立方米液氨储罐设计

合集下载

立方米液氨储罐设计说明书

立方米液氨储罐设计说明书

目录课程设计任务书220m3液氨储罐设计2课程设计内容3液氨物化性质及介绍31.设备的工艺计算31.1设计储存量31.2设备的选型的轮廓尺寸的确定31.3设计压力的确定41.4设计温度的确定41.5压力容器类别的确定42.设备的机械设计52.1设计条件52.2结构设计62.2.1材料选择62.2.2筒体和封头结构设计62.2.3法兰的结构设计6(1)公称压力确定7(2)法兰类型、密封面形式及垫片材料选择7(3)法兰尺寸72.2.4人孔、液位计结构设计8(1)人孔设计8(2)液位计的选择92.2.5支座结构设计10(1)筒体和封头壁厚计算10(2)支座结构尺寸确定122.2.6焊接接头设计及焊接材料的选取14(1)焊接接头的设计14(2)焊接材料的选取162.3强度校核162.3.1计算条件162.3.2内压圆筒校核172.3.3封头计算182.3.4鞍座计算202.3.5开孔补强计算213.心得体会224.参考文献22课程设计任务书20m3液氨储罐设计一、课程设计要求:1.按照国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。

2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。

3.工程图纸要求计算机绘图。

4.独立完成。

二、原始数据1.设备工艺设计2.设备结构设计3.设备强度计算4.技术条件编制5.绘制设备总装配图6.编制设计说明书四、学生应交出的设计文件(论文):1.设计说明书一份;2.总装配图一张(A1图纸一张)课程设计内容液氨物化性质及介绍液氨,又称为无水氨,是一种无色液体,有强烈刺激性气味。

氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。

液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。

液氨分子式NH3,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点-33.35℃,自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。

32立方米液氨储罐课程设计

32立方米液氨储罐课程设计

第1章绪论1.1 液氨储罐结构的概述32㎥液氨储罐,壁厚δ=16mm ,材料正火14MnMoV,长度L=7610mm ,内径D=2200mm图1.1液氨储罐结构示意图1.2 1Cr21Ni5Ti不锈钢性能分析1Cr21Ni5Ti不锈钢的力学性能牌号纵向力学性能横向力学性能拉力强度MPa屈服点MPa伸长率(%)拉力强度MPa屈服点MPa伸长率(%)1Cr18Ni9Ti≥52020535---1Cr21Ni5Ti钢为铁素体-奥氏体型双相不锈钢,用于代替奥氏体型不锈钢1Cr18Ni9Ti。

1Cr21Ni5Ti比1Cr18Ni9Ti钢有更好的力学性能。

1Cr21Ni5Ti不锈钢的化学成分1Cr21Ni5Ti 加工工艺性能:1Cr21Ni5Ti 钢的冷、热加工性能良好。

其热加工温度为800~1050℃,950~1050℃时热塑性最好。

因该钢的屈服强度高,因而拉伸、弯曲等变形难度较大,所需加工变形力大。

1Cr21Ni5Ti 钢的淬火温度为950~1050℃。

其焊接性能良好,可用各种焊接方法进行焊接。

1Cr21Ni5Ti 不锈钢耐蚀性:1Cr21Ni5Ti 不锈钢在氧化性酸和有机酸中有很好的耐蚀性,一般无晶间腐蚀倾向,可代替1Cr18Ni9Ti 钢。

1Cr21Ni5Ti 不锈钢的焊接性能主要表现在以下几个方面:(1)高温裂纹:在这里所说的高温裂纹是指与焊接有关的裂纹。

高温裂纹可大致分为凝固裂纹、显微裂纹、HAZ(热影响区)的裂纹和再加热裂纹等。

(2)低温裂纹:在马氏体型不锈钢和部分具有马氏体组织的铁素体型不锈钢中有时会发生低温裂纹。

由于其产生的主要原因是氢扩散、焊接接头的约束程度以及其中的硬化组织,所以解决方法主要是在焊接过程中减少氢的扩散,适宜地进行预热和焊后热处理以及减轻约束程度。

(3)焊接接头的韧性:在奥氏体型不锈钢中为减轻高温裂纹敏感性,在成分设计上通常使其中残存有5%—10%的铁素体。

但这些铁素体的存在导致了低温韧性的下降。

液氨储罐设计

液氨储罐设计

液氨储罐设计液氨储罐是一种专门用于贮存液态氨的设备,通常采用铁质或钢质材料构建,其几何形状多样,包括球型、柱形、圆锥形等。

在化工、农业、医学、能源和环保等领域中,液氨储罐被广泛应用于氨气的储存、输送和使用。

液氨储罐的设计应考虑到以下因素:储罐的尺寸、外观、重量、储存容量、操作压力、储存温度、安全措施和环境影响等。

具体设计要求如下:1.设计参数与标准:储罐的设计应符合国家、行业和企业规定的设计标准和规范。

例如,对于LPG液化气罐,其设计应符合GB 50332-2013《钢制储罐设计规范》、GB50183-2005《液化石油气储存和运输设备技术条件》,以及国际规范ASME Section VIII Division 1等。

2.储罐材质和厚度:液氨储罐应采用高品质钢材或耐腐蚀材料制成,以保证其耐久性和安全性。

材质选择应考虑到单价、可用性、操作需求等因素。

对于钢制储罐,其厚度应根据所存放液体的特性和储罐的形状、尺寸等因素计算确定,以保证其承受压力和温度的能力。

3.储罐容量和形状:液氨储罐的密封容量应比其设计储存量大一些,以确保液体进入储罐时不会波涛汹涌。

储罐的几何形状可以是圆柱形、球型、圆锥形或其他形状,视实际情况而定。

4.安全措施:储罐应安装适当的安全设备,如安全阀、液位报警器、温度控制器等,以保证储存液体的安全。

此外,对于大规模储罐,还应考虑配备防火、防爆和灭火系统等。

5.管道和附件:液氨储罐应配备合适的出、进料管道和其他附件,如泄放阀、气密性检测器、排气装置等,以便于运输和输送。

6.环境考虑:储罐的设立不应对周围环境造成影响,应考虑其在地形、气候、土壤等方面的适应性。

7.检修和保养:液氨储罐应设计为易于检修和保养。

储罐的喷漆、防腐处理、检修等工作,应每隔一段时间进行,以保证其长期使用效果。

液氨储罐设计分析

液氨储罐设计分析

液氨储罐设计分析
液氨储罐是专门用于储存液态氨的设备,通常用于工业生产中的氨气
储存和供应。

设计一个合适的液氨储罐需要考虑多个因素,包括材料选择、结构设计和安全措施等。

首先,材料选择是设计液氨储罐的一个关键因素。

液氨具有很强的腐
蚀性,需要选择防腐材料以延长储罐的使用寿命。

一般情况下,不锈钢和
碳钢是常用的材料。

不锈钢具有良好的耐腐蚀性能,但价格较高;碳钢价
格较低,但需要进行防腐处理以提高其耐腐蚀能力。

其次,结构设计是储罐设计的另一个重要方面。

储罐的结构设计应该
考虑到储罐容量和存放位置,以确保储罐的稳定性和安全性。

常见的液氨
储罐结构有立式储罐和卧式储罐两种。

立式储罐通常占用空间较小,适用
于有限的场地;而卧式储罐通常容量较大,占用空间较大,适用于较大的
场地。

此外,设计时还需要考虑储罐的支撑结构、密封性能和排污系统等。

最后,为了保证储罐使用过程中的安全性,应采取一系列的安全措施。

首先,储罐应采用双层结构,以防止液氨泄漏造成安全事故。

其次,储罐
应配备压力传感器和温度传感器等监测设备,及时检测并防范潜在的问题。

此外,还需要配备火灾报警和灭火系统,防止储罐火灾发生。

同时,储罐
的操作人员应定期检查和维护设备,确保设备的正常运行。

总之,设计一个合适的液氨储罐需要考虑材料选择、结构设计和安全
措施等多个方面。

通过合理优化设计,储罐可以更好地满足工业生产中的
氨气储存和供应需求,并确保在储罐使用过程中的安全性。

《课程设计液氨储罐设计》PPT课件

《课程设计液氨储罐设计》PPT课件

储罐基础施工和安装
基础施工:包 括土方开挖、 地基处理、基
础浇筑等
储罐安装:包 括储罐吊装、 就位、固定等
储罐焊接:包 括储罐焊接、
焊缝检测等
储罐防腐:包 括储罐防腐处 理、防腐层检
测等
储罐试压:包 括储罐试压、
压力检测等
储罐验收:包 括储罐验收、
验收报告等
储罐主体施工和安装
储罐基础施工:包括地基处理、基础浇筑等 储罐主体结构施工:包括罐体焊接、罐顶安装等 储罐附属设施施工:包括管道安装、阀门安装等 储罐防腐施工:包括防腐涂料涂装、防腐层施工等 储罐验收:包括外观检查、压力试验、泄漏试验等
和规范
环保设备的运 行:定期检查 环保设备的运 行情况,确保
其正常运行
环保设备的维 护:定期对环 保设备进行维 护和保养,确 保其使用寿命
和效果
06 液氨储罐的施工和验收
施工前的准备工作
熟悉施工图纸和规范要求 准备施工材料和设备 确定施工方案和进度计划
组织施工队伍和培训人员 办理相关手续和许可证 做好安全防护和环保措施
储罐附件施工和安装
储罐附件包括:安全阀、压力表、液位计、温度计等 施工前准备:检查附件质量、数量、规格等 施工步骤:按照图纸和规范进行安装,确保附件安装牢固、密封良好 验收标准:符合设计要求,满足安全、环保、节能等要求
储罐验收标准和程序
储罐验收标准:包括储罐的材质、尺寸、结构、焊接质量等
储罐验收程序:包括储罐的检查、测试、验收、记录等
检查储罐的液位计是否正常工作,确保 储罐内的液位在安全范围内
检查储罐的接地线是否连接良好,确保 储罐的安全性
储罐运行中的监控和维护
监控系统:实时监测储罐内的温度、压力、液位等参数 维护周期:定期检查储罐的腐蚀、泄漏等情况 维护措施:及时更换损坏的部件,确保储罐的正常运行 安全措施:设置报警系统,确保储罐的安全运行

33立方米液氨储罐设计

33立方米液氨储罐设计

33立方米液氨储罐设计1. 引言液氨储罐是用于储存液态氨的设备,广泛应用于化工、农业和制冷等领域。

本文将介绍一种33立方米液氨储罐的设计方案。

该储罐采用钢板焊接结构,具有坚固的强度和良好的密封性。

设计目标是确保储罐在工作条件下的安全可靠性,并满足相关标准和规范的要求。

2. 设计参数储罐的基本参数如下: - 容积:33立方米 - 材质:Q345钢- 温度:低温条件,设计工作温度为-33°C - 压力:设计压力为1.6MPa - 焊接材料:对焊钢管3. 结构设计3.1 外壳设计储罐采用圆筒形外壳设计,底部为圆锥形设计。

外壳材料选用Q345钢板,通过焊接工艺连接。

3.2 支撑设计储罐设置足够数量的支撑,以保证储罐在工作状态下能够承受压力和重力。

支撑结构采用钢材焊接而成。

3.3 进出口设计为了方便装料和排放气体,储罐设计有进出口管道。

进口管道通过安全阀进行安全控制,出口管道通过底阀进行液氨的排放。

3.4 密封设计储罐采用密封设计,以保证液氨不会泄漏。

密封件选用耐低温和耐腐蚀的材料,确保长期使用不出现渗漏问题。

4. 安全性设计4.1 压力安全储罐设计了安全阀,当压力超过设计压力时,安全阀自动打开,释放过高压力,以保证储罐不会发生爆炸等事故。

4.2 抗震安全储罐设置了抗震支撑结构,以提高整个储罐系统的抗震性能,确保在地震发生时,储罐能保持稳定且不会受到破坏。

4.3 安全排放储罐的底部设置了底阀,当需要排放液氨时,可通过打开底阀实现安全排放。

4.4 防腐蚀措施考虑到液氨的腐蚀性,储罐进行了合适的防腐蚀处理,以延长储罐的使用寿命。

5. 检验与验收储罐设计完成后,需要进行相关检验和验收。

- 设计抗压强度是否满足要求 - 安全系统工作是否正常 - 密封性能是否达标 - 各部位焊接质量是否符合要求6. 结论本文介绍了一种33立方米液氨储罐的设计方案,包括结构设计、安全性设计和检验与验收等内容。

储罐设计满足相关标准和规范要求,能够在安全可靠的情况下储存液态氨。

50立方米液氨储罐设计说明书

50立方米液氨储罐设计说明书

50立方米液氨储罐设计说明书50立方米液氨储罐是一种用于储存液氨的设备,具有广泛的应用领域,包括化工、农业、制冷等行业。

本设计说明书将详细介绍50立方米液氨储罐的结构、性能、操作要点以及安全措施,以供相关人员参考和指导。

首先,介绍储罐的结构。

50立方米液氨储罐由罐体、密封装置、进出料口、排气装置、压力表等组成。

罐体采用钢材制成,经过特殊防腐处理,确保其在长期存储液氨的环境下不受腐蚀。

密封装置采用可靠的螺栓紧固和软管连接,以保证液氨不泄漏。

进出料口和排气装置在设计上考虑了便捷性和安全性,使得装卸操作更加方便,并能有效消除气体积压。

其次,介绍储罐的性能特点。

50立方米液氨储罐具有良好的密封性能、耐腐蚀性和抗震性。

密封装置的选材和结构设计保证了液氨的密封性,有效防止液氨的挥发和泄漏。

同时,储罐的钢材材质和结构设计考虑了液氨的腐蚀性,能够在长期使用中保持稳定性。

此外,储罐经过专业设计,在地震等外力作用下能够保持稳定,保护液氨的安全。

然后,介绍储罐的操作要点。

在使用50立方米液氨储罐时,需要按照相关操作规程进行操作。

首先,操作人员需要了解储罐的结构和性能特点,熟悉液氨的特性和储罐的操作要点。

其次,操作人员需要正确连接进出料口和排气装置,确保液氨的输送畅通。

操作过程中,需要注意操作规程,确保操作的安全性和可靠性。

最后,介绍储罐的安全措施。

50立方米液氨储罐在储存液氨的同时,也需要考虑安全问题。

操作人员需严格遵守有关安全操作规程,穿戴相应的个人防护装备。

储罐周围应设有安全警示标志,以引起人们的注意和警惕。

定期对储罐进行检查和维护,确保其安全使用。

综上所述,本设计说明书详细介绍了50立方米液氨储罐的结构、性能、操作要点和安全措施。

鉴于液氨储存的重要性和风险性,操作人员在使用储罐时应该严格按照说明书操作,并加强安全意识和防护措施,确保液氨的安全储存和使用。

30m3液氨储罐设计说明书

30m3液氨储罐设计说明书

30m3液氨储罐设计说明书前言本说明书为《30m3液氨储罐设计说明书》。

本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。

目录第一章绪论 (4)(一)设计任务 (4)(二)设计思想 (4)(三)设计特点 (4)第二章材料及结构的选择与论证 (4)(一)材料选择 (4)(二)结构选择与论证 (4)第三章设计计算 (6)(一)计算筒体的壁厚 (6)(二)计算封头的壁厚 (7)(三)水压试验及强度校核 (7)(四)选择人孔并开孔确定补强 (8)(五)核算承载能力并选择鞍座 (8)(六)选择液面计 (9)(七)选配工艺接管 (9)第四章设计汇总 (10)第五章结束语 (11)第六章参考文献 (11)第一章绪论(一)设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。

(二)设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。

在设计过程中综合考虑了经济性,实用性,安全可靠性。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

(三)设计特点:容器的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。

常、低压化工设备通用零部件大都有标准,设计时可直接选用。

本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

第二章材料及结构的选择与论证(一)材料选择:纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR这两种钢种。

如果纯粹从技术角度看,建议选用20R 类的低碳钢板, 16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济,且16MnR机械加工性能、强度和塑性指标都比较号,所以在此选择16MnR钢板作为制造筒体和封头材料。

立方米液氨储罐施工方案

立方米液氨储罐施工方案

立方米液氨储罐施工方案1. 引言立方米液氨储罐是用于存储和运输液化氨的重要设备,广泛应用于化工、农业和制冷等领域。

本文档将介绍立方米液氨储罐的施工方案,包括施工准备、施工流程、安全措施和质量控制等内容,并提供相关的 Markdown 文本格式。

2. 施工准备2.1 材料准备•立方米液氨储罐主体材料:碳素钢板•其他辅助材料:焊条、焊剂、螺栓等2.2 设备准备•焊接设备:电焊机、电焊割设备等•起重设备:吊车、起重机等•质量检测设备:焊缝检测仪器、材料强度测试仪器等2.3 施工场地准备•确保施工场地平整、无杂物•设置安全警示标志•确保施工场地通风良好3. 施工流程3.1 底板安装•清理施工场地•安装支撑架•安装底板3.2 罐体安装•安装罐体侧板•焊接罐体侧板与底板•安装罐体顶板•焊接罐体顶板与侧板3.3 罐体加工•焊接加固筋•安装进出料口、排气阀等附件•焊接进出料口、排气阀等附件3.4 焊接工艺•根据焊接规范施工•进行焊接前的预热处理•使用正确的电流和电压进行焊接•焊接后进行冷却处理3.5 焊缝检测•使用焊缝检测仪器对焊缝进行检测•检测焊缝的质量和强度4. 安全措施4.1 人员安全•施工人员必须穿戴防护装备,如安全帽、防护眼镜、防护手套等•施工人员必须经过专业培训,熟悉施工操作规范和安全操作流程•施工现场必须设置安全警示标志4.2 施工场地安全•施工场地必须保持干燥,防止液氨泄露•施工场地必须远离明火和易燃物品4.3 操作安全•施工人员必须熟悉液氨的性质,了解其安全操作规范•施工人员必须严格按照操作规范进行施工•确保焊接设备和起重设备的安全使用5. 质量控制5.1 材料质量控制•检查材料证书和相关质量文件•检查材料的表面质量和尺寸规格5.2 焊接质量控制•焊接前进行预热处理•使用正确的焊接参数进行焊接•检测焊缝质量和强度5.3 安全阀和压力表检测•安装和检测液氨储罐的安全阀和压力表•确保其正常工作并符合相关安全标准结论本文档介绍了立方米液氨储罐的施工方案,包括施工准备、施工流程、安全措施和质量控制等内容。

液氨储罐的设计范文

液氨储罐的设计范文

液氨储罐的设计范文
1.储罐材料选择
液氨是一种在常温下为无色气体,液氨储罐需要选用能够承受低温和高压的材料。

常见的材料有碳钢、不锈钢和玻璃钢。

碳钢和不锈钢都具有较好的强度和耐腐蚀性,适合储存液氨。

玻璃钢具有较高的机械强度和良好的耐腐蚀性能,但需要特别注意低温下的应力开裂。

2.结构设计
液氨储罐通常是垂直圆柱形结构,底部为圆锥形或平底设计,顶部有透气装置和液位计。

储罐壁通常采用双层结构,内层负责贮存液氨,外层起到保温作用。

内外层之间的空气隔离,可以减少换热,提高保温效果。

内壁还需喷涂耐腐蚀涂层,以防止液氨对储罐壁的腐蚀。

3.安全性能
液氨是一种具有强烈刺激性和腐蚀性的气体,因此液氨储罐设计时需要采取一系列安全措施。

首先是防火措施,储罐需要设置适当的防火墙和阻火系统。

其次是安全阀和爆破片的设置,用于防止罐内压力超过安全范围。

还需要配备泄漏探测器和报警系统,以及防爆电器设备。

4.储罐周围环境
5.附属设备
液氨储罐需要配备一些附属设备,如输送系统、冷却系统、液位监测系统等。

输送系统可以将液氨导入或排出储罐,冷却系统可以保持储罐内的液氨在适当的温度范围内,液位监测系统可以实时监测储罐内的液位情况。

总结:。

课程设计-液氨储罐设计共32页

课程设计-液氨储罐设计共32页

40
50
积V
公称直 2.4 2.0 2.2 2.4 2.2 2.4 2.6 2.4 2.6 2.8 径DN
筒体长 4.8 9.4 7.6 6.2 9.8 8.0 6.6 10.2 8.4 7.2 度L
6
接管公称直径
进出放排安液人 料料空污全面孔
阀计 V≤12 65 65 50 50 50 M3
20 450 V≥16 80 80 65 65 80 M3
参见第十一章第一节人孔和手孔的内容。
3.2选择人孔结构型式和法兰密封面型式
卧式液氨储罐常用碳钢水平吊盖人孔。
3.3开孔补强计算
参见第十二章第一节开孔补强之二补强结构与计算。
储罐开设人孔,对筒壁强度削弱较大,需另行补强,通
常是在筒体外焊接补强圈,补强圈材料一般与罐体材料
相同。
3.3.1确定补强圈直径
3.3.2计算补强圈厚度
e
f
名称 公称直径 (mm)
安全阀
放空管
c 进料管
g 排污管
d 出料管
4
液氨储罐设计: 设计参数
学号≤57的同学选择序号1-10的参数,学号尾数与序号 相同即为该同学的技术特性表中的设计参数
参数 1 2 3 4 5 6 7 8 9 10
公称容 10
12
16
20 25
积V
公称直 1.6 1.8 1.6 1.8 1.8 2.0 2.0 2.2 2.0 2.2 径DN
10
液氨的饱和蒸汽压和密度(表压 = 绝对压力 - 0.1)
温度℃
饱和蒸汽 压Mpa(绝 对压力)
密度 kg/m3
温度℃
饱和蒸汽 压Mpa(绝 对压力)
密度 kg/m3

(完整word版)液氨储罐设计

(完整word版)液氨储罐设计

前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识,查阅相关书籍,小组团结合作共同完成设计。

本设计的液料为液氨。

液氨,又称为无水氨,是一种无色液体.氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。

液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。

氨作为一种重要的化工原料,应用广泛.分子式NH,分子量17。

03,相对密度0.7714g/L,熔点-77。

7℃,沸点3-33.35℃,自燃点651.11℃,蒸汽压1013。

08kPa(25.7℃)。

设计基本思路:设计压力容器要求根据化工生产工艺提出的条件,确定容器设计所需参数(P、T、D),选定材料和结构形式,通过强度计算确定容器筒体及封头壁厚。

对已制定材准的受压元件,可直接选取。

而本设计容器为318m的液氨储罐,所以要求结合所学到的知识和利用身边可以查到的资料对318m的液氨储罐进行设计.课程设计是对课程内容的应用性训练环节,是学生应用所学知识进行阶段性的单体设备或单元设计方面的专业训练过程,也是对理论教学效果的检验。

通过这一环节使学生在查阅资料、理论计算、工程制图、调查研究、数据处理等方面得到基本训练,培养学生综合运用理论知识分析、解决实际问题的能力.液氨储罐属于化工常见的储运设备,一般可分解为筒体,封头,法兰,人孔,手孔,支座及管口等几种元件。

储罐的工艺尺寸可通过工艺计算及生产经验决定.液氨储罐是合成氨工业中必不可少的储存容器,所以本设计过程的内容包括容器的材质的选取、容器筒体的性状及厚度、封头的性状及厚度、确定支座,人孔及接管、开孔补强的情况以及其他接管的设计与选取。

本设计综合考虑环境条件、介质的理化性质等因素,结合给定的工艺参数,机械按容器的选材、壁厚计算、强度核算、附件选择、焊缝标准的设计顺序,分别对储罐的筒体、封头、人孔接管、人孔补强、接管、管法兰、液位计、鞍座、焊接形式进行了设计和选择。

液氨储罐毕业设计

液氨储罐毕业设计

液氨储罐毕业设计液氨储罐毕业设计近年来,液氨储罐在工业领域中的应用越来越广泛。

液氨作为一种重要的化工原料,被广泛用于制冷、化肥生产等领域。

因此,设计和建造一座安全可靠的液氨储罐成为了工程师们的重要任务之一。

一、液氨储罐的基本结构液氨储罐通常由罐体、支撑结构、绝热层、进出料管道、安全阀等组成。

罐体是储存液氨的主体部分,通常采用钢材制造,具有良好的耐腐蚀性和密封性。

支撑结构用于支撑罐体,通常采用钢结构或混凝土结构。

绝热层的作用是减少液氨的蒸发损失,常见的绝热材料有聚苯板、玻璃棉等。

进出料管道用于液氨的进出,安全阀则用于保护储罐在超压情况下的安全。

二、液氨储罐的设计要点1. 安全性:液氨是一种具有高度腐蚀性和毒性的化学品,因此在设计液氨储罐时,安全性是首要考虑的因素。

储罐的设计应符合相关的安全标准和规范,采用合适的材料和工艺,确保储罐在正常运行和突发情况下的安全性。

2. 结构强度:液氨储罐需要能够承受内部压力和外部荷载的作用,因此结构强度是设计中的重要考虑因素。

通过合理的结构设计和材料选择,确保储罐在正常使用寿命内不会发生变形、破裂等问题。

3. 绝热性能:绝热层的设计对于减少液氨的蒸发损失至关重要。

合理选择和布置绝热材料,确保储罐的绝热性能达到要求,减少能源的浪费。

4. 操作便捷性:液氨储罐的设计应考虑到操作人员的使用便捷性。

合理设置进出料口、排气口等,方便操作和维护。

三、液氨储罐的施工和验收液氨储罐的施工需要严格按照设计图纸和相关规范进行。

施工过程中需注意施工工艺、质量控制和安全管理,确保储罐的质量和施工进度。

施工完成后,需要进行验收,包括结构强度测试、绝热性能测试、安全阀调试等。

只有通过验收并获得相关部门的许可,储罐才能投入使用。

四、液氨储罐的运行和维护液氨储罐的运行需要有专业的操作人员进行监控和维护。

定期检查储罐的安全阀、进出料管道等设备,确保其正常运行。

同时,定期检测储罐的腐蚀情况,及时进行维修和防腐处理,延长储罐的使用寿命。

3立方液氨储罐设计

3立方液氨储罐设计

3立方液氨储罐设计D②工艺条件的要求化工设备是为工艺过程服务的,应保证在指定的生产工艺条件下完成指定的生产任务,即满足相应的工艺条件要求③经济合理性要求在满足设备的安全运行和工艺条件的前提下,结构要合理,制造要简单,尽量减少加工量,降低制造成本。

④便于操作和维护例如所设置的阀门、平台、人孔形位置要合适,易损件便于更换等。

⑤环境保护要求所谓化工设备失效的一个新概念是“环境失败”即有害物质泄露到环境中,生产过程残留无法消除的有害物质及噪音等,化工容器在设计时包括化工工厂的选址均应考虑这些因素的影响。

(2)主要设计参数的确定及说明本储罐设计公称容积为3m3,公称直径Dg为1220mm,材料为16MnR在温度t ≤42℃时工作,液氨的饱和蒸汽压为1.8MP,取P=1.8MP,取t][σ=170MP,则双面对接焊的全焊透对接焊缝为100%无损,根据书本表5-4可得焊接接头系数全部无损检测φ=1.00。

二材料及结构的选择与论证(1)材料选择与论证本贮罐选用16MnR制作罐体和封头。

材料:本贮罐选用16MnR制作罐体和封头。

16MnR表示平均含碳量为0.16%的容器钢,属于低碳钢,它的塑性好,焊接性和锻造性良好,适宜制造化工容器等焊接件和设备封头等冲压件,也可用来制造受载不大的螺栓,或经渗碳后制作齿轮和轴等零件。

所以,本液氨储罐选用16MnR制作罐体和封头。

(2)结构选择与论证:封头型式的确定、人孔选择、法兰型式选择确定。

①封头形式的确定本液氨储罐的封头选用椭圆形封头,椭圆封头是由曲率半径连续变化而成的,所以,封头上的应力分布也是均匀变化的,他的受力状态比蝶形封头要好,虽不如半球封头,但对各种封头的强度和经济合理性进行比较。

从钢材耗用量考虑:球形封头用量最少,比椭圆形封头节约25.8%,平板封头的用量最多,是椭圆形封头的4倍多。

从制造考虑:椭圆形封头制造方便,平板封头则因直径和厚度较大,坯材的获得、车削加工、焊接等方面都遇到不少困难,且封头与筒体厚度相差悬殊,结构也不合理。

立方米卧式液氨储罐的设计

立方米卧式液氨储罐的设计

2.8m3卧式液氨储罐的设计一、题目来源题目来源:实际生产二、研究的目的和意义储罐是一种用于储存液体或气体的密封容器,主要用于存储或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、冶金、消防、轻工、环保、制药、食品、城市燃气等行业得到了广泛的应用,储存介质涵盖了(丙烷、丁烷、丙烯、乙烯、液化石油气、液氨等)液化气体、氧气、氮气、天然气和城市煤气等气体,在国民经济发展中起着不可替代的作用。

其种类很多,大体上有:滚塑储罐,玻璃钢储罐,陶瓷储罐、橡胶储罐、焊接塑料储罐等。

就储罐的性价比来讲,现在以滚塑储罐最为优越,滚塑储罐又可以分钢衬塑储罐,全塑储罐两大系,分别包括立式,卧式,运输,搅拌等多个品种。

而卧式液化气储罐是目前中、小型液化气站储存和运输液化气的主要容器之一,在石油化工行业中应用广泛并占有相当大的比例。

卧式储罐的容积一般都小于100m3,通常用于生产环节或加油站。

年来随着制造工艺的提高其容积有逐渐增大的趋势。

随着容积的增大,储罐在设计和使用中的安全可靠性就变得极为重要。

然而我国卧式储罐设计制造技术的还远落后于世界先进水平,制造较困难,加工费用高,且焊接、检验技术要求高。

所以研究卧式储罐设计及其焊接工艺对我国石油化工等行业有着极其重要的意义。

三、阅读的主要参考文献及资料名称[1]吕宜涛,压力容器制造质量控制的研究,天津大学学位论文,1997年9月.[2]马自勤,孙丽,王秀伦等:产品结构树在CAPP信息管理中的应用,大连铁道学院学报,2001年9月,第22卷,第3期.[3]王锦,张振明,黄乃康:集成环境下面向产品的 CAPP系统,计算机工程与应用,2000年4月.[4]肖凌,姚建初:集成环境下的计算机辅助工艺设计系统,机械设计与制造工程,2000年7月,第29卷,第4期.[5]赵丽萍,陈鸿:面向CAPP的工作流程管理研究与应用,计算机工程与应用,2001年第17期.[6]高清,马云辉,马玉林:先进制造系统中的质量保证,高技术通讯,1995年5月.[7]张曙,张为民:新一代CAPP系统,组合机床与自动化加工技术,1996年第10期.[8]汤善甫,朱思明主编:化工设备机械基础,第2版,华东理工出版社,2004年12月[9] 陈祝年,焊接工程师手册。

立方米液氨储罐设计

立方米液氨储罐设计

260立方米液氨储罐设计(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《化工容器设计》课程设计说明书260m3液氨储罐设计专业:过程装备与控制工程班级:过控1班学号:姓名:目录1 设计参数的选择................................................................................................ 错误!未定义书签。

设计的题目 .................................................................................................. 错误!未定义书签。

原始数据....................................................................................................... 错误!未定义书签。

储存量 ........................................................................................................... 错误!未定义书签。

设计压力....................................................................................................... 错误!未定义书签。

设计温度....................................................................................................... 错误!未定义书签。

课程设计液氨储罐设计

课程设计液氨储罐设计

湖北大学化学化工学院化工设备机械基础课程设计计算说明书课程设计题目: 液氨储罐设计姓名邹晓双学号专业年级12级化工2班指导教师鲁德平日期目录一、设计任务书 (1)二、液氨储罐设计参数的确定 (2)1、根据要求选择罐体和封头的材料 (2)2、确定设计温度与设计压力 (2)3、其他设计参数 (2)三、筒体和封头壁厚的计算 (2)1.1设计参数的确定 (3)1.2筒体壁厚的设计 (3)1.3刚度条件设计筒体的最小壁厚 (3)2、罐体封头壁厚的计算 (3)3、罐体的水压试验 (3)3.1液压试验压力的确定 (3)3.2液压试验的强度校核 . (3)3.3压力表的量程、水温的要求 (3)3.4液压试验的操作过程 (3)4、罐体的气压试验 (4)4.1气压试验压力的确定 (4)4.2气压试验的强度校核 (4)4.4、气压试验的操作过程 (4)四、罐体的开孔与补强 (4)1、开孔补强的设计准则 (4)2、开孔补强的计算 (4)2.1、开孔补强的有关计算参数 .......................5 2.2、补强圈的设计 (5)五、选择鞍座并核算承载能力 (5)1、支座的设计 (5)3、安装位置 (6)4、人孔的设计 (6)5、液面计的设计 (7)六、选配工艺接管 (7)1、液氨进料管 (7)2、液氨出料管 (7)3、排污管 (7)4、安全阀接口管 (7)5、压力表接口管 (8)七、设计结果一览表 (9)八、液氨储罐装配图(见附图)...............................一、设计任务书试设计一液氨储罐,其公称容积、储罐内径、罐体(不包括封头)长度见下表。

使用地点:家乡--湖北省十堰市竹溪县。

技术特性表二、液氨储罐设计参数的确定1、根据要求选择罐体和封头的材料纯液氨腐蚀性小,贮罐可选用一般钢材,但由于压力较大,可以考虑20R、16MnR.这两种钢种。

如果纯粹从技术角度看,建议选用20R类的低碳钢板, 16MnR钢板的价格虽比20R 贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济。

(完整word版)液氨储蓄罐的机械设计

(完整word版)液氨储蓄罐的机械设计

XX学院本科课程设计题目: 液氨储蓄罐的机械设计专业: 应用化学学院: 化学XX 学院班级: XX级XX 班姓名: XXX 学号: XXX指导教师: XXX目录一、设计条件 (3)二、设计内容 (3)1.选择符合要求的材料 (3)2.确定设计参数 (3)3.罐体壁厚设计 (4)4.封头壁厚设计 (5)5.校核水压实验强度 (5)6.应力的计算 (6)7.鞍座的设计 (8)8.人孔的设计 (9)9.人孔的补强 (10)10.接口管的设计 (11)五、课程设计收获 (12)六、设计符号说明 (12)七、参考资料 (13)液氨储罐的机械设计一、设计时间2016年10月25日-2016年12月25日二、设计条件1.工艺条件;温度40℃, 氨的饱和蒸汽压1.55MPa2.贮罐筒体为圆柱形, 封头为标准椭圆封头3.贮罐容积V(单位m3): 204.使用地点:XX三、设计内容1.选择符合要求的材料因为液氨的腐蚀性小, 贮罐可选用一般钢材, 但由于液氨贮罐属于带压容器, 可以考虑20R和16MnR这两种钢种。

而16MnR在中温(475℃以下)及低温(-40℃以上)的机械性能优于20R, 是使用十分成熟的钢种, 质量稳定, 可使用在-40-475℃场合, 故在此选择16MnR钢板作为制造筒体和封头的材料。

2.确定设计参数(1)设计温度题目中给出设计温度取40℃。

(2)设计压力在夏季液氨储罐经太阳暴晒, 随着气温的变化, 储罐的操作压力也在不断变化。

通过查阅资料可知包头最高气温为40℃, 通过查表可知, 在40℃时液氨的饱和蒸汽压(绝对压力)为 1.55MPa, 密度为580kg/m3, 而容器设计时必须考虑在工作情况下可能遇到的工作压力和相对应的温度两者相结合中最苛刻工作压力来确定设计压力。

一般是指容器顶部最高压力与相应的设计温度一起作为设计载荷条件, 其值不低于工作压力。

此液氨储罐采用安全法, 依据《化工设备机械基础》若储罐采用安全法时设计压力应采用最大工作压力/的/倍, 取设计压力/(已知/表压)所以 /。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立方米液氨储罐设计 Revised as of 23 November 2020《过程设备设计》课程设计说明书设计项目: 20M3液氨储罐设计所属院系:化学化工学院专业班级:化学工程与工艺1304班学号:学生姓名:指导教师:张铱鈖2016年01月20日摘要本次课程设计任务为设计一个容积为20m3的液氨储罐,采用常规设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、人孔、接管等进行设计,然后对其进行强度校核,最后形成合理的设计方案。

设计说明书的正文部分包括工艺设计和机械设计,其中机械设计包括结构设计和强度计算两部分内容,结构设计中包括设备一系列零部件的数据,强度计算包括厚度计算、水压试验、气密性试验等。

一、设计任务书20M3液氨储罐设计课程设计要求及原始数据(资料)一、课程设计基本要求1、按照国家压力容器设计标准、规范设计要求,掌握典型过程设备设计的过程。

2、设计计算采用手算,要求设计思路清晰,计算数据准确、可靠。

3、工程图纸要求计算机绘图。

4、独立完成。

二、原始数据表1 设计条件表目录一、设计任务书 (2)二、课程设计内容 (5)工艺设计 (5)一、设计压力的确定 (5)二、设计温度的确定 (6)机械设计 (6)一、结构设计 (6)①设计条件 (6)②结构设计 (7)1、压力容器选择 (7)物料的物理化学性质压力容器的类型压力容器的用材2、筒体和封头的结构设计 (8)容器的筒体和封头壁厚的设计 (8)三·设备的设计计算1、筒体名义厚度的初步确定 (8)2、封头壁厚的计算 (8)容器的水压试验 (10)3、各个接管的位置及法兰的选择 (11)接管的设计法兰的设计垫片的选择4、人孔的选取 (13)5、液面计的设计 (15)6、鞍座的计算 (16)筒体的质量封头的质量液氨的质量附件的质量确定鞍座类型鞍座安装位置确定7、焊接接头设计 (17)回转壳体的焊接结构设计接管与壳体的焊接结构设计带补强圈的接管的焊接8.开孔补强计算 (18)四、参考文献 (20)二、课程设计内容课程设计内容包括工艺设计和机械设计两部分工艺设计工艺设计的内容是根据设计任务提供的原始数据和生产工艺要求,通过计算和选型确定设备的轮廓尺寸。

其中设计储量: tρfV W =式中 f = V =20m3 由表2得:t ρ =563㎏/m3=m3 故 W =×20×=表二 液化气体饱和蒸汽压及饱和液密度一、设计压力的确定设计压力应根据最高工作压力来确定。

对于盛装液化气体的压力容器,可根据《固定式压力容器安全技术监察规程》TSG R0004-2009 经查表2得50℃下液氨饱和蒸汽压(绝压)为。

工作压力W p =(-)MPa=设计压力为容器的设计载荷条件之一,其值不得低于最高工作压力,而最高工作压力系指容器顶部在正常工作过程中可能产生的最高表压。

装设安全阀的容器,考虑到安全阀开启动作的滞后,容器不能及时泄压,设计压力不得低于安全阀的开启压力,通常可取最高工作压力的—倍,所以设计压力P= 液柱静压力为:Pa28.12138563Pa 9.82.2g gh i 氨氨氨=⨯⨯=⨯⨯≤=D P ρρ%5%5780.0a1.2a 28.12138氨<==∴MP P P P , 于是忽略了液柱静压力的影响,得到MPa P P c 1.2== 二、设计温度的确定根据液氨储罐工作温度为-20~50℃ 选择设计温度t=50℃机械设计机械设计包括结构设计和强度计算两部分 一、结构设计 ① 设计条件表3 结构设计条件表表4 管口表②结构设计化工设备的结构设计包括设备承压壳体(一般为筒体和封头)及其零部件的设计。

设备零部件包括支座、接管和法兰、人孔和手孔、液面计、视镜等。

我国已经制订了化工设备通用零部件的系列标准,设计时可根据具体设计条件按照附录中给出的相关标准进行选用。

1、压力容器选择(a)物料的物理化学性质氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常,将气态的氨气通过加压或冷却,得到液态氨。

液氨,又称为无水氨,是一种无色液体,有强烈的刺激性气味,液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,采用钢瓶和槽车装运。

(b)压力容器的类型化工设备的主体是压力容器,容器的强度决定着设备的安全性,为了加强压力容器的安全监察,保护任命生命和财产的安全,国家质量监督局颁布了压力容器安全技术监察规程这是一部对压力容器安全技术监督提出基本要求的法规,压力容器设计、安装、使用、检验、修理和改造等单位必须遵守的法规,为了有利于安全技术监督和管理,压力容器安全技术监察规程将其管辖范围内的压力容器划分为三类,分别为第一类压力容器、第二类压力容器和第三类压力容器。

本次设计压力容器中的介质为液态氨,属于中度危害,是第二组介质且设计压力为中压,所以将其划分为第二类压力容器。

(c )压力容器的用材正确选择材料对于保护设备的安全使用和降低成本是至关重要的。

压力容器用材料包括容器及压壳体用钢和设备零部件用材料,零部件有受压元件(如接管、法兰)和非受压元件(如支座),所用材料涉及钢板、钢管、锻件、型钢及钢棒等。

压力容器受元件用钢应符合GB150《钢制压力容器》中的有关规定,对于非受压元件用钢,当与受压元件焊接时,也应是焊接性能良好的钢材。

压力容器通常采用钢板经过成型焊接而成,法兰视具体情况可采用钢板或锻件,螺栓和螺柱应采用钢棒,接管一般应采用无缝钢管,支座所用材料涉及钢板,型钢及钢管,因为使用温度在-20℃~50℃,设计压力为,所以选用Q345R ,封头采用标准椭圆形封头,同样采用Q345R 。

采用16Mn 为钢管的材料。

法兰采用16Mn Ⅱ 2、筒体和封头的结构设计(a )筒体公称直径和筒体长度的确定:筒体直径一般由工艺条件决定,但是要符合压力容器的公称直径。

标准椭圆型封头是中低压容器经常采用的封头形式。

封头公称直径必须与筒体的公称直径相一致。

公称体积mm D mm L V i 2200,4600,m 203g === 二、强度计算① 容器的筒体和封头壁厚的设计 1、筒体名义厚度的初步确定:筒体设计选用6~16 mm 厚度的Q345R ,50℃下其许用应力][t σ=185MPa 。

计算厚度 : 式中,cp ――计算压力,MPa ;i D ――圆筒内直径,mm ;t ][σ――容器元件材料在设计温度下的许用应力,MPa ;φ――圆筒的焊接接头系数双面对接焊缝,100%无损检测则φ= 计算厚度 []mm mm P D P CtiC 678.121.21185222001.22=-⨯⨯⨯=-Φ⨯=σδ取腐蚀裕量2C =mm 2,查表得负偏差1C =, 所以取n δ=16mm ,则 2、封头壁厚的计算本设计采用标准椭圆封头(2:1)即:K (形状系数)=。

式中0.1=ϕ 根据公式,封头的设计壁厚为: []mm 52.155.022ctic d =+-Φ=C PD P σδ查表:取钢板的负偏差mm C 30.01=,则筒体的名义壁厚为:mm C mm d 82.15161=+>=δδ。

标准规定以内径为公称直径的标准椭圆形封头(代号EHA)的直边高度只与公称直径有关:DN ≤2000mm 时,直边高度为25mm ; DN>2000mm 时,直边高度为40mm 。

由于所设计的筒体公称直径DN=2200mm ≥2000mm , 所以直边高度为h =40mm , (b ) 椭圆形封头内表面积、容积:查GB/T25198-2010《压力容器用封头》中EHA 椭圆形封头内表面积、容积,如下表:表5 EHA 椭圆形封头内表面积、容积1、容器的水压试验所谓压力试验,就是用液体或气体作为工作介质,在容器内施加比它的设计压力还要高的试验压力,以检查容器在试验压力下是否有渗漏、明显的塑性变形以及其他缺陷。

压力试验分为液压试验和气压试验两种,一般采用液压试验,而且普遍采用水为液压试验介质,故本次设计采用水压试验。

根据GB150标准的规定,液压试验时式中,][σ——容器元件材料在试验温度下的许用应力,MPa ;t ][σ――容器元件材料在设计温度下的许用应力,MPa 。

所以MPa 625.21851851.225.1=⨯⨯=T P而圆筒的应力ee T T D P δδσ2)(+=式中 T σ――试验压力下圆筒的应力,MPa ; i D ――圆筒内直径,mm ;e δ――圆筒的有效厚度,mm ;sσ――圆筒材料在试验温度下的屈服点,MPa ;φ――圆筒的焊接接头系数。

设计容器: 所以,厚度校核合格。

3、各个接管的位置及法兰的选择(a )接管的设计:各物料进出管及检测仪表等接管内伸形式为插入式。

开孔:入口DN80,出口DN80,放净口DN70,排气孔DN70,备用口DN100,安全阀口DN70,压力表接口DN25,液位计口DN20,人孔DN450。

由《输送流体用无缝钢管》查得各管的外径以及壁厚;外伸的尺寸由实际工程决定;对于液氨的入口管,其伸进的管长应大于筒体中心线的100-200mm,进料管伸进设备内部并将管口的一端切成450,为了是避免物料沿设备内壁流动,减少磨蚀和腐蚀并且为了在短时间内将物料注满容器。

表6 各接管设计表两相邻开孔中心的间距(对曲面间距以弧长计算)应不小于两孔直径之和的两倍,其他管口如液相出口管,安全阀接口,压力表接口,气相管,放气管,排污管等管间的间距均由下述来设计并计算:)(2mnddL+≥上部:人孔,进料口,备用口,压力计口,排气口,安全阀接口,人孔中心线与筒体左间距:800mm人孔中心线与进料口心线间距:600mm进料口中心线与备用口中心线的间距:400mm备用口中心线与压力表接口中心线的间距:400mm安全阀口中心线与筒体右间距:400mm排气口中心线与安全阀口中心线间距:40mm下部:净放口,出口出口中心线与筒体间距:200mm净放口中心线与筒体间距:200mm(b)法兰的设计:法兰设计可根据法兰标准进行选型设计,也可按GB150相关条款进行设计。

法兰有压力容器法兰和管法兰,二者属不同的标准体系。

设计内容如下:根据设计压力、操作温度和法兰材料决定法兰的公称压力PN;水压实验的压力P T=,因此选择高一级别的公称压力,因此PN=根据公称直径DN、公称压力PN及介质特性决定法兰类型及密封面型式,法兰选带颈对焊法兰(标准HG/T20954-2009)带颈对焊钢制凹凸面法兰表7 PN25带颈对焊钢制管法兰及密封面尺寸(mm)(c)垫片的选择:根据温度、压力及介质腐蚀性选择垫片材料选用柔性石墨复合垫4、人孔的选取压力容器人孔是为了检查设备的内部空间以及安装和拆卸设备的内部构件。

相关文档
最新文档