高数论文
大学数学论文(5篇)
大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。
首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。
这些是数学竞赛得以顺当开展的基础。
第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。
最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。
这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。
基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。
2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。
不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。
主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。
限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。
还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。
还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。
基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。
高数数学论文
⾼数数学论⽂ ⾼数成为⽣活中不可或缺的重要学科之⼀,对于⾼数微积分在社会⽣活中的运⽤也越来越⼴泛。
下⾯店铺给你分享⾼数数学论⽂,欢迎阅读。
⾼数数学论⽂篇⼀ 摘要:⽬前,改⾰在各个学校中都在进⾏,在课堂上对学⽣的⼈⽂修养和礼仪道德,⼈⽂知识以及专业技巧知识还有相关的科学知识的拓展等各个层⾯的综合培养就是所谓的素质教育,提倡素质教学,结合每个科⽬⽽且联系实际才能有效地应⽤。
⾼数教学中的素质教育是指学⽣对事物的认知和接触辨析能⼒包括思维逻辑、逻辑变通和数理规则还有抽象图形等,不仅包括数学的公式运算,还有相关数学知识、运算⽅法、分析要领和数学领域的科研⽅向以及与相关学科相关联部分的桥梁知识。
因此,只有通过⾼等数学教学中数学素养的培养,带动促进⼈才全⾯素质的提⾼,加强学⽣学习能⼒和创新思维,才能为社会培养每⼀个具有创新精神的合格的⼈才。
关键词:⾼等数学教学数学素质培养 ⼀个学⽣良好的数学素质离不开⾼等院校的数学素质教育,在社会发展的⼤浪潮中我国的数学素质教学必然会遇到⼀些困难,我们要迎风⽽上,为开辟数学素质教学起到积极意义。
本⽂就我国⾼等数学素质教育进⾏⼀些简单和基本⽅法性问题的研究与探讨。
⼀、全⾯提升⼈才素质离不开数学素养的提⾼ 辩证思想深深扎根于⾼等数学理论,举个例⼦来说:⽆穷⼤与⽆穷⼩的论证、有限和⽆限的相互论证等。
这对于知识接受者⾃⾝的素养不仅是数学素养包括全⾝⼼的素养甚⾄是帮助⼈形成正确的⼈⽣观价值观都起着⾮常⼤的作⽤。
⾼数作为⼀种理性思维的教育,以培养逻辑思维能⼒和创造性思维能⼒为⼰任。
通过理性的教育,使得知识接受者具备相应的现实想象⼒,进⽽才能具有建设和发展社会的能⼒。
抽象性是数学理论显著的⼀个特点,对数学理论的持续研究,可以很好地提升逻辑推理、抽象思维和分析并解决问题的能⼒。
各种教学⼼理学研究成果显⽰:知识接受者的学习动⼒的源泉是⾃⾝社会的知识所形成价值观作⽤于社会的感受程度。
这个不难理解,数学与⽣活息息相关,因为,数学本来就是从⽣活、⽣产和科研等实际需要来逐渐发展⽣成的,实际的问题引发新的理论,理论联系实际,⽬标明确,进⽽提升学⽣学习的热情与渴望。
高等数学教学论文范文3篇
高等数学教学论文范文3篇高等数学教学论文一、在看到多媒体优点的同时,必须直面它的不足1.流速快,内容繁。
课件教学以其容量大、速度快、易操作而自豪。
然而图文并茂的多媒体教学虽然形象直观,也会导致学生不愿思考,抽象思维能力下降。
新颖的动画、声音媒体取代了枯燥的课本和板书,但学生的注意力开始分散,不注重内涵的理解,而更关注形式的欣赏。
因此,我们在用多媒体上课的时候,就会发现这样一种怪现象:时不时会有学生用平板电脑或者手机对着多媒体一阵拍照。
这种现象,一方面是因为多媒体的流速快、内容繁,大家的思维速度已经跟不上不停转动的画面,另一方面,是因为学生学习的积极性因为多媒体的存在变得不高了。
既然上课的内容可以在电脑或手机上再一次展现在自己面前,那又何苦在课上学得那么辛苦。
因此,就导致了课件教学就像放电影一样,整部电影精彩绝伦,但其中的细节却很少有人去慢慢体会了。
2.内容固定,缺少灵活。
多媒体课件都是教师事先根据教学内容设计的教学软件,其执行的过程是不变的。
即使在授课过程中,学生的想法偏离老师所讲的内容,也会因为这些“事先设计”,为了课件的正常播放,教师不得不将其拉回”正轨”。
这种刻板的做法不利于鼓励学生发现、探讨问题,同时也极大地影响了课堂教学的灵活性。
3.影响思维能力培养。
在教学的过程中,运用多媒体增强了教学的形象性和直观性,使很多难以理解的现象变得直观、明了。
但是这样做,实际上是扼杀了培养学生逻辑思维能力和创造能力的机会。
我们往往只强调学生去“看”而弱化了让学生去“想”和“做”,从而忽视了对学生思维能力的训练。
课件仅仅是师生双边活动中的一种辅助或补充,要充分考虑到对学生智力和能力的培养,尤其是创新能力的培养;激发学生学习的主动性和创造性。
4.环境影响教学效果。
现在的多媒体设备一般都安装在普通教室里。
这些教室一般既没有安装空调,也没有安装专门的排风设备,而投影机的使用需要窗帘遮光。
学生在这样不太通风的教室里上课,其效果肯定是比较差的。
高中数学论文800字三篇
高中数学论文800字三篇第一篇:论数学中的变换思想在解题中的应用摘要变换思想在高中数学解题中具有重要作用,本文通过具体例题分析,探讨了变换思想在函数、几何和代数等领域中的应用,旨在提高学生解决数学问题的能力。
关键词变换思想,解题方法,数学问题,高中教育1. 引言在高中数学教学中,变换思想是一种重要的解题方法。
通过对问题进行合理的变换,可以将复杂问题转化为简单问题,从而提高解题效率。
本文将从函数、几何和代数三个方面,分析变换思想在高中数学解题中的应用。
2. 变换思想在函数解题中的应用函数是高中数学的重要内容之一。
在解决函数问题时,变换思想可以有效地将问题简化。
例如,在求解函数的极值问题时,可以通过换元法将函数转化为简单的一次函数或二次函数,进而求解。
3. 变换思想在几何解题中的应用几何问题是高中数学中的另一个重要部分。
变换思想在几何解题中的应用也十分广泛。
例如,在解决几何证明问题时,可以通过添加辅助线、变换图形位置或形状等方式,将问题转化为已知几何定理或公式,从而简化问题。
4. 变换思想在代数解题中的应用代数问题是高中数学的另一个重要内容。
在解决代数问题时,变换思想同样可以发挥重要作用。
例如,在求解方程组时,可以通过变换方程组的形式,将其转化为已知解法形式的方程组,从而简化问题。
5. 结论变换思想在高中数学解题中具有重要作用。
通过运用变换思想,可以将复杂问题转化为简单问题,提高解题效率。
因此,在日常研究中,学生应加强对变换思想的研究和应用,提高自己的数学解题能力。
第二篇:论高中数学中的分类讨论思想在解题中的应用摘要分类讨论思想是高中数学解题中常用的一种方法。
本文通过对具体例题的分析,探讨了分类讨论思想在数列、函数、几何等领域的应用,以期提高学生解决数学问题的能力。
关键词分类讨论,解题方法,数学问题,高中教育1. 引言在高中数学教学中,分类讨论思想是一种重要的解题方法。
通过对问题进行合理的分类讨论,可以将复杂问题转化为简单问题,从而提高解题效率。
大学高等数学论文范文
大学高等数学论文范文推荐文章浅谈高等数学论文范文格式模板热度:高等数学相关论文范文热度:有关大学教育论文范文热度:高等教育学论文相关范文热度:高等院校会计专业论文热度:大学高等数学教育是促进学生发展全面性的一门基础性学科,其在学生思维、思辨能力的培养过程中扮演着十分重要的角色。
下面是店铺为大家整理的大学高等数学论文范,供大家参考。
大学高等数学论文范范文一:数学史教育高等数学论文一、在高等数学的教学中融入数学史的必要性(一)在教学过程中插入数学史教育在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。
著名数学家陈省身说:“了解历史的变化是了解这门科学的一个步骤。
将数学发展的历史真实地展现给学生,是数学这一学科应该毫不犹豫地担起的职责。
”高职院校高等数学教师提高自身数学素养,将数学史内容融入到高等数学教学教学中,势在必行。
高职院校学生相对于本科学生基础弱,底子薄,在高等数学的学习中会遇到许多问题,自然影响学生的学习效果。
在课堂教学过程中融入数学史的内容,从数学家们发现、发明解决问题的思路出发,引导学生思考解决问题,可以帮助学生更好地理解高等数学中的公理、公式,解决数学学习中出现的各种困难,树立学习信心,改变高等数学枯燥乏味、一味证明的课堂教学模式。
(二)将数学史蕴涵的思想、方法融入到高等数学教学中弗赖登塔尔在《作为教学任务的数学》中指出,数学概念、公理及数学语言符号等,包括数学问题解决,不应机械地灌输给学生,或仅是由结果出发,推导出其他数学知识的方式,这种颠倒的教学法掩盖了创造性思维过程,即学生的数学学习不应该重复人类的学习过程,而应该进行“再创造”。
数学史烙印着数学家处理数学问题的痕迹,其中蕴藏着数学家处理相关问题的思想和方法,比如归纳推理、概况分析、类比猜想等逻辑思维方法及跳跃性的直觉思维方法,这些恰是数学教学中学生所必须具备的。
高中数学教学论文10篇完美版
高中数学教学论文10篇完美版引言本文旨在探讨高中数学教学的相关问题,并提出一些可行的解决策略。
通过分析数学教学的现状和存在的问题,我们可以提供一些有助于改进教学效果的建议。
论文1:高中数学教学现状分析本文主要分析了当前高中数学教学的现状,包括教学内容、教材选择、教学方法等方面。
通过深入了解现状,可以为进一步改进数学教学提供一个基础和参考。
论文2:高中数学知识结构与能力培养这篇论文着重探讨了高中数学知识结构的重要性以及如何培养学生的数学能力。
通过合理的知识结构设计和培养方法,可以提高学生的数学能力和应用能力。
论文3:高中数学教学中的兴趣培养本文旨在讨论教师如何培养学生对数学的兴趣,从而提高他们的研究积极性和研究效果。
通过灵活多样的教学方法和兴趣引导,可以激发学生对数学的兴趣和热情。
论文4:高中数学教学中的问题解决能力培养这篇论文探讨了如何培养学生的问题解决能力,并提出一些实际操作方法。
通过培养学生的逻辑思维和解决问题的能力,可以提高他们的数学研究能力和应对能力。
论文5:高中数学教学中的差异化教学本文重点研究了如何进行差异化教学,满足不同学生的研究需求。
通过个性化教学,可以更好地帮助学生理解和掌握数学知识,提高整体教学效果。
论文6:高中数学教学中的评价方法研究这篇论文主要探讨了高中数学教学中的评价方法,并提出一些改进的建议。
通过科学合理的评价方法,可以更全面地了解学生的研究情况,从而及时调整教学策略。
论文7:高中数学教学中的信息技术应用本文讨论了高中数学教学中信息技术的应用,并分享了一些成功的案例。
通过合理利用信息技术,可以提高教学效率,增加教学趣味性,培养学生的信息素养和创新能力。
论文8:高中数学教学中的学科整合这篇论文着重讨论了高中数学教学与其他学科的整合问题。
通过与其他学科的融合,可以帮助学生更好地理解和应用数学知识,培养跨学科思维能力。
论文9:高中数学教学中的思维训练本文探讨了高中数学教学中的思维训练方法,并提供了一些实践案例。
高等数学论文范文
高等数学论文范文随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。
下面是店铺为大家整理的高等数学论文,供大家参考。
高等数学论文范文一:高等数学在高职教育中的对策分析一、高等数学在地方高等职业教育中遇到的问题及解决办法(一)数学师资力量短缺,教师学历偏低地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。
由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。
要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。
2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高目前,在高职院校学生中普遍存在着“专业至上”的观念。
他们片面地认为只要专业课学好了,其他的文化课无足轻重。
所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。
针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。
在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。
他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。
这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。
兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。
这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
高数怎么写论文
高数怎么写论文写高数论文需要遵循一定的步骤和结构,下面是一个写高数论文的基本指导:1. 选择合适的主题:选择一个你感兴趣且有研究价值的高数主题。
可以从高数的应用领域、理论研究或者问题解决等方面选择。
2. 确定论文结构:论文通常包括引言、文献综述、方法、结果与讨论、结论等部分。
根据你的研究内容,确定论文的结构和各个部分的内容。
3. 引言部分:在引言部分,你需要介绍你的研究背景和目的。
解释为什么这个主题重要,以及你的研究将会解决什么问题。
4. 文献综述:在文献综述部分,你需要回顾已有的相关研究和理论。
介绍前人的研究成果,指出他们的不足之处,并解释你的研究将如何填补这些空白。
5. 方法部分:在方法部分,你需要详细描述你的研究方法和实验设计。
解释你采用的数学模型、算法或者实验步骤,并说明为什么这些方法适用于你的研究。
6. 结果与讨论部分:在结果与讨论部分,你需要呈现你的研究结果,并对这些结果进行解释和分析。
使用图表、数据和数学公式来支持你的结论,并与前人的研究进行比较和讨论。
7. 结论部分:在结论部分,你需要总结你的研究成果,并回答你的研究问题。
强调你的研究的重要性和创新之处,并提出未来研究的方向和建议。
8. 参考文献:在论文的最后,列出你引用过的所有文献。
确保参考文献的格式符合学术规范,如APA、MLA等。
除了以上的基本步骤和结构,写高数论文还需要注意以下几点:- 使用清晰、准确的语言表达你的观点和结论。
- 使用恰当的数学符号和术语,确保读者能够理解你的论文。
- 遵循学术规范,不抄袭他人的研究成果。
- 保持逻辑性和连贯性,确保论文的结构和内容有条理。
- 多次修改和润色你的论文,确保语法、拼写和格式的准确性。
总之,写高数论文需要系统性地研究和分析问题,使用恰当的数学方法和语言来表达你的研究成果。
通过遵循上述步骤和注意事项,你可以写出一篇优秀的高数论文。
高数学习方法总结论文【精选4篇】
高数学习方法总结论文【精选4篇】高数学习方法总结论文【精选4篇】在日常学习、工作或生活中,需要学习的内容越来越多,想要高效的学习,就一定要掌握正确的学习方法!那么,大家知道要怎样正确高效的学习吗?以下是小编为大家整理的高数学习方法总结论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
高数学习方法总结论文1大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。
高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。
首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。
极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。
(一)做题的方法和技巧学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。
高等数学教学论文(5篇)
高等数学教学论文(5篇)高等数学教学论文(5篇)高等数学教学论文范文第1篇爱好是最好的老师,数学又是美的,但是数学学习往往是枯燥的,同学很难体会到这种奇妙。
如何提高同学对高等数学的爱好是授课老师需要思索的问题。
我在教学中为了让教学更加生动加入了一些生活中的数学应用。
比如,为什么人们能精确猜测几十年后的日食,却没法精确猜测明天的天气;为什么人们可以通过https平安地扫瞄网页而不会被监听;为什么全球变暖的速度超过一个界限就变得不行逆了;为什么把文本文件压缩成zip体积会削减许多,而mp3文件压缩成zip大小却几乎不变;民生统计指标究竟应当采纳平均数还是中位数;当人们说两种乐器声音的音高相同而音色不同的时候究竟是什么意思在这些例子中数学是好玩的,体现了基础、重要、深刻、美的数学。
二、培育同学自我学习力量授人以鱼不如授人以渔,单纯教会同学某一道题目的计算不如使同学把握解题的方法。
因此讲解题目时可以结合方法论:开头解一道题的时候我会告知同学这就和解决任何一个实际问题一样,首先从要观看事物开头,把数学题目观看清晰;接下来就需要分析事物,搞清晰题目的特点、有什么样的函数性质、证明的条件和结论会有什么样的联系,依据计算状况预备相应的定理和公式;最终就是解决问题,结合把握的计算和推理技巧完成题目的求解。
通过这样的讲解,和必要的练习,同学完成的不再是一道道独立的数学题目,实现的是方法论的应用,也是更清楚的规律思维的训练,有助于提高同学的自我学习力量。
“教是为了不教”,把握解题方法,有自学力量,以后工作遇到实际问题也能迎刃而解。
三、重视规律思维的训练不管是工作还是生活中人们都会遇到数学问题,假如没有规律思维只是表面理解就有可能陷入“数学陷阱”。
在教学中我经常举这样一个例子:有个婴儿吃了某款奶粉后突发急病死亡,而奶粉厂却高调坚称奶粉没有问题,是否有股对这个黑心奶粉厂口诛笔伐并将之搞垮的冲动呢?且慢,不妨先做道算术题:假设该奶粉对婴儿有万分之一的致死率,同时有100万婴儿使用这款奶粉,那就应当有约100名孩子中招,但事实上称使用该奶粉后死亡的说法却远远没有100个。
高中数学教学论文10篇【论文】
高中数学教学论文10篇【论文】1. 数学教学中的问题及对策探讨本文探讨了高中数学教学中的常见问题,并提出了相应的解决对策,以提高教学效果和学生的研究兴趣。
2. 创新技术在高中数学教学中的应用研究该论文研究了创新技术在高中数学教学中的应用,包括利用电子教学资源、互动教学工具等,以优化教学过程和提升学生的研究成绩。
3. 高中数学教学中的差异化教育探索本文探讨了如何在高中数学教学中实施差异化教育,以满足不同学生的研究需求和能力水平,并提高整体教学效果。
4. 高中数学课堂教学的互动性研究该论文研究了高中数学课堂教学中的互动性,包括教师与学生之间的互动、学生之间的互动等,以探索提高教学效果和促进学生参与的方法。
5. 高中数学教学中的跨学科教育研究本文研究了高中数学教学中的跨学科教育,包括与科学、艺术、文学等学科之间的融合,以拓宽学生的知识面和培养综合素质。
6. 提高高中数学研究动机的措施研究该论文研究了提高高中学生数学研究动机的措施,包括启发性教学法、激励机制等,以激发学生对数学研究的兴趣和积极性。
7. 数学教学中的评价方法研究本文研究了高中数学教学中的评价方法,包括传统评价和综合评价等,以确定学生的研究水平和提供个性化的教学反馈。
8. 高中数学教学中的素质教育实践该论文研究了高中数学教学中的素质教育实践,包括培养学生的创新精神、团队合作能力等,以提高学生的综合素质和应用能力。
9. 数学教学中的问题解决思维培养研究本文研究了高中数学教学中的问题解决思维培养,包括培养学生的逻辑思维、创造性思维等能力,以提高他们解决实际问题的能力。
10. 高中数学教学中的形式与内容的平衡研究该论文研究了高中数学教学中形式与内容的平衡问题,旨在找到适合学生研究特点和课程要求的教学模式,以达到有效传授数学知识的目的。
以上是10篇关于高中数学教学的论文题目,通过研究这些方面,我们可以进一步优化教学策略,提高学生的学习效果和综合素质。
高等数学数学论文4600字_高等数学数学毕业论文范文模板
高等数学数学论文4600字_高等数学数学毕业论文范文模板高等数学数学论文4600字(一):数学建模竞赛与高等数学课堂教学论文摘要:现阶段,随着社会的发展,我国的教育水平的发展也有了改善。
高等教育法第五条规定:“高等教育的任务是培养具有创新精神和实践能力的高级专门人才,发展科学技术文化,促进社会主义现代化建设。
”因此,培养创新型人才是高等教育的根本目标。
教育特别是高等教育承担着为国家培养创新型人才的神圣使命,世界各国的经济和综合国力的竞争,归根到底就是人才创新能力的竞争。
培养创新型人才的核心是创新意识和创新思维能力的培养。
高等数学是高等院校中的基础学科,它在培养大学生抽象逻辑思维能力、创新精神以及创新能力都具有独特而重要的作用。
我校除了文科专业外均开设了高等数学课程,与学校坚持“建设高水平理工大学,培养应用型创新人才”的办学方向相一致。
关键词:数学建模竞赛;高等数学课堂;教学引言:数学建模旨在用数学知识和和方法来解决实际问题,在数学建模的过程中,首先通过分析问题,把实际问题转化为数学语言,从而描述成大家较熟悉的数学问题。
然后借助数学理论、计算机理论等工具对这些数学问题进行求解,最终获得相对应实际问题的解决方案或者对相应实际问题有更深入和更详细的了解。
随着科学技术的发展日益迅猛,数学建模已经被广泛应用在生物、化学、医学、工程技术、航天科技等众多领域。
因此数学建模也越来越受到社会的普遍重视,并成为现代科学技术工作者必备的重要能力之一。
很多高等院校也把每年的全国大学生数学建模成绩作为衡量教学水平的一个重要指标。
一、将数学建模思想融入高等数学混合式教学中数学建模是一种数学的思维方式,是利用数学思想和方法,通过预设、简化和概括建立的与实际问题比较接近并基本能处理实际问题的一种模型或方法,并在工程、经济、生态乃至于社会科学等领域的问题都可以融入数学建模的方法。
因此,数学和数学思想越来越广泛地得到了应用。
混合式教学简单的说就是把线下(传统)学习和线上(网络)学习的优势结合在一起,换句话说,既要发挥教师教学设计、教学指导、教学启发以及教学评价的主导作用,又要体现学生主动学习和自觉学习的主体地位。
高考数学论文(5篇)
高考数学论文(5篇)高考数学论文(5篇)高考数学论文范文第1篇一、近年来高考试题中涉及工科高等数学学问的考题类型及难度分析1、涉及函数与极限部分的试题这部分试题大都以客观题的形式消失,分值不大,难度中等或较低,只需结合初等数学学问作简洁整理和代入。
但是同学必需娴熟把握简洁极限的求法以及函数连续的定义。
如(2021年陕西12题),(2021年湖北6题),(2021年四川5题)2、涉及导数及其应用部分的试题此类试题考试形式敏捷,涉及导数的几何意义、单调性、极值、最值、不等式的证明以及实际应用问题等,所占分值在12分左右。
客观题难度较低,主观题其次小问通常有肯定难度,而且有些问题需要借助于高等数学的定理来证明(例6需要拉格朗日定理作依托)。
完整解答问题需要同学具有良好的数学素养,能全面考察同学力量。
如(2021全国大纲卷8题),(2021安徽17题),(2021辽宁21题),(2021福建18题)3、涉及向量及其运算的试题直接涉及向量内积、向量夹角、向量间关系试题多以客观题形式消失,立体几何中证明线、面平行、垂直、求动点的轨迹、最值等“动态”型问题通常以主观题形式考查且分值都在10份以上。
主要考察同学用向量学问识把抽象的空间图象关系、空间中的点、线、面的位置关系转化为详细的数量关系,降低思维难度,淡化推理论证,简化思维过程的力量。
如(2021安徽13题),(2021全国大纲卷19题),(2021江苏15题)4、涉及定积分的试题由于新课程标准的实施,涉及定积分制试点的试题消失在近年来全国新课标卷中,基本是以客观题的形式消失,分值不高,主要考查定积分的定义、几何意义以及简洁的计算。
如(2021全国新课标9题)除了涉及高等数学的学问点外,高考命题越来越注意“力量立意”。
增加了有关数学建模思想、数学算法思想以及数学探究等开放性试题,在考查同学一般数学力量(思维力量、计算力量、空间想象力量)的基础上,全面地测量同学观看、试验、联想、猜想、归纳、类比、推广等思维活动的水平以及抽象、概括并建立数学模型的力量。
高等数学论文毕业范文.doc
高等数学论文毕业范文高等数学课程不仅是学生掌握一些实用的数学工具的主渠道,它更是培养学生的数学思维、数学素质、创新能力的重要载体,所以,高等数学教学对大学生有着重要的意义。
下面是我为大家整理的高等数学论文,供大家参考。
高等数学论文范文一:独立学院高等数学分层教学摘要:独立学院学生的学习基础差别比较大,并且高等数学内容繁多,学生学习起来有一定的难度,所以有必要对独立学院的学生进行分层次教学。
文章对独立学院高等数学分层教学进行研究。
关键词:独立学院;高等数学;分层教学一、前言近年来随着高校招生规模的扩大独立学院应运而生,独立学院所招的学生高考分数一般在公办普通高校本科和专科之间,由于在这一区间内的分值范围比较大,所以独立学院所招的学生学习能力和学习基础差别较大。
因此,不能照搬公立本科院校的教学模式对独立学院的学生进行教学。
二、独立院校高等数学分层教学的必要性和重要性高等数学是高校理工类学生必修的公共课程,首先这门课程具有内容繁多,公式复杂,推理证明过程对学生的逻辑性思维要求较高的特点,学生学习起来有一定的难度。
其次,大学同初中和高中不同。
由于现在的学生长期接受初中、高中教师耳提面命式的管教,刚进入大学校门会有种突然解放的感觉,他们会不自觉的放松自己。
因为高等数学是一门非常重要的基础课程,学习高等数学可以为以后的理工科课程的学习打下基础,所以一般大学都将高等数学教学放在大一进行。
加之独立学院招收学生的学习基础相差比较大,如果实行大班不加区分的统一授课的话基础较差的学生学习起来会比较吃力,进而打击到学生学习高等数学的积极性,这对于刚刚进入大学校门还没有来得及适应大学生活和学习规律的大一新生来说无疑是致命的。
所以,独立院校高等数学分层教学是很有必要的。
独立院校的高等数学教师应当在开课之前对新生的学习情况有所了解,根据学生学习能力和基础的好坏进行分层备课和教学。
这种分层次教学的理念在一些地方的初中、高中有所实行,但是大学中很少使用。
大学高数论文范文
大学高数论文范文高等数学教育是现代大学教学中的一项基础的课程,并在大学教学体系中占有十分重要的地位。
下面是店铺为大家整理的大学高数论文,供大家参考。
大学高数论文范文一:高等数学课程学习网站设计应用1设计拟达到的目标使用网络媒体,高等数学教学资源可以多种方式组合,以适应A 级、B级、C级不同学习者的需要。
高等数学的教学从单纯课堂教学延伸到了网络上的协同辅导、学习和工作。
网络提供的各种学习资源还可以被不同高校共享,并在每个学习者需要的时间和地点被使用,使高等数学的教学突破了时间和空间的限制。
本设计利用云南省昆明市西南林业大学已经建设完成的遍布各教室、各学生宿舍的校园网络,以高等数学课程教学内容为核心,以高等数学教学资源库、网络课程、模拟测试题库等为资源支撑,建设高等数学课程教学网站,为教师所需集成各自教学内容、为学生自主学习和个性化培养提供全面的支持和服务。
2课程学习网站功能模块结构2.1数学新闻数学新闻信息显示,由课程负责人在后台添加新闻信息,包括标题、添加时间、简要描述、详细描述等内容,前端以列表形式进行展示,学生点击新闻标题,进入相应的新闻详细信息页浏览新闻内容。
对新技术、新知识的分享,让学生能从课堂之余学习新知识。
2.2教学团队办学质量的好坏,取决于学校管理的各个方面,而最关键乃教学管理。
该项主要展示学校数学的教育师资力量。
3.3数学史话数学科学具有悠久历史,与自然科学相比,数学更是积累性学科,其概念和方法更具有延续性。
从古至今,从国内到国外的著名数学大师趣事收集于此,不仅能让学生更多的了解数学发展历程,还能提高学习兴趣,从各素材中汲取养分,为今后学习奠定基石。
2.4课程安排学生进入高等数学课程网站后,从导航菜单中进入课程安排选项,浏览每位教师制定的教学安排计划,了解各个学习阶段应要学习或掌握的知识,并能根据教师的课程安排计划合理调整自身的学习计划,以不断增强自身知识结构,复习和预习课程内容。
高等数学毕业论文范文
高等数学毕业论文范文随着社会的发展进步,高等数学在高等教育中占据着越来越重要的地位。
下面是店铺为大家整理的高等数学毕业论文,供大家参考。
高等数学毕业论文范文一:高等数学教学质量提升体会【摘要】本文根据笔者自身的教学经验,提出大学生在学习高等数学时存在认为学习高等数学没有用、学也学不会、学习思维定式三大误区,并针对三大误区提出端正学习态度、激发学生学习兴趣、提高教师自身素质、创新教师教学方法、建立良好的师生关系等方法,从而提高高等数学教学质量,改善教学效果。
【关键词】高等数学教学;教学质量;心得体会高等数学作为理工科大学生的一门必修的基础课,具有高度的抽象性、严密的逻辑性和广泛的应用性的特点,可以培养学生的抽象概括能力、逻辑思维能力、解决分析问题的能力,对科技进步也起着基础性推动作用。
随着国家高等教育从精英型转入大众型,学生素质呈下降趋势,大部分学生在学习高等数学时感到困难,从而提高高等数学教学质量、改革高等数学教育教学方法已成为一个亟需解决的问题。
1高等数学教学中学生存在的误区1.1误区一很多学生认为学数学没有用高中阶段学生已经接触到了高等数学中比较简单的极限、导数、定积分,但没有深入学习其概念、定义,高考也只是考了一点点,学生认为自己掌握了高等数学的知识,再学了也没有什么用,在将来实际工作中也用不到数学。
1.2误区二高等数学具有很高的抽象性,很多学生觉得学也学不会现在学生不愿意动脑、动笔,碰到题目就在想答案。
往往因为大学的高数题运算步骤比较多,想是想不出来的,不动笔又不画图,学生坐一会就有点困了,自然就认为高等数学非常难。
1.3误区三学生习惯于用中学的思维来解题很多学生学习数学的一些简单想法就是来解数学题,愿意用中学的方法去解决高等数学里的题目,只要能做出答案就行。
在这种思想的影响下,不愿意去掌握定义、定理,做题少步骤或只有答案,但是有的题目肯本做不出来。
随着学习的深入学生发现题目越来越不会做。
高数论文(五篇)
高数论文(五篇)第一篇:高数论文高数论文短短一个学期的高数的学习就结束了,感觉过的好快有好慢,总得来说收获还是很大,收获了不仅是知识、还有学习知识的方法、研究问题的方法,还有学习的态度。
相比较上个学期,这个学期高数的学习我个人认为难度加大了不少。
在这个学期我们主要学习的是高等数学下册的知识,这本书的基础就是上学期学习的微积分。
学习了向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分,无穷级数。
在向量代数与空间解析几何这一章,我们学习了向量代数的基本知识,空间曲线,曲面及方程,空间平面与直线等,总得来说这一章需要一定的空间想象能力。
在多元函数微分学这一章,我觉得有些地方掌握的不好,隐函数的求导显得很生疏,对于多元函数的隐函数的求导感觉掌握不是很好。
另外,全微分,多元函数微分学也是这一章的重点。
在重积分这一章,不管是几重积分,这都是建立在一元函数的积分的基础之上的,在这一章,化归的思想体现的很是淋漓尽致,这一思想不仅在数学上体现的很明显,在很多领域都有体现。
在积分这一块都采用分割,近似,求和,取极限四个步骤。
此外三重积分的计算,主要从直角坐标系,柱面坐标系,球面坐标系三种坐标系下计算。
另外重积分也应用于物理方面,如运用重积分求物体的质心,转动惯量及引力。
在曲线积分与曲面积分这一章当中,化归的思想继续在体现。
这一章的逻辑性很强,在这一章我们学习了4种积分,对弧长的曲线积分,对坐标的曲线积分,对面积的曲面积分,对坐标的曲面积分。
学完这一章,加上之前学习的一元函数的积分,二重积分,三重积分,我们就学习了七种积分。
在这一章还有一个重要的结论,那就是在对曲面的积分时,偶倍奇零不再是什么时候都是用了,在这里用偶倍奇零需要认真考虑,因为有时是偶零奇倍。
最后一章的无穷级数,很大程度上和数列有很多类似的地方,而且这一章的定理很多,很多东西容易混淆,很多结论都有自己的前提,这是这一章的重点之处,定理成为这一章很重要的解题根据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数论文高等数学是化工专业中一门重要的基础课程,它最主要的目的是培养我们的思维素质。
但是,高数的抽象难懂是我们学习过程中的最大障碍。
然而掌握极限思维的运用,数形结合的方法阶解题,掌握数学建模的方法,形成发散性思维,是学好化工专业必备的技能。
下面,我想从各个部分分别讨论其学习方法及其专业运用。
1,函数与极限高等数学的研究对象是变动的量,函数关系就是变量之间的依赖关系,极限方法是研究变量的一种基本方法。
函数的极限与数列的极限比较类似,可以考虑自变量x→+∞时,f(x)所呈现出的变化趋势;也可以考虑当自变量x→a时,f(x)所呈现出的变化趋势。
不过与数列的极限相比而言,函数的极限复杂程度比较高,其根本原因就是由于自变量性质的变化呈现出多样性。
不过通过分析可以发现,这种复杂性很多时候体现在对极限期定义叙述有所不同等方面,而在其它方面,例如极限的性质、运算以及相关的证明方法等都与数列的极限极为相似。
论文百事通在理解函数的极限概念时,主要有以下两个定义:(1)设f是定义在[a,+∞)的函数,其中A为实数,在任给的ε>0的条件下,有正数M(≥a)存在,如果x>M,则有| f(x)A| <ε,此时就可以认为在x→+∞A就是函数f的极限,其表达式为:f(x)→A(x→+∞)。
第二,假设f(x)函数是在点x0的某个空心邻域U0(x0;δ′)中有定义,此时A为定数,如果对于任给的ε>0,δ(<δ′)>0,使得当0<| x-x0 |<δ时则| f(x)-A |<ε,则当x趋于x0时,可以称函数f以A为极限,或者也可以称作A是x→x0时f(x)的极限,其可以记为f(x)→A(x→x0)。
由上述两个概念的分析过程就可以体会出函数极限的思想及性质。
如果要利用函数极限进行解题,就要对函数极限各种性质进行熟练的掌握。
而函数极限的性质可以总结为以下几点:第一,函数极限有局部有界性,即如果f(x)→A(x→x0),则在x0的某个去心邻域内f(x)有界;第二,函数极限表现出显著的唯一性,即当x→x0时,存在f(x)极限,则这个极限是独一无二的;第三,函数极限表现出局部保号性,即如果f(x)→A(x→x0),并且A>0或者<0,则对于任何正数rr>0或者f(x)<-r<0;第四,函数极限表现出相应的迫敛性,即当函数g(x)≤f(x)≤h(x)以及limg(x)=A,limh(x)=A两个条件同时具备时,则Limf(x)存在并且等于A。
2求解函数极限的方法在求极限的过程中,利用一些运算方法与技巧,以相关的概念、定理和公式为依据进行快速求解。
下面我们来看几种求解函数极限的方法。
2.1 利用极限的描述性定义我们可以将极限的描述性进行如下定义:如果自变量的绝对值|x|无限增大,则函数值f(x)也会相应与常数A无限的接近,此时就可以称当x趋向无穷时函数f(x)以A为极限;或者f(x)收敛至A,可以记为A或f(x)→A(x→∞)。
通过上述描述性说明就可以进行函数极限的估算,而且方法非常简单。
六种基本初等函数的极限都可以按照描述性定义,与图像相结合后方便的得出。
不过对于六类基本的初等函数极限需要牢固的掌握,这也是求解复杂函数极限的基础理论。
但是一些极限的定义容易被混淆,在实际应用的过程中要特别注意。
2导数与微分微积分是现代科学技术的基础,把微积分的基础知识下放到中学讲授,建国以来还是第一次.在学生掌握了导数与微分的概念、求导公式和法则之后,引导他们认清导数和微分是解决一些数学问题的有力工具,为今后提供一种新的解题思考途径,我们采取了下述做法: 以通用教材为主,归纳总结应用导数解决以下六个问题: 正导数和微分是组成微积分主要部分之一,导数是解决函数的变比率问题,微分是解决函数的改变量问题,微分概念的建立,依赖于导数概念,而导数又是函数的微分与自变量微分的商,求导数与求微分的方法基本上是一致的,因此导数应是重点,微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。
作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。
他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。
圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。
意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。
这些都为后来的微积分的诞生作了思想准备。
3.不定积分一、第一换元积分法(也称凑微分法)设()()f u du F u c =+⎰,则=x [()]'()[()]()()u f x x dx f x d x f u du ϕϕϕϕϕ==⎰⎰⎰令()()()[()]u x F u c F x c ϕϕ==+=+ 第一换元积分法是将被积表达式“凑”成微分的形式,亦称“凑微分法”.1.几个简单的例子例1.1 求211cos dx x x⎰解 211111cos cos ()sin dx d c x x x x x =-=-+⎰⎰ 例1.2 求52(511)x xdx +⎰解 52(511)x xdx +⎰2521(511)(511)10x d x =++⎰ 261(511)60x c =++常用的凑微分形式(1)()___()bf ax b dx d ax b a+=+⎰(2)11()____n n n f x x dx dx n -=⎰ (3)()____x x x f e e dx de =⎰ (4)111()_____()f dx d x x x=-⎰(5)1(ln )____ln f x dx d x x =⎰(6)2____f=⎰ 2 .复杂积分式的凑微分法这类题型的解法一般是将被积分式()g x dx 写成()()f x x dx ϕ,或()()x dx f x ϕ,其中()f x 较()x ϕ复杂.对()f x 或构成()f x 的主要部分求导,若其导数为()x ϕ的常数倍,则()()x dx kdf x ϕ=或*()()x dx kdf x ϕ=.其中k 为常数,*()f x 为()f x 的主要部分.强调要注意的问题例1.4 计算不定积分 231)x x x e dx ++解: 因为 222[()]'(21)()(31)x x x x x x e x e x x e x x e +=+++=++,二、第二换元积分法1.利用三角函数代换,变根式积分为三角有理式积分若被积函数()f x sin x a t =;若被积函数()f x tan x a t =;若被积函数()f x 含根式sec x a t =例2.1求不定积分解: 因为被积函数()f x 中含有,所以应作变换sin x t =,cos dx tdt =,于是 原式22sin cos (cos )(sin 1)cos 2cos t t d t dt t t t ==-+-⎰⎰cos d t =⎰c c =+=+ 所以原2.倒代换(即令1x t =)倒代换法要求:设m 、n 分别为被积函数的分子,分母关于x 的最高次数,当1n m ->时,用倒代换可望成功.例2.4求不定积分0)a > 解 : 令1x t =,则21dx dt t =-.于是原式221()t dt t =-=-⎰2221c c a =-=+= 3.指数代换(适用于被积函数()f x 由x a 所构成的代数式)例2.5 求不定积分2124x x x dx ++⎰ 解: 令212,ln x dt t dx t==⋅,则 原式=2211131ln 2ln 2()24t dt dt t t t t ⋅⋅=++++⎰⎰式32222[()][()]3x x x x e x x e c =+=++ 高等数学在化工专业中有广泛的应用,就我本专业而言 高等数学知识在生物化学工程中的应用举例 高等数学知识在生物化学工程中的应用举例 化学工程中的应用高等数学是生命科学学院校开设的重要基础课程,数学方法为生物化学的深入研究发展提供了强有力的工具。
下面仅举一些用高等数学基础知识解决生物化学工程中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。
例1在化工原理中常用的柏努利方程式中的应用在化工原理中常用的柏努利方程式中的应用柏努利方程式中的化工生产过程中常于密闭管道内输送液体,使液体流动的主要因素有(1)流体本身的位差;(2)两截面间的压强差;(3)输送机械向流体外作的外功。
此外,1.高数在化学中主要体现在化学反应速率和化学平衡两个概念中在单位时间内,反应物或生成物浓度的绝对值,当时间t无限靠近0时,即为导数的概念.在化学平衡中,数学起着辅助作用.2.分析化学研究物质的化学组成、含量、结构等,定量的分析较多,因而数学知识的应用也较多.如,误差、精度等属于数值分析的范畴。
分析数据的处理要应用统计学的基本方法。
最后,总而言之,生化专业对高数的应用范围是较广的,有经典的微积分,在专业理论中数学思想的应用往往比繁琐的计算更重要。
对生化专业而言,一元微积分、偏导数、数理统计的基本方法、数值计算和建模的基本方法是必须的。
因此,学好高数是非常非常重要的!。