考研数学三真题及答案详解
2024考研(数学三)真题答案及解析完整版
2024考研(数学三)真题答案及解析完整版2024年全国硕士研究生入学考试数学(三)真题及参考答案考研数学三考什么内容?数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。
而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
考研的考试内容有哪些一、考研公共课:政治、英语一、英语二、俄语、日语、数学一、数学二、数学三,考研公共课由国家教育部统一命题。
各科的考试时间均为3小时。
考研的政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)。
考研的英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)。
数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。
数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。
这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。
二、考研专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。
其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。
2023考研数学三真题+参考答案
2023年全国硕士研究生入学统一考试数学(三)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要 求,请将所选项前的字母填在答题纸指定位置上.(1)已知函数/(x^) = ln(^ + |xsinj ;|)7 贝ij ((b 4i(0,1)不存在如|(。
,1)存在,而I 如|(0,1)不存在,齐|(0,1)存在(c)加)'■£ (0,1)均存在(D) £(。
,1),东(°,1)均不存在【答案】A'1(2)设/(x) = <J1 + X 2的一个原函数为( )(x + l)cosx 9x > 0(A)歹(x )= ]ln(Jl+/ -x)5x < 0I (x + l)cosx-sinx , x > 0(B)歹(x) =〈ln( J ] + *2 — x) +1, (x + l)cosx-sinx ?(c ) f (x ) = [m (Jl + x2 +x)9x<0(x + l)sinx + cos x, x > 0(D) F(x) = ]ln( J l + x? + x) +1, (x + l)sinx + cosx 9x < 0x > 0x < 0x > 0【答案】D(3)若微分方程y" + ay+by = 0的解在(-oo 5+oo)上有界,则()(A)a < 0,b > 0(c) a = Q.b > 0【答案】c(B) a > 0,b > 0(D) a = 0,b<0(4)已知q 〃〈如(〃 =12...),若级数 与Z 如 均收敛’贝绝对收敛”是“n=ln=ln=l OOZ 如绝对72=1收敛”的()(A)充分必要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件【答案】A) (5)设刀’3为〃阶可逆矩阵’为矩阵肱的伴随矩阵,则(A)-睥、(B)'附-1史1牛*>\O附](C)-%*、(D)项史<O〔°(6)二次型/(X P X2?X3)=+x2)2+(%!+x3)2-4(x2-x3)2的规范形为()(A)评+计⑻评一W(C)评+k-4乃2(D)y T2+y22-y32【答案】B(7)已知向量OC]=2,oc2u .2],2、15&2=0//若丫既可由a p a2线性表示’也可由p p p2线性表示'则1=().3](A)k3,keR〔Jr-n (C)k1,keR【答案】D"3、(B)k5"J(D)k5,kERk(8)设随机变量X服从参数为1的泊松分布,则E(|X-EX|)=((A)1(B)1(O2(D)1e2e)【答案】C(9)设X"2,…,X〃为来自总体NW’S)的简单随机样本,上匕,…,匕为来自总体N(%2S)的1._1m简单随机样本,且两样本相互独立,记x=-Yx i7尸=_£匕,〃钉m,=i1n___1m*=—r£(x,-》)2,s;=―^(K-r)2测()〃—1钉秫—1旨(A)夺〜F(n,m) (C)气F(n,m)【答案】D(B)§(D)£(10)设X],X2为来自总体N(|1q2)的简单随机样本,其中0(0>0)是未知参数,记o=QX]-犯|,若E(o)=o,则()(A)五2【答案】A(C)声(D)伊二、填空题:11-16小题,每小题5分,共30分,请将答案写在答题纸指定位置上.(11)limx2X—82-xsinl-coslX X【答案】£3(12)已知函数/('J)满足序(3)='*.气=则/(V3,3)=【答案】-382n(13)5二总(2〃)!【答案]2(14)设某公司在,时刻的资产为f(t),从0时刻到,时刻的平均资产等于业—t,假设/(,)连续且/(0)=0,则/(0=【答案】2®_"1)(15)已知线性方程组ax x+x3=1尸吐+易=0有解,其中点为常数,若邑+2x2+QX3=0ax x+bx2=201a1=4,2aa11\a\则12q=a b0【答案】8(16)设随机变量X与Y相互独立’且X〜3(1,°),y~5(2,77),72g(0,1),则X+Y与X—Y的相关系数为________【答案】-!3三、解答题:17-22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)已知可导函数V=*3)满足ae x+y2+y-ln(l+x)cos y+b-Q,且贝0)=0,*'(0)=0(1)求的值;(2)判断x=0是否为火、)的极值点【答案】(1)a=l,b=-l(2)x=0是y(x)的极大值点(18)(本题满分12分)已知平面区域D={(x,y)0<y<—l_,x>l}xJl+、2(1) 求。
考研数学三真题及答案
6、设二次型 f x , x , x 在正交变换 x Py 下的标准形为 2 y2 y2 y2 ,其中 P e , e , e ,
133
1
2
3
123
若 Q e1, e3, e2 ,则 f x1, x3 , x3 在正交变换 x Qy 下的标准形为( )
(n +1)! nn (n+1)
= limç
n
÷n = 1 <1 ,所以(D)是收敛的。
n (n +1) n! n ç1+ n÷ e
1 1 ç 1÷ 1
1 ç 1÷
对于(B)选项, n1
n
ln
1
n
,
ln
ç1+
n
÷
,所以
n
n ln ç1+ n÷
11 ,根据 p 级数的
nn
5
f 1 2
11. 若函数 z z(x, y) 由方程 ex2 y3z xyz 1确定,则 dz (0,0)
【答案】 1 dx 2dy
3
zz 【解析】这道题目主要考查的是隐函数求偏导数。对于这道题目求全微分,分别求出 ,
xy
ex2
y3z
1
3
z x
【答案】2
【解析】对于这道题目主要是考查变上限积分求导数。
(1)
1
f (t)dt 1
0
x2
x2
(x) 0 xf (t)dt x0 f (t)dt
(x) x2 f (t)dt xf x 2 2x 0
(1)
1
0f
2020年考研数学(三)真题(后附解析答案)
2020年全国硕士研究生招生考试数学(三)(科目代码:303)一、选择题(1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母写在题后的括号内.)(1)设1口心—°= b,则lim sinfQ)—sina=().x-^a x——a x-*a3C——a(A)6sin a(B)6cos a(C)6sin/(a)iIn I14-rr I(2)函数心)=二的第二类间断点的个数为((e—1)(j?—2)(A)l(B)2(03(3)设奇函数心)在(-00,-1-00)上具有连续导数,则().(A)f[cos/"(/)+/^(Olldr是奇函数J0(E)「[cos/(i)+/(O]d^是偶函数J0(C)[[cos/"'(/)+y(t)]d/是奇函数J0(D)「[cos是偶函数J0(D)bcos/(a) ).(D)4(4)设幕级数—2)"的收敛区间为(一2,6),则工a”Q+l)2n的收敛区间为().n=\n=1(A)(-2,6)(B)(-3,l)(0(-5,3)(D)(-17,15)(5)设4阶矩阵A=(a“)不可逆,a*的代数余子式A12丰O,aj,a2,a3,a,为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*X=0的通解为().(A)X=^1a1+^2a2+^3a3,其中k x,k2,k.为任意常数(B)X=^1a1+k2a2+k3a4,其中k,,k2,k3为任意常数(C)X=bS+展as+匕。
4,其中紅,k2,k3为任意常数(D)X=k i a2k2a3+怂。
4,其中ki,k2^k3为任意常数(6)设A为3阶矩阵,a】,a?为A的属于特征值1的线性无关的特征向量,as为A的属于特征I1°°\值一1的特征向量,则满足P_1AP=0-10的可逆矩阵卩为().'o01'(A)(a j a3,a2,—a3)(B)(a〕+ct2,a2,—a3)(C)(a1+a3,—a3,a2)(D)(a T+a2»—a3,a2)(7)设A,B,C为三个随机事件,且PC A)=P(£)=P(C)=±,P(AB)=O,P(AC)=P(BC)=2,412则A,B,C中恰有一个事件发生的概率为().3215(A)Z(B)T(C)7(D)12(8)设随机变量(X,Y)服从二维正态分布N(0,0;1,4;-,则下列随机变量中服从标准正态分布且与X相互独立的是().(A)啤(X+Y)(B)尝(X—丫)55(C)y(X+Y)(D)y(X-Y)二、填空题(9〜14小题,每小题4分,共24分.请将答案写在题中的横线上.)(9)设z=arctanRy+sin(z+了)],贝0dz|(0,…)=______.(10)曲线jc y+e2iy=0在点(0,—1)处的切线方程为________.(H)设某厂家生产某产品的产量为<2,成本C(Q)=100+13Q,该产品的单价为/,需求量—2,则该厂家获得最大利润时的产量为(12)设平面区域。
2023年考研数学三真题及答案-完整版
且喜平常度,切忌神慌乱。
畅游题海后,金榜题君名。
考试在即,祝你成功。
2023年考研数学三真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上. 1. 已知函数(,)ln(|sin |)f x y y x y =+,则( ).A.(0,1)f x ∂∂不存在,(0,1)fy∂∂存在B.(0,1)f x ∂∂存在,(0,1)fy∂∂不存在C. (0,1)f x ∂∂存在,(0,1)fy∂∂存在D. (0,1)f x ∂∂不存在,(0,1)fy∂∂不存在【答案】A.【解析】由已知(,)ln(|sin |)f x y y x y =+,则(,1)ln(1|sin1|)f x x =+,(0,)ln f y y =.当0x >时,(,1)ln(1sin1)f x x =+,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==∂;当0x <时,(,1)ln(1sin1)f x x =-,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==-∂;所以(0,1)(,)f x y x ∂∂不存在.又(0,1)1(,)d (0,)1d y f x y f y y y=∂==∂,存在.故选A.2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3. 若0y ay by '''++=的通解在(,)-∞+∞上有界,则( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D.【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eea a x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.4. 设n n a b <,且1nn a∞=∑与1nn b∞=∑收敛,1nn a∞=∑绝对收敛是1nn b∞=∑绝对收敛的( ).A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【解析】由已知条件可知1()nn n ba ∞=-∑为收敛的正项级数,进而1()n n n b a ∞=-∑绝对收敛.设1nn a∞=∑绝对收敛,则由n n n n n n n b b a a b a a =-+≤-+与比较判别法,得1nn b∞=∑绝对收玫;设nb∞∑绝对收敛,则由n n n n n n n a a b b b a b =-+≤-+与比较判别法,得1nn a∞=∑绝对收敛.故选A.5.,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A BC.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A 【答案】B. 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O A B O O B O B O B O E OA B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E AB O O B O B O A B 1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A .故选B.. 6.222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.7.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ B. 35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C. 11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D. 15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D.【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T 1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.8.设X 服从参数为1的泊松分布,则(|()|)E X E X -=( ).A.1eB.12C.2eD.1【答案】C.【解析】方法一:由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故111100|1|(1)(|()|)(|1|)e e e e!!k k k k E X E X E X k k ∞∞----==---=-==++∑∑12=2e (1)eE X -+-=. 故选C.方法二:由于0e !k xk x k ∞==∑,于是1111e 1(1)!(1)!k k x k k x x x k x k x +∞∞==--==++∑∑于是 1121111e 1(1)e 1(1)!(1)!(1)!k k k x x k k k kx x x x x k k x k x x -+∞∞∞==='''⎛⎫⎛⎫⎛⎫---+==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑∑∑. 由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故 111(1)(|()|)(|1|)e e !k k E X E X E X k ∞--=--=-=+∑111=e e (1)!k k k ∞--=++∑1121(1)e 1=e e x x x x --=-++112e e e --=+=. 111(|()|)(||)[e ()]e ()1e E X E X E Y E Y E X ----==+=+-=.故选C.9.设12,,,n X X X L 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y L 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11ni i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==--∑,22211()1m i i S Y Y m ==--∑,则( ) A. 2122(,)S F n m S : B. 2122(1,1)S F n m S --: C. 21222(,)S F n m S : D. 21222(1,1)S F n m S --: 【答案】D.【解析】由两样本相互独立可得212(1)n S σ-与222(1)2m S σ-相互独立,且 2212(1)(1)n S n χσ--:,2222(1)(1)2m S m χσ--:, 因此2122122222(1)(1)2(1,1)(1)(1)2n S n S F n m m S S m σσ--=----:,故选D.10. 已知总体X 服从正态分布2(,)N μσ,其中0σ>为未知参数,1X ,2X 为来自总体X的简单随机样本,记12ˆ||a X X σ=-,若µ()E σσ=,则a =( ).A.2B.2【答案】A.【解析】由与1X ,2X 为来自总体X 的简单随机样本,1X ,2X 相互独立,且21(,)X N μσ:,22(,)X N μσ:,因而212~(0,2)X X N σ-,令12Y X X =-,所以Y 的概率密度为2222()ey Y f y σ-⋅=,所以22222240(||)|ed 2ed y y E Y y y y σσ--+∞+∞⋅-∞===⎰⎰,由12ˆ()(||)E aE X X σσ=-=,即(||)aE Y a σ==,解得a =A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.求极限211lim 2sincos x x x x x →∞⎛⎫--= ⎪⎝⎭____________. 【答案】23. 【解析】1220sin 2cos 11lim 2sincos limx tx t tt t x x x x t=→∞→--⎛⎫-- ⎪⎝⎭222230000sin 111cos sin 2limlimlim lim t t t t t ttt t t t t t t →→→→---=+=+1126=+ 23=. 12.已知函数(,)f x y 满足22d d d (,)x y y xf x y x y -=+,且(1,1)4f π=,则f =____________.【答案】3π. 【解析】由已知22(,)f x y y x x y ∂-=∂+,22(,)f x y xy x y ∂=∂+,则 22(,)d arctan ()y x f x y x y x y yϕ-==-++⎰, 所以22(,)()f x y xy y x yϕ∂'=+∂+,即()0y ϕ'=,()y C ϕ=, 从而(,)arctanxf x y C y=-+,又(1,1)4f π=,解得2C π=,故(,)arctan2x f x y yπ=-,arctan 233f ππ=-=.13.20(2)!nn x n ∞==∑____________.【答案】e e 2x x-+.【解析】令20()(2)!nn x S x n ∞==∑,则(0)1S =,且211()(21)!n n x S x n -∞='=-∑,(0)0S '=, 22210()()(22)!(2)!n nn n x x S x S x n n -∞∞==''===-∑∑,从而可得微分方程()()0S x S x ''-=,解得12()e e x xS x C C -=+,又(0)1S =,(0)0S '=,解得1212C C ==,故 20e e ()(2)!2n x xn x S x n -∞=+==∑. 14.某公司在t 时刻的资产为()f t ,则从0时刻到t 时刻的平均资产等于()f t t t-,假设()f t 连续且(0)0f =,则()f t =____________.【答案】2(e 1)t t --.【解析】由已知可得()d ()tf t t f t t tt=-⎰,整理变形20()d ()t f t t f t t =-⎰,等式两边求导()()2f t f t t '=-,即()()2f t f t t '-=,解得一阶线性微分方程通解为()2(1)e t f t t C =-++,又(0)0f =,解得2C =,故()2(e 1)tf t t =--.15. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a= ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.16. 设随机变量X 与Y 相互独立,且()1,X B p :,()2,Y B p :,(0,1)p ∈则X Y+与XY -的相关系数为____________.【答案】13-【解析】由题意可得,()(1)D X p p =-,()2(1)D Y p p =-,又由X 与Y 相互独立可知,()()()D X Y D X D Y ±=+,故(,)X Y X Y ρ+-==()()(1)2(1)1()()(1)2(1)3D X D Y p p p p D X D Y p p p p ----===-+-+-三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知函数()y y x =满足2e ln(1)cos 0xa y y x yb ++-++=,且(0)0,(0)0y y '==.(1)求,a b 的值;(2)判断0x =是否为函数()y y x =的极值点.【解】(1)将(0)0y =代入2e ln(1)cos 0x a y y x y b ++-++=得0a b +=. 方程2e ln(1)cos 0x a y y x y b ++-++=两边对x 求导得1e 2cos ln(1)sin 01x a yy y y x y y x'''++-++⋅=+, 将(0)0y '=代入上式得10a -=,解得1,1a b ==-.(2)由(1)知1e 2cos ln(1)sin 01xyy y y x y y x'''++-++⋅=+,上式两边再对x 求导得 22111e 2()2cos sin sin ln(1)cos ln(1)sin (1)11x y yy y y y y y x y y y x y y x x x ⎡⎤''''''''+++++⋅+++⋅++⋅⎢⎥+++⎣⎦将(0)0,(0)0y y '==代入上式得(0)2y ''=-,所以0x =是函数()y y x =的极大值点.18.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成得旋转体的体积 【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t tt ππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰. 19.(本题满分12分)已知22{(,)|(1)1}D x y x y =-+≤,求1|d d Dx y -⎰⎰.【解】令22221{(,)|(1)1,1}D x y x y x y =-+≤+≤,则|1|d d Dx y ⎰⎰)(111d d 1d d D D D x y x y -=+⎰⎰⎰⎰)(11d d 21d d DD x y x y =+⎰⎰⎰⎰2cos 122232cos 234327d d 2d d 39ππθππθππρρθπρρθ---=-+=⎰⎰⎰⎰20.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数.(1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a aξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a a η''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+,其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<,22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<,两式相加可得212()()()()2f f f a f a a ξξ''''+-+=,又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=,即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.21.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A . (1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A , 即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫⎪== ⎪ ⎪-⎝⎭P AP Λ.22.(本题满分12分)设随机变量X 的概率密度函数为2e (),(1e )xx f x x =-∞<<+∞+,令e X Y =. (1)求X 的分布函数; (2)求Y 的概率密度函数; (3)判断Y 的数学期望是否存在.【解】(1)设X 的分布函数为()X F x ,由分布函数的定义可得2e 1(){}()d d 1,(1e )1et xxX t t F x P X x f x x t x -∞-∞=≤===--∞<<+∞++⎰⎰. (2)设Y 的分布函数为()Y F y ,概率密度为()Y f y ,由分布函数的定义可得(){}{e }X Y F y P Y y P y =≤=≤,当0y ≤时,()0Y F y =; 当0y >时,1(){}{ln }(ln )11Y X F y P Y y P X y F y y=≤=≤==-+. 综上,00,()110.1Y y F y y y ≤⎧⎪=⎨->⎪+⎩,, 故Y 的概率密度函数200,()10.(1)Y y f y y y ≤⎧⎪=⎨>⎪+⎩,,(3)由(2)知,220011()()d d d (1)(1)Y yy E Y yf y y y y y y +∞+∞+∞-∞+-===++⎰⎰⎰20011d d 1(1)y y y y +∞+∞=-++⎰⎰ 01ln(1)=1y y +∞⎡⎤=+++∞⎢⎥+⎣⎦, 故Y 的数学期望不存在.。
2023年考研数学真题卷及答案(数学三)
2023年全国硕士研究生招生考试(数学三)试题及答案解析1.已知函数,ln sin f x y y x y ,则A. 0,1fx 不存在,0,1f y 存在.B. 0,1fx 存在,0,1f y 不存在.C. 0,1fx ,0,1f y均存在.D. 0,1fx ,0,1f y均不存在.x 0,2.函数f (x )(x 1)cos x ,x 0的一个原函数为 x ),x 0,A.F (x )(x 1)cos x sin x ,x 0. x ) 1,x 0,B.F (x )(x 1)cos x sin x ,x 0. x ),x 0,C.F (x )(x 1)sin x cos x ,x 0. x ) 1,x 0,D.F (x )(x 1)sin x cos x ,x 0.上有界,则B.a 0,b 0.D.a 0,b 0.3.若微分方程y ay by 0的解在 ,A.a 0,b 0.C.a 0,b 0.4.已知a n b nn 1n 1,2, ,若级数n 1an与n 1bn均收敛,则“n 1an绝对收敛”是“bn绝B.充分不必要条件.D.既不充分也不必要条件.对收敛”的A.充分必要条件.C.必要不充分条件.5.设,A B 为n 阶可逆矩阵,E 为n 阶单位矩阵, M 为矩阵M 的伴随矩阵,则=A E OB A..A B B A O B A B..B A A B O A B C..B A B A OA B D..A B A B OB A 6二次型f x 1,x 2,x 3 x 1 x 22x 1 x 324 x 2 x 32的规范形为A.y 12y 22B.y 12y 22C.y 12y 224y 32D.y 12y 22y 322311 12 2 15 09 17.已知向量α1 ,α2 ,β1 ,β2 ,若γ既可由α1,α2线性表示,也可由β1,β2线性表示,则γ 34 3A.k,k R50 3 B.k1 ,k R1 2 1 C.k,k R1 D.k 58,k R8.设随机变量X 服从参数为1的泊松分布,则EA.1eB.12C.X EX2eD.19.设X 1,X 2, ,X n 为来自总体N1,2的简单随机样本,Y 1,Y 2, ,Ym为来自总体N 2,2 2 的简单随机样本,且两样本相互独立,记111111n m n m i i n m n m i 1i 1X X i ,Y Y i ,S 12 X i X 2,S 22Y i Y1 1 2,则A. 2122,S F n m S B. 21221,1S F n m S C. 21222,S F n m S D. 212221,1S F n m S 10.设X 1,X 2为来自总体N,2的简单随机样本,其中 0 是未知参数.记a X 1 X 2,若E,则aA.2B.2二、填空题1111.l x x x i mx 22 x sin cos _______.2πx d y y d x x y 12.已知函数f (x ,y )满足d f (x ,y ),f 1,1 24则f .!=2nx 2nn 013. .14.设某公司在t 时刻的资产为f (t ),从0时刻到t 时刻的平均资产等于f (t )tt ,假设f (t )连续且f (0)=0,则f (t )=1231230,20x ax x x ax 15.已知线性方程组 x ax 1 bx 2 2,有解,其中a ,b 为常数,若a110a211a 4,则1a 112aa b 0.16.设随机变量X 与Y 相互独立,且X B 1,p ,Y B 2,p ,p 0,1 ,则X +Y 与X Y .的相关系数为三、解答题17.已知可导函数y =y (x )满足ae x y 2 y ln(1 x )cos y b 0,且y (0) 0,y '(0) 0.(1)求a ,b 的值;(2)判断x 0是否为y (x )的极值点.18.已知平面区域D ={(x,y )|0 y x 1}.(1)求D 的面积;(2)求D 绕x 轴旋转所成旋转体的体积.D1|d x d y .19.已知平面区域D {(x ,y )|(x 1)2 y 2 1}.计算二重积分 |20.(12分)设函数f (x )在[-a ,a ]上具有2阶连续导数,证明:1a(1)若f (0)=0,则存在 a ,a ,使得f ''( )2[f (a ) f ( a )];(2)若f(x )在(-a ,a )内取得极值,则存在 a ,a 使得1.2f ''a2f (a ) f ( a )12x 1x 2x 3x 1x 2x 3x21.设矩阵A 满足对任意x 1,x 2,x 3均有A2 . x x3 x 2 x 3(1)求A ;(2)求可逆矩阵P 与对角矩阵 ,使得P 1AP Λ.xx22.设随机变量变量X 的概率密度为f x 1 e e 2, x ,令Y e x.(1)求X 的分布函数;(2)求Y 的概率密度;(3)Y的期望是否存在?2023年全国硕士研究生入学统一考试数学三答案一、选择题1.A2.D3.C4.A5.D6.B7.D8.C9.D10.A空题11、二、填23π12、113、e x2+2e −x14、f (t )=2(1-t )-2e t 15、816、p (p-1)将y (0) 0代入ae x2yy y1 1xcos y ln(1 x )(sin y )y 0得a 0 1 0,所以a 1b 1 1xcos y ln(1 x )sin y y 0(2)由e x2yy y1两边对x 求导,得:(1)将(0,0)代入得a b 01e x 2 y 22yy y(1 1x )2cos y 11xsin ysin y y ln(1 x ) 2sin yy cos y y 01 x代入,得1 y (0) 1 0,y (0) 2 0,x 0为极大值.17【解析】2141tan ttan t xsec t (1)24se tan c tsec 2tdt 4t dt2csc tdt1)21(2)11 1x 2 x 2dx 112 1 1x 2 x dx 4)dx (1 18【解析】D 1 {(x ,y ∣)x 2 y 2 1,(x 1)2 y 2 1 )x 2 y 2 1,(x 1)2 y 2 1D 2 (x ,y∣D 1D 2d x d y1 1d x d y原式=161310829D 12cos2d 1 1 r r d r 1πd x d y 2 6d 1 r r d r 2其中 19【解析】π2π022259182D 2DD 1D 1d x d y 2cos1 1 1 r 1 r d r1 π d x d yd x d yd x d y d所以4439π原式=.1 x 22f【解析】(1)f (x ) f (0) f (0)x 1 22f 112f a 2,f ( a ) f (0)( a ) a 2,其中 1 a ,0 ,则f (a ) f(0)a2 0,a .12 1 2 f ( a ) f (a )ff a 212 1 2 ff 2f (a )a f ( a ) f , 1, 2 a ,a ,由介值定理可知平均值 即证(2)x 0 0设f (x )在x =x 0处取得极值即x 0 ( a a ),f22x 0( )ff (x ) f x 0 f x x 0 x x 020代入x a ,x a21f f ( a ) f x 0 a x 02(1), 1 a ,x 02n 1f f (a ) f x 0a x 02(2), 2 x 0,a(2)-(1)得222100()()22f f f a f a a x a x222100|()()|22f f f a f a a x a x2200()()22f f a x a x 2200()2f a x a x 220()222f a x220()f a x2()2f a ,12 ()max f f f 其中,,a a 21()|()()|2f f a f a a. 21.【解析】12123311111011x x x xx x2(1)由题可知,A 11.2011 111A (2)|A E | (2 )(2)( 1) 01232,1,2A 中1 A 中对应的线性无关特征向量1(4,3,1).T 2 A 中对应的线性无关特征向量21,0,12T3 A 中对应的线性无关特征向量3(0,1,1)123,,p 1212P AP22.【解析】xf (t )dt ( x )(1)F (x ) txt e 2dte121 1xt d e te1t x1 e 11 1e x(2) 当0y 时22111()(ln )(1)(1)Y X y f y f y y y y y 210(1)()0 Y y y f y其它 (3) 20d (1)EY y y y,2(1)y y 1y ,所以期望不存在.。
2023年全国硕士研究生招生考试数学试题(数学三)真题解析
2023 考研数学三真题及解析一、选择题:1~10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.已知函数 f( ,x y ) = ln ( y + x sin y ),则( ).(A )()0,1f x ∂∂不存在,()0,1fy∂∂存在(B )()0,1f x∂∂存在,()0,1fy ∂∂不存在(C )()0,1f x∂∂()0,1f y∂∂均存在(D )()0,1f x∂∂()0,1f y∂∂均不存在【答案】(A )【解析】 本题考查具体点偏导数的存在性,直接用定义处理,()0,10f =()()()()0,1000ln 1sin1sin1,10,1sin1,0lim lim limsin1,0x x x x x f x f x fx x x x x +−→→→+ −→∂=== ∂−→ 故()0,1f x∂∂不存在()()()0,1110,0,1ln lim lim 111y y f y f f y y y y →→−∂===∂−−,()0,1f y∂∂存在,选(A )2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A)), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤=+−>(C)), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤=++> 【答案】(D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C==+∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫由于()F x 在0x =处可导性,故()F x 在0x =处必连续因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln , 1.x x f x x x −< = ≥则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<= −≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=+−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= ++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin axy x c x c x ββ−=+. 只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题.4.已知()1,2,n n a b n <=,若1nn a∞=∑与1n n b ∞=∑均收敛.则1nn a∞=∑绝对收敛是1n n b ∞=∑绝对收敛的( )(A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件(D )既非充分也非必要条件 【答案】(A ) 【解析】由题设条件知()1nn n ba ∞=−∑为收敛的正项级数,故()1n n n b a ∞=−∑也是绝对收敛的若1nn a∞=∑绝对收敛,则n n n n n n n b b a a b a a =−+≤−+,由比较判别法知,1n n b ∞=∑绝对收敛;若1n n b ∞=∑绝对收敛,则则nn n n n n n aa b b a b b =−+≤−+,由比较判别法知,1n n a ∞=∑绝对收敛;故应选(A )【评注】本题考查正项级数的比较判别法,及基本不等式放缩.关于上述不等式《基础班》第一讲在讲解数列极限定义时就反复强调过.5.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B OB A(C )****−B A B A OA B (D )****−B A A B OA B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− −==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B 选(D )【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B6.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y + (B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B )【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143 =− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+ 222222322332323126616222x x x x x x x x x x x +++++−=+−()22231237222x x x x x +=+−− 故所求规范形为()2212312,,f x x x y y =−【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ).(A)21y (B) 2212y y + (C) 2212y y − (D) 222123y y y ++7.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k − (D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β= − ,2343β−=−时,求所有既可由21,αα线性表出,又可21,ββ线性表出的向量。
2020考研数学三真题及解析
2020全国硕士研究生入学统一考试数学三试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设()()limx af x f a b x a →-=-,则sin ()sin lim x a f x ax a→-=- ( )(A )sin b a (B )cos b a (C )sin ()b f a (D )cos ()b f a 【答案】(B ) 【解析】由()lim,x a f x ab x a →-=-得(),()f a a f a b '==,则(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ()(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()limlim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---; 1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x e x f x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞---- 故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。
2023年考研数学三真题及答案
2023年考研数学三真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上. 1. 已知函数(,)ln(|sin |)f x y y x y =+,则( ). A.(0,1)f x ∂∂不存在,(0,1)fy ∂∂存在 B.(0,1)f x ∂∂存在,(0,1)fy ∂∂不存在 C. (0,1)f x ∂∂存在,(0,1)fy ∂∂存在 D.(0,1)f x ∂∂不存在,(0,1)fy ∂∂不存在 【答案】A.【解析】由已知(,)ln(|sin |)f x y y x y =+,则(,1)ln(1|sin1|)f x x =+,(0,)ln f y y =.当0x >时,(,1)ln(1sin1)f x x =+,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==∂;当0x <时,(,1)ln(1sin1)f x x =-,(0,1)0(,)d (,1)sin1d x f x y f x x x=∂==-∂;所以(0,1)(,)f x y x ∂∂不存在.又(0,1)1(,)d (0,)1d y f x y f y y y=∂==∂,存在.故选A.2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3. 若0y ay by '''++=的通解在(,)-∞+∞上有界,则( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D.【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eeaax x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.4. 设n n a b <,且1nn a∞=∑与1nn b∞=∑收敛,1nn a∞=∑绝对收敛是1nn b∞=∑绝对收敛的( ).A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【解析】由已知条件可知1()nn n ba ∞=-∑为收敛的正项级数,进而1()n n n b a ∞=-∑绝对收敛.设1nn a∞=∑绝对收敛,则由n n n n n n n b b a a b a a =-+≤-+与比较判别法,得1nn b∞=∑ 绝对收玫;设nb∞∑绝对收敛,则由n n n n n n n a a b b b a b =-+≤-+与比较判别法,得1nn a∞=∑绝对收敛.故选A.5.,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A OB AB.****||||⎛⎫- ⎪⎝⎭B A A B OA B C.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A 【答案】B. 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O A B O O B O B O B O E OA B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E A B O O B O B OA B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B O B A .故选B..6. 222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为 A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.7.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C. 11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D. 15,8k k R ⎛⎫ ⎪∈ ⎪⎪⎝⎭【答案】D.【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα. 8.设X 服从参数为1的泊松分布,则(|()|)E X E X -=( ).A.1eB.12C.2eD.1【答案】C.【解析】方法一:由已知可得,1e {}(0,1,2,)!P X k k k -===,()1E X =,故 111100|1|(1)(|()|)(|1|)e e e e!!k k k k E X E X E X k k ∞∞----==---=-==++∑∑12=2e (1)eE X -+-=.故选C.方法二:由于0e !k xk x k ∞==∑,于是1111e 1(1)!(1)!k k x k k x x x k x k x +∞∞==--==++∑∑于是1121111e 1(1)e 1(1)!(1)!(1)!k k k x x k k k kx x x x x k k x k x x -+∞∞∞==='''⎛⎫⎛⎫⎛⎫---+==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑∑∑. 由已知可得,1e {}(0,1,2,)!P X k k k -===,()1E X =,故 111(1)(|()|)(|1|)e e !k k E X E X E X k ∞--=--=-=+∑111=e e (1)!k k k ∞--=++∑1121(1)e 1=e ex x x x --=-++112e e e --=+=. 111(|()|)(||)[e ()]e ()1e E X E X E Y E Y E X ----==+=+-=.故选C. 9.设12,,,n X X X 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11mi i Y Y m ==∑,22111()1n i i S X X n ==--∑,22211()1m i i S Y Y m ==--∑,则( ) A. 2122(,)S F n m S B. 2122(1,1)S F n m S --C.21222(,)S F n m S D. 21222(1,1)S F n m S --【答案】D.【解析】由两样本相互独立可得212(1)n S σ-与222(1)2m S σ-相互独立,且2212(1)(1)n S n χσ--,2222(1)(1)2m S m χσ--,因此2122122222(1)(1)2(1,1)(1)(1)2n S n S F n m m S S m σσ--=----,故选D.10. 已知总体X 服从正态分布2(,)N μσ,其中0σ>为未知参数,1X ,2X 为来自总体X的简单随机样本,记12ˆ||a X X σ=-,若()E σσ=,则a =( ).A.2B.2C.【答案】A.【解析】由与1X ,2X 为来自总体X 的简单随机样本,1X ,2X 相互独立,且21(,)X N μσ,22(,)X N μσ,因而212~(0,2)X X N σ-,令12Y X X =-,所以Y 的概率密度为2222()ey Y f y σ-⋅=,所以22222240(||)|ed 2ed y y E Y y y y σσ--+∞+∞⋅-∞===⎰⎰,由12ˆ()(||)E aE X X σσ=-=,即(||)aE Y a σ==,解得2a =,故选A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.求极限211lim 2sincos x x x x x →∞⎛⎫--= ⎪⎝⎭____________. 【答案】23. 【解析】122sin 2cos 11lim 2sincos limx tx t tt t x x x x t =→∞→--⎛⎫-- ⎪⎝⎭222230000sin 111cos sin 2limlim lim lim t t t t t ttt t t tt t t →→→→---=+=+1126=+ 23=. 12.已知函数(,)f x y 满足22d d d (,)x y y x f x y x y -=+,且(1,1)4f π=,则f = ____________.【答案】3π. 【解析】由已知22(,)f x y y x x y ∂-=∂+,22(,)f x y xy x y ∂=∂+,则 22(,)d arctan ()y xf x y x y x y yϕ-==-++⎰,所以22(,)()f x y xy y x yϕ∂'=+∂+,即()0y ϕ'=,()y C ϕ=, 从而(,)arctanx f x y C y =-+,又(1,1)4f π=,解得2C π=,故(,)arctan2x f x y yπ=-,23f ππ=-=.13.20(2)!nn x n ∞==∑____________. 【答案】e e 2x x-+.【解析】令20()(2)!nn x S x n ∞==∑,则(0)1S =,且211()(21)!n n x S x n -∞='=-∑,(0)0S '=,22210()()(22)!(2)!n nn n x x S x S x n n -∞∞==''===-∑∑,从而可得微分方程()()0S x S x ''-=,解得12()e e x xS x C C -=+,又(0)1S =,(0)0S '=,解得1212C C ==,故 20e e ()(2)!2n x xn x S x n -∞=+==∑.14.某公司在t 时刻的资产为()f t ,则从0时刻到t 时刻的平均资产等于()f t t t-,假设()f t 连续且(0)0f =,则()f t =____________.【答案】2(e 1)tt --.【解析】由已知可得()d ()tf t t f t t tt=-⎰,整理变形20()d ()t f t t f t t =-⎰,等式两边求导()()2f t f t t '=-,即()()2f t f t t '-=,解得一阶线性微分方程通解为()2(1)e t f t t C =-++,又(0)0f =,解得2C =,故()2(e 1)tf t t =--.15. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120aa a b=________.【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.16. 设随机变量X 与Y 相互独立,且()1,X B p ,()2,Y B p ,(0,1)p ∈则X Y+与XY -的相关系数为____________.【答案】13-【解析】由题意可得,()(1)D X p p =-,()2(1)D Y p p =-,又由X 与Y 相互独立可知,()()()D X Y D X D Y ±=+,故(,)X Y X Y ρ+-==()()(1)2(1)1()()(1)2(1)3D X D Y p p p p D X D Y p p p p ----===-+-+-三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知函数()y y x =满足2e ln(1)cos 0xa y y x yb ++-++=,且(0)0,(0)0y y '==.(1)求,a b 的值;(2)判断0x =是否为函数()y y x =的极值点.【解】(1)将(0)0y =代入2e ln(1)cos 0x a y y x y b ++-++=得0a b +=. 方程2e ln(1)cos 0xa y y x yb ++-++=两边对x 求导得1e 2cos ln(1)sin 01x a yy y y x y y x'''++-++⋅=+, 将(0)0y '=代入上式得10a -=,解得1,1a b ==-.(2)由(1)知1e 2cos ln(1)sin 01xyy y y x y y x'''++-++⋅=+,上式两边再对x 求导得 22111e 2()2cos sin sin ln(1)cos ln(1)sin (1)11x y yy y y y y y x y y y x y y x x x ⎡⎤''''''''+++++⋅+++⋅++⋅⎢⎥+++⎣⎦将(0)0,(0)0y y '==代入上式得(0)2y ''=-,所以0x =是函数()y y x =的极大值点.18.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成得旋转体的体积 【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰ 222244sin 1d dcos sin 1cos t t t t tππππ==--⎰⎰241cos 11lnln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰. 19.(本题满分12分)已知22{(,)|(1)1}D x y x y =-+≤,求|1|d d Dx y ⎰⎰.【解】令22221{(,)|(1)1,1}D x y x y x y =-+≤+≤,则1|d d Dx y ⎰⎰)(111d d 1d d D D D x y x y -=+⎰⎰⎰⎰)(11d d 21d d DD x y x y =+-⎰⎰⎰⎰2cos 122232cos 234327d d 2d d 39ππθππθππρρθπρρθ---=-+=⎰⎰⎰⎰20.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数.(1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a aξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a a η''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+,其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<,22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<,两式相加可得212()()()()2f f f a f a a ξξ''''+-+=,又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=,即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<,2200()()()()2!f a x f a f x η''-=+,02x a η<<,两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-,所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=, 即21|()||()()|2f f a f a aη''≥--.21.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A .(1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A , 即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .(2)111101||211(2)211011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫⎪== ⎪ ⎪-⎝⎭P AP Λ.22.(本题满分12分)设随机变量X 的概率密度函数为2e (),(1e )xx f x x =-∞<<+∞+,令e X Y =. (1)求X 的分布函数; (2)求Y 的概率密度函数;(3)判断Y 的数学期望是否存在.【解】(1)设X 的分布函数为()X F x ,由分布函数的定义可得2e 1(){}()d d 1,(1e )1et xxX t t F x P X x f x x t x -∞-∞=≤===--∞<<+∞++⎰⎰. (2)设Y 的分布函数为()Y F y ,概率密度为()Y f y ,由分布函数的定义可得(){}{e }X Y F y P Y y P y =≤=≤,当0y ≤时,()0Y F y =; 当0y >时,1(){}{ln }(ln )11Y X F y P Y y P X y F y y=≤=≤==-+. 综上,00,()110.1Y y F y y y ≤⎧⎪=⎨->⎪+⎩,, 故Y 的概率密度函数200,()10.(1)Y y f y y y ≤⎧⎪=⎨>⎪+⎩,,(3)由(2)知,220011()()d d d (1)(1)Y yy E Y yf y y y y y y +∞+∞+∞-∞+-===++⎰⎰⎰20011d d 1(1)y y y y +∞+∞=-++⎰⎰ 01ln(1)=1y y +∞⎡⎤=+++∞⎢⎥+⎣⎦, 故Y 的数学期望不存在.。
2020考研数学三真题及答案解析
的收敛区间,只需要求出
lim
n→∞
an+1 an
的值即可,
∞
而条件告诉我们幂级数 ∑ nan (x − 2)n 的收敛区间为 (−2, 6) ,即收敛半径为 4 n=1
lim (n = + 1)an+1 lim n += 1 an+1 li= m an+1 1
n→∞ nan
n→∞ n an
a n→∞ n
旺旺id 河北师大研胜教育
积函数为偶函数的变限积分函数为奇函数。所以,本题选 A ;对于 C和D 选项, f ′(x) 为偶
函数,则 cos= f ′(x) cos f ′(−x) 为偶函数, f (x) 为奇函数,则 cos f ′(x) + f (x) 既非奇函数又
非偶函数。
∞
∞
(4).已知幂级数 ∑ nan (x − 2)n 的收敛区间为 (−2, 6) ,则 ∑ an (x + 1)2n 的收敛区间为
2020 年全国硕士研究生入学统一考试
数学(三)试题及解析
一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个
选项是符合题目要求的.
(1)设 lim f (x) − a = b ,则 lim sin f (x) − sin=a ( )
x→a x − a
x→a
x−a
(A) x =k1α1 + k2α2 + k3α3 (C) x = k1α1 + k2α3 + k3α4
(B) x =k1α1 + k2α2 + k3α4 (D) x = k1α2 + k2α3 + k3α4
2020考研数学三真题及答案解析
旺旺id 河北师大研胜教育
积函数为偶函数的变限积分函数为奇函数。所以,本题选 A ;对于 C和D 选项, f ′(x) 为偶
函数,则 cos= f ′(x) cos f ′(−x) 为偶函数, f (x) 为奇函数,则 cos f ′(x) + f (x) 既非奇函数又
非偶函数。
∞
∞
(4).已知幂级数 ∑ nan (x − 2)n 的收敛区间为 (−2, 6) ,则 ∑ an (x + 1)2n 的收敛区间为
又 ABC ⊂ AB , P( ABC) ≤ P( AB) = 0
原式 = 1 − 1 + 1 − 1 + 1 − 1 − 1 = 5 4 12 4 12 4 12 12 12
(8) .若二维随机变量 (X ,Y ) 服从 N 0,0;1,4;− 1 ,则下列服从标准正态分布且与 X 独立的
2
是(
4
12
()
(A). 3
4
(B). 2
3
(C) . 1
2
(D). 5
12
旺旺id 河北师大研胜教育
【答案】(D)
【解析】
P( ABC) + P( ABC) + P( ABC) = P( A I B UC) + P(B I A UC) + P(C I A U B) = P( A) − P( AB) − P( AC) + P( ABC) + P(B) − P( AB) − P(BC) + P( ABC) + P(C) − P( AC) − P(BC) + P( ABC)
dx
(11)设产量为 Q ,单价为 P ,厂商成本函数为 C(Q=) 100 +13Q ,需求函数为 Q= (P) 800 − 2 ,
-历年考研数学三真题及答案解析
是c+等价无穷小,则(C) R = 3,c = 4已知 f(x)在 X = O 处可导,且 /(0) = 0,则 Iim x ~f M~2 / CV)Λ→0设{冷}是数列,则下列命题正确的是OOX若£心收敛’则∑(∕G H -I +U 2π)收敛/1-1n-1X OC若£(%如)收敛,则收敛“■]/1-1OO X若X ©收敛,则X(∕Y 2^1 T6)收敛 ∕ι≡lπ-! 若X("2-1 Tf 2』收敛‘则X ©收敛π-l ∕ι≡lπ JT π设/ =JJIn(Sin x)dx , J = JJ In(COt x)dx, K = U In(COS x)dx 贝IJ 八 J , K的大 小关系是解,k lt k 2为任意常数.则Ax = β的通解为(A) k = l,c = 4(B) IC = ^C =-4⑷-2/(0)(B) -/'(O) (C) /(O) (D) 0(C) (D)(A) I<J<K (B) I<K<J (C) J <I<K (D) K<J<I⑸ 设A 为3阶矩阵・将A 的第2列加到第1列得矩阵3.再交换B 的第2行与第31 O OU O 0,行得单位矩阵记为片=1 1 O,£ = O O 1,0 0 1’O 1 O 丿(C) P 2P 1 (D) P['P ∖(6)设人为4x3矩阵,7,J Il > “3 是非齐次线性方程组AX = 0的3个线性无关的(B) P^P I (A)砒 ,则4 =(B)t h∑211 + k2{η2-η^(C)T h;+ & (% - 帀)+ £(“2 - 7)(D)+ «2(〃2 一〃1)+ 鸟3(〃3一帀)(7)设F i(x), F2(X)为两个分布函数,其相应的概率密度f l(x), /I(X)是连续函数, 则必为概率密度的是(A)∕1U)Λ(x)(B) If2(X)FM(C) ∕1(X)F2(X)(D) f l(x)F2(x) + f2(x)F i(x)(8)设总体X服从参数2(Λ>0)的泊松分布,X P X l,..∙X,1(∕z≥2)为来自总体的简1" IilZil单随即样本,贝IJ对应的统iiS7;=-yx(., T l =——Vx1-+-X,,刃台^ H-I ⅛r IJ '(A) ET i > ET2i DT l > DT2(B) ETl > ET^DT i < DT2(C) ET x < ET2.DT x > DT1(D) ET x < ET1,DT x < DT1二、填空题:旷14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.X(9)设/(x) = IimX(I+ 3r)7,则 / (X) = __ ・∕→0X(10)设函数2 = (1 +丄)匚则^I(II= _______ ・y(11)曲线tan(x + y + -)="在点(0,0)处的切线方程为_______ ・4(12)曲线y = 直线X = I及X轴所囤成的平面图形绕X轴旋转所成的旋转体的体积 _____ .(13)设二次型/(X P X2,X3)= XΓAΛ-的秩为1, A中行元素之和为3,则/在正交变换下X = Qy的标准型为 ____ •(14)设二维随机变⅛(X,K)服从N(“,“;bSb?;。
2023年全国硕士研究生招生考试考研《数学三》真题及详解
2023年全国硕士研究生招生考试考研《数学三》真题及详解一、选择题:1~10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.已知函数f (x ,y )=ln (y +|xsiny|),则( )。
A .()0,1fx ∂∂不存在,()0,1f y ∂∂存在B .()0,1fx ∂∂存在,()0,1f y ∂∂不存在C .()0,1fx ∂∂,()0,1f y ∂∂均存在 D .()0,1fx ∂∂,()0,1f y ∂∂均不存在 【答案】A【解析】f (0,1)=ln (1+0)=0,由偏导数的定义,可得:()()()()0000,1ln 1sin1,10,1lim lim sin1lim 0x x x x x f x f fx x xx →→→+-∂===∂-因为00lim 1lim 1x x x x x x +-→→=≠=-,所以()0,1f x ∂∂不存在。
因为()()()1110,10,0,1ln 1lim lim lim 111y y y f y f f y y y y y →→→-∂====∂--,所以()0,1fy ∂∂存在。
2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为()。
A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧-+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧++≤⎪=⎨⎪++>⎩【答案】D【解析】当x ≤0时,可得:()(1d ln f x x x C ==++⎰⎰当x >0时,可得:()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx xx x x xx x x C =+=+=+-=+++⎰⎰⎰⎰在x =0处,有:(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 由于原函数在(-∞,+∞)内连续,所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧+++≤⎪=⎨⎪+++>⎩⎰令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国硕士研究生入学统一考试数学三试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的( )()A 跳跃间断点. ()B 可去间断点. ()C 无穷间断点.()D 振荡间断点.解:B分析:()()0()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰,所以0x =是函数()g x 的可去间断点。
(2)设f 连续,221x y +=,222x y u +=,1u >,则()22,Df u v F u v +=,则Fu∂=∂( ) 解:选A分析;用极坐标得()222()2011,()vu uf r r Df u v F u v dv rdr v f r dr +===⎰⎰⎰(3)设(,)f x y =则函数在原点偏导数存在的情况是( )解:C分析:0011(0,0)limlim 00xx x x e f x x →→--'==--00011lim lim 100xx x x e e x x →+→+--==--,故000011lim lim 00xx x x e e x x -→+→---≠--,所以偏导数不存在。
所以偏导数存在。
故选C(4)曲线段方程为()y f x =函数在区间[0,]a 上有连续导数则定积分0'()axf x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.解:()C分析:0()()()()aa axf x dx xdf x af a f x dx '==-⎰⎰⎰其中()af a 是矩形面积,0()af x dx ⎰为曲边梯形的面积,所以0()axf x dx '⎰为曲边三角形的面积。
(5)设A 为n 阶非0矩阵E 为n 阶单位矩阵若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.解:()C分析:23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆。
(6)设1221A ⎛⎫=⎪⎝⎭则在实数域上与A 合同矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭. ()C 2112⎛⎫⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.解:()D分析:()()()2212142313021E A λλλλλλλλ---==--=--=+-=--则121,3λλ=-=。
记1221D -⎛⎫= ⎪-⎝⎭,则则121,3λλ=-=正、负惯性指数相同,故选()D(7)随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.解:()A 分析:(8)随机变量()0,1X N :,()1,4Y N :且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=. ()D {}211P Y X =+=.解:选()D 分析: 用排除法设Y aX b =+,由1XY ρ=,知道,X Y 正相关,得0a >,排除()A 、()C 由~(0,1),~(1,4)X N Y N ,得排除()B故选择()D二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .解:1分析:由()()22lim lim 11x c x c f x f x c c c+-→→=⇒+=⇒=(10)函数3411x x f x x x +⎛⎫+= ⎪+⎝⎭,求积分()2f x dx =⎰ .解:1ln 32分析:222111112x xx x f x x x x x x ++⎛⎫+== ⎪⎝⎭⎛⎫++- ⎪⎝⎭所以()22t f t t =- (11)2()Dx y dxdy -=⎰⎰ .其中22:1D x y +≤解:4π 分析:()22221()2D DD x y dxdy x dxdy x y dxdy -==+⎰⎰⎰⎰⎰⎰21200124d r rdr ππθ==⎰⎰(12)微分方程0,(1)1,xy y y '+==求方程的特解y = .解:1y x=分析:由,,ln ln dy y dy dx y x dx x y x -==-=-所以1x y =,又(1)1y =,所以1y x=.(13)设3阶矩阵A 的特征值1,2,2,14A E --= . 解:A 的特征值为1,2,2,则存在可逆矩阵P ,使得分析:1111112,,2P AP B A PBP A PB P -----⎛⎫⎪==== ⎪ ⎪⎝⎭, 因111212B -⎛⎫ ⎪⎪⎪= ⎪⎪ ⎪⎝⎭,则134131B E --== (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == . 解:112e -分析:因为 22()DX EX EX =-,所以 22EX =,X 服从参数为1的泊松分布, 所以 {}1122P X e -==三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限21sin limln x xx x→. 解: 22001sin 1sin limln lim ln 11x x x x x x x x →→⎛⎫=+- ⎪⎝⎭(16) (本题满分10分)设z z =(,)x y 是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时,求(1)dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂. 解:①()()22xdx ydy dz x y z dx dy dz ϕ'+-=++⋅++()()()122dz x dx y dy ϕϕϕ'''+=-++-+ ②(17) (本题满分10分)()f x 是周期为2的连续函数,(1)证明对任意实数都有()()22t t f x dx f x dx +=⎰⎰(2)证明()()()202xt t g x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数.解: (1)对于()2t tf x dx +⎰,令2x u =+,则()()22t ttf x dx f u du +=+⎰⎰因为()f x 的周期为2,所以()()220t tf x dx f x dx +=⎰⎰ 所以()()()()()202222t t ttf x dx f x dx f x dx f x dx f x dx ++=++=⎰⎰⎰⎰⎰(2)()()()22022x t t g x f t f s ds dt ++⎡⎤+=-⎢⎥⎣⎦⎰⎰因为()()22t tf x dx f x dx +=⎰⎰所以()()2222x t x xtxf s dsdt f s dsdt +++=⎰⎰⎰⎰所以()()()()()220222g x g x f t dt f s ds g x +=+-=⎰⎰所以()g x 是周期为2的周期函数 (18) (本题满分10分)求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤解:(19) (本题满分10分)已知年复利为0.05,现存a 万元,第一年取出19万元,第二年取出28万元,…第n 年取出10+9n 万元,问a 至少为多少时,可以一直取下去? 解:由题得 设0.051()9nx n f x ne ∞-==∑两边求积分 由0x >,0.050.050()180(1)1xxxe f x dx e--=--⎰ 对上式两边求导0.050.050.0520.0520.059()180(1)(1)x xx x e e f x e e ----==-- 令1x =,则0.050.050.05219()9(1)(1)nn e f x nef e -∞--====-∑所以a 至少应为3795. (20) (本题满分11分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭OO O ,现矩阵A 满足方程AX B =,其中()1,,T nX x x =L ,()1,0,,0B =L ,(1)求证()1n A n a =+(2)a 为何值,方程组有唯一解,求1x (3)a 为何值,方程组有无穷多解,求通解 解:①②方程组有唯一解由Ax B =,知0A ≠,又(1)n A n a =+,故0a ≠。
记n n A A ⨯=,由克莱姆法则知, ③方程组有无穷多解 由0A =,有0a =,则 故()()|1r A B r A n ==-0Ax =的同解方程组为23000n x x x =⎧⎪=⎪⎨⎪⎪=⎩K ,则基础解系为()1,0,0,,0Tk K ,k 为任意常数。
又0101011000001000⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪ ⎪⎪ ⎪=⎪⎪ ⎪⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭O M M ,故可取特解为0100η⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M 所以Ax B =的通解为1001,0000k k ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M 为任意常数。
(21)(本题满分11分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+,证明(1)123,,a a a 线性无关;(2)令()123,,P a a a =,求1P AP -.解:(1)假设123,,ααα线性相关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=) 又311221122()A A l l l l ααααα=+=-+∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾(因为12,αα分别属于不同特征值得特征向量,故12,αα线性无关).故:123,,ααα线性无关.(2)记123(,,),P ααα=则P 可逆,123123(,,)(,,)A A A A αααααα=即:100011001AP P -⎛⎫ ⎪= ⎪ ⎪⎝⎭,∴1100011001P AP --⎛⎫⎪= ⎪ ⎪⎝⎭. (22)(本题满分11分)设随机变量X 与Y 相互独立,X 概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭(2)求Z 的概率密度. 解:1.2. 当2z ≥时,()1F z = 当1z <-时,()0F z = 当12z -≤<时,当10z -≤<时,1011()1(1)33z F z dy z +==+⎰当01z ≤<时,011()110(1)33z F z dy z ⎡⎤=++=+⎢⎥⎣⎦⎰当12z ≤<时,1011()111(1)33z F z dy z -⎡⎤=++=+⎢⎥⎣⎦⎰ 所以 0 11()(1) 1231 z 2z F z z z <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩,则1,12()30,z f z ⎧-≤<⎪=⎨⎪⎩其它(23) (本题满分11分)12,,,n X X X L 是总体为2(,)N μσ的简单随机样本.记11ni i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n =- (1)证 T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .解:(1)221()()E T E X S n=-221()E X E S n=-221E X nσ=- 因为:2(,)X N μσ:, 2(,)X N n σμ:,而 22()EX DX EX =+221nσμ=+ 222211()E T n nσμσμ=+-=,所以 T 是2μ的无偏估计(2) 22()()D T ET ET =-,()0E T =, 4422222()S ET E X X S n n=-⋅+因为 1(0,)X N n:(0,1)1XN :令1X X =()2242422233x x E X dx dx EX +∞+∞---∞-∞====⎰⎰所以 423E X n= 因为 222(1)(1)n S W n χσ-=-: 且21σ=22(1)DS n =-,4211(1)1n ES n n +=+=--所以 222232111n ET n n n n +=-+⋅-。