(2,4),那么这个函数的解析式为_________.19.已知正比例函数的图象经过点(﹣2,10),则它的解析式是_________.20.若正比例函数y=kx的图象经过点(2,﹣4),则k的值为_________.21.如果正比例函数y=kx的图象经过点(1,﹣2),那么k的值等于_________.22.已知正比例函数的图象经过点(﹣2,﹣4),则它的解析式为_________.23.已知正比例函数图象经过点(3,12),则该正比例函数的表达式是_________.24.若点P(3,8)在正比例函数y=kx的图象上,则此正比例函数是_________.25.如果正比例函数的图象经过点(2,1),那么这个函数的解析式是_________.26.若y与x﹣1成正比例,且x=2时y=6,则x=﹣2时y=_________.27.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为_________.28.已知y与x成正比例,且当x=1时,y=3.则y与x的关系式是_________.29.若正比例函数y=kx的图象经过点(2,6),则k=_________.30.已知一个正比例函数的图象经过点(﹣1,3),则这个正比例函数的表达式是_________.二、求一次函数解析式的常用方法---①确定两点坐标 ②设一次函数为Y=kx+b③把两点坐标代入得关于K ,b 方程组,求出K ,b ④把K ,b 代入已设的解析式中可得解析式 例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。

待定系数法求函数解析式

待定系数法求函数解析式
分析:将三个点的坐轴代入函数的解析式,得
a b c 2 9a 3b c 5 4a 2b c 6 解出这个方程组即可
2. 顶点式:y=a (x-h)2+k
y a x h k 2.设顶点式:________________. 若已知二次函数图象的顶点坐标或对称轴 方程与最大值(或最小值),将已知条件代入所 设顶点式,求出待定系数,最后将解析式化为 一般形式.
b b 2 4ac 则A( b b 4ac ,0 ),B( ,0) 2a 2a
2
因此AB= |a|
已知抛物线 y
a( x 2) 9在x轴上
2
截得的线段长是6,求a的值。
例1.若函数y= -mxm+1+2mx+3的图象是 抛物线,求m的值及函数解析式.
解:由题意得 m+1=2 -m≠0 ∴m=1 解析式为:y= -x2+2x+3
(1)在抛物线y= -x2+2x+3上是否存在点P(点
C除外),使△ABP面积等于△ABC面积?
解:假设存在满足条件的点P, y C 3 P 3 Q Ax
则作PQ⊥x轴∵ S△ABp = S△ABC, ∴ AB×PQ/2= AB×OC/2, -1 ∴ PQ=CO=3, ∴ |y|=3, B 0 ∴ 3= -x2+2x+3, ∴x1=0,x2=2 。 ∴p(2,3)
y x 0 x 0
y=ax2+bx
y
1、画出y= -x2+ຫໍສະໝຸດ x+3的图象,并分析它的性质
y 3 C M(1,4) • 与x 轴的交点: ∵y=0, ∴ -x2+2x+3=0, ∴x1=3,x2= _1 -1 H 3 B 0 1 A x ∴A (3,0),B(_1,0) •与y轴的交点: ∵x=0, ∴y=3, x=1 ∴C(0,3) •∵ y= _(x2_2x)+3 = _(x2_2x+1)+3+1 = _(x_1)2+4 ∴对称轴是直线x=1 •顶点坐标是M(1,4)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用待定系数法求二次函数的解析式
1、二次函数图象经过(-1,10),(1,4),(0,7)三点,求二次函数解析式
练:二次函数图象经过(1,1),(-1,4),(0,3)三点,求二次函数解析式
2、二次函数图象顶点(2,1),且经过(1,0),求二次函数解析式
练:二次函数图象,当X=3时Y有最大值3,且经过(2,-2),求二次函数解析式
3、抛物线与x轴两交点(-1,0),(3,0)且经过(1,-5),求抛物线解析式
练:抛物线与x轴两交点(1,0),(-1,0)且经过(2,6),求抛物线解析式
4、已知二次函数图象顶点(3,-2),且图象与x 轴交点间距离为4,求二次函
数解析式
练:已知二次函数图象经过点(0,9
37),且顶点的横坐标为4,该图象与X 轴的两交点间的距离为6,求二次函数解析式
5、已知抛物线的对称轴为直线X=2且经过点(1,4)和(5,0)求抛物线解析式
练:已知抛物线,当X>1时,Y 随X 的增大而增大,当X<1时,Y 随X 的增大而
减小,且过(0,3),(3.6)求抛物线解析式
6、已知二次函数图象经过原点及点)4
1,21(--且图象与X 轴另一个交点到原点的距离为1,求二次函数解析式
练:已知抛物线经过A(-1,0),B(3,0),与Y 轴交于点C,且BC=23,求抛物线解析
式。

相关文档
最新文档