(完整版)四年级奥数之行程问题
完整版)四年级奥数行程问题
完整版)四年级奥数行程问题行程问题是指关于物体运动速度、时间和路程的应用题。
主要的数量关系是路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。
练一:1.甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
求东西两地相距多少千米?解:两车在距中点32千米处相遇,即两车行的路程相差64千米。
有了路程差和速度差,可以求出相遇时间为8小时。
其他计算就容易了。
2.小玲每分钟行100米,每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3.一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。
当摩托车行到两地中点处,与汽车相距75千米。
求甲乙两地相距多少千米?4.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。
练二:1.快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米。
慢车每小时行多少千米?解:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。
因此慢车的速度为21千米/小时。
2.兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?3.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练三:1.甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
奥数行程问题(含答案)
行程问题讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。
行程问题的主要数量关系是:路程=速度×时间如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。
行程问题内容丰富多彩、千变万化。
主要有一个物体的运动和两个或几物体的运动两大类。
两个或几个物体的运动又可以分为相遇问题、追及问题两类。
这一讲我们学习一个物体运动的问题的一些简单的相遇问题。
例题与方法例1.小明上学时坐车,回家时步行,在路上一共用了90分。
如果他往返都坐车,全部行程需30分。
如果他往返都步行,需多少分?(90-30÷2)×2=150例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。
汽车行驶了一半路程,在中途停留30分。
如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?280÷2÷﹙8÷2-0.5﹚-280÷8=5例3.一列火车于下午1时30分从甲站开出,每小时行60千米。
1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相遇。
甲、乙两站相距多少千米?6-1.5=4.5﹙60+60﹚×﹙4.5-1﹚+60=480例4.苏步青教授是我国著名的数学家。
一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。
甲每小时行6千米,乙每小时行4千米。
甲带着一只狗,狗每小时行10千米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。
这只狗一共走了多少千米?苏步青略加思索,就把正确答案告诉了这位外国数学家。
小朋友们,你能解答这道题吗?100÷(6+4)×10=100例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。
四年级奥数--- 火车行程问题初步
第7次火车行程问题初步1、有快、慢两列火车,相向而行。
慢车车身长120米,车速为每秒22米,快车车5长140米,车速为每秒30米。
快、慢两车从相遇到离开,需要多少秒?2、有甲、乙两列火车,甲车长105米,每秒行38米;乙车长123米,每秒行35米甲、乙两车同向而行,从甲车追上乙车到两车离开需要多少秒?3、一列长280米的火车匀速通过一座桥,每小时行120千米,从车头上桥到车尾离开桥所用的时间是30秒,求桥长多少米?4、一座大桥长2400米。
一列火车以每分1800米的速度通过大桥,从车头上桥到车尾离开桥共需要1分30秒。
这列火车长多少米?5、一列长250米火车通过一长1150米的大桥,从车上桥车尾离开桥共用56秒,求这列火车平均每秒行驶多少米。
6、一列火车长288 米,每秒行驶14 米,它通过一个山洞需42秒。
求这个山洞长多少米?7、一列火车匀速通过540米长的桥需23秒,以同样的速度穿过360米长的山洞需17秒。
求这列火车的速度和车长。
8、一列火车经过南京长江大桥,大桥长约6700米,这列火车长125米,每秒行35米,这列火车通过南京长江大桥需要多少秒?9、一列火车匀速通过一座480米长的铁桥用了26秒,以同样的速度经过一位站在路边的扳道工人用了10秒。
此列火车的速度和车长各是多少?10、列货运火车共60节,每节车厢长15米,相邻两节车厢间隔1.5米,这列火车平均每秒行驶30米,要穿1711.5米的山洞,需要多少秒?11、438名少先队员排成两个纵队去参观科技展览。
队伍行进的速度是每分钟22米,前后两人都相距0.5米,现在要走过一座长441米的桥,问整个队伍从上到离桥共需几分钟?。
(完整版)奥数四年级行程问题
(完整版)奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度?时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度?总时间。
【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
四年级奥数行程问题及答案【三篇】
四年级奥数行程问题及答案【三篇】
【第一篇】
甲、乙两个港口之间的水路长300千米,一只船从甲港到乙港,顺水5小时到达,从乙港返回甲港,逆水6小时到达。
求船在静水中的速度和水流速度?
解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是(60+50)÷2=55千米/小时,水流速度是
(60-50)÷2=5千米/小时。
【第二篇】
某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?
【分析】顺水速度是15+3=18千米/小时,从甲地到乙地的路程是18×8=144千米,从乙地返回甲地时是逆水,逆水速度是15-3=12千米/小时,行驶时间为144÷12=12
小时。
【第三篇】
A、B两港相距360千米,甲轮船往返两港需35小时,逆流航行比顺流航行多花了5
小时。
乙轮船在静水中的速度是每小时12千米,乙轮船往返两港要多少小时?
解答:首先要求出水流速度,由题意可知,甲轮船逆流航行需要(35+5)÷2=20小时,顺流航行需要 20-5=15小时,由此可以求出水流速度为每小时[360÷15-
360÷20]÷2=3千米,从而进一步可以求出乙船的顺流速度是每小时 12+3=15千米,逆水速度为每小时12-3=9千米,最后求出乙轮船往返两港需要的时间是360÷15+360÷9=64
小时。
小学奥数四年级行程练习题及答案【三篇】
小学奥数四年级行程练习题及答案【三篇】
【第一篇】
一列火车长180米,全车通过一座桥需要40秒钟,这列火车每秒行15米,求这座桥的长度。
【答案解析】
420米
【小结】全车通过桥是指从火车车头上桥直到火车车尾离桥,即火车行驶的路程是桥的长度与火车的长度之和,已知火车的速度以及过桥时间,所以这列车40秒钟走过:
40×15=600(米),桥的长度为:600-180=420(米)
【第二篇】
前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?
【答案解析】
①第三次相遇时两车的路程和为:
90+90×2+90×2=450(千米)
②第三次相遇时,两车所用的时间:
450÷(40+50)=5(小时)
【第三篇】
园林工人在一条马路的两边栽树(包括端点),每两棵树之间的距离是5米,一共栽了300棵树。
这条马路有多少米?
【答案解析】
点拨:这道题也是两面植树问题,因此在解决问题时,将两边的问题变为一边的问题,然后再应用植树问题的规律解题。
一边植树的棵树:300\2=150(棵),由于两端植树,所以段数=棵树-1,由此求出马路长度:5*(150-1)=745(米)
解:一边植树的棵树:300\2=150(棵);马路的长度:5*(150-1)=745(米)
答:马路长745米。
(完整版)小学奥数行程问题汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
小学四年级奥数题:行程问题及答案
三一文库()/小学四年级
〔小学四年级奥数题:行程问题及答案〕
米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过
来,8:00货车追上了米老鼠,又过了30秒货车超过了它;
另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了
12秒客车离开了它。
如果客车的长度是货车的2倍,客车的
速度是货车的3倍。
请问:客车和货车在什么时间相遇?两
车错车需要多长时间?
解答:行程问题中的三个量路程、速度和时间,如果题目
中只出现了一个的量的具体数值,那么我们可以设出来没出
现具体数值的两个量中的任意一个量。
当然也可以不设出来,
用设份数的方法来做,但这种方法比较抽象,这里我们采用
设数的方法。
设货车的长度为60米,则客车的长度为120米。
从追上米老鼠到超过,货车用30秒,所以货车与米老师的
第1页共2页
速度差是60÷30=2米/秒。
从和米老鼠相遇到离开,客车用12秒,所以客车与米老师
的速度和是120÷12=10米/秒。
所以我们可以知道客车与货车的速度和是10+2=12米/秒。
又知道客车的速度是货车速度的3倍,则可以求出客车的
速度是9米/秒,货车的速度是3米/秒。
然后可以求出米老
鼠的速度是1米/秒。
实际上本题就算不知道客车速度是货车速度的3倍,也是
可以做出来的。
当然,这时候就算不出客车、货车和米老鼠
的具体速度了。
但还是求出来的答案的。
22。
四年级奥数之行程问题
行程问题知识要点:1、相遇问题或背向问题AB两地的距离=甲走的距离+乙走的距离 = 甲的速度×时间+乙的速度×时间=甲的速度+乙的速度×时间.2、追击问题:甲乙的距离=甲走的距离-乙走的距离 = 甲的速度×时间-乙的速度×时间= 甲的速度-乙的速度×追击的时间相遇问题例1.甲乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少例 3. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A 城需6小时,问:两车出发后多长时间相遇例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长;例5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米例6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等;某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度;同步练习:1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地;求该车的平均速度; 2.A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇3.甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米;两人在离中点3千米的地方相遇;A、B两地相距多远4.一只蚂蚁沿等边三角形的三条边由A点开始爬行一周;在三条边上它每分钟分别爬行15cm,20cm,30cm如下图;它爬行一周平均每分钟爬行多少厘米5.两列火车,一列长101米,每秒行20米;另一列长103米,每秒行17米.两车相向而行,从车头相遇到车尾离开需几秒6.在400米的环行跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少7.甲、乙二人同时从起点出发,向同一个方向行走,甲每小时行5千米,而乙第一小时行1千米,第二小时行2千米,以后每小时比前一小时多行1千米,问经过多少时间乙追上甲追及问题例7. 一辆汽车和一辆摩托车同时从甲乙两城同时出发,向一个方向前进,汽车在前,每小时40千米;摩托车在后,每小时75千米;经过3小时摩托车追上了汽车;甲乙两地相距多少千米例8. 小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬例9.甲乙两人赛跑,甲的速度是8米/秒,乙的速度是5米/秒,如果甲从起点往后退20米,乙从起点处向前进10米,问甲经过几秒钟追上乙例10、甲每小时行60千米,乙每小时行45千米,甲、乙两人同时从A地出发去B地,甲到达B地后立即沿原路返回,在距B地30千米处与乙相遇,A、B两地相距多少千米例11.小兰和小松同时从学校去少年宫,小兰步行每分钟走6米,小松骑自行车,每小时行15千米,小松比小兰早到12分钟,学校到少年宫一共有多少米例12、快车长106米,慢车长74米,两车同向行使,快车追上慢车后,又给过1分钟才超过慢车,如果相向而行的话,车头相接后经过12秒两车才完全离开;就两列车的速度同步练习8.小明以每分钟50米的从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明;问:小强骑自行车的速度;9.小明每天早上要在7:50之前赶到距家1000米的学校上学;小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书;于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他;1爸爸追上小明用了多长时间2追上小明时,距离学校还有多远10.长180米的客车速度是每秒15米,他追上并超过长100米的货车用了28秒,如果两列火车相向而行,从遇到到完全离开需要多少时间同步测试1、一列客车和一列货车同时从北京站反向而行,货车每小时比客车多走了7千米,4小时后两车相距468千米;求两车的速度;2. 一列客车和一列货车,同时从东、西两地相向开出,客车每小时行56千米,客车每小时行48千米,两车在离中点32千米的地方相遇,求东西两地间的距离是多少千米3、小军和小红两人同时从相距2000米的两地同时同向而行,小军每分钟行120米;小红每分钟行80米;如果一只狗与小军同时出发,它每分钟行400米,当它遇到小红后,立即回头向小军跑去,遇到小军后又立即向小红跑去;这样来回不断,直到小军和小红相遇为止,这时狗跑了多少米4. 龟兔赛跑,全程2000米;龟每分钟爬25米,兔每分钟跑320米,兔自以为速度快,在途中睡了一觉,结果龟到了终点时,兔子离终点还有400米;兔子在途中睡了多少分钟5.甲乙两车相距90千米,两车同向而行,甲车每小时行65千米,乙车每小时行50千米,经过多少小时甲车能追上乙车6.某学校组织学生看电影,第一批的学生骑自行车先走,他们的速度是200/分,10分钟后,其余同学乘汽车前往电影院,汽车的速度是600/分,结果所有的同学同时到达;求学校和电影院的距离;7.小明步行上学,每分行75米,小明离家12分钟后,爸爸发现小明的数学书没有带,就骑自行车去追,每分钟行375米,爸爸出发多少分钟后能追上小明8、已知甲骑自行车追赶前面步行的乙,乙的速度是每分钟60米,甲的速度是每分钟150米,甲出发8分钟追上乙,那么乙比甲早出发多少分钟9.在400米的环行跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少10.甲、乙二人同时从起点出发,向同一个方向行走,甲每小时行4千米,而乙第一小时行1千米,第二小时行2千米,以后每小时比前一小时多行1千米,问经过多少时间乙追上甲11、小亮从家到学校,步行需要40分,骑自行车需要 15分;当他骑车走了9分后自行车发生故障,只好步行到学校,那么,他从家到学校共用了多少时间1-10 A D. C. C. B. D. B. C. D. B.11-16左,2.80°. 7;21. 2:3 Q3﹣,0;.17. ﹣2.18. CD==2.19. 概率为.20. AP=;当x=,即AP=时,.21. AE的长是1.4.22. 设正方形DEFG的边长是x,则=,解得:x=;23. tan∠CMA===3; n=.。
小学奥数行程问题完美版
例题5:
有甲、乙两船,甲船和漂流物同时由河 西向东而行,乙船也同时从河东向西 而行。甲船行4小时后与漂流物相距 100千米,乙船行12小时后与漂流物相 遇,两船的划速相同,河长多少千米?
分析:漂流物和水同速,甲船是划速和水速的和, 甲船4小时后,距漂流物100千米,即每小时 行100÷4=25(千米)。乙船12小时后与漂流 物相遇,所受的阻力和漂流物的速度等于划速。 这样,即可算出河长。列算式为 船速:100÷4=25(千米/时) 河长:25×12=300(千米) 答:河长300千米。
例题3:轮船以同一速度往返于两码头之间。 它顺流而下,行了8小时;逆流而上,行了 10小时。如果水流速度是每小时3千米,求 两码头之间的距离。
顺流 逆流 10 图36——1 A 8 B
分析:因为水流速度是每小时3千米,所以顺流比 逆流每小时快6千米。如果怒六时也行8小时, 则只能到A地。那么A、B的距离就是顺流比逆 流8小时多行的航程,即6×8=48千米。而这 段航程又正好是逆流2小时所行的。由此得出 逆流时的速度。列算式为: (3+3)×8÷(10—8)×10=240(千米) 答:两码头之间相距240千米。
时间 行程 1时5分 4千米 1时 5千米 2时10分 3时15分 8 2时 10 12 3时 15
小王
小张
时间 行程
12+15=27,比24大,从上表可以看出,他们相遇在出发 后2小时10分至3小时15分之间。出发后2小时10分,小 张已走了10+5÷(50÷10)=11(千米),此时两人相 距24—(8+11)=5(千米)。由于从此时到相遇以不会 再休息,因此共同走完这5千米所需的时间是5÷(4+6) =0.5(小时),而2小时10分+0.5小时=2小时40分。 小张50分钟走的路程:6÷60×50=5(千米) 小张2小时10分后共行的路程:10+5÷(50÷10)=11 (千米) 两人行2小时10分后相距的路程:24—(8+11)=5(千米) 两人共同行5千米所需时间:5÷(4+6)=0.5(小时) 相遇时间:2小时10分+0.5小时=2小时40分
小学奥数四年级行程问题
小学奥数四年级行程问题1、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?【解析】设路程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
2、3、两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。
如果不计转向的时间,那么在这段时间内两人共相遇多少次?有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n -1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。
4、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远?要求距离,速度已知,所以关键是求出相遇时间。
从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)5、有一个人去徒步旅行,去时每走40分钟就休息5分钟,到达目的地时共花去3小时11分。
小学四年级奥数行程问题
小学四年级奥数行程问题1、甲、乙两辆车同时从两地出发,相向而行。
甲车每小时行45千米,乙车每小时行55千米。
甲、乙两车多长时间后相遇?2、两个城市之间的距离为450千米,一辆汽车以每小时65千米的速度从第一个城市驶向第二个城市。
请问这辆汽车需要多少小时到达第二个城市?3、两个人同时从两个不同的地方出发,走向彼此。
一个人每分钟走50米,另一个人每分钟走40米。
请问,他们需要多少时间才能相遇?4、一辆摩托车和一辆自行车同时从同一地点出发,沿着同一条路前往目的地。
摩托车的速度是每小时60千米,自行车的速度是每小时10千米。
请问,摩托车多长时间后能够追上自行车?5、一辆火车以每小时80千米的速度前行,一个乘客从火车上跳下去,同时一个新乘客以每小时5千米的速度上车。
请问,这两个乘客何时能够相遇?答案:1、相遇时间 = (甲速度 +乙速度)×时间设甲、乙两车x小时后相遇,根据题意可得方程:(45 + 55)x = 100x。
解得x=1,所以甲、乙两车1小时后相遇。
2、时间 =距离 /速度设这辆汽车需要x小时到达第二个城市,根据题意可得方程:450/65=x。
解得x=7.71,所以这辆汽车需要7.71小时到达第二个城市。
3、时间 =距离 / (一个人速度 +另一个人速度)设他们需要x分钟才能相遇,根据题意可得方程:50+40=90x。
解得x=1,所以他们需要1分钟才能相遇。
4、时间 =距离 / (摩托车速度 -自行车速度)设摩托车x小时后能够追上自行车,根据题意可得方程:60−10=(60−10)x。
解得x=5,所以摩托车5小时后能够追上自行车。
5、时间 =距离 / (火车速度 +新乘客速度 -老乘客速度)设这两个乘客x小时后相遇,根据题意可得方程:80+5−5=(80+5−5)x。
解得x=1,所以这两个乘客1小时后相遇。
小学四年级奥数在现今的教育体系中,奥数已成为了一种广受欢迎的数学教育方式。
特别是在小学四年级阶段,奥数的学习对于培养学生的数学思维和解决问题的能力具有重要的作用。
四年级奥数行程问题
四年级奥数行程问题行程问题1、一辆汽车从甲地开往乙地,平均每小时行驶75千米,6小时到达乙地。
甲乙两地相距多少千米?2、甲乙两地相距420千米,一辆汽车从甲地到乙地需要7小时。
如果要求汽车提前1小时到达乙地,速度应提高多少千米/小时?3、小明家到小华家的距离有1160米。
一天,小明和小华同时从自家出发,到对方家去,小明每分钟走75米,小华每分钟走70米,几分钟后他俩会在途中相遇?4、小光早晨从家到学校一共用了15分钟,平均每分钟走60米。
中午放学时,小光跑不回家,只用了10分钟。
小光回家时平均每分钟跑多少米?5、小英每分钟走70米,小兰每分钟走60米。
她俩同时从同一地点出发,相背而行。
问5分钟后,两人相距多少千米?16、小英每分钟走70米,小兰每分钟走60米。
她俩同时从同一地点出发,相背而行。
经过几分钟后,两人相距1300米?7、一辆汽车和一辆客车同时从两地出发,相向而行。
汽车每小时行80千米,客车每小时比汽车少行5千米。
6小时候,两车在途中相遇。
两地相距多少千米?8、小红和小花在学校400米的环形跑道上,从同一起跑线出发,相背而行,4分钟后两人相遇,小红平均每分钟走45米,小花平均每分钟走多少米?9、一辆客车上午8时从甲站开出,每小时行50千米。
经过2小时后,一辆汽车从乙站开出,每小时行60千米,中午12时两车在途中相遇。
甲、乙两站相距多少千米?10、甲、乙两港之间的水路长180千米,一艘轮船从甲港开往乙港,顺水行驶,每小时行驶60千米,从乙港返回时,因为逆水行驶,每小时行驶30千米。
这艘轮船往返一次的平均速度是多少千米/小时?211、一辆客车上午8时从武汉出发,开往郑州,平均每小时行驶60千米。
3小时后,一辆汽车从武汉出发,开往郑州,平均每小时行驶100千米。
几小时后,汽车能追上客车?12、一只猎狗发现在它前方300米处有一只兔子。
兔子同时也发现了猎狗,猎狗以每分钟240米的速度去追赶兔子,兔子以每分钟180米的速度逃跑,请问猎狗要追上兔子需要几分钟?13、学校组织学生去天台山游玩,租两辆车从学校出发,大客车每小时行驶60千米,上午7:00出发,面包车晚出发1小时,每小时行驶80千米,结果两车同时到达天台山。
四年级奥数——行程问题
四年级奥数——行程问题相遇问题1、南北两村相距90千米,甲从南村出发,他要在9分钟内赶到北村,那他每分钟至少要行多少千米?2、王叔叔因急事,以每小时78千米的车速从甲地赶往乙地,3小时后,他发现时间足够,又以每小时62千米的速度行驶了2小时,赶到了乙地,甲乙两地相距多少千米?3、小飞和小华同时从相距5320米的两地相向而行,两人行了40分钟后还相距1520米,问两人再走几分钟才能相遇?4、甲乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米,一个人骑摩托车每小时行80千米在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?5、小明骑摩托车、小军骑自行车分别从甲、乙两地同时出发,相向而行,3小时后相遇。
小军从甲地到乙地要12小时,小明从乙地到甲地要几小时?6、甲、乙两车同时从东西两地相对开出,6小时相遇。
如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。
东西两地相距多少千米?7、A、B两车同时从甲、乙两站相对开出,两车第一次在距甲站50千米处相遇。
相遇后继续前进,各自到达乙、甲两站后立即返回,第二次在距乙站20千米处相遇。
甲、乙两站相距多少千米?追及问题1、甲从A出发,每小时12千米,2小时后,乙也从A地相背而行,每小时16千米,再经过4小时他们同时停下来,这时他们相距多远?2、甲、乙相背而行,甲每小时比乙多行2千米,8小时后两人相隔112千米,求甲、乙各自的速度?3、快车和慢车同时从南北两地相对开出,已知快车每小时行60千米,经过3小时后,快车已驶过中点25千米。
这时与慢车还相距6千米。
慢车每小时行多少千米?4、小华和小亮的家相距410米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。
3分钟后两人可能相距多少米?5、甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙的后面250米,乙追上需要多少分钟?6、甲、乙二人同时从A地到B地,甲每小时行10千米,乙每小时行8千米,甲行至15千米处又回去取东西,因此比乙迟1小时到B地。
四年级奥数 行程问题
四年级奥数——行程问题
3.小王步行每分钟行60米,12分钟后,小李骑车去追他,如果要在5分钟内追上小王,小李每分钟应行多少米?(204米/分钟)
4.一列客车以每小时72千米的速度行驶,行进过程中,客车的司机发现对面开来一列货车,速度是每小时54千米,这列货车从他身边驶过共用了8秒钟,求这列货车的长度。
(280米)
5.某列车通过360米的第一隧道,用了24秒;接着通过第二个长216米的隧道,用了16秒,求列车的速度及车长。
(18米/秒、72米)
6.快车每秒行18米,慢车每秒行10米,现在两列火车同时同向齐头行进,行10秒快车超过愠如果两车车尾相齐,则7秒后,快车超过慢车。
求两列火车的车长。
(快车长80米,慢车长56米)
7.小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行,小明的速度是280米/分钟;小芳的速度是220米/分钟,8分钟后,小明第一次追上小芳。
这个池塘的一周有多少米?(480米)
8.甲、乙两地相距100千米,下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9:00,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少行驶多少千米?(25千米/小时)。
小学四年级奥数题及答案:行程问题
小学四年级奥数题及答案:行程问题小学四班级奥数题及答案:行程问题
1.行程问题
甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?
解答:分析若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度,也可求出甲的速度.综合列式计算如下:
解:乙的速度为:10÷5×4÷2=4(米/秒)
甲的速度为:10÷5+4=6(米/秒)
答:甲的速度为6米/秒,乙的速度为4米/秒.
2.行程问题
上午8点零8分,小明骑自行车从家里出发,8
分钟后,爸爸骑摩托车去追他,在离家4千米的`地方追上了他.然后爸爸立即回家,到家后又立即回头去追小明、再追上他的时候,离家恰好是8千米,问这时是几点几分?
解答:从爸爸第一次追上小明到第二次追上这一段时间内,小明走的路程是8-4=4(千米),而爸爸行了4+8=12(千米),因此,摩托车与自行车的速度比是12∶4=3∶1.小明全程骑车行8千米,爸爸来回总共行4+12=16(千米),还因晚出发而少用8分钟,从上面算出的速度比得知,小明骑车行8千米,爸爸如同时出发应该骑24千米.现在少用8分钟,少骑24-16=8(千米),因此推算出摩托车的速度是每分钟1千米.爸爸总共骑了16千米,需16分钟,8+16=24(分钟),这时是8点32分.。
(完整版)四年级数学行程问题
行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120 千米,请问:谁的速度更快?2、墨墨练习慢跑,12 分钟跑了3000 千,按照这个速度慢跑25000 米需要多少分钟?如果他每天都以这个速度跑10 分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了 1 小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45 千米,实际上由于高速公路堵车,汽车每小时只行驶30 千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午 1 点出发,晚上7 点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25 分钟后准时到校。
有一天他晚出发10 分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的 6 倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发, 6 小时后相遇在中点,如果甲延迟 1 小时出发,乙每小时少走 4 千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800 米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60 米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第 4 题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350 千米,A车在早上8 点从甲地出发,以每小时40 千米的速度开往乙地。
小学四年级奥数 行程问题
行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
因此,两人20÷(6+4)=2小时后相遇。
练习一1,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?2,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。
根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。
所以狗共行了500×10=5000米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题
知识要点:
1、相遇问题(或背向问题)
AB两地的距离=甲走的距离+乙走的距离 = 甲的速度×时间+乙的速度×时间
=(甲的速度+乙的速度)×时间.
2、追击问题:甲乙的距离=甲走的距离-乙走的距离 = 甲的速度×时间-乙的速度×时间
= (甲的速度-乙的速度)×追击的时间
相遇问题
例1.甲乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?
例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?
例 3. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?
例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
例5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两
次相遇点相距多少千米?
例6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人
骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地。
求该车的平均速
度。
2.A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶
45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲
车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?
3.甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米。
两人在离中点3千米的地方相遇。
A、B两地相距多远?
4.一只蚂蚁沿等边三角形的三条边由A点开始爬行一周。
在三条边上它每分钟分别爬行15cm,20cm,30cm (如下图)。
它爬行一周平均每分钟爬行多少厘米?
5.两列火车,一列长101米,每秒行20米;另一列长103米,每秒行17米.两车相向而行,从车头相遇
到车尾离开需几秒?
6.在400米的环行跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?
7.甲、乙二人同时从起点出发,向同一个方向行走,甲每小时行5千米,而乙第一小时行1千米,第二小时行2千米,以后每小时比前一小时多行1千米,问经过多少时间乙追上甲?
例7. 一辆汽车和一辆摩托车同时从甲乙两城同时出发,向一个方向前进,汽车在前,每小时40千米;摩托车在后,每小时75千米。
经过3小时摩托车追上了汽车。
甲乙两地相距多少千米?
例8. 小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,
小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?
例9.甲乙两人赛跑,甲的速度是8米/秒,乙的速度是5米/秒,如果甲从起点往后退20米,乙从起点处向前进10米,问甲经过几秒钟追上乙?
例10、甲每小时行60千米,乙每小时行45千米,甲、乙两人同时从A地出发去B地,甲到达B地后立即沿原路返回,在距B地30千米处与乙相遇,A、B两地相距多少千米?
例11.小兰和小松同时从学校去少年宫,小兰步行每分钟走6米,小松骑自行车,每小时行15千米,小松比小兰早到12分钟,学校到少年宫一共有多少米?
例12、快车长106米,慢车长74米,两车同向行使,快车追上慢车后,又给过1分钟才超过慢车,如果相
向而行的话,车头相接后经过12秒两车才完全离开。
就两列车的速度?
同步练习
8.小明以每分钟50米的从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明。
问:小强骑自行车的速度。
9.小明每天早上要在7:50之前赶到距家1000米的学校上学。
小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书。
于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
10.长180米的客车速度是每秒15米,他追上并超过长100米的货车用了28秒,如果两列火车相向而行,
从遇到到完全离开需要多少时间?
同步测试
1、一列客车和一列货车同时从北京站反向而行,货车每小时比客车多走了7千米,4小时后两车相距468千米。
求两车的速度。
2. 一列客车和一列货车,同时从东、西两地相向开出,客车每小时行56千米,客车每小时行48千米,两车在离中点32千米的地方相遇,求东西两地间的距离是多少千米?
3、小军和小红两人同时从相距2000米的两地同时同向而行,小军每分钟行120米;小红每分钟行80米。
如果一只狗与小军同时出发,它每分钟行400米,当它遇到小红后,立即回头向小军跑去,遇到小军后又立
即向小红跑去。
这样来回不断,直到小军和小红相遇为止,这时狗跑了多少米?
4. 龟兔赛跑,全程2000米。
龟每分钟爬25米,兔每分钟跑320米,兔自以为速度快,在途中睡了一觉,
结果龟到了终点时,兔子离终点还有400米。
兔子在途中睡了多少分钟?
5.甲乙两车相距90千米,两车同向而行,甲车每小时行65千米,乙车每小时行50千米,经过多少小时甲
车能追上乙车?
6.某学校组织学生看电影,第一批的学生骑自行车先走,他们的速度是200/分,10分钟后,其余同学乘汽车前往电影院,汽车的速度是600/分,结果所有的同学同时到达。
求学校和电影院的距离。
7.小明步行上学,每分行75米,小明离家12分钟后,爸爸发现小明的数学书没有带,就骑自行车去追,
每分钟行375米,爸爸出发多少分钟后能追上小明?
8、已知甲骑自行车追赶前面步行的乙,乙的速度是每分钟60米,甲的速度是每分钟150米,甲出发8分钟追上乙,那么乙比甲早出发多少分钟?
9.在400米的环行跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?
10.甲、乙二人同时从起点出发,向同一个方向行走,甲每小时行4千米,而乙第一小时行1千米,第二小时行2千米,以后每小时比前一小时多行1千米,问经过多少时间乙追上甲?
11、小亮从家到学校,步行需要40分,骑自行车需要 15分。
当他骑车走了9分后自行车发生故障,只好
步行到学校,那么,他从家到学校共用了多少时间?
1-10 A D. C. C. B. D. B. C. D. B.
11-16
左,2.80°. 7;21. 2:3 Q3(﹣,0);.
17. ﹣2.
18. CD==2.
19. 概率为.
20. AP=;当x=,即AP=时,.
21. AE的长是 1.4.
22. 设正方形DEFG的边长是x,则=,解得:x=;
23. tan∠CMA===3; n=.。