Superconducting phase diagram of NaxCoO2.yH2O

合集下载

超分辨率重建 映射 机制 贝叶斯

超分辨率重建 映射 机制 贝叶斯

超分辨率重建映射机制贝叶斯下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!超分辨率重建技术是一种通过提高图像分辨率来改善图像质量的方法,它在计算机视觉领域中具有广泛的应用。

A model of phase fluctuations in a lattice d-wave superconductor application to the Cooper

A model of phase fluctuations in a lattice d-wave superconductor application to the Cooper
A model of phase fluctuations in a lattice d-wave superconductor: application to the Cooper pair charge-density-wave in underdoped cuprates
Ashot Melikyan and Zlatko Teˇ sanovi´ c
electronic charge and spin degrees of freedom, respectively, and mediate interactions which are responsible for the three major phases of the theory5,7 : A d-wave superconductor, an insulating spin-density wave (SDW, which at half-filling turns into a Mott-Hubbard-Neel antiferromagnet), and an intermediate “algebraic Fermracterized by critical, powerlaw correlations of nodal fermions. In the context of the above physical picture, the recent discovery in scanning tunneling microscopy (STM) experiments8,9,10 of the “electron crystal”, manifested by a periodic modulation of the local density of states (DOS), and the subsequent insightful theoretical analysis11 of this modulation in terms of the pair densitywave, comes not entirely unexpected. Such modulation originates from the charge Berry phase term involving v0 5,12 , the time-like component of vµ , and the longdistance physics behind it bears some resemblance to that of the elementary bosons, like 4 He (Ref. 13). As the quantum phase fluctuations become very strong, they occasion a suppression of the compressibility of the underlying electron system, via the phase-particle number uncertainty relation ∆ϕ∆N > ∼ 1, whose effective theory manifestation is precisely the above charge Berry phase. Once the off-diagonal order disappears, the system inevitably turns incompressible and the diagonal positional order sets in, leading to a Mott insulating state. The resulting charge-density-wave of Cooper pairs (CPCDW)12 causes a periodic modulation of the electron density and the size

黎曼函数交叉成像

黎曼函数交叉成像

黎曼函数交叉成像1. 定义黎曼函数交叉成像(Riemann Function Cross Imaging)是一种用于图像处理和分析的数学方法。

它基于黎曼函数理论,通过对图像进行变换和分析,提取出图像的特征和结构信息。

2. 用途黎曼函数交叉成像在计算机视觉、模式识别、医学影像处理等领域有广泛应用。

它可以用于图像分类、目标检测、图像重建等任务。

具体应用包括但不限于:2.1 图像分类黎曼函数交叉成像可以将图像从原始空间映射到一个高维特征空间,在特征空间中进行分类。

通过提取图像的局部纹理、颜色和形状等特征,可以有效区分不同类别的图像。

2.2 目标检测黎曼函数交叉成像可以用于目标检测任务,即在图像中定位和识别感兴趣的目标。

通过对目标区域进行局部纹理分析和形状描述,可以实现高精度的目标检测效果。

2.3 图像重建黎曼函数交叉成像可以利用已知信息对缺失或损坏的图像进行重建。

通过分析图像的局部结构和纹理特征,可以推断出缺失或损坏区域的内容,从而恢复完整的图像。

3. 工作方式黎曼函数交叉成像主要包括以下几个步骤:3.1 数据预处理首先,对输入图像进行预处理。

常见的预处理操作包括灰度化、平滑滤波、边缘检测等。

预处理旨在降低噪声、增强图像的对比度和边缘信息。

3.2 特征提取接下来,从预处理后的图像中提取特征。

特征提取是黎曼函数交叉成像的核心步骤,它决定了后续分析和处理的效果。

常见的特征包括局部纹理、颜色直方图、形状描述等。

3.2.1 局部纹理局部纹理是指图像中小区域内像素之间的亮度或颜色变化情况。

常用方法包括灰度共生矩阵(GLCM)、局部二值模式(LBP)等。

这些方法可以有效地描述图像中不同区域之间的纹理差异。

3.2.2 颜色直方图颜色直方图描述了图像中不同颜色的分布情况。

通过统计图像中每个颜色的像素数量,可以得到一个表示颜色分布的向量。

常见的颜色空间包括RGB、HSV等。

3.2.3 形状描述形状描述用于描述图像中物体的形状特征。

基于高维混沌系统的图像分组加密新算法

基于高维混沌系统的图像分组加密新算法
m aey z r t l e o. The t e s q nc si do t d a y s e m or nd n h e ue e sa p e sake t a t a om iet o sa o u nsoft m a arx i t ek y le r z her w nd c l m i gem ti w t h e vau . he h
h g p e , sr n n i t c a a i t , s c rt n n v r ai . ih s e d to g a t at kc p b l y e u i a d u ie s l y — a i y t Ke r s c a t y tm ; i g n r p in g o p e c p i n ag r h y wo d : h o i s s c e ma ee c t ; r u n r t l o i m; s c e e ; c y t g a h y o y o t e rt y k r po rp y
全 性和通用性好 等特性 。
关 键 词 : 沌 系统 ; 图像 加 密 ; 分 组 加 密 算 法 ; 密钥 ; 密 码 学 混
中图法分类号 : P 0 . T 39 7
文献标 识码 : A
文章编 号:0 07 2 (0ቤተ መጻሕፍቲ ባይዱ0 2 —5 60 10—0 4 2 1) 144 —4
N e i a eg o pe c y to lo i m a e n hg — i e in c a tcs se w m g r u n r p i n ag rt h b s do ih dm nso h o i y tm
r mo es n ig i g s t r e mo n s f aa T esmu ai nr s l h w a en w l o i m a n o df a r sic u ig e t e sn ma e hl g r wi a a u t t. h i l t u t s o t t h e ag r h h s o d o e s h t t ma yg o t e ld n eu n

基于多级全局信息传递模型的视觉显著性检测

基于多级全局信息传递模型的视觉显著性检测

2021⁃01⁃10计算机应用,Journal of Computer Applications 2021,41(1):208-214ISSN 1001⁃9081CODEN JYIIDU http ://基于多级全局信息传递模型的视觉显著性检测温静*,宋建伟(山西大学计算机与信息技术学院,太原030006)(∗通信作者电子邮箱wjing@ )摘要:对神经网络中的卷积特征采用分层处理的思想能明显提升显著目标检测的性能。

然而,在集成分层特征时,如何获得丰富的全局信息以及有效融合较高层特征空间的全局信息和底层细节信息仍是一个没有解决的问题。

为此,提出了一种基于多级全局信息传递模型的显著性检测算法。

为了提取丰富的多尺度全局信息,在较高层级引入了多尺度全局特征聚合模块(MGFAM ),并且将多层级提取出的全局信息进行特征融合操作;此外,为了同时获得高层特征空间的全局信息和丰富的底层细节信息,将提取到的有判别力的高级全局语义信息以特征传递的方式和较低层次特征进行融合。

这些操作可以最大限度提取到高级全局语义信息,同时避免了这些信息在逐步传递到较低层时产生的损失。

在ECSSD 、PASCAL -S 、SOD 、HKU -IS 等4个数据集上进行实验,实验结果表明,所提算法相较于较先进的NLDF 模型,其F -measure (F )值分别提高了0.028、0.05、0.035和0.013,平均绝对误差(MAE )分别降低了0.023、0.03、0.023和0.007。

同时,所提算法在准确率、召回率、F -measure 值及MAE 等指标上也优于几种经典的图像显著性检测方法。

关键词:显著性检测;全局信息;神经网络;信息传递;多尺度池化中图分类号:TP391.413文献标志码:AVisual saliency detection based on multi -level global information propagation modelWEN Jing *,SONG Jianwei(School of Computer and Information Technology ,Shanxi University ,Taiyuan Shanxi 030600,China )Abstract:The idea of hierarchical processing of convolution features in neural networks has a significant effect onsaliency object detection.However ,when integrating hierarchical features ,it is still an open problem how to obtain rich global information ,as well as effectively integrate the global information and of the higher -level feature space and low -leveldetail information.Therefore ,a saliency detection algorithm based on a multi -level global information propagation model was proposed.In order to extract rich multi -scale global information ,a Multi -scale Global Feature Aggregation Module(MGFAM )was introduced to the higher -level ,and feature fusion operation was performed to the global information extracted from multiple levels.In addition ,in order to obtain the global information of the high -level feature space and the rich low -level detail information at the same time ,the extracted discriminative high -level global semantic information was fused with the lower -level features by means of feature propagation.These operations were able to extract the high -level global semantic information to the greatest extent ,and avoid the loss of this information when it was gradually propagated to the lower -level.Experimental results on four datasets including ECSSD ,PASCAL -S ,SOD ,HKU -IS show that compared with the advanced NLDF (Non -Local Deep Features for salient object detection )model ,the proposed algorithm has the F -measure (F )valueincreased by 0.028、0.05、0.035and 0.013respectively ,the Mean Absolute Error (MAE )decreased by 0.023、0.03、0.023and 0.007respectively ,and the proposed algorithm was superior to several classical image saliency detection methods in terms of precision ,recall ,F -measure and MAE.Key words:saliency detection;global information;neural network;information propagation;multi -scale pooling引言视觉显著性源于认知学中的视觉注意模型,旨在模拟人类视觉系统自动检测出图片中最与众不同和吸引人眼球的目标区域。

ppt

ppt

Iron-based superconductors Discussion:
Iron-based superconductors Expectation: 1) Modify the BCS model to explain the superconductivity of iron-based superconductors; 2) Put forward the behavior of thermodynamics and kinetics in the transition of iron-based superconductor; 3) Increase the Tc.
For more , please refer to the theory of superconducting by J.R.Schrieffer
Iron-based superconductors
today 2008
Japan Hideo Hosono LaO0.89F0.11FeAs (Tc=26K) China Zhao zhongxian PrO1-xFxFeAs (Tc=52K)
Hale Waihona Puke The highest Tc=55K
2006-2007
Japan Hideo Hosono LaOFeP Tc<10K
Iron-based superconductors
1111:LaOFeAs 122:BaFe2As2 111:LiFeAs 11:FeSe
Iron-containing layer
The lattice of Iron-based superconductor
Iron-based superconductors by Charles Day

超导磁共振氦压缩机结构功能与故障案例分析

超导磁共振氦压缩机结构功能与故障案例分析

维修工程中国医学装备2024年4月第21卷第4期 China Medical Equipment 2024 April V ol.21 No.4Structural function and failure case analysis of superconducting magnetic resonance helium compressor/Zhang Falun 1, Wang Jixi 2, Zhou Yalin 2, Shi Zhan 31Department of Medical Equipment T eaching and Research, Jiangsu Health V ocation College, Nanjing 211800, China; 2Department of Medical Engineering, Jiangsu Province Official Hospital, Nanjing 210024, China; 3Siemens Medical Systems Ltd., Shanghai 201318, ChinaCorresponding author: [Abstract] Helium compressor is the core component of the refrigeration system of superconducting magnetic resonance imaging (MRI) equipment, and timely resolution of helium compressor failures is crucial to ensure the stability of the superconducting magnet cryogenic system. T aking the Sumitomo F-70 helium compressor manufactured by Sumitomo Heavy Industries as an example, the structural composition and functional principle of the helium compressor for superconducting MRI were analyzed, and the maintenance ideas and solutions for common helium compressor faults were proposed. By developing standardized fault maintenance strategies, reference was provided for failures of other types of helium compressor, so as to improve the quality of clinical technical support.[Key words] Superconducting magnetic resonance imaging; Helium compressor; Structure and function; Fault diagnosisFund program: 2022 Faculty Research Projects of Jiangsu Health V ocation College (JKC2022006)[摘要] 氦压缩机是超导磁共振成像(MRI)设备制冷系统核心部件,及时解决氦压缩机故障对保障超导磁体低温系统的稳定性至关重要。

基于粒子群优化的多特征融合的商标图像检索

基于粒子群优化的多特征融合的商标图像检索

h sa b R rr tiv 1 e f r a c h nt e sn l .e t r — a e e r v l t o sa d s me mu t fa r . so e a e e er a ro m n e t a i g e f a eb s d r t e a h d n o l —e t e f i n r — e p h u i me i u u
文章 编号 :028 3 (02 2 .160 文献标 识码 : 10 .3 12 1 )10 8—5 A 中图 分类 号 :P 9 . T 31 4
Abs r c :Thi a e e e o t d o r d m a k i a e r tiva s d o ri l wa m p i z to n ta t s p p r d v l ps a meho fta e r m g ere lba e n pa tce s r o tmi a in i mu t-e t r u i n. tc n o tm ie t e weg t fmu t—e t r so a t ma i al i lif au e f so I a p i z h i h so lif au e f in u o tc ly mpr ve s l d p i e oft u o e ̄a a tv he
m a k i g e re a r ma er ti v l

要 : 出一种基 于粒 子群 优 化 的多特 征 融合 的 商标 图像检 索方法 , 方 法可 自动优化 多特征 融合 的权 重 , 提 该
提 高图像检 索系统 的 自 适应性, 决了多特征商标 图像检 索中的权重分配 问题 。在 1 0 幅 图像构成的商标 解 0 0 图像库进行检 索实验, 实验结果表明, 与基于单一特征 的检 索方法和一些多特征融合 的检 索方法相比, 出方 提 法 的检 索性能 最优 。 关键词: 粒子群优化算法; 多特征融合; 特征权重分配; 商标 图像检索

PHASE COHERENCE PHENOMENA IN DISORDERED SUPERCONDUCTORS

PHASE COHERENCE PHENOMENA IN DISORDERED SUPERCONDUCTORS

ψ↑ (r) =
i
† ∗ γi↑ ui (r) − γi ↓ vi (r) ,
ψ↓ (r) =
i
† ∗ γi↓ ui (r) + γi ↑ vi (r)
the Hamiltonian can be brought to a diagonal form by choosing the spinor elements uα (r) and vα (r) to satisfy the coupled Bogoliubov-de Gennes (BdG)
simons.tex; 1/04/2002; 17:46; p.1
260
A. LAMACRAFT AND B. D. SIMONS
Before turning to the construction of the field theoretic scheme, we will begin these notes with a qualitative discussion of phase coherence phenomena in the superconducting environment placing emphasis on the importance of fundamental symmetries. To close the introductory section, we will outline the quasi-classical theory which forms the basis of the field theoretic scheme. In section 2 we will develop a quantum field theory of the weakly disordered non-interacting superconducting system (i.e. in the mean-field BCS approximation). To illustrate a simple application of this technique, we will explore the spectral properties of a normal quantum dot contacted to a superconducting terminal. Finally, in section 3, we will present a detailed study of the influence of magnetic impurities in the disordered superconducting system. This single application will emphasize a number of generic features of the phase coherent superconducting system including unusual spectral and localization properties and the importance of effects non-perturbative in the disorder. To orient our discussion, however, let us first briefly recapitulate the BCS mean-field theory of superconductivity in order to establish some notations and definitions.

磁共振成像技术中英文名词对照之欧阳化创编

磁共振成像技术中英文名词对照之欧阳化创编
中央处理单元
Touch screen
触摸屏
System software
系统软件
Operating system ,OS
操作系统
Application software
应用软件
Worklist
工作表
File transfer protocal , FTP
文件传输
Send / receive
传输/接收
信号采集
signal sampling
信号采样
data acquisition
数据采集
raw data
原始数据
Analogue to digital converter , ADC
模数转换器
frequency resolution
频率分辨力
Analog to digital conversion data
射频
RF coil ,or RF resonator
射频线圈
transmit coil
发射线圈
receive coil
接受线圈
array
阵列
Solenoidal RF antenna
螺线管线圈
saddle-shaped RF antenna
鞍形线圈
Bird cage coil
鸟笼式线圈
detuning
磁共振成像技术中英文名词对照
时间:2021.02.12
创作人:欧阳化
abdomen
腹部
Apparent diffusion coefficient, ADC
表现扩散系数
Analog-digital conversion ,ADC
模数转换
Arterial spin labeling ,ASL

神经辐射场多视图合成技术综述

神经辐射场多视图合成技术综述

神经辐射场多视图合成技术综述神经辐射场多视图合成技术是一项在神经科学研究领域中具有重要意义的技术,它能够通过多视图图像的合成来提供更全面、准确的神经辐射场定量分析。

本文将介绍神经辐射场多视图合成技术的原理、方法以及其在神经科学领域中的应用。

一、神经辐射场多视图合成技术的原理神经辐射场多视图合成技术是基于神经图像处理的一种方法,它将来自不同视图角度的神经图像进行集成,以获得更全面、准确的信息。

该技术主要包括以下几个步骤:1. 图像预处理:对采集到的神经图像进行预处理,包括图像去噪、图像增强等操作,以提高后续处理的效果。

2. 特征提取:通过图像处理技术,提取神经图像中的辐射场特征,如辐射场的形状、密度等。

3. 视图选择:在多个视图中选择最具代表性的视图用于合成,以保证合成结果的准确性。

4. 图像配准:对选择的视图进行配准,使得不同视图之间的辐射场特征能够对齐。

5. 图像融合:将配准后的多个视图进行融合,得到合成后的神经辐射场图像。

二、神经辐射场多视图合成技术的方法神经辐射场多视图合成技术有多种方法,以下介绍其中几种常见的方法:1. 基于特征匹配的方法:该方法利用辐射场特征进行匹配,通过对不同视图中的辐射场特征进行匹配和配准,实现多视图的合成。

2. 基于图像融合的方法:该方法通过将多个视图的辐射场图像进行融合,以得到更全面、准确的辐射场图像。

3. 基于深度学习的方法:近年来,深度学习技术在图像处理领域取得了重要的突破。

一些研究者利用深度学习方法,通过神经网络模型对多视图的辐射场图像进行学习和合成。

三、神经辐射场多视图合成技术在神经科学领域中的应用神经辐射场多视图合成技术在神经科学领域具有广泛的应用价值,以下是几个典型的应用案例:1. 神经退行性疾病研究:通过对多视图的辐射场合成,可以更精确地观察神经退行性疾病中的神经纤维损伤情况,为疾病的早期诊断和治疗提供依据。

2. 神经网络分析:利用多视图合成的辐射场图像,可以对神经网络的结构和连接进行更全面、准确的分析和研究。

贝叶斯超参数优化 多层感知器

贝叶斯超参数优化 多层感知器

贝叶斯超参数优化是一种用于自动调整机器学习模型超参数的优化技术。

它使用贝叶斯概率理论来估计超参数的最佳值,以优化模型的性能。

多层感知器(MLP)是一种常用的神经网络模型,由多个隐藏层组成,每个层包含多个神经元。

MLP可以用于分类、回归等多种任务。

当使用贝叶斯超参数优化来调整MLP的超参数时,通常会选择一些常见的超参数,如学习率、批量大小、迭代次数等。

贝叶斯优化器会根据这些超参数的性能,选择下一个可能的最佳值。

它通过在每个步骤中随机选择少量的超参数组合,而不是搜索每个可能的组合,来提高效率。

在实践中,贝叶斯超参数优化通常使用一种称为高斯过程回归(Gaussian Process Regression)的方法,该方法可以估计每个超参数的可能值以及它们的概率分布。

然后,根据这些信息选择下一个超参数的值,以最大化模型性能的预期改善。

使用贝叶斯超参数优化可以自动调整超参数,避免了手动调整的困难和耗时。

此外,它还可以帮助找到更好的超参数组合,从而提高模型的性能和准确性。

这对于机器学习任务的实验和开发非常重要,因为它可以帮助快速找到最佳的模型配置。

多主体模拟技术简介

多主体模拟技术简介

多主体模拟技术简介多主体模拟(multi-agent simulation)是一种新兴的建模仿真技术,得到了各方面的关注,本章首先概述它的理论背景,而后简单介绍一种大型多主体微观模拟经济系统——Aspen,最后介绍在各种领域均取得了很好应用效果的通用多主体模拟软件平台——Swarm软件。

第一节多主体模拟的理论背景多主体模拟产生的理论背景是复杂适应系统理论的兴起和发展,它也是考察复杂适应系统的最主要手段。

一、复杂适应系统理论的由来复杂适应系统(Complex Adaptive System,简称CAS)产生于人们对复杂性的研究,而说到复杂系统的研究,就不能不提到圣达菲研究所(Santa Fe Institute)。

圣达菲研究所的创始人考恩(George Cowan)于1984年联合一大批各方面的专家对复杂性问题进行了讨论,包括诺贝尔经济学奖得主阿罗,诺贝尔物理学奖得主盖尔曼和安德森等等。

在此次会议上,各领域的专家找到共同的研究兴趣,也就是复杂系统。

在不同学科领域内均存在大量复杂系统,它们之间存在相当程度的相似性,然而以往还原论的科学研究思维难以对它们加以整体把握。

科学研究中存在的条块分割、缺少交流现象也使得人们难以综合各方面知识。

为此与会者一致同意设立圣达菲研究所,作为对复杂性的一个研究中心。

其特色是使各种差异极大的学科能开展共同研究,创建了一个包容性极强,不受传统的资金分配、成果认定体制约束的研究场所。

为此圣菲研究所吸引了全世界大量优秀的人才进入,从事短期的交流合作,成为新思想、新概念的发源点,而圣达菲研究所也在前不久被评为全美最优秀的5个研究所之一。

得益于这种研究环境,霍兰(J. Holland)于1994年圣达菲研究所成立10周年时的讨论会上首次提出了复杂适应系统的概念,他也是遗传算法(genetic algorithm)的创建者。

二、复杂适应系统的基本思想复杂适应系统的概念是从自然界和人类社会中各种复杂系统的观察而产生的一种概念,它的产生也得益于对以往科学研究实践中所遇到问题的反思。

量子色动力学关联函数的重整化流程

量子色动力学关联函数的重整化流程

量子色动力学关联函数的重整化流程量子色动力学(Quantum Chromodynamics, QCD)是描述强相互作用的基本理论,它在粒子物理学中起着重要的作用。

在QCD中,关联函数是一种重要的物理量,它描述了不同观测之间的关联性。

本文将介绍量子色动力学关联函数的重整化流程。

一、引言量子色动力学是描述强相互作用的理论,在物理学的各个领域都有着广泛的应用。

而在研究量子色动力学时,关联函数是一种重要的物理量,它可以帮助我们理解强相互作用的基本性质。

二、关联函数的定义在量子场论中,关联函数是描述不同场算符之间统计关系的重要工具。

对于量子色动力学,我们可以定义一类关联函数,即色电荷算符的时间序列。

三、重整化的概念重整化是量子场论中的一个重要概念,它是为了处理一些发散的物理量而引入的。

在量子色动力学中,关联函数可能会出现发散,因此需要进行重整化处理。

四、重整化的步骤1. UV发散的处理在关联函数中,有些发散来自于高能量的贡献,即UV发散。

我们可以使用截断等方法来处理这些发散,将其替换为物理可观测的结果。

2. 基本耦合常数的调整为了满足实验观测到的物理效应,我们需要对基本耦合常数进行调整。

这可以通过重整化条件来实现,例如通过调整质量关联函数中的物理质量。

3. 重整化群方程重整化群方程是描述重整化流程的重要方程。

通过求解重整化群方程,我们可以得到关联函数在不同能量尺度下的行为。

五、重整化流程的物理意义重整化流程可以帮助我们理解强相互作用的物理机制。

通过重整化流程,我们可以研究关联函数在不同尺度下的行为,揭示强相互作用的动力学规律。

六、实例分析通过一个具体的实例,我们来分析量子色动力学关联函数的重整化流程。

我们选择一个简化的模型,研究其关联函数在重整化流程中的行为。

七、总结量子色动力学关联函数的重整化流程是理解强相互作用的重要工具。

通过重整化,我们可以处理关联函数中的发散,并研究其在不同能量尺度下的行为。

这有助于我们深入理解强相互作用的基本性质。

一类四元零相关区周期互补序列集

一类四元零相关区周期互补序列集

一类四元零相关区周期互补序列集
刘凯;俞赛;史洪印
【期刊名称】《电子与信息学报》
【年(卷),期】2014(036)009
【摘要】该文基于偶周期二元零相关区周期互补序列集,利用逆Gray映射,研究了一类新的四元零相关区周期互补序列集的构造方法.构造的序列集参数性能得到提升,即在一定条件下,即使初始二元零相关区周期互补序列集未达到理论界,获得的序列集仍可以达到理论界.同时,通过选择不同的参数,可以得到不同的四元零相关区周期互补序列集.构造结果表明,该文方法能产生与已有构造结果不同的零相关区周期互补序列集,有效地增加了四元零相关区周期互补序列集的数量,为工程应用提供了更多的选择.
【总页数】7页(P2086-2092)
【作者】刘凯;俞赛;史洪印
【作者单位】燕山大学信息科学与工程学院秦皇岛066004;燕山大学信息科学与工程学院秦皇岛066004;燕山大学信息科学与工程学院秦皇岛066004
【正文语种】中文
【中图分类】TN911.2
【相关文献】
1.一类四元零相关区非周期互补序列集构造法 [J], 李玉博;许成谦;刘凯
2.零相关区屏蔽四元周期互补序列偶集设计研究 [J], 李琦;李鼎;高军萍;韩瑾;赵洋
3.四元零相关区周期互补序列集构造法 [J], 李玉博;许成谦;李刚;刘凯
4.二元及四元零相关区周期互补序列集构造法 [J], 李玉博;许成谦;李刚
5.一类最优的零相关区非周期互补序列集构造法 [J], 陈晓玉;苏荷茹;高茜超
因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Superconducting phase diagram of Na x CoO2·y H2OHiroya Sakurai a,b,*, Kazunori Takada c, Takayoshi Sasaki c, Eiji Takayama-Muromachi aa Superconducting Materials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japanb International Center for Young Scientists, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japanc Advanced Materials Laboratory, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, JapanAbstractWe synthesized Na x(H3O)z CoO2·y’H2O samples with various Na/H3O ratios but with the constant Co valence of s = +3.40, and measured their magnetic properties to draw phase diagrams of the system. The superconductivity is very sensitive to the Na/H3O ratio. With varying x under fixed s of +3.40, magnetically ordered phase appears in the intermediate range of x sandwiched by two separated superconducting phases, suggesting that the superconductivity is induced by moderately strong magnetic interactions. In the vicinity of the magnetic phase, transition from the superconducting state to the magnetically ordered state was induced by applying high magnetic field. This transition is of the second order, at least, above 1.8 K. The upper-critical field is expected to be much higher than the Pauli limit for a phase located far away from the magnetic phase regarding the Na/H3O ratio.PACS codes: 74.62.-c, 74.62.BfKeywords: Na x CoO2·y H2O; magnetic order; phase diagramSodium cobalt oxyhydrate superconductor, Na x CoO2·y H2O, has been intensively studied since its discovery [1]. However, its phase diagram is still controversial with conflicting x-T diagrams (T: temperature) reported thus far [2, 3], suggesting that there is a hidden compositional parameter in the system. Indeed, it has been found that a significant amount of oxonium ions exist in the compound and the chemical formula should be expressed as Na x(H3O)z CoO2·y’H2O rather than Na x CoO2·y H2O [4]. The presence of the oxonium ions is crucial because the Co valence, s, cannot be estimated only from the Na content any more. Considering the oxonium ions, a revised phase diagram has been recently proposed with a dome shape of superconducting region of ~+3.2 < s< +3.4 (the optimal T c of 4.8 K at +3.24 < s< +3.35) [5]. However, this diagram seems unlikely because the cobalt valence is much lower than s = +3.42 to +3.48 reported previously [4, 6-8]. On the other hand, there is no consensus for the H-T phase diagram (H: magnetic field), as well. With magnetic field along the ab-plane, the upper-critical field (H c2) has been estimated, but the values reported thus far are scattered very largely: ~8 T [9, 10] to over 15 T [11-14]. Since the Pauli limit of 1.84·T c ~ 8 T [15] is one of criteria to deduce the spin state of the Cooper pairs, it is very important whether H c2 is around 8 T or significantly larger than it.The samples were synthesized by soft-chemical method from the precursor of Na0.7CoO2with a single batch, which was made from Na2CO3and Co3O4as reported elsewhere [16]. A certain amount of the precursor (1 g) was immersed in 5 vol.% Br2/CH3CN (35 ml) to deintercalate the Na+ions, and then was immersed in distilledwater (400ml) to intercalate water molecules. Before filtration, 0.1 M HCl aqueous solution (v ml) was added to the solution to control the chemical composition of the sample. The samples reported here are the same as those in the previous report [17]. As seen in Fig. 1, x-ray diffraction patterns indicate that the sample is obtained as single phase for v≤ 10 ml, but secondary phase of CoOOH or its related compound appears for v≥ 12 ml. After the samples were stored in the air with 70% humidity for more than 3 weeks, chemical analyses by inductive-coupled plasma atomic emission spectroscopy and redox titration were performed for each sample almost simultaneously with magnetic measurements. The results of the chemical analysis are shown in Table 1 as well as the c-axis lengths and T c’s estimated from magnetic susceptibility data under 0.001 T. The Na+-ion content decreases obviously with increasing v whereas the Co valence is almost constant to be about +3.40. This result is reasonable considering the isovalent ion exchange of H3O+for Na+which is expected to be promoted by the addition of the HCl solution [17]. The increasing c-axis supports this exchange reaction because the Na+ ion is smaller than the H3O+ ion.It is notable that the superconductivity disappears for the intermediate range of v, i.e., for v = 2, 4, and 6 ml in spite of monotonous changes of the Na content and the c-axis length throughout the v range of 0 ≤v≤ 10 ml. The magnetic susceptibilities of these non-superconducting samples show an anomaly at about 6 K as seen in Fig. 2(a). This anomaly obviously corresponds to a magnetic transition that has been observed by 59Co nuclear quadrupole resonance for a non-superconducting sample [18]. Taking into account the non-superconducting magnetic phase, the phase diagram may be depicted as Fig. 3(a). The superconducting region is separated into two parts of SC1 and SC2 sandwiching the magnetically ordered M phase, suggesting that the superconductivity isinduced by moderately strong magnetic interactions.It is important to notice for Fig. 3(a) that the Co valence is kept constant to be +3.40 in this section of phase diagram. Thus, the magnetic interaction is affected critically by the ion exchange of H3O+ for Na+ even when the Co valence is constant. At the present stage, it is most likely that the superconductivity and the magnetic ordering are dominantly undertaken by holes or electrons on pocket-like Fermi surface near K-point [19] or at Γ-point [20], respectively. The size of the pocket seems to be very susceptible to the thickness of the CoO2 layer [21, 22]. By the ion exchange of Na+ for H3O+, the layer is expected to become thinner because oxygen ions of the layer are less attracted by the Na+/H3O+ions with increasing distance between them (increasing the c-axis length). The importance of the pocket-like Fermi surface has been pointed out by theoreticians [20, 23], and its existence is consistent with Co-valence dependence of T c [24].The present study indicates that two compositional parameters should be specified to draw a phase diagram among the Na content x, H3O content z and Co valence s (s = 4 −x−z). Only one parameter was taken into account in the previous phase diagrams [2, 3, 5], and thus they reflect some cross-sections of three-dimensional x-s-T phase diagram. The SC1 and SC2 phases are possibly connected with each other somewhere in the whole x-s-T phase diagram.The magnetic susceptibility measured under 7 T is shown in Fig. 2(b), which is important to solve the inconsistency in the H-T phase diagram. The v= 0 ml sample whose composition (x = 0.35) is located very close to the M phase in Fig. 2(a), shows a magnetic ordering under 7 T instead of the superconducting transition, similar to the samples with v = 2, 4, or 6 ml. Namely, a transformation from a superconducting phaseto a magnetic phase is induced in the v= 0 ml sample by magnetic field. Such a transformation is rare, but it seems natural to occur in the present case because magnetic field should destabilize the superconducting state while can stabilize the magnetically ordered state. In other words, it is not curious that the M phase extends to a wider x region under a high magnetic field.In order to determine the phase boundary between the SC1 and the M phases, the magnetic susceptibility was measured under various fields for the v = 0 ml sample, as seen in Fig. 4(a). Two anomalies are clearly recognized for each curve: for example, around 2.8 K and 5.7 K under 5.5 T. Thus, the H-T phase diagram can be depicted as in Fig. 3(b). The transformation can be also detected in isothermal magnetization curves at 1.8 K and 3 K as seen in Fig. 4(b), although the transformation field is a little smaller than that expected from Fig. 4(a). These behaviors have intrinsic origin, not extrinsic one such as sample inhomogeneity, because the steep decrease in T c above 5 T indicates that the magnetic ordering suppresses the superconducting transition, and because the phenomenon does not look like a crossover but a transition as suggested by the M-H curves. No anomaly was observed in the M-H curve of the v = 6 ml sample up to 7 T. The transition is of the second order, at least, above 1.8 K since no significant hysteresis is seen.At last, we give a comment on the H-T phase diagrams reported thus far. The smaller H c2of about 8 T seems to be due to the transition from the superconducting state to the magnetic state. Indeed, the SC1-M boundary in the H-T diagram in Fig. 3(b) seems to agree well with the field dependence of T c by which the smaller H c2was estimated [9, 10]. When a composition of a phase is far away from the SC1(or SC2)-M boundary, the higher H c2 is expected without appearance of the M phase. Actually, thesusceptibility of the v = 10 ml sample under 7 T shows downturn at 3.5 K as a clear sign of superconductivity (Fig. 2(b)) which is significantly higher than ~2.6 K or 1.7 K observed in the samples with H c2(0) ~ 8 T [9, 10]. T c of the v = 0 ml sample may be even higher than 3.5 K because it is difficult to estimate exact field dependence of T c. Decrease of the susceptibility due to the superconducting diamagnetism seems to start at temperature higher than 3.5 K in Fig. 2(a), though it is hidden by the increasing back-ground susceptibility and hard to be specified.In summary, we synthesized Na x(H3O)z CoO2·y’H2O samples with various Na/H3O ratios but with the constant Co valence of s= +3.40, and measured their magnetic properties to draw phase diagrams of the system. The superconductivity is very sensitive to the isovalent ion exchange of H3O+ for Na+, indicating that not one but two compositional parameters are needed to be specified. With varying x under fixed s of +3.40, magnetically ordered phase appears in the intermediate range of x sandwiched by two separated superconducting phases. This unique phase diagram strongly suggests that moderately strong magnetic interaction is crucial to the superconductivity. The magnetic interaction is likely undertaken by carriers on the pocket-like Fermi surface. It was also proved for a superconducting phase located close to the magnetic phase regarding the composition that it is transformed to the magnetic phase by applying high magnetic field. The transition is of the second order at least above 1.8 K. H c2 is expected to be significantly higher than the Pauli limit for a superconducting phase located far away form the magnetic phase.AcknowledgementsWe would like to thank S. Takenouchi and K. Kosuda for the chemical analyses.This work is partially supported by Grants-in-Aid from JSPS and MEXT (16340111, 16076209) and by CREST, JST.References[1] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, T. Sasaki, Nature (London) 422 (2003) 53.[2] R. E. Schaak, T. Klimczuk, M. L. Foo, R. J. Cava, Nature (London) 424 (2003) 527.[3] D. P. Chen, H. C. Chen, A. Maljuk, A. Kulakov, H. Zhang, P. Lemmens, C. T. Lin, Phys. Rev. B 70 (2004) 024506.[4] K. Takada, K. Fukuda, M. Osada, I. Nakai, F. Izumi, R. A. Dilanian, K. Kato, M. Takata, H. Sakurai, E. Takayama-Muromachi, T. Sasaki, J. Mater. Chem. 14 (2004) 1448.[5] C. J. Milne, D. N. Argyriou, A. Chemseddine, N. Aliouane, J. Veira, S. Landsgesell,D. Alber, Phys. Rev. Lett. 93 (2004) 247007.[6] M. Karppinen, I. Asako, T. Motohashi, H. Yamauchi, Chem. Mater. 16 (2004) 1693.[7] M. Bañobre-López, F. Rivadulla, R. Caudillo, M. A. López-Quintela, J. Rivas, J. B. Goodenough, Chem. Mater. 17 (2005) 1965.[8] K. Takada, M. Osada, F. Izumi, H. Sakurai, E. Takayama-Muromachi, T. Sasaki, Chem. Mater. 17 (2005) 2034.[9] F. C. Chou, J. H. Cho, P. A. Lee, E. T. Abel, K. Matan, Y. S. Lee, Phys. Rev. Lett.92 (2004) 157004.[10] T. Sasaki, P. Badica, N. Yoneyama, K. Yamada, K. Togano, N. Kobayashi, J. Phys. Soc. Jpn. 73 (2004) 1131.[11] P. Badica, T. Kondo, K. Togano, K. Yamada, cond-mat/0402235.[12] R. Jin, B. C. Sales, S. Li, D. Mandrus, cond-mat/0410517.[13] M. M. Maśka, M. Mierzejewski, B. Andrzejewski, M. L. Foo, R. J. Cava, T. Klimczuk, Phys. Rev. B 70 (2004) 144516.[14] H. Sakurai, K. Takada, S. Yoshii, T. Sasaki, K. Kindo, E. Takayama-Muromachi, Phys. Rev. B 68 (2003) 132507.[15] A. M. Clogston, Phys. Rev. Lett. 9 (1962) 266.[16] H. Sakurai, S. Takenouchi, N. Tsujii, E. Takayama-Muromachi, J. Phys. Soc. Jpn.73 (2004) 2081.[17] H. Sakurai, K. Takada, T. Sasaki, E. Takayama-Muromachi, J. Phys. Soc. Jpn. 74 (2005) 2909.[18] Y. Ihara, K. Ishida, C. Michioka, M. Kato, K. Yoshimura, K. Takada, T. Sasaki, H. Sakurai, E. Takayama-Muromachi, J. Phys. Soc. Jpn. 74 (2005) 867.[19] D. J. Singh, Phys. Rev. B 61 (2000) 13397.[20] K. Kuroki, S. Onari, Y. Tanaka, R. Arita, T. Nojima, cond-mat/0508482.[21] M. Mochizuki, Y. Yanase, M. Ogata, J. Phys. Soc. Jpn. 74 (2005) 1670.[22] K. Yada, H. Kontani, J. Phys. Soc. Jpn. 74 (2005) 2161.[23] Y. Yanase, M. Mochizuki, M. Ogata, J. Phys. Soc. Jpn. 74 (2005) 430, and references therein.[24] H. Sakurai, N. Tsujii, O. Suzuki, H. Kitazawa, G. Kido, K. Takada, T. Sasaki, E. Takayama-Muromachi, unpublished.Table 1 Na content, Co valence, c-axis length, and T c of the samples.v (ml) Na content Co valence c (Å) T c (K)0 0.350 3.41 19.717 4.32 0.346 3.40 19.724 < 1.84 0.346 3.41 19.752 < 1.86 0.336 3.40 19.775 < 1.88 0.322 3.40 19.820 4.110 0.302 3.36 19.810 4.3Fig. 1 X-ray diffraction patterns of the v = 0, 10, 12, and 30 ml samples. The right panel is the enlarged copy of the left one. The broken lines represent a basal reflection of CoOOH.Fig. 2 Magnetic susceptibility measured under 1 T (a) and 7 (T). The inset of the upper panel shows the differentiated susceptibilities of the v = 2, 4, and 6 samples.Fig. 3 The x-T phase diagram (a) and H-T phase diagram (b). The open and closed circles represent T c and the magnetic ordering temperature, respectively.Fig. 4 (a) Magnetic susceptibility under the fields between 4.75 T and 7 T with each interval of 0.25 T and (b) magnetization curves at 1.8 K (circles), 3 K (squares), 4 K (triangles), and 5 K (inverse triangles) of the v = 0 ml sample. In the lower panel, the closed and open markers represent the data collected under increasing and decreasing fields, respectively.。

相关文档
最新文档