五年级数学下册 3.3长方体和正方体的体积(第3课时)教案 新人教版
新人教版五年级数学下册第三单元长方体和正方体教案
新人教版五年级数学下册第三单元长方体和正方体教案第三单元长方体和正方体一、单元教学内容长方体和正方体P18——P44二、单元教学目标1.让学生通过观察和操作,认识长方体和正方体的特征以及它们的展开图。
2.让学生通过实例,了解体积(包括容积)的意义及度量单位(立方米、立行分米、立方厘米、升、毫升),会进行单位之间的换算。
感受1m3,1dm3,1cm3以及1L,1mL的实际意义。
3.结合具体情境,让学生探索并掌握长方体和正方体的体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。
4.使学生掌握某些实物体积的测量方法。
三、单元教学重、难点1.掌握长方体和正方体的特征以及它们的体积和表面积的计算方法。
2.能运用所学知识解决一些简单的实际问题。
3.难点是体积和表面积两个概念的建立。
四、单元教学安排1.长方体和正方体的认识………………………………………………2课时2.长方体和正方体的表面积……………………………………………3课时3.长方体和正方体的体积………………………………………………6课时【知识结构】11.长方体和正方体的认识第1课时长方体一、讲授内容:长方体的认识(课本第18~19页的内容落第21~22页练五的1、2、3、6、7题)。
二、讲授方针:1.初步认识立体图形、认识长方体的特征。
2.通过观察、想象、动手操作等活动进一步发展空间观念。
3.继续造就学生研究数学的兴趣,进一步形成勇于探究、善于协作交换的研究品格。
三、教学重难点重点:掌握长方体的特征。
难点:通过观察、想象、动手操作等活动进一步发展空间观念。
四、讲授过程:(一)复导入1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)2.出示教材第18页的主题图。
提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。
提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?3.举例:在一样平常糊口中你还见到过哪些长方体的物体?长方体又具有甚么特性呢?引出新课并板书课题。
人教版五年级数学下册第三单元长方体和正方体——长方体和正方体的体积教案
◎教学笔记第2课时长方体和正方体的体积(1)教学内容教科书P29~31的内容,完成教科书P31“做一做”。
教学目标1.经历长方体和正方体体积计算公式的推导过程,理解和掌握长方体和正方体的体积计算方法。
2.通过自主探索和合作交流,培养学生分析、比较、类推、归纳的能力,进一步发展学生的空间观念。
3.能运用长方体和正方体的体积公式解决简单的实际问题,感悟到数学来源于生活,应用于生活。
教学重点理解并掌握长方体和正方体体积的计算方法。
教学难点理解长方体和正方体体积计算公式的推导过程。
教学准备课件,12个棱长为1cm的小正方体。
教学过程一、情境导入,探索新知师:同学们,什么叫体积?常用的体积单位有哪些?你能用手势比画出1cm3、1dm3、1m3的大小吗?【学情预设】学生基本上都能回答出这些问题,教师适当补充。
师:昨天,我到超市买了一箱苹果醋饮料和一块香皂,怎样才能知道它们的体积大小呢?课件出示图片。
师:同学们真聪明,你们有什么好办法测量出它们的体积吗?【学情预设】学生会说到“把香皂切成一个个1cm3的小正方体”“根据苹果醋饮料箱子的长、宽、高估一估大约是多少个1cm3的小正方体”等方法,但还想不到只要知道长方体的长、宽、高,沿长、宽、高摆1cm3的小正方体就可以推算物体的体积。
【设计意图】创设与生活密切相关的问题情境,让学生在观察、猜想、比较的过程中明确了本节课的研究方向和目标。
师:这节课我们一起来研究长方体和正方体的体积。
[板书课题:长方体和正方体的体积(1)]二、动手操作,探究长方体和正方体的体积计算方法1.启发思考。
师:怎样知道长方体的体积呢?【学情预设】有了计算平面图形面积的经验,学生会想到看一个长方体里有多少个1cm3的小正方体,测量长方体的长、宽、高进行计算等方法。
师:我们可以通过实验研究,发现规律。
2.操作实验。
(1)出示课件要求,学生小组合作摆不同形状的长方体。
用12个棱长为1cm的小正方体拼摆不同形状的长方体,它们的长、宽、高各是多少?体积又是多少呢?四人小组一起动手操作并填写表格。
罗湖区第一小学五年级数学下册 三 长方体和正方体3.3.3 体积单位间的进率教学课件 新人教版
(三)巩固练习
8.一个长方体的无盖水族箱 , 长是 6m , 宽是60cm , 高是。这个水族箱占地 面积有多大 ?需要用多少平方米的玻璃 ? 它的体积是多少 ?
(三)巩固练习
占地面积 : 〔m2〕 需要玻璃 : 6×0.6+〔〕×2 〔m2〕 体积 : 〔m3〕
(三)巩固练习
9.茶厂工人要将长、宽各为20cm , 高 为10cm的长方体茶盒装入棱长为30cm的 正方体纸箱 , 最多能装几盒 ?怎样才能装 下?
多少立方分米吗 ?
是1dm3
想一想:它的体积是多少立方厘米呢?
(二)探索新知
如果把它的棱长看作是 10cm , 可以把它切成1000
块1cm3的小正方体。
10×10×10=1000〔cm3〕
(二)探索新知
它的底面积是1dm2 , 就是 100cm2 , 100×10 , 一共是
1000cm3。
100×10=1000〔cm3〕
180
5 0.4 0 28 224 234
0
验算 : 0.28
× 180
2 24 28
÷2.3=
0.1 6
2.3 0.3.6 8 23 13 8 138
0
验算 :
0. 16 × 23
48 32 0. 3 68
除数是整数的小数除法〔1〕
(一)复习导入
1.笔算下面各题 , 并说一说整数除法的计算方式。
我家第二季度共节 约水费21元。
谁家平均每月节约的水费多?
〔元〕 21÷3=7〔元〕
<7
答 : 所以李奶奶家平均每月节约的水费多
4.假日里 , 王老师带一组同学去森林公园。
【教材P31 练习七 第11题]
五年级下册数学《长方体和正方体的体积》教案
五年级下册数学《长方体和正方体的体积》教案教师新课肯定要设计教案啊,那么教案该如何设计?以下是小编为大家精心整理的“五年级下册数学《长方体和正方体的体积》教案”,欢迎大家阅读,供大家参考。
更多内容还请关注哦!五年级下册数学《长方体和正方体的体积》教案(1)教学目标:1.使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;2.培养学生实际操作能力,同时发展他们的空间观念;3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
教学重点:探索长方体体积的计算方法。
教学难点:理解长方体和正方体体积公式的推导过程.教具准备:课件,若干个1立方厘米小正方块学具准备:1立方厘米的正方体16块教学过程:一、激情导入1、复习引入师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。
2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。
请同学们齐读本节课的学习目标。
3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。
二、民主导学师:可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。
大家请看大屏幕,这个长方体的体积是多少?(学情欲设)生1、可以分割成以立方厘米的小块,看看一共有多少块,就有多少立方厘米。
生2、可以量一量。
生3、这些方法都有局限性,我们可以像以前推导平行四边形的面积一样想办法找出长方体体积的计算公式。
老师认为这个提议不错,你们认为呢?师:谁来猜一猜长方体的体积怎样计算?这个猜想对吗?我们来一起验证。
好,请同学们看今天的第一个学习任务。
任务呈现:用一些体积是1立方厘米的小正方体摆成不同长方体,并完成下表:出示表格。
学生四人一小组,每组一张表格。
长(厘米)宽(厘米)高(厘米)小正方体的数量长方体的体积师:请同学们以小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。
2021-2022学年小学数学人教版五年级下册第三单元第3课时《长方体和正方体的体积》教案
过程与方法
培养学生实际操作能力, 同时发展他们的空间观念; 强化学生们的空间想象能 力
情感态度和价值观
在活动中使学生感受数学 与实际生活的密切联系, 体验学数学、用数学的乐 趣,从而激发学生的学习 兴趣。
02
情景导入
Scenario importt
02 情景导入
说一说什么是体积?体积单位有哪些?
15cm
04 典型例题
一台冰箱从外面量长是64厘米,宽是40厘米,高是160厘米。这 台冰箱的体积是多少立方厘米?
64×40×160=409600(立方厘米)
答:这台冰箱的体积是409600立方厘米。
04 典型例题
一个长方体铁块的底面积是20平方厘米,高是40厘米。把它 锻造成一个截面边长是10厘米的正方形的长方体。这个长方 体的高是多少?
两个长方体 的体积相等。
20×40=800(cm²) 800÷(10×10)=8(cm) 答:这个长方体的高是8cm。
05
课后小结
Class summary
05 课后小结
这节课你们都学会了哪些知识? 长方体、正方体的体积公式
长方体体积=长×宽×高 V=abh
正方体体积=棱长×棱长×棱长 V=a³
长方体(或正方体)的体积=底面积×高
V=abh V=a3
V=Sh
Sh
06
课后练习
homework
06 课后练习
1、在横线上填上适当的体积单位。
橡皮的体积 约是10
( 立方厘米 )
影碟机的体 积约是22 ( 立方分米 )
2、求下面图形的体积。
36×6=216(cm³)
集装箱的体 积约是40 ( 立方米 )
和体积都变了。
人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件
公有的质因数
2 18 30 3 9 15 35
独有的质因数
所以,18和30的最大公因数=2×3=6; 18和30的最小公倍数= 2×3×3×5=90。 为了便于区分,可以简单归纳为: 最大公因数乘半边,最小公倍数乘半圈。
6 18
30
3
5
求两个数的最大公因数与最小公 倍数时,用合数作除数有助于提 高计算速度。
计量体积就要用体积单位,常用的体积单位有
立方厘米 立方分米 立方米
1立方厘米
棱长1厘米的正方体,体积是1立方厘米
1立方厘米
棱长1分米的正方体,体积是1立方分米
1米
1分米
1分米
1立方分米
棱长1米的正方体,体积是1立方米
1米
1立方厘米
上图含( 4个 )1立方厘米, 体积就是(4立方厘米 )
一个物体里含有多少个体积 单位,它的体积就是多少。
长/分米 宽/分米
长
5
方
4
体
10
1 3 2 棱长/米
正
6
方 体
30
0.4
高/分米 2 5 4
体积/分米 3
10 60 80
体积/米3
216 27000 0.064
3、判断正误并说明理由。 ( 1)0.2 3=0.2×0.2×0.2;( √ )
( 2)5X 3=10X;( × )
( 3 )一个正方体棱长4分米,它的体
(分数的意义)
一个物体、一些物体等都可以看作一个整体, 把这个整体平均分成若干份,这样的一份或 几份都可以用分数来表示。
单位“1”与分数单位的区别
单位“1”表示:一个物体、一些物体等都可 以看作一个整体,一个整体可以用自然数1来 表示,通常把它叫做“1”。 分数单位表示:把单位“1”平均分成若干份, 表示其中一份的数叫分数单位。
人教版(2023春)数学五年级下册3 长方体和正方体 第3 课时长方体和正方体的展开图
第 3 课时长方体和正方体的展开图【教学目标】1. 通过观察实物、动手操作等活动认识长方体、正方体的展开图,进一步加深对长方体和正方体特征的认识。
2. 在活动中通过建立图形表象的过程,进一步积累空间与图形的学习经验。
3. 培养分析能力,发展空间观念。
【教学重点】初步感知平面图形与立体图形的关系,发展空间观念。
【教学难点】初步感知平面图形与立体图形的关系,发展空间观念。
【教学方法】讲授法操作法观察法【课前准备】教师准备:长方体正方体纸盒剪刀学生准备:长方体纸盒正方体纸盒剪刀【教学过程】一引入新课1.什么是长方体的长、宽、高?什么是正方体的棱长?2.指出长方体纸盒的长、宽、高,并说出长方体的特征。
指出正方体的棱长,并说出正方体的特征。
引出课题。
[板书:长方体和正方体的展开图]二课前检测师布置任务:1.学生自查、互查预习单。
2.预习存疑,二次探究。
3.通过预习,你收获了什么?还有哪些疑问?针对课前预习的预习单,进行简单的梳理,并让全班同学互相解决预习中存在的问题,教师适时引导。
师:看来大部分同学预习得非常棒!不会的同学也不要灰心,接下来就更深入地探究吧!三探索新知1.认识长方体的展开图。
(1)教师让学生把手中的长方体纸盒沿着棱剪开,去掉多余的部分,观察展开后的形状,指出这就是长方体纸盒的展开图。
师:先看看长方体,再看看这个展开图,你发现了什么生1:我发现原来的立体图形变成了平面图形。
生2:我发现长方体展开后是由6个长方形组成的。
(2)同学们沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,想象训练。
把长方体纸盒的展开图还原、展开、再还原、再展开,这样反复几次。
师:假如有一个摄像机把你刚才的操作过程拍摄下来,闭上眼睛想象一下,会是怎样的呢(3)标注和思考。
在长方体的展开图中,分别用“上”“下”“前”“后”“左”“右”标明6个面,并让学生思考:①长方体有哪几组面的面积相等②长方体每个面的长和宽与长方体的长、宽、高有什么关系呢思考后回答:①上、下两个面的面积相等,每个面的长和宽就是长方体的长和高。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
人教版五年级数学下册第三单元长方体和正方体——(长方体和正方体的认识)长方体教案
第3单元长方体和正方体本单元的内容是在学生已经初步认识了一些简单的立体图形——长方体、正方体、圆柱和球的基础上,比较深入地研究立体图形,是从二维空间到三维空间的一次重要转化,系统学习长方体、正方体的有关知识,是学生发展空间观念的一次飞跃。
长方体和正方体是最基本的立体图形,通过学习长方体、正方体,可使学生对周围的空间和空间中的物体形成初步的空间观念,是学生进一步学习其他立体图形的基础。
另外,长方体和正方体体积的计算,也是形成体积的概念,掌握体积的计量单位和计算各种几何形体体积的基础。
教科书非常注重与实际生活的联系,结合学生熟悉的事物进行概念理解,注重用所学的知识解决实际问题。
分三小节编排:1.长方体和正方体的认识,主要教学生认识长方体、正方体的特征;2.长方体和正方体的表面积;3.长方体和正方体的体积。
在“长方体和正方体的体积”一节中,还介绍了容积的概念及体积单位、容积单位间的进率、名数的换算,并探索了某些实物体积的测量方法。
教学重点是认识长方体和正方体的特征,理解表面积、体积、容积的概念,掌握长方体和正方体的表面积、体积的计算方法,建立体积、容积单位表象,灵活运用所学知识解决简单的实际问题。
在学习本单元内容之前,学生已经能够直观地认识一些平面图形和立体图形,能从生活中找到大量的立体图形素材,并能通过这些素材发现一些基本特征。
本单元是在此基础上系统学习长方体和正方体的有关知识。
其中,表面积是学生对面积概念的拓展,体积对学生来说更是一个全新的概念,且学生对“物体占有一定的空间”这句话的理解有一定的困难。
因此,教学时要充分利用故事、实验、比较等方法,让学生切实感悟到物体占有空间,不同物体所占空间有大有小,从而深刻地理解体积的含义,为后面学习圆柱的体积计算作铺垫。
1.充分调动学生已有的知识经验,利用学生熟悉的教学资源,通过指、摸、比、剪、倒、估等操作实验活动认识长方体、正方体的特征,建立体积、容积单位表象,培养、发展学生的空间观念。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析
⼈教版⼩学数学五年级下册第三单元《长⽅体和正⽅体》教材分析⼈教版⼩学数学五年级下册第三单元《长⽅体和正⽅体》教材分析教学⽬标1、通过观察、操作,认识长⽅体和正⽅的特征以及它们的展开图。
2、通过实例,理解体积(包括容积)的含义,认识常⽤的度量单位(⽴⽅⽶、⽴⽅分⽶、⽴⽅厘⽶、升、毫升),建⽴1⽴⽅⽶、1⽴⽅分⽶、1⽴⽅厘⽶以及1升、1毫升的表象,会利⽤单位间的进率进⾏简单的换算。
3、探索并掌握长⽅体、正⽅体的体积和表⾯积的计算⽅法,并能解决⼀些简单的实际问题。
4、探索某些实物体积的测量⽅法。
⼆、内容安排三、各⼩节的教材说明和教学建议例1、例2例3例1、例2例6(⼀)长⽅体和正⽅体的认识(第18~22页)a、理解长⽅体各部分的名称,⾯、棱、顶点。
b、理解和掌握长⽅体的特征,形成长⽅体的概念。
长⽅体⼀般是由6个长⽅形(特殊情况有两个相对的⾯是正⽅形)围成的⽴体图形。
c、认识长⽅体的长、宽、⾼。
d、理解和掌握正⽅体的特征,形成正⽅体的概念。
正⽅体是由6个完全相同的正⽅形围成的⽴体图形,所有的棱长度相等。
e、长⽅体和正⽅体的相同点和不同点f、长⽅体和正⽅体的关系本⼩节学⽣应掌握的基本技能正确找出长⽅体横放、竖放、侧放⼏种不同情况下摆放的长、宽、⾼。
培养学⽣的动⼿能⼒和观察能⼒。
例如:⽤附页的图样做长⽅体和正⽅体;⽤⼩棒、橡⽪泥做长⽅体框架;测量长⽅体的长、宽、⾼;⽤棱长1厘⽶的⼩正⽅体搭⼀搭等等。
运⽤所学知识解决实际问题。
例如:练习五中的第6题,学⽣要明确需要的彩灯线实际上是哪些棱长之和。
再例如练习五的第9题,要教给学⽣做这类题的⽅法对例题的理解主题图教材⾸先呈现了⼀些长⽅体或正⽅体形状的建筑物和⽣活⽤品。
让学⽣观察它们的形状,其落脚点是让学⽣感受到⽣活中很多物品的形状都是长⽅体和正⽅体的。
为进⼀步研究长⽅体,正⽅体的特征做准备。
看完主题图后,可以让学⽣说⼀说⽣活中还有哪些物体的形状是长⽅体或正⽅体的。
然后从实物图中抽象出长⽅体的⼏何直观图,让学⽣观察这个长⽅体,图中有什么?学⽣回答有⾯、线段、顶点。
人教版数学五下第3章《长方体和正方体》(容积)教案
人教版数学五下第3章《长方体和正方体》(容积)教案
教学目标
1.了解长方体和正方体的定义和特点。
2.掌握长方体和正方体容积计算的方法。
3.能够运用所学知识解决实际问题。
教学重难点
重点
1.长方体和正方体的定义和特点。
2.长方体和正方体容积计算公式的推导和运用。
难点
1.多步解决实际问题的能力培养。
教学准备
1.教师准备:课件、黑板、彩色粉笔、教学实物模型等。
2.学生准备:文具、作业本。
教学过程
导入
教师通过一个实际的问题引出本节课的主题,让学生思考长方体和正方体在日常生活中的应用。
学习
1.长方体和正方体的定义和特点。
–长方体的六个面都是矩形,对边平行且相等;正方体的六个面都是正方形,相邻面互相垂直。
2.长方体和正方体容积计算方法。
–长方体容积公式:V = 长 × 宽 × 高
–正方体容积公式:V = 边长³
实践
让学生分组进行容积计算的练习,包括简单的计算和应用题。
拓展
让学生通过拼凑实物模型,感受长方体和正方体的容积增减变化。
总结
回顾本节课所学知识,强调长方体和正方体容积计算的方法,及时纠正容易犯的错误。
作业布置
1.完成课堂练习。
2.思考:长方体和正方体在日常生活中还有哪些应用?
教学反馈
及时对学生的作业进行批改和评价,针对性地指导学生弥补知识漏洞。
以上内容为本节课的教案内容,希望同学们能够认真学习,掌握相关知识,提高解题能力。
人教版数学五下第三单元《长方体和正方体的认识》教案
人教版数学五下第三单元《长方体和正方体的认识》教案一、教学目标1.知识与能力:–掌握长方体和正方体的概念。
–能够辨别长方体和正方体。
–学会计算长方体和正方体的体积。
2.过程与方法:–激发学生的学习兴趣,引导他们积极参与课堂讨论和互动。
–通过实例和练习,巩固学生对长方体和正方体的认识。
–鼓励学生勇于提出问题和思考,培养他们的逻辑思维和解决问题的能力。
二、教学重点和难点1.教学重点:–掌握长方体和正方体的定义和特征。
–学会计算长方体和正方体的体积。
2.教学难点:–区分长方体和正方体的特点。
–理解长方体和正方体的体积计算方法。
三、教学过程1.导入:通过展示图片或实物,让学生观察长方体和正方体,并与他们讨论不同之处。
2.学习长方体:–引导学生理解长方体是由长方形面拼接而成的立体图形。
–让学生测量和计算长方体的长、宽、高。
–练习计算长方体的体积公式:长 × 宽 × 高。
3.学习正方体:–讲解正方体是一种所有边相等且都是正方形的立体图形。
–比较长方体和正方体的特点。
–练习计算正方体的体积公式:边长的立方。
4.综合练习:–让学生做一些综合练习,巩固长方体和正方体的认识和体积计算。
5.拓展应用:–提出一些拓展问题,让学生运用所学知识解决实际问题,如房间体积计算等。
四、课堂作业1.完成练习册上关于长方体和正方体的作业题目。
2.拓展练习:设计一个包含长方体和正方体的实际问题,计算它们的体积。
五、教学反思在教学过程中,应注重引导学生理解长方体和正方体的定义和特点,通过实例和练习帮助他们巩固所学知识,激发他们对数学的兴趣和学习动力。
同时,教师要充分关注学生的学习情况,及时发现问题并加以引导和解决,确保教学效果的达成。
3-3 长方体和正方体的体积 人教版(含解析)
学霸笔记—苏教版2021-2022学年人教版数学五年级下册同步重难点讲练第三单元长方体和正方体3.3 长方体和正方体的体积教学目标1. 让学生通过观察、操作、实验, 体会并理解体积的含义, 认识常用的体积单位:立方米、立方分米、立方厘米;结合具体情境和实践活动, 探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。
2. 让学生初步建立空间大小的概念, 知道体积的含义, 发展学生的空间观念。
初步掌握计量物体体积的单位, 能选择恰当的体积单位估算常见物体的体积。
3. 在能运用公式进行计算的基础上, 进一步研究求长方体和正方体体积的其他计算公式。
4. 结合实践活动, 认识体积单位之间的进率, 会进行体积单位之间的换算。
5. 使学生认识常用的容积单位:升和毫升, 掌握升和毫升之间的进率以及它们和体积单位间的关系, 理解容积与体积的区别和联系。
掌握测量不规则物体体积的方法。
6. 培养学生的观察能力、实践能力以及合作学习的能力, 扩展学生的思维,进一步发展学生的空间观念;通过“猜想—验证”的过程, 使学生获取数学活动经验;在观察、操作、探索的过程中, 提高学生动手操作能力, 进一步发展空间观念, 并解决一些简单的实际问题。
教学重难点【教学重点】感知物体的体积, 初步建立1 立方米、1 立方分米、1 立方厘米的体积观念;理解长方体和正方体的体积公式的推导过程, 掌握计算方法;理解公式“长方体( 或正方体) 的体积= 底面积×高”的推导过程, 掌握计算方法;体积单位间的进率;熟练应用体积单位间的换算解决实际问题;建立容积的概念, 掌握容积单位间的进率。
【教学难点】能正确应用体积单位估算常见物体的体积;理解长方体和正方体的体积公式的推导过程;理解公式“长方体( 或正方体) 的体积= 底面积× 高”的推导过程, 掌握计算方法;根据进率进行体积单位的互化;熟练应用体积单位间的换算解决实际问题;理解容积与体积的联系和区别。
人教版数学五下第三单元《长方体和正方体》教案
人教版数学五下第三单元《长方体和正方体》教案一、教学目标1.知识与技能:了解长方体和正方体的定义和性质,能够区分长方体和正方体,并且能够运用相关知识解决问题。
2.过程与方法:通过实例引导学生在实际问题中运用长方体和正方体的概念解决问题,培养学生的逻辑思维和数学推理能力。
3.情感态度:激发学生对数学的兴趣,培养学生对数学的自信心和学习动力。
二、教学重点1.掌握长方体和正方体的定义;2.能够判断物体是否为长方体或正方体;3.能够应用长方体和正方体的相关知识解决实际问题。
三、教学难点1.区分长方体和正方体的性质;2.运用长方体和正方体的相关知识解决复杂问题。
四、教学过程1. 导入通过展示一些长方体和正方体的图片,引导学生猜测它们的名称并简单描述它们的特点。
2. 学习长方体和正方体的定义•长方体:具有三对相对相等的面的立体称为长方体。
•正方体:六个面都是正方形的立体称为正方体。
3. 区分长方体和正方体通过比较长方体和正方体的特点,让学生能够准确区分它们,并给出相应的理由支持自己的判断。
4. 运用长方体和正方体的知识解决问题1.问题一:一个长方体的长、宽、高分别为3cm、4cm、5cm,求它的体积和表面积。
2.问题二:一个正方体的体积为64立方厘米,求它的边长。
5. 拓展练习1.请学生自行寻找周围环境中长方体和正方体的例子,并描述它们的特点。
2.出示一些复杂的问题,让学生在小组讨论的过程中运用长方体和正方体的知识进行解答。
五、课堂小结通过本节课的学习,我们学习了长方体和正方体的定义及其区分方法,能够应用相关知识解决实际问题。
希望同学们在课后能够多加练习,进一步巩固所学内容。
以上就是本节课的教学内容,希木同学们能够认真对待,取得好的学习效果。
五年级下册数学教案第三单元3.长方体和正方体的体积第3课时:认识体积单位进率和换算
第三单元:长方体和正方体的体积第三课时:认识体积单位进率和换算引言:体积是几何学中的一个非常重要的概念,它在日常生活中也有着很广泛的应用。
学习体积的重要性在于,能够帮助学生更好地理解三维几何,进而用几何的思想解决现实中的问题。
在前面的课时中,我们已经学习了长方体和正方体的体积的公式。
但是,在实际应用中,体积单位的进率和换算也是十分重要的。
本课时我们将探讨体积单位进率和换算的相关知识。
一、体积单位的进率在日常生活中,我们经常用到的体积单位有升(L)、毫升(ml)等。
当我们需要对体积进行比较或计算时,就需要了解不同体积单位之间的进率关系。
1. 升和毫升的进率1升=1000毫升这意味着,1升的体积等于1000毫升的体积。
如果我们需要将升转换为毫升,可以将升数乘以1000;反之,如果需要将毫升转换为升,可以将毫升数除以1000。
例如:(1)30升=30×1000=30000毫升(2)5000毫升=5000÷1000=5升2. 立方米和立方厘米的进率1立方米=1000000立方厘米这意味着,1立方米的体积等于1000000立方厘米的体积。
如果我们需要将立方米转换为立方厘米,可以将立方米数乘以1000000;反之,如果需要将立方厘米转换为立方米,可以将立方厘米数除以1000000。
例如:(1)3立方米=3×1000000=3000000立方厘米(2)5000立方厘米=5000÷1000000=0.005立方米二、体积单位的换算当我们需要进行不同单位之间的换算时,需要根据体积单位的进率进行计算。
1. 升和立方厘米的换算升和立方厘米都是常见的体积单位,在实际测量中常常需要进行互换。
1升=1000立方厘米这意味着,1升的体积等于1000立方厘米的体积。
如果我们需要将升转换为立方厘米,可以将升数乘以1000;反之,如果需要将立方厘米转换为升,可以将立方厘米数除以1000。
例如:(1)5升=5×1000=5000立方厘米(2)8000立方厘米=8000÷1000=8升2. 立方米和升的换算立方米是一个稍微大一些的体积单位,与升的换算需要考虑进率。
第三单元_第03课时_ 长方和体正方体的展开图(教学设计)-【上好课】五年级数学下册人教版
第三单元_第03课时_ 长方和体正方体的展开图(教学设计)-【上好课】五年级数学下册人教版教学目标:1.学生掌握常见的长方体和正方体的特点;2.学生能正确识别展开图上的各个面;3.学生能通过展开图计算长方体和正方体的表面积和体积。
教学内容:本课学习长方体和正方体的展开图、表面积和体积的计算。
教学重点:学生能正确识别展开图上的各个面。
教学难点:学生能通过展开图计算长方体和正方体的表面积和体积。
教学过程:一、导入(5分钟)1.成语猜猜猜:看谁最先说出以下成语所对应的数学概念。
(1)面如武松背;(2)六畜兴旺。
2.通过成语引出本节课的主题:展开图。
长方体和正方体都可以通过展开图来解释,展开图在我们的日常生活中也是很常见的。
二、讲解与练习(15分钟)1.长方体与正方体的定义:采用图片的方式展示长方体和正方体的特点,并通过绘制图形练习。
教师引导学生找出长方体和正方体的特点,并对学生的总结进行补充和扩展。
2.展开图的绘制:通过几何绘图软件实时展示长方体和正方体的展开图,并让学生帮助画出其展开图。
教师引导学生观察展开图中的各个面,并对应到长方体和正方体中去。
3.表面积和体积的计算:通过展开图计算长方体和正方体的表面积和体积,其中表面积和体积的定义通过图片的方式加深学生的记忆。
三、拓展(10分钟)1.本课内容的拓展:提供完整的长方体和正方体绘图,让学生自己尝试计算其表面积和体积。
2.材料的应用:提示学生现实生活中长方体和正方体的应用场景,并要求学生进行展开图的计算,结合小组讨论或是全部汇报。
四、反馈与总结(10分钟)1.回答问题:教师提出一些总结性的问题,让学生自主回答或是小组共同讨论。
2.总结思考:请学生在思考的同时,在黑板上总结出本节课所学习到的知识和技能。
教学评价:1.课堂练习,学生课堂发言及小组讨论;2.作业,反馈作品点评委员会。
五、巩固(15分钟)1.选择题:通过选择题的方式检验学生对于长方体和正方体展开图的理解,同时加强学生对于表面积和体积计算方法的掌握。
新人教版五年级数学下册教案及反思-第三单元长方体与正方体
2、长方体和正方体的表面积第1课时长方体和正方体的表面积(1)总第12 课时【教学内容】长方体和正方体的表面积概念,长方体和正方体表面积的计算(教材第24页例1、例2,以及第25~26页练习六第1、2、3、4、6、7题)。
【教学目标】1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
【重点难点】掌握长方体和正方体表面积的计算方法。
【教学准备】长方体、正方体纸盒,剪刀,投影仪。
【教学过程】一、复习导入1.什么是长方体的长、宽、高?什么是正方体的棱长?2.指出长方体纸盒的长、宽、高,并说出长方体的特征。
指出正方体的棱长,并说出正方体的特征。
二、新课讲授1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。
请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。
让学生分别沿着正方体的棱剪开。
得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?观察后,小组议一议。
引导学生总结长方体的表面积概念。
长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
人教版五年级下册数学《长方体和正方体的认识》教案(精选5篇)
人教版五年级下册数学《长方体和正方体的认识》教案(精选5篇)人教版五年级下册数学《长方体和正方体的认识》篇1教学目标:1.认识长方体和正方体,初步掌握各自特征和内在联系。
帮助学生在动手操作的实践中初步建立空间观念,培养学生观察、分析、推理的能力。
2.在认识长方体和正方体的相互联系和变化规律的过程中,初步培养学生辩证唯物主义观点。
教学过程:一、导入新课,揭示课题1.师:我们学过哪些基本平面图形?长方形和正方形之间有什么关系?2.出示一张纸。
师:这是什么图形?(长方形)如果把这样大小的许多纸重叠在一起,你们看,是什么形状?(长方体)3.师:在日常生活中,长方体形的物体我们常见到,如保健箱、粉笔盒等等,你们能说出一些来吗?(砖、墨水瓶盒子、教科书……)师:长方体和正方体在日常生活中与我们联系很多,在工农业生产中用途很广。
今天我们就来学习它。
板书:长方体和正方体的认识二、示范操作,认识面、棱、顶点1.拿出一根萝卜,用刀切一刀,要求学生观察并且动手摸一摸切出的面。
在学生感受的基础上,告诉学生这叫做“面”。
2.将切出的萝卜平面朝下,再垂直切一刀,取出其中的一块,出示给学生看。
师:这块萝卜有几个面?两个面相交的边叫什么呢?(棱)3.继续切,把萝卜一面平摆在桌面上,再垂直切一刀,出现了一个新情况,让学生观察后回答,有几个面,有几条棱。
师:三条棱相交的点叫做顶点。
师:刚才我们通过切萝卜的活动认识了物体的面、棱、顶点。
4.教师出示长方体模型,学生取出长方体实物,进行观察,并且摸一摸长方体的面、棱、顶点。
然后回答:一个长方体有几个面?几条棱?几个顶点?三、认识长方体1.要求学生认真观察手中的长方体实物,并自学课本,同时在黑板上出示下列自学题:(1)长方体有几个面?每个面是什么图形?哪些面的面积相等?为什么?(2)长方体有几条棱?哪些棱的长度相等?(3)长方体有几个顶点?2.讨论后,教师根据学生回答简要板书。
(1)长方体有6个面,都是长方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体和正方体的体积(第3课时)
教学目标:
1、在理解了长正方体体积公式,能运用公式进行计算的基础上,进一步研究求长正方体体积的其它计算公式。
2、进一步培养学生空间观念和空间想象能力。
教学重点:
1、计算长正方体体积的其它公式。
2、逆向思维的题可以用方程方法解。
教学难点:
几何知识与一般应用题的综合题。
教学过程:
一、复习检查:
如何计算长正方体的体积?及字母公式
长方体的体积=长×宽×高正方体体积=棱长×棱长×棱长
二、新授:
长方体或正方体底面的面积叫做底面积。
长方体和正方体的底面积怎样求呢?
长方体的体积=长×宽×高正方体体积=棱长×棱长×棱长
底面积底面积
所以长正方体的体积也可以这样来计算:长正方体的体积=底面积×高
V =sh
三、巩固练习:
1、长方体的底面积是24平方厘米,高是5厘米。
它的体积是多少?
V=sh 24×5=120(立方厘米)
2、一根长方体木料,长5厘米,横截面的面积是0.06平方厘米。
这根木料的体积是多少?理解横截面积的含义,体会长方体不同放置,说法各不相同。
出示另一种计算方法:长方体体积=横截面积×长
3、家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。
这根木料一共是多少平方米?
理解面积单位和长度单位要一致。
但不可能相同。
5、练一练:用方程法。
(1)、一块长方体的木板,体积是90立方分米。
这块木板的长是60分米,宽是3分米。
这块木板的厚度是多少分米?
(2)、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少?(选择方法解答)
1、学校要修长50米,宽42米,的长方形操场。
先铺10厘米的三合土,再铺5厘米的煤渣。
需要三合土和煤渣各多少立方米?
2、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。
3、用15根规格完全相同的木板堆成一个体积是3.6立方米的长方体。
已知每根木板宽0.3米,厚0.2米,求每根木板的长。
四、小结:今天,我们又学了哪些知识?你有什么收获?
五、作业:。