19.3矩形的判定教案

合集下载

矩形的判定定理教学设计(精选5篇)

矩形的判定定理教学设计(精选5篇)

矩形的判定定理教学设计(精选5篇)矩形的判定定理教学设计(精选5篇)作为一位杰出的教职工,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。

一份好的教学设计是什么样子的呢?下面是小编整理的矩形的判定定理教学设计(精选5篇),仅供参考,希望能够帮助到大家。

矩形的判定定理教学设计1一、说教材《矩形的判定》是人教版教科书《数学》八年级(下)第19章第二节的内容,本课为第2课时。

矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用。

二、说目标1.知识与技能在对矩形性质认识的的基础上,探索并掌握矩形的判别方法;规范推理的书写格式;应用矩形定义、判定等知识,解决简单的实际问题。

2.过程与方法通过矩形的判定定理猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。

3.情感、态度与价值观能积极参加数学学习活动,能体验数学活动充满着探索,培养逆向思维的能力、并从中获得成功的体验,充满对数学学习的好奇心和求知欲。

三、说重点难点1.重点:矩形的判定。

2.难点:矩形的判定及性质的综合应用。

判定定理都是以“定义”为基础推导出来的。

因此本节课要从复习矩形定义下手,得到矩形的判定方法,引出课题。

除了通过定义来判定一个四边形是矩形外,在探究判定定理时要让学生沿着这样的思路进行探究:矩形是在平行四边形的基础上添加有一个角是90度,那么还有别的添加方式吗?让学生探究:在平行四边形的边上添加条件是否可以可以成为矩形呢?同学么探究,发现在边上添加不出来条件使之成为矩形,那么学生自然会想到在对角线上添加条件。

这样就猜想出对角线相等的平行四边形是矩形。

然后同学们以组为单位对判定进行证明。

这样既培养了学生对问题的猜想又培养了学生分析问题、解决问题的能力,又培养了学生合作学习的精神。

初中数学矩形的判定教案

初中数学矩形的判定教案

初中数学矩形的判定教案教学目标:1. 理解并掌握矩形的判定方法。

2. 能够应用矩形的定义、判定等知识,解决简单的证明题和计算题。

3. 培养学生的分析能力和逻辑思维能力。

教学重点:1. 矩形的判定方法。

2. 矩形的性质。

教学难点:1. 矩形的判定及性质的综合应用。

教学准备:1. 矩形的定义和性质的PPT。

2. 矩形的判定方法的PPT。

教学过程:一、导入(5分钟)1. 提问:什么叫做平行四边形?什么叫做矩形?2. 学生回答后,教师总结矩形的定义:矩形是一种特殊的平行四边形,它的四个角都是直角。

二、新课讲解(20分钟)1. 讲解矩形的性质:矩形的对边相等,对角相等,对角线互相平分。

2. 讲解矩形的判定方法:a. 对角线相等的平行四边形是矩形。

b. 有三个角是直角的四边形是矩形。

3. 通过PPT展示矩形的判定方法的例子,让学生理解并掌握判定方法。

三、例题讲解(15分钟)1. 出示例题,让学生独立思考并解答。

2. 讲解答案,并解释解题思路。

四、练习与巩固(10分钟)1. 让学生完成课后练习题,巩固矩形的判定方法。

2. 教师巡视课堂,解答学生的疑问。

五、小结与作业布置(5分钟)1. 总结本节课的主要内容,强调矩形的判定方法。

2. 布置作业:完成课后练习题,准备下一节课的讲解。

教学反思:本节课通过讲解矩形的定义、性质和判定方法,让学生掌握了矩形的基本知识。

在例题讲解环节,通过具体的题目,让学生理解并掌握了矩形的判定方法。

在练习环节,让学生通过自主练习,巩固了所学知识。

整体教学过程流畅,学生反应积极。

但在讲解矩形的性质时,可以更加详细地解释矩形的对角线互相平分的性质,让学生更好地理解矩形的性质。

下一节课,可以让学生通过自主探究,发现矩形的其他性质,提高学生的学习兴趣和主动性。

矩形的判定 教案(教学设计)

矩形的判定 教案(教学设计)

矩形的判定【教学目标】1.理解并掌握矩形的判定方法。

2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。

3.教法设计:观察、启发、总结、提高,类比探讨,讨论分析,启发式。

【教学重难点】1.重点:矩形的判定。

2.难点:矩形的判定及性质的综合应用。

【教学过程】一、复习提问1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?二、引入新课设问:1.矩形的判定。

2.矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定)。

除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法。

方法1:有三个角是直角的四边形是矩形。

(并让学生写出推理过程。

)方法2:对角钱相等的平行四边形是矩形。

(分析判定方法2和学生一道写出证明过程。

)归纳矩形判定方法(由学生小结):(1)一个角是直角的平行四边形。

(2)对角线相等的平行四边形。

(3)有三个角是直角的四边形。

3.矩形判定方法的实际应用结合生产生活实际说明判定矩形的实用价值。

4.矩形知识的综合应用。

(让学生思考,然后师生共同完成)例1:已知:O是矩形ABCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,AE=BF=CG=DH,求证:四边形EFGH为矩形,分析:利用对角线互相平分且相等的四边形是矩形可以证明证明:∵ABCD为矩形∴AC=BD∴AC、BD互相平分于O∴AO=BO=CO=DO∵AE=BF=CG=DH∴EO=FO=GO=HO又HF=EG∴EFGH为矩形三、小结:1.矩形的判定方法l、2都是有两个条件:(1)是平行四边形;(2)有一个角是直角或对角线相等。

判定方法3的两个条件是:(1)是四边形;(2)有三个直角。

矩形的判定教案

矩形的判定教案

课题:19.3矩形的判定(第一课时)教学目标:1、理解并掌握矩形的判定方法,并会应用矩形定义、判定等知识,解决简单的证明题和计算题。

2、经历利用矩形的定义探究矩形的其他判别方法的过程,通过观察、猜想、证明的过程,培养学生的科学探索精神。

3、在操作活动和观察、分析过程中发展学生的主动探究的意识和习惯以及初步具有把感性认识上升到理性认识的辩证唯物主义观点。

教学重点:探索四边形是矩形的判定方法。

教学难点:矩形判别方法的探究和应用教学方法:启发式教学手段:多媒体教学过程一、复习导入:1、矩形的定义:有一个角是直角的平行四边形叫做矩形(定义判定:强调矩形的定义是矩形的一种判定方法.)几何语言:∵∠A=90°平行四边形ABCD (已知)∴四边形ABCD是矩形(矩形的定义)(设计意图:矩形的定义是矩形最原始的判定,也是证明其它判定得出的基础。

这里通过复习该定义为下面矩形的判定做好铺垫)2、矩形的性质:边:矩形的对边平行且相等角:矩形的四个角都是直角对角线:矩形的对角线相等(设计意图:性质与判定互为逆定理,复习性质对判定的猜想有所帮助。

)除了定义判定之外,你还有其它的判定方法吗?教师板书课题二、探究新知:(一)、引导学生探究当把定义中的平行四边形的条件改为四边形时至少需要几个直角条件时才能确定该四边形为矩形?(设计意图:通过对该条件的探究,让学生理解仅仅知道四边形中的一个或两个直角时,是不能判定四边形为矩形的)情境一:李芳同学用四步画出了一个四边形,她的画法是“边——直角、边——直角、边——直角、边”这样,她说这就是一个矩形,她的判断对吗?为什么?你也画一画?会是矩形吗?1、 猜想矩形的判定,它是矩形哪个性质的逆命题。

用自己的语言说。

教师板书:有三个直角的四边形是矩形。

2、要求学生用语言叙述证明这个定理的证明思路。

(提示学生要证明与定义符合,教师用课件演示证明过程)3、定理的几何语言。

在四边形ABCD 中∵ ∠A= ∠B= ∠C= 90°(已知)∴ 四边形ABCD 是矩形(有三个直角的四边形是矩形)(设计意图:改变教材判定定理的教学顺序的意图是:定义判定为:“有一个角是直角的平行四边形叫做矩形”接着探究“三个直角的任意四边形”的判定衔接较好)(二)、情境二:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?1、 猜想矩形的判定,它是矩形哪个性质的逆命题。

《矩形的判定》教案及反思

《矩形的判定》教案及反思

《矩形的判定》教案及反思本节课注重能力和素质的培养,以最新的课程标准和考纲为依据,以方法为主线,以思维为重点,以能力为核心,将基础知识、考试内容和能力提高融为一体。

一、教学目标:1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.二、重点、难点1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.3.难点的突破方法:矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形时,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用"定义"判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).而其它判定都是以"定义"为基础推导出来的.因此本节课要从复习矩形定义下手,并指出由平行四边形得到矩形只需要添加一个独立条件,然后让学生思考讨论,如果小华做出的是一个平行四边形,再加一个什么条件可以说明它是一个矩形呢?从而导出矩形判定方法.对于判定方法1,要着重说明这个性质包括两个条件:(1)是平行四边形;(2)两条对角线相等.对于判定2,只要求是四边形即可,因为由有三个角是直角,可以推出四边形是平行四边形,而由对角线相等却推不出四边形是平行四边形.为了加深印象,我安排了例1,在教学中可以适当地再增加一些判断的题目.要让学生知道(1)矩形的判定方法有以下三种:①一个角是直角的平行四边形;②对角线相等的平行四边形;③有三个角是直角的四边形.(2)而由矩形和平行四边形及四边形的从属关系将矩形的判定方法又可分为两类:①从四边形出发必须增加三个特定的独立条件;②从平行四边形出发只需再增加一个特定的独立条件.(3)特别地:①如果所给四边形添加的条件不满足三个的肯定不是矩形;②所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.教学过程一、复习引入:问题1:如何判定一个四边形是矩形问题2:还能有其他方法说明一个四边形是矩形吗?启发学生通过矩形的性质想到,并让学生分组证明二、新课讲解:思考:若已知四边形是平行四边形,应添加什么条件可以判定是矩形?1.猜想矩形的判定,然后加以证明。

矩形的判定教学设计

矩形的判定教学设计

矩形的判定教学设计第一篇:矩形的判定教学设计《矩形的判定》教学设计一、教学目标知识与技能目标⑴、理解并掌握矩形的判定方法。

⑵、使学生能应用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。

过程与方法目标经历探索矩形判定的过程,发展学生实验探索的意识;形成几何分析思路和方法。

情感态度价值观目标培养推理能力,会根据需要选择有关的结论证明,体会来自于实践的需要。

二、教学重点与难点重点:矩形的判定的内容。

难点:矩形判定定理的证明以及灵活应用。

三、教学手段方法:多媒体直观演示与几何论证相结合,由易到难、层层深入的探究式教学方法进行教学。

四、教学过程设计问题与情境师生互动行为设计意图课前热身1、怎样的四边形是平行四边形?2、平行四边形有哪些性质?3、如何判定一个四边形是平行四边形?有几种判定方法?温故知新 ?1、矩形的定义是什么? ? ? ?2、矩形具有平行四边形的一切性质。

除此而外,矩形还有哪些特殊性质呢??1、对照所提问题,前后桌同学一对一提问。

?2、在学生互相检查知识掌握情况之时,教师巡回视察学生检查的认真情况,并及时给予指导。

1、学生根据提问举手回答问题。

有一个角是直角的平行四边形是矩形。

(教师明确指出:矩形的定义具有两重性,既是矩形的性质,又可以作为矩形的一种判定方法)2、教师在学生回答的基础上,进行梳理总结。

?3、矩形的性质梳理边:两组对边平行且相等。

角:四个角都是直角。

对角线:两条对角线互相平分且相等。

对称性:既是中心对称图形,又是轴对称图形。

??通过课前检查学生对知识的掌握情况,达到梳理已学过知识的目的。

同时也为本节课的顺利进行做好铺垫工作。

让学生与学生展开对话。

教师强调矩形定义中的两个条件,并让学生明白自己已经学过一种矩形的判定方法,为学习另外两种判定方法做准备。

?教师着重强调注意事项,并用框图帮助学生理解平行四边形与矩形的一般与特殊的关系。

情境引课 ? ? 问题1:李芳同学用画“边---直角、边---直角、边---直角、边”这样四步画出了一个四边形,她说这就是一个矩形,她的判断对吗?教师出示图形,并标出直角,供学生观察、思考。

八年级数学下册《矩形的判定》教学设计-经典教学教辅文档

八年级数学下册《矩形的判定》教学设计-经典教学教辅文档

八年级数学《矩形的判定》教学设计一、教材分析:1、教材所处的地位和作用:本节教材是人教版八年级数学下册第19章《四边形》的第二节的内容,是初中数学的重要内容之一。

本节内容是在学习矩形的性质与平行四边形知识经验基础上进行教学的,因而我认为本节起着承前启后的作用。

2、教学目标:知识与技能目标:理解矩形的判定定理,能有理有据的推理证明,并会用判定方法解决相关的成绩。

过程与方法目标:经历探求矩形判定的过程,发展先生实验探求能力;构成几何分析思绪和方法。

情感态度与价值观:注重培养推理能力,会根据需求选择有关的结论证明,领会理论来自于理论的需求。

使先生在数学活动中获取成功的体验,加强自决心。

3、教学重点、难点:教学重点:理解矩形的判定定理及证明过程。

教学难点:矩形判定方法的证明和运用下方为了讲清重点和难点,使先生达到本节课的教学目标,我再从教法和学法上谈谈:二、教法与学法:1、教学手腕:经过动手理论、合作探求、小组交流,培养先生的的逻辑推理、动手理论等能力。

2、学法:经过探求与交流,逐渐得出矩形的判定定理,使先生亲身经历知识的发生过程,并会运用定理解决相关成绩。

经过开放式命题,尝试从不同角度寻求解决成绩的方法。

三、教学过程(一)、创设情境、导入新课回顾:1、矩形的定义。

2、矩形的性质:对边:对边平行且相等。

对角:四个角相等,都是直角。

对角线:互相平分且相等。

3、平行四边形判定定理。

设计意图:经过对矩形定义等几个知识点的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。

(二)、演示操作,探求新知:1、教师拿出教具进行操作,将平行四边形逐渐变为矩形,然后让先生明确判定矩形的第一种方法是经过定义来判定。

先生观察教具,回忆矩形定义,深入理解定义可以作为矩形判定方法之一,师生共同归纳出矩形判定定理一:有一个角是直角的平行四边形是矩形。

明确证题过程:先证平行四边形,再证一个角是直角,得出矩形的结论。

2、教师继续拿出教具进行操作,探求,发问:当矩形一个角变为90度后,其余三个角同时变为90度,两条对角线成为相等的线段,这个变形中你们想到甚么,从中得到甚么启发?先生观察、联想,提出见解。

九年级数学上册《矩形的判定》教案、教学设计

九年级数学上册《矩形的判定》教案、教学设计
4.注重培养学生的逻辑思维能力和空间想象能力,引导学生运用所学的兴趣,激发他们学习数学的热情。
2.培养学生严谨、认真的学习态度,使他们认识到矩形的判定在实际生活中的重要性。
3.培养学生的合作意识和团队精神,使他们学会与他人共同解决问题,互相学习,共同进步。
-利用多媒体手段,如几何画板,动态展示矩形的性质和判定过程,帮助学生形象理解。
-设计具有挑战性的问题,激发学生的思维,培养他们分析问题和解决问题的能力。
-结合实际例子,让学生感受数学与现实生活的联系,增强学习的实践性。
2.教学过程:
-导入新课:通过复习平行四边形的性质和判定,自然过渡到矩形的判定。
-新课展开:分别介绍矩形的三个判定定理,引导学生通过操作、观察、讨论等形式,理解并掌握定理。
2.学生在解决实际问题时,可能缺乏将矩形判定方法与问题联系起来的能力,需要教师在教学中引导学生运用所学知识。
3.学生的逻辑思维能力和空间想象能力发展不均衡,部分学生对几何问题的理解存在困难,需要针对不同学生进行个性化指导。
4.学生在小组合作学习中,沟通与协作能力有待提高,教师应关注学生之间的交流,促进共同进步。
九年级数学上册《矩形的判定》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握矩形的定义,即四边形中,有一对对边平行且相等的图形是矩形。
2.学会运用矩形的判定定理,包括:①对角线互相平分且相等的四边形是矩形;②有一个角是直角的平行四边形是矩形;③对边平行且相等的四边形是矩形。
4.能够运用矩形性质解决实际问题,如计算矩形的面积、周长等。
5.九年级学生面临升学压力,学习动力和兴趣有所减弱,教师应注重激发学生的学习兴趣,提高他们的学习积极性。
三、教学重难点和教学设想

矩形的判定教学设计

矩形的判定教学设计

《矩形的判定》教学设计一、教学内容分析《矩形的判定》选自人教版八年级数学下册第十八章平行四边形。

在此之前,学生们已经学习了平行四边形的性质、判定,以及矩形的性质,这为过渡到本课题的学习起到了铺垫的作用,也为后面菱形、正方形的学习打下了基础。

二、教学目标1.知识与技能目标(能推导、归纳判定一个四边形是矩形的几种方法,会选取适当的判定方法判定一个四边形是矩形)2.过程与方法目标(在自主探究、合作交流的过程中,体会数学定理的生成过程)3.情感态度与价值观目标(激发数学学习兴趣,培养运用数学的意识与能力)三、教学重难点教学重点:能推导、归纳判定一个四边形是矩形的几种方法教学难点:会选取适当的判定方法判定一个四边形是矩形四、学情分析在上一节课学习的基础上,学生对特殊的平行四边形--矩形有了初步的认识,这就为本节课的学习打下了良好的基础。

对本堂课的内容,学生迫切想知道怎样去判定一个四边形为矩形,但是,判定方法的生成较为抽象、多面,学生归纳起来有一定的难度,这就需要教师的积极引导,只有让学生融入课堂、积极探究,才能学好知识,感受到知识的魅力。

五、教学过程1、情境导入,初步认识工人师傅在做门窗或矩形零件时,怎样确保图形是矩形?引发学生的思考。

2、思考探究,获取新知由定义,有一个角是直角的平行四边形是矩形.这是判别一个平行四边形是矩形的最基本的方法.我们知道,矩形的对角线相等.反过来,对角线相等的四边形是矩形吗?如果是,请说明理由;如果不是,请举一反例,并说说什么样的四边形对角线相等时是矩形呢?【教学说明】教师提出问题,让学生思考,在相互交流中加深认识.同时,教师可根据学生的探讨结论进行适当评析,帮助学生获取正确认知.请观察图(1),在四边形ABCD中,尽管AC=BD,但它不是矩形,图(2)中,在平行四边形ABCD中,若有AC=BD,则此四边形ABCD是一个矩形.你能说明理由吗?【教学说明】教师引导学生对图(2)进行论证,此时只要证明△ABC≌△DCB 即可得到∠ABC=∠DCB,又AB∥CD,∴∠ABC=∠DCB=90°,由定义知,四边形ABCD是矩形.【归纳结论】对角线相等的平行四边形是矩形.也可以说:对角线相等且互相平分的四边形是矩形.练一练求证:有三个角是直角的四边形是矩形.【教学说明】这一结论的证明不难,可由学生自己完成.教师应关注学生是否能规范地画图,写已知,求证,并给予证明.【归纳结论】有三个角是直角的四边形是矩形.3、典例精析,掌握新知例1 如图,在平行四边形ABCD中,对角线AC、BD相交于O,且AC=8cm,若△AOB是等边三角形,求此平行四边形的面积.解:在平行四边形ABCD中,对角线AC、BD相交于O,∴OA=OC,OB=OD.又∵△AOB是等边三角形,∴OA=OB,∴OA=OB=OC=OD,∴四边形ABCD是矩形.又∵AC=8cm,∴OA=OB=AB=4cm.在Rt△ABC中,AC=8cm,AB=4cm,∴BC=4√3cm.∴四边形ABCD的面积=AB×BC=4×4√3=16√3cm2.例2 如图,平行四边形ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH为矩形.解:∵AB∥CD,∴∠ABC+∠BCD=180°.∵BG平分∠ABC,CG平分∠BCD,∠GFE=90°.∴四边形EFGH为矩形.【教学说明】以上两例也可先让学生探究,然后教师予以评讲,加深学生对矩形判定定理的理解和应用.4、运用新知,深化理解如图,在平行四边形ABCD中,点E、F为BC边上的点,且BE=CF,AF=DE,求证:平行四边行ABCD是矩形.如图,O是直线MN上一点,C是射线OP上一点,OA、OB分别平分∠MOP,∠NOP,F为CO的中点,过F作DE∥MN,交OA、OB于点D、E.求证:四边形CDOE为矩形.【教学说明】让学生自主探究,独立完成,然后相互交流,探寻结论,教师巡视,发现问题及时予以点拨.5、师生互动,课堂小结通过这节课的学习你有哪些收获?与同伴交流.【教学说明】学生在反思学习的过程中,巩固矩形的判定定理的理解,系统地掌握本节知识.6、作业布置必做:课本60页复习巩固1,2选做:课本61页第12题(1)。

《矩形的判定》教学设计

《矩形的判定》教学设计

《矩形的判定》教学设计教案题目:矩形的判定教学目标:1.了解矩形的定义;2.能够根据给定的图形判断是否为矩形;3.能够根据给定的矩形的特征,确定矩形的性质。

教学重点:1.矩形的定义;2.判断图形是否为矩形。

教学难点:1.确定矩形的特征。

教学准备:1.PPT;2.矩形模型(纸板切割);3.实物矩形图形。

教学过程:一、导入(10分钟)1.引入矩形的概念:教师向学生展示一张矩形的图片,让学生观察并描述这张图片。

2.引导学生思考矩形的特征,然后由学生讲述自己的观察结果。

3.教师总结学生的观察结果,给出矩形的定义并用PPT展示。

二、学习矩形的特征(20分钟)1.通过PPT向学生展示一些不同形状的图形,让学生思考并回答:哪些图形是矩形?为什么?2.引导学生讨论矩形的特征,如角都为直角、边相等等,并总结出矩形的特点。

3.让学生用纸和铅笔绘制一些形状,并判断这些形状是否为矩形。

三、判断图形是否为矩形(30分钟)1.给学生分发一些图形卡片,让学生根据矩形的特征判断这些图形是否为矩形。

2.学生互相交换卡片并互相检查对方的判断是否正确。

3.选几位学生上台展示自己的判断过程,并与全班讨论判断的正确与否。

四、确定矩形的性质(30分钟)1.引导学生观察实物矩形图形,并与之前总结的矩形的特征进行对比。

2.让学生讨论矩形的性质:对角线相等、对角线互相垂直等。

3.通过教师演示,让学生观察和验证矩形的性质,并举例说明。

五、总结与评价(10分钟)1.教师对学生的学习情况进行总结和评价。

2.学生回顾所学的内容,总结矩形的定义和特征。

教学延伸:1.学生自行选择一些有趣的实物图形,用PPT展示并判断这些图形是否为矩形。

2.学生可以在家中或课堂上,观察身边的物体并判断是否为矩形。

矩形的判定(教学设计)

矩形的判定(教学设计)

“矩形的判定”教学设计(1)1、教材的地位和作用《矩形的判定》是人教版教科书《数学》八年级(下)第18章第二节的内容,本课为第1课时。

矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用。

2、教学目标(1)、知识与技能✧在对矩形性质认识的的基础上,探索并掌握矩形的判别方法;✧规范推理的书写格式;✧应用矩形定义、判定等知识,解决简单的实际问题。

(2)、过程与方法通过对逆命题的猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。

(3)、情感、态度与价值观能积极参加数学学习活动,能体验数学活动充满着探索,并从中获得成功的体验,充满对数学学习的好奇心和求知欲。

3、教学重难点1、重点:三个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形。

2、难点:矩形的判定及性质的灵活运用二、教法设计在教学的过程中利用情景向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、培养能力、获得经验,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。

及时上交课堂练习,便于促进学生养成认真的习惯。

三、学法设计本课主要学习方式是学生在自主探索和合作交流的过程中,利用组长帮助个别学困组员的方法,使更大面积的同学真正理解和掌握基本的数学知识与技能、培养能力。

在作业的处理上,进行分层练习,让不同的学生得到不同的发展,树立学生学习数学的信心,让学生在学习活动中获得成功的喜悦,从而激发学生学习数学的兴趣。

四、教学过程(一)情景设置母亲节快到了,妮妮想做一个矩形的精美礼物送给妈妈,于是找来了直尺和三角板,你有什么办法可以帮她检测吗?看看谁的方法多?设计意图:利用班级同学的手工艺品,通过设疑式导入,来源于实际生活中的问题,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知,由知到用,为后面的问题解决埋下伏笔。

《矩形的判定》教案

《矩形的判定》教案

《矩形的判定》教案标题:矩形的判定教案教案目标:1.了解矩形的定义和特征;2.掌握判断一个形状是否为矩形的方法;3.训练学生的逻辑思维和推理能力;4.培养学生观察、分析和解决问题的能力。

教学内容:1.矩形的定义和特征:四边相等、对角线相等、四个角都是直角;2.判断一个形状是否为矩形的方法;3.练习题和课堂互动。

教学步骤:第一步:导入新知引用教师提供的图片,展示不同的形状,包括矩形、正方形、长方形、菱形和其他形状,并让学生观察并说出每个形状的名称。

第二步:引入矩形的定义和特征1.提问:什么是矩形?让学生回答并描述矩形的特征。

2.教师解释:矩形是一种特殊的四边形,它的四边相等,对角线相等,四个角都是直角。

3.展示教师提供的图片,并强调矩形的特征。

第三步:讲解判断矩形的方法1.教师列出判断矩形的方法:a)判断四条边是否相等;b)判断对角线是否相等;c)判断四个角是否都是直角。

2.逐个解释并提供示例。

在每个示例中,教师和学生一同判断该图形是否为矩形。

第四步:练习题和课堂互动教师提出一系列练习题,让学生应用所学知识判断形状是否为矩形。

学生可以在黑板上画出图形,并用判断矩形的方法进行推理和判断。

同时,教师鼓励学生积极参与讨论和互动,提高学生的思维能力和解决问题的能力。

课堂互动问题示例:1.下面的形状是矩形吗?请说明理由。

a)一张纸的形状;b)一个电视机的形状;c)一块巧克力的形状。

2.如果一个形状有四条边相等,但是没有直角,它还可以被称为矩形吗?为什么?3.如果一个形状有四个角都是直角,但是对角线不相等,它是矩形吗?为什么?第五步:总结课堂所学教师总结矩形的定义和特征,并强调判断矩形的方法。

鼓励学生在日常生活中观察形状,运用所学知识判断矩形。

教学延伸:教师可以邀请学生自愿带来一些矩形的物品,如书、手机、文件夹等,并让学生展示并解释为什么这些物品是矩形。

教学评估:教师可以通过练习题和课堂表现来评估学生的掌握程度。

矩形的判定优质课教案

矩形的判定优质课教案

课题:矩形的判定教学目标1、知识目标理解并掌握矩形的判定方法。

使学生能运用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步提高分析问题的能力。

2、能力目标通过合作探究,证明矩形的判定定理,并能运用判定定理解决实际问题。

3、情感目标通过探索学习,锻炼逆向思维的能力。

重点与难点1、重点:矩形的判定。

2、难点:矩形的判定定理的探究及综合应用。

教学方法启发引导、小组讨教学过程:一、情景导入:动画展示:一个平行四边形变化为矩形的过程1、问:同学们,这是一个什么图形啊?2、通过我们的观察,图形发生什么样的变化呢?3、引出并复习矩形的定义,引出课题:矩形的判定根据矩形的定义来判定:有一个角是直角的平行四边形是矩形。

4、复习矩形的性质。

二、新知探究1、故事情景古时候,有一位国王很痛爱自己最小的儿子,小王子聪明能干,十岁时,国王决定考一考他。

一天,国王让大臣找来一个木制的门框,对小王子说:“我要的是一个矩形门框,你来判断一下,这个门框符不符合我的要求?”王子听后,找来一把三角尺,用三角尺量了量门框的三个角,然后对国王说:“父王,我量了门框的三个角,它们都是90度,因此,这个门框是矩形。

”国王......⑴问:你认为王子说得对吗?请同学们分组讨论并给出老师答案。

(让其中的一组来讲)⑵有三个角是直角的四边形是矩形吗?⑶求证:有三个角是直角的四边形是矩形已知:如图∠A=∠B∠C=90°求证:四边形ABCD是矩形(学生分组讨论,并由其中一组的单个学生到黑板上板书)结论:矩形的判定定理一:有三个角是直角的四边形是矩形。

问:1、只有一个角是直角的四边形是矩形吗?2、只有两个角是直角的四边形是矩形吗?(师生一起探讨并举反例)2、同学们想一想,在刚才的故事中,如果你是王子,你会怎么做呢?(学生自由发挥)三、动动手:请同学们拿出笔来,画两条长度相等的相交线段,并把它们的四个端点顺次连接起来,看是不是矩形?(学生画图,并分组讨论自己画的图形是不是矩形?)拿出长度相等的两根纸条,让学生自己来摆出以这两根纸条为对角线的矩形。

八年级数学下册《矩形的判定》教案、教学设计

八年级数学下册《矩形的判定》教案、教学设计
2.每组选取一道具有代表性的矩形判定题目,共同分析解题思路。
3.各小组展示讨论成果,全班分享讨论。
4.教师点评各小组的讨论情况,针对存在的问题进行指导和解答。
(四)课堂练习
在课堂练习环节,我将设计以下练习题:
1.基础题:判断哪些图形是矩形,哪些不是,并说明理由。
2.提高题:运用矩形性质解决实际问题,如计算矩形面积、周长等。
-设想评价:课堂问答关注学生的即时理解和反应;小组讨论评价学生的合作能力和交流技巧;课后作业则侧重于学生的独立思考和问题解决能力。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将通过以下方式激发学生的学习兴趣,为新知的学习做好铺垫。
1.利用生活实例引入:向学生展示一些生活中常见的矩形物品,如书本、电视、门等,引导学生观察它们的共同特征,为新课的学习提供直观的感知。
2.提出问题:为什么这些物品的形状都是矩形?矩形具有哪些特殊的性质?通过问题引导学生思考,激发他们的好奇心。
3.回顾已学知识:让学生回顾平行四边形、菱形、正方形的性质及判定方法,为新课矩形的判定做好知识准备。
(二)讲授新知
在讲授新知环节,我将按照以下步骤进行:
1.介绍矩形的定义:四边形中对边相等且四个帮助的品质,使其在合作学习中,体验到共同成长的快乐。
4.引导学生树立正确的价值观,认识到学习数学不仅是提高自身素质的需要,更是为国家、为社会作贡献的重要途径。
二、学情分析
八年级学生在学习《矩形的判定》这一章节时,已具备了一定的几何基础,掌握了平行四边形、菱形、正方形的性质及判定方法。在此基础上,学生对矩形的认识处于初步阶段,需要进一步引导和拓展。此外,学生在解决几何问题时,逐渐形成了自己的思维方式和方法,但逻辑推理能力、问题分析能力仍有待提高。针对这些情况,教学过程中应注重以下几点:

矩形的判定 教案(教学设计)

矩形的判定  教案(教学设计)

DA《矩形的判定》一、 教学目标:知识与技能:1、理解并掌握矩形的判定方法;2、会利用矩形的判定方法,进行简单的证明。

过程与方法:经历探索矩形的判定过程,培养观察、推理、证明的意识,发展逻辑思维能力。

情感态度价值观:体验矩形判定方法的探究过程,提高自主探究的能力和与他人合作交流的意识,增强对数学的好奇心和求知欲。

二、教学的重点、难点重点:矩形的判定方法探究。

难点:矩形判定定理的证明及运用。

三、 教学过程(一)情景引入情境:木工师傅制作四边形窗框后,需要检测所制作的窗框是否是矩形,现在有一根足够长的绳子和一把无刻度三角板,他有几种检测方法?依据是什么呢?(二)复习定义通过活动的平行四边形框架复习矩形的定义,得出矩形的判定方法1 定义判定: 有 个角是直角的 是矩形。

如何用几何语言表述?∵四边形ABCD 是 ,∠A= ° ∴□ABCD 是矩形 (三) 探究1、 自主探究(矩形的判定方法2——直角)通过复习矩形的性质:(1)四个角都是 。

(2)对角线 。

探究矩形的其他判定方法。

猜想:有 个角是直角的四边形是矩形.DCBA推理验证小结矩形判定定理1:有个角是的四边形是矩形.如何用几何语言表述?∵∠A=∠B=∠C= °∴四边形ABCD是2、合作探究(矩形的判定方法3——对角线)猜想:相等的平行四边形是矩形推理验证已知:如图,在□ABCD中,AC、BD是它的两条对角线,= . 求证:□ABCD是矩形.证明:小结矩形判定定理2:相等的是矩形.如何用几何语言表述?∵四边形ABCD是,=∴□ABCD是矩形(四)归纳总结矩形的判定方法:1、2、3、(五)巩固新知A DB C判断下列说法是否正确:(1)三个角都相等的四边形是矩形()(2)对角线相等且互相平分的四边形是矩形()(六)例题讲解例:如图,点O是矩形ABCD的对角线AC与BD的交点,E、F、G、H分别是AO 、BO 、 CO 、 DO上的一点,且AE=BF=CG=DH。

最新版初中数学教案《矩形的判定 》精品教案(2022年创作)

最新版初中数学教案《矩形的判定 》精品教案(2022年创作)

矩形的判定1.掌握矩形的判定方法;(重点)2.矩形的判定及性质的综合应用.(难点)一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一角是直角的平行四边形是矩形:如图,△ABC中,AB=AC,AD 是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.解析:首先利用等边对等角性质得出∠B=∠ACB;再根据外角和外角平分线性质得出∠F AE=∠ACB,进而得到AE∥CD,即可推出四边形AEDB是平行四边形,再利用平行四边形的性质推出四边形ADCE是平行四边形,即可推出四边形ADCE是矩形.证明:∵AB=AC,AD⊥BC,∴∠B=∠ACB,BD=DC.∵AE是∠BAC的外角平分线,∴∠F AE=∠EAC,∵∠B+∠ACB =∠F AE+∠EAC,∴∠B=∠ACB=∠F AE =∠EAC,∴AE∥CD,又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且相等BD,又∵BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形,又∵∠ADC =90°,∴平行四边形ADCE是矩形.方法总结:此题主要考查了平行四边形的判定与性质以及矩形的判定,灵活应用平行四边形的判定得出四边形AEDB、四边形ADCE是平行四边形是解题的关键.探究点二:对角线相等的平行四边形是矩形如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC、OB=OD;假设ON=OB,那么ON=OD;而CM=AN,即ON=OM,由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB,∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴四边形NDMB为平行四边形,MN=BD,∴平行四边形NDMB为矩形.方法总结:证明一个四边形是矩形,假设题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等且互相平分.探究点三:有三个角是直角的四边形是矩形如下列图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.解析:此题的垂直关系较多,所以利用“有三个角是直角的四边形是矩形〞来证明比较简便.证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,即∠DAC=12∠BAC.又∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE=12∠CAM.∴∠DAE=∠DAC+∠CAE =12(∠BAC +∠CAM)=180°×12=90°.又AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°.∴四边形ADCE为矩形.方法总结:题设中出现多个直角或垂直时,常采用“有三个角是直角的四边形是矩形〞来判定矩形.探究点四:矩形的性质和判定的综合应用【类型一】利用矩形的判定和性质证明和计算如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)假设E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.解析:(1)首先证明四边形EFGH是平行四边形,然后再证明HF=EG;(2)根据题干求出矩形的边长CD和BC,然后根据矩形面积公式求解.(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO -DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC,∵DG⊥AC,∴CD=OD,∵F是BO中点,OF=2cm,∴BO=4cm,∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB =8cm,∴CB=DB2-DC2=43(cm),∴矩形ABCD的面积=4×43=163(cm2).方法总结:要证明四边形是矩形,首先可判定四边形是平行四边形,然后证明对角线相等.【类型二】矩形判定与动点问题如下列图,在梯形ABCD中,AD ∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?解析:(1)四边形PQCD是平行四边形,可根据DP=CQ,列出方程后求解即可;(2)四边形PQBA是矩形,可根据AP=BQ,列出相应方程求解即可.解:(1)设经过x s,四边形PQCD为平行四边形,即PD=CQ,所以24-x=3x,解得x=6,即经过6秒,四边形PQCD是平行四边形;(2)设经过y s,四边形PQBA为矩形,即AP=BQ,所以y=26-3y,解得y=132,,四边形PQBA是矩形.方法总结:①证明一个四边形是矩形,假设题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等;②题设中出现多个直角或垂直时,常采用“有三个角是直角的四边形是矩形〞来判定矩形.三、板书设计1.矩形的判定有一角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.矩形的性质和判定综合应用在本节课的教学中,不仅要求学生掌握矩形判定的几种方法,更要注重学生在教学的过程中是否真正掌握了探究问题的根本思路和方法,着眼于让学生不仅懂得验证定理,也要懂得提出问题探究问题.教师在例题练习的教学中,假设能适当地多做一些变式练习,引导学生类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的有效性.第1课时教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师表达: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形〞这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形. (2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是) (2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形〞.教师提问:上述对三角形的描述中你认为有几个局部要引起重视.学生答复:一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一局部至思考,一段课文,并答复以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC,三角形ABC的三边,AB 可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定答复以上问题:(1)小虫从B出发沿三角形的边爬到C 有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm 之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以答复这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.。

沪科版数学八年级(下册)19.3矩形、菱形、正方形 矩形的判定-教案

沪科版数学八年级(下册)19.3矩形、菱形、正方形 矩形的判定-教案

第十九章四边形19.3.1 矩形第2课时矩形的判定一、教学目标1.理解并掌握矩形的判定方法.2.能熟练掌握矩形的判定及性质的综合应用.二、教学重点及难点重点:矩形的判定定理的掌握.难点:矩形的判定及性质的综合应用.三、教学用具直尺、三角板、多媒体课件四、相关资料微课,图片五、教学过程【情景引入】小明想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框?看看谁的方法可行!设计意图:通过问题的设计引发学生思考,从而引出新课.【探究新知】【探究1】矩形的判定定理1从一个四边形的一个角为直角、两个角为直角、三个角为直角、四个角为直角开始作图探究(鼓励学生自己作图说明)一个角为直角的情况:两个角为直角的情况:三个角为直角的情况:四个角为直角的情况:结论1:三个角是直角的四边形是矩形.证明:采用两组对边分别平行先证出四边形是平行四边形,再由有一个角是直角,根据矩形的定义得出为矩形.【探究2】矩形的判定定理2活动:画出对角线条数为2的四边形.问题:能画多少个?(动手操作,无数个)活动:画出对角线条数为2的矩形.问题:能画多少个?(动手操作,只有一个)结论:对角线相等的平行四边形是矩形.注意区别:对角线相等的四边形不一定是矩形,如下图【新知运用】【类型一】对角线相等的平行四边形是矩形例1如图所示,外面的四边形ABCD是矩形,对角线AC,BD相交于点O,里面的四边形MPNQ的四个顶点都在矩形ABCD的对角线上,且AM=BP=CN=DQ.求证:四边形MPNQ 是矩形.解析:要证明四边形MPNQ是矩形,应先证明它是平行四边形,由已知可再证明其对角线相等.证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AM=BP=CN=DQ,∴OM=OP=ON=OQ.∴四边形MPNQ是平行四边形.又∵OM +ON =OQ +OP ,∴MN =PQ .∴平行四边形MPNQ 是矩形(对角线相等的平行四边形是矩形).方法总结:在判断四边形的形状时,若已知条件中有对角线,可首先考虑能否用对角线的条件证明矩形.【类型二】 有三个角是直角的四边形是矩形例2 如图,GE ∥HF ,直线AB 与GE 交于点A ,与HF 交于点B ,AC 、BC 、BD 、AD 分别是∠EAB 、∠FBA 、∠ABH 、∠GAB 的平分线.求证:四边形ADBC 是矩形.解析:利用已知条件,证明四边形ADBC 有三个角是直角.证明:∵GE ∥HF ,∴∠GAB +∠ABH =180°.∵AD 、BD 分别是∠GAB 、∠ABH 的平分线,∴∠1=12∠GAB ,∠4=12∠ABH , ∴∠1+∠4=12(∠GAB +∠ABH )=12×180°=90°, ∴∠ADB =180°-(∠1+∠4)=90°.同理可得∠ACB =90°.又∵∠ABH +∠FBA =180°,∠4=12∠ABH ,∠2=12∠FBA , ∴∠2+∠4=12(∠ABH +∠FBA )=12×180°=90°,即∠DBC =90°. ∴四边形ADBC 是矩形.方法总结:矩形的判定方法和矩形的性质是相辅相成的,注意它们的区别和联系,此判定方法只要说明一个四边形有三个角是直角,则这个四边形就是矩形.【类型三】 有一个角是直角的平行四边形是矩形例3 如图所示,在△ABC 中,D 为BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD .连接BF .(1)BD 与DC 有什么数量关系?请说明理由;(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?并说明理由.解析:(1)根据“两直线平行,内错角相等”得出∠AFE =∠DCE ,然后利用“AAS ”证明△AEF 和△DEC 全等,根据“全等三角形对应边相等”可得AF =CD ,再利用等量代换即可得BD =CD ;(2)先利用“一组对边平行且相等的四边形是平行四边形”证明四边形AFBD 是平行四边形,再根据“有一个角是直角的平行四边形是矩形”可知∠ADB =90°.由等腰三角形“三线合一”的性质可知△ABC 满足的条件必须是AB =AC .解:(1)BD =CD .理由如下:∵AF ∥BC ,∴∠AFE =∠DCE .∵E 是AD 的中点,∴AE =DE .在△AEF 和△DEC 中,⎩⎪⎨⎪⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS ).∴AF =CD .∵AF =BD ,∴BD =DC ;(2)当△ABC 满足AB =AC 时,四边形AFBD 是矩形.理由如下:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,BD =DC ,∴∠ADB =90°.∴四边形AFBD 是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有“一个角是直角的平行四边形是矩形”是解本题的关键.【随堂检测】1.已知:O是矩形ABCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,AE=BF=CG=DH,求证:四边形EFGH为矩形分析:利用对角线互相平分且相等的四边形是矩形可以证明证明:∵ABCD为矩形∴AC=BD∴AC、BD互相平分于O∴AO=BO=CO=DO∵AE=BF=CG=DH∴EO=FO=GO=HO又HF=EG∴EFGH为矩形2.判断(1)两条对角线相等四边形是矩形()(2)两条对角线相等且互相平分的四边形是矩形()(3)有一个角是直角的四边形是矩形()(4)在矩形内部没有和四个顶点距离相等的点()分析及解答:(1)如图(1)四边形ABCD中,AC=BD,但ABCD不为矩形,∴×(2)对角线互相平分的四边形即平行四边形,∴对角线相等的平行四边形为矩形∴√(3)如图(2),四边形ABCD中,∠B=90°,但ABCD不为矩形∴×(4)矩形对角线的交点O到四个顶点距离相等∴×,如图(3))1()3()2(【课堂小结】矩形的判定定理有哪些?1.从定义上:有一个角是直角的平行四边形2.从内角上:有三个角是直角的四边形3.从对角线上:对角线相等的平行四边形设计意图:通过问题的设置将本节课所学的知识点进行集中的梳理,归纳总结出本节课的重点知识.【板书设计】第2课时矩形的判定1.有一个角是直角的平行四边形2.有三个角是直角的四边形3.对角线相等的平行四边形。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课时矩形的判定方法
一、教学目标
知识与技能
理解并掌握矩形的判定方法.
过程与方法
使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。

情感、态度与价值观
培养学生的推理论证能力和逻辑思维能力.
二、重点难点
重点:矩形的判定.
难点:矩形的判定及性质的综合应用.
三、教学准备
多媒体课件。

四、教学方法
讲练结合法。

五、教学过程
(一)复习导入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
设计意图:通过这些问题,教师可以检查学生学习的情况。

4.事例引入:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.
(二)新课讲解
例1.(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形;
(×)
(2)有四个角是直角的四边形是矩形;
(√)
(3)四个角都相等的四边形是矩形;
(√)
(4)对角线相等的四边形是矩形;
(×)
(5)对角线相等且互相垂直的四边形是矩形;
(×)
(6)对角线互相平分且相等的四边形是矩形;
(√)
(7)对角线相等,且有一个角是直角的四边形是矩形;
(×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;
(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形.
(√ )
老师指出:
(1)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
例2. (补充)已知 ABCD 的对角线AC 、BD 相交于点O ,△AOB 是等边三
角形,AB=4 cm ,求这个平行四边形的面积.
分析:首先根据△AOB 是等边三角形及平行四边形对角线互相平分的性质判定出ABCD 是矩形,再利用勾股定理计算边长,从而得到面积值.
解:∵ 四边形ABCD 是平行四边形,
∴ AO=21AC ,BO=2
1BD . ∵ AO=BO ,
∴ AC=BD .
∴ ABCD 是矩形(对角线相等的平行四边形是矩形).
在Rt △ABC 中,
∵ AB=4cm ,AC=2AO=8cm ,
∴ BC=34cm 482
2=-cm .
例3.(补充) 已知:如图(1),
ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H .求证:四边形EFGH 是矩形.
分析:要证四边形EFGH 是矩形,由
于此题目可分解出基本图形,因此,可选用“三个角是直角的四边形是矩形”来证明.
证明:∵ 四边形ABCD 是平行四边形,
∴ AD ∥BC .
∴ ∠DAB +∠ABC=180°.
又 AE 平分∠DAB ,BG 平分∠ABC ,
∴ ∠EAB +∠ABG=2
1×180°=90°. ∴ ∠AFB=90°.
同理可证 ∠AED=∠BGC=∠CHD=90°.
∴ 四边形EFGH 是矩形(有三个角是直角的四边形是矩形).
(三) 例题讲解
例1.下列说法正确的是( ).
(A )有一组对角是直角的四边形一定是矩形(B )有一组邻角是直角的四边形一定是矩形
(C )对角线互相平分的四边形是矩形 (D )对角互补的平行四边形是矩形 解析:利用矩形的判定定理。

答案:A 。

2.已知:如图 ,在△ABC 中,∠C =90°, CD 为中线,延长CD 到点E ,使
得 DE =CD .连结AE ,BE ,求证:四边形ACBE 为矩形.
解析:平行四边形与矩形判定定理的应用
证明:∵CD 为中线,
∴AD=BD.
又DE=CD,
∴AEBC 为平行四边形。

又∠C =90°,
∴四边形ACBE为矩形。

(四)巩固练习
(五)全课小结
1、要知道什么是矩形的判定定理。

2、如何应用判定定理解决简单的问题。

六、板书设计
七、课后作业
八、教学反思
今天上课的内容是矩形。

在课前,我让每个学生准备一个硬纸板做的矩形的模型。

课堂上,通过学生的画线、裁剪、测量等方法,发现了矩形的相关性质,比如对角线相等且平分、对边相等且平行、每个角都是90°等等,并尝试探讨了矩形的判断方法,而且将矩形与平行四边形做了比较,学生通过讨论、交流,探讨了矩形与平行四边形的区别与联系,更好的掌握了知识。

在本节课中,我极大限度的将课堂交给了学生,通过学生的自主交流,学生的学习积极性和主动性得到了极大的提高。

我也一直在努力,尝试将课堂真正的交给学生,也希望各位同仁能够谈谈自己的看法。

相关文档
最新文档