山东省青岛市2017届九年级第二学期期初考试数学试卷(无答案)
山东省青岛市年中考数学真题试题含解析
山东省青岛市2017年中考数学真题试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.的相反数是().A.8B.C.D.【答案】C【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:的相反数是.故选:C考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是().【答案】A考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A、众数是6吨B、平均数是5吨C、中位数是5吨D、方差是【答案】C考点:1、方差;2、平均数;3、中位数;4、众数4.计算的结果为().A. B. C. D.【答案】D【解析】试题分析:根据幂的混合运算,利用积的乘方性质和同底数幂相除计算为:考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算5. 如图,若将△ABC绕点O逆时针旋转90°则顶点B的对应点B1的坐标为()A. B. C. D.【答案】B【解析】试题分析:将△ABC绕点O逆时针旋转90°后,图形如下图所以B1的坐标为故选:B考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算6. 如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD,根据同弧所对的圆周角相等,可知∠ABD=∠AED=20°,然后根据直径所对的圆周角为直角得到∠ADB=90°,从而由三角形的内角和求得∠BAD=70°,因此可求得∠BCD=110°. 故选:B考点:圆的性质与计算7. 如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,,AC=2,BD=4,则AE 的长为()A. B.C. D.【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. 一次函数的图像经过点A(),B(2,2)两点,P为反比例函数图像上的一个动点,O为坐标原点,过P 作y轴的垂线,垂足为C,则△PCO的面积为()A、2B、4C、8D、不确定【答案】试题分析:如下图,考点: 1、一次函数,2、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。
2017青岛中考数学试题及答案
青岛市二〇一七年初中学生学业考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分; 第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分. 要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.81-的相反数是( ).A .8B .8-C .81D .81-2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ). A 、众数是6吨 B 、平均数是5吨 C 、中位数是5吨D 、方差是344.计算323)2(6m m -÷的结果为( ).A .m -B .1-C .43D .43-5. 如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点 B1的坐标为( ) A.)2,4(- B.)4,2(- C. )2,4(- D.)4,2(-6,如图,AB 是⊙O 的直径,C ,D ,E 在⊙O 上, 若∠AED =20°,则∠BCD 的度数为( )A 、100°B 、110°C 、115°D 、120°7. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4, 则AE 的长为( )A .23B .23C .721D .72128. 一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkb y = 图像上的一个动点,O 为坐标原点,过P 作y 轴的吹吸纳,垂足为C ,则△PCO 的面积为( )A 、2B 、4C 、8D 、不确定第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。
山东省青岛市2017年中考数学试卷(解析版)
青岛市2017年中考数学试卷 (考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.81-的相反数是( ). A .8 B .8- C .81 D .81- 【答案】C【解析】试题分析:利用知识点:性质符号相反,绝对值相等的两个数是互为相反数,知:81-是81 考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).【答案】A【解析】试题分析:利用知识点:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,知:选项A 是轴对称图形,但不是中心对称图形;选项B 和C,既是轴对称图形又是中心对称图形;选项D 是中心对称图形,但不是轴对称图形。
考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A 、众数是6吨B 、平均数是5吨C 、中位数是5吨D 、方差是34 【答案】C【解析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:方差;平均数;中位数;众数4.计算326)2(6m m -÷的结果为( ).A .m -B .1-C .43D .43- 【答案】D【解析】试题分析:()4386)2(666326-=-÷=-÷m m m m 考点:(1)、同底数幂的乘除法运算法则;(2)、积的乘方运算法则;(3)、幂的乘方运算5. 如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A.)2,4(-B.)4,2(-C. )2,4(-D.)4,2(-【答案】B【解析】试题分析:将△ABC 绕点O 逆时针旋转90°后,图形如下图(所以B1的坐标为)4,2考点:(1)、同底数幂的乘除法运算法则;(2)、积的乘方运算法则;(3)、幂的乘方运算6. 如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD 的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD∵∠AED=20°∴∠ABD=∠AED=20°∵AB 是⊙O 的直径∴∠ADB=90°∴∠BAD=70°∴∠BCD=110°考点:圆的性质与计算7. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23 C .721 D .7212 【答案】D【解析】试题分析:∵平行四边形ABCD ,AC =2,BD =4∴AO=1,BO=2∵3=AB∴△ABO 是直角三角形,∠BAO=90°∴BC=()7232222=+=+AC AB在直角△ABC 中 AE BC AC AB S ABC ⋅=⋅=∆2121 AE ⋅=⨯7212321 AE=7212 考点:平行四边形的性质,勾股定理,面积法求线段长度8. 一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkb y = 图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C , 则△PCO 的面积为( )A 、2B 、4C 、8D 、不确定【答案】A【解析】试题分析:如下图,把点A (4,1--),B (2,2)代入)0(≠+=k b kx y 得22--=x y ,即k=-2,b=-2所以反比例函数表达式为xy 4= 设P (m ,n ),则nm 4=,即mn=4 △PCO 的面积为21OCPC=21mn=2 考点: 一次函数、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。
山东省青岛市2017年中考数学试题(含答案).
青岛市2017年中考数学试卷(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分) 下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.81-的相反数是( ).A .8B .8-C .81D .81-2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ). A 、众数是6吨 B 、平均数是5吨 C 、中位数是5吨 D 、方差是344.计算323)2(6m m -÷的结果为( ).A .m -B .1-C .43 D .43-5. 如图,若将△绕点O 逆时针旋转90°则顶点B 的对应点 B 1的坐标为( ) A.)2,4(- B.)4,2(- C. )2,4(- D.)4,2(-6,如图, 是⊙O 的直径,C ,D ,E 在⊙O 上, 若∠=20°,则∠的度数为( )A 、100° B、110° C 、115° D、120°7. 如图,平行四边形的对角线与相交于点O ,⊥,垂足为E ,3=AB ,=2,=4,则的长为( )A .23 B .23C .721 D .7212 8. 一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkb y =图像上的一个动点,O 为坐标原点,过P 作y 轴的吹吸纳,垂足为C ,则△的面积为( )A 、2B 、4C 、8D 、不确定第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分) 9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。
2017年山东省青岛市中考数学试卷及答案解析(含答题卡)
2017年山东省青岛市中考数学试卷
一、选择题(本题满分24分,共有8道小题,每小题3分)
1.(3分)﹣的相反数是()
A.8 B.﹣8 C.D.﹣
2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()
A.B.C.D.
3.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()
A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是
4.(3分)计算6m6÷(﹣2m2)3的结果为()
A.﹣m B.﹣1 C.D.﹣
5.(3分)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为()
A.(﹣4,2)B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)
6.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()
A.100°B.110°C.115° D.120°
7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()
A.B.C.D.
8.(3分)一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,
P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为()
A.2 B.4 C.8 D.不确定
二、填空题(本题满分18分,共有6道小题,每小题3分)。
2017年山东省青岛市中考数学试卷
2017年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣18的相反数是( ) A .8 B .﹣8 C .18 D .﹣182.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .3.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是434.(3分)计算6m 6÷(﹣2m 2)3的结果为( )A .﹣mB .﹣1C .34D .﹣34 5.(3分)如图,若将△ABC 绕点O 逆时针旋转90°,则顶点B 的对应点B 1的坐标为( )A .(﹣4,2)B .(﹣2,4)C .(4,﹣2)D .(2,﹣4)6.(3分)如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED=20°,则∠BCD 的度数为( )A .100°B .110°C .115°D .120°7.(3分)如图,▱ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,AB=√3,AC=2,BD=4,则AE 的长为( )A .√32B .32C .√217D .2√2178.(3分)一次函数y=kx +b (k ≠0)的图象经过A (﹣1,﹣4),B (2,2)两点,P 为反比例函数y=kb x 图象上一动点,O 为坐标原点,过点P 作y 轴的垂线,垂足为C ,则△PCO 的面积为( )A .2B .4C .8D .不确定二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为.10.(3分)计算:(√24+√16)×√6=.11.(3分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.12.(3分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为.13.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为度.14.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为.三、解答题(本大题共4分)15.(4分)已知:四边形ABCD.求作:点P ,使∠PCB=∠B ,且点P 到边AD 和CD 的距离相等.三、解答题(本大题共9小题,共74分)16.(8分)(1)解不等式组:{x −1>2x①x 2+3<−2② (2)化简:(a 2b ﹣a )÷a 2−b 2b. 17.(6分)小华和小军做摸球游戏:A 袋装有编号为1,2,3的三个小球,B 袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同.从两个袋子中分别随机摸出一个小球,若B 袋摸出小球的编号与A 袋摸出小球的编号之差为偶数,则小华胜,否则小军胜,这个游戏对双方公平吗?请说明理由.18.(6分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是 度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.19.(6分)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需绕行B 地,已知B 地位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数)(参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,√3≈1.73)20.(8分)A ,B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发,图中l 1,l 2表示两人离A 地的距离s (km )与时间t (h )的关系,请结合图象解答下列问题:(1)表示乙离A 地的距离与时间关系的图象是 (填l 1或l 2);甲的速度是 km/h ,乙的速度是 km/h ;(2)甲出发多少小时两人恰好相距5km ?21.(8分)已知:如图,在菱形ABCD 中,点E ,O ,F 分别为AB ,AC ,AD 的中点,连接CE ,CF ,OE ,OF .(1)求证:△BCE ≌△DCF ;(2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由.22.(10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录: 淡季 旺季未入住房间数10 0 日总收入(元) 24000 40000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?23.(10分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究一:求不等式|x ﹣1|<2的解集(1)探究|x ﹣1|的几何意义如图①,在以O 为原点的数轴上,设点A′对应的数是x ﹣1,有绝对值的定义可知,点A′与点O 的距离为|x ﹣1|,可记为A′O=|x ﹣1|.将线段A′O 向右平移1个单位得到线段AB ,此时点A 对应的数是x ,点B 对应的数是1.因为AB=A′O ,所以AB=|x ﹣1|,因此,|x ﹣1|的几何意义可以理解为数轴上x 所对应的点A 与1所对应的点B 之间的距离AB .(2)求方程|x ﹣1|=2的解因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1.(3)求不等式|x ﹣1|<2的解集因为|x﹣1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x﹣1|<2的解集,并写出这个解集.探究二:探究√(x−a)2+(y−b)2的几何意义(1)探究√x2+y2的几何意义如图③,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,则MO=√OP2+PM2=√|x|2+|y|2=√x2+y2,因此,√x2+y2的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离MO.(2)探究√(x−1)2+(y−5)2的几何意义如图④,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究二(1)可知,A′O=√(x−1)2+(y−5)2,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=√(x−1)2+(y−5)2,因此√(x−1)2+(y−5)2的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离AB.(3)探究√(x+3)2+(y−4)2的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.(4)√(x−a)2+(y−b)2的几何意义可以理解为:.拓展应用:(1)√(x−2)2+(y+1)2+√(x+1)2+(y+5)2的几何意义可以理解为:点A(x,y)与点E(2,﹣1)的距离和点A(x,y)与点F(填写坐标)的距离之和.(2)√(x−2)2+(y+1)2+√(x+1)2+(y+5)2的最小值为(直接写出结果)24.(12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一直线上,AB=EF=6cm ,BC=FP=8cm ,∠EFP=90°,如图②,△EFP 从图①的位置出发,沿BC 方向匀速运动,速度为1cm/s ,EP 与AB 交于点G ;同时,点Q 从点C 出发,沿CD 方向匀速运动,速度为1cm/s .过点Q 作QM ⊥BD ,垂足为H ,交AD 于点M ,连接AF ,FQ ,当点Q 停止运动时,△EFQ 也停止运动.设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,PQ ∥BD ?(2)设五边形AFPQM 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形AFPQM :S 矩形ABCD =9:8?若存在,求出t 的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t ,使点M 在线段PG 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.2017年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•青岛)﹣18的相反数是()A.8 B.﹣8 C.18D.﹣18【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣18的相反数是18,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2017•青岛)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•青岛)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是43【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【解答】解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为43. 故选C .【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数、中位数.4.(3分)(2017•青岛)计算6m 6÷(﹣2m 2)3的结果为( )A .﹣mB .﹣1C .34D .﹣34【分析】根据整式的除法法则即可求出答案.【解答】解:原式=6m 6÷(﹣8m 6)=﹣34故选(D )【点评】本题考查整式的除法,解题的关键是熟练运用整式的除法法则,本题属于基础题型.5.(3分)(2017•青岛)如图,若将△ABC 绕点O 逆时针旋转90°,则顶点B 的对应点B 1的坐标为( )A.(﹣4,2)B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)【分析】利用网格特征和旋转的性质,分别作出A、B、C的对应点A1、B1、C1,于是得到结论.【解答】解:如图,点B1的坐标为(﹣2,4),故选B.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等.6.(3分)(2017•青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A .100°B .110°C .115°D .120°【分析】连接AC ,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD 的度数.【解答】解:连接AC ,∵AB 为⊙O 的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB +∠ACD=110°,故选B .【点评】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(3分)(2017•青岛)如图,▱ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,AB=√3,AC=2,BD=4,则AE 的长为( )A .√32B .32C .√217D .2√217【分析】由勾股定理的逆定理可判定△BAO 是直角三角形,所以平行四边形ABCD 的面积即可求出.【解答】解:∵AC=2,BD=4,四边形ABCD 是平行四边形,∴AO=12AC=1,BO=12BD=2, ∵AB=√3,∴AB 2+AO 2=BO 2,∴∠BAC=90°,∵在Rt △BAC 中,BC=√AB 2+AC 2=√(√3)2+22=√7S △BAC =12×AB ×AC=12×BC ×AE , ∴√3×2=√7AE ,∴AE=2√217, 故选D .【点评】本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC 是直角三角形是解此题的关键.8.(3分)(2017•青岛)一次函数y=kx +b (k ≠0)的图象经过A (﹣1,﹣4),B (2,2)两点,P 为反比例函数y=kb x 图象上一动点,O 为坐标原点,过点P 作y轴的垂线,垂足为C ,则△PCO 的面积为( )A .2B .4C .8D .不确定【分析】根据待定系数法,可得k ,b ,根据反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k |的一半,可得答案.【解答】解:将A (﹣1,﹣4),B (2,2)代入函数解析式,得{−k +b =−42k +b =2, 解得{k =2b =−2, P 为反比例函数y=kb x 图象上一动点,反比例函数的解析式y=−4x , P 为反比例函数y=kb x 图象上一动点,O 为坐标原点,过点P 作y 轴的垂线,垂足为C , 则△PCO 的面积为12|k |=2, 故选:A .【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k|的一半二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)(2017•青岛)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为 6.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:65000000=6.5×107,故答案为:6.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•青岛)计算:(√24+√16)×√6=13.【分析】先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(2√6+√66)×√6=13√66×√6=13.故答案为13.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.11.(3分)(2017•青岛)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是m>9.【分析】利用根的判别式△<0列不等式求解即可.【解答】解:∵抛物线y=x2﹣6x+m与x轴没有交点,∴△=b2﹣4ac<0,∴(﹣6)2﹣4×1•m<0,解得m>9,∴m的取值范围是m>9.故答案为:m>9.【点评】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键.12.(3分)(2017•青岛)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为2π﹣4.【分析】连接OB、OD,根据切线的性质和垂直得出∠OBP=∠P=∠ODP=90°,求出四边形BODP是正方形,根据正方形的性质得出∠BOD=90°,求出扇形BOD和△BOD的面积,即可得出答案.【解答】解:连接OB、OD,∵直线AB,CD分别与⊙O相切于B,D两点,AB⊥CD,∴∠OBP=∠P=∠ODP=90°,∵OB=OD,∴四边形BODP是正方形,∴∠BOD=90°,∵BD=4,∴OB=√2=2√2, ∴阴影部分的面积S=S 扇形BOD ﹣S △BOD =90π×(2√2)2360﹣12×2√2×2√2=2π﹣4, 故答案为:2π﹣4. 【点评】本题考查了切线的性质、扇形的面积计算等知识点,能分别求出扇形BOD 和△BOD 的面积是解此题的关键.13.(3分)(2017•青岛)如图,在四边形ABCD 中,∠ABC=∠ADC=90°,E 为对角线AC 的中点,连接BE ,ED ,BD .若∠BAD=58°,则∠EBD 的度数为 32 度.【分析】根据已知条件得到点A ,B ,C ,D 在以E 为圆心,AC 为直径的同一个圆上,根据圆周角定理得到∠DEB=116°,根据直角三角形的性质得到DE=BE=12AC ,根据等腰三角形的性质即可得到结论.【解答】解:∵∠ABC=∠ADC=90°,∴点A ,B ,C ,D 在以E 为圆心,AC 为直径的同一个圆上,∵∠BAD=58°,∴∠DEB=116°,∵DE=BE=12AC , ∴∠EBD=∠EDB=32°,故答案为:32.【点评】本题考查了直角三角形斜边上的中线的性质,圆周角定理,推出A ,B ,C ,D 四点共圆是解题的关键.14.(3分)(2017•青岛)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为 48+12√3 .【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其表面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为2,高为4,故其边心距为√3,所以其表面积为2×4×6+2×12×6×2×√3=48+12√3, 故答案为:48+12√3.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.三、解答题(本大题共4分)15.(4分)(2017•青岛)已知:四边形ABCD .求作:点P ,使∠PCB=∠B ,且点P 到边AD 和CD 的距离相等.【分析】根据角平分线上的点到角两边的距离相等可知:到边AD 和CD 的距离相等的点在∠ADC 的平分线上,所以第一步作∠ADC 的平分线DE ,要想满足∠PCB=∠B ,则作CP ∥AB ,得到点P .【解答】解:作法:①作∠ADC 的平分线DE ,②过C 作CP ∥AB ,交DE 于点P ,则点P 就是所求作的点;【点评】本题是作图题,考查了角平分线的性质、平行线的性质,熟练掌握角平分线上的点到角两边距离相等是关键.三、解答题(本大题共9小题,共74分)16.(8分)(2017•青岛)(1)解不等式组:{x −1>2x①x 2+3<−2② (2)化简:(a 2b ﹣a )÷a 2−b 2b. 【分析】(1)先求出每个不等式的解集,再求出不等式组的解集即可;(2)先算减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.【解答】解:(1)∵解不等式①得:x <﹣13, 解不等式②得:x <﹣10,∴不等式组的解集为x <﹣10;(2)原式=a 2−ab b ÷(a+b)(a−b)b =a(a−b)b •b (a+b)(a−b) =a a+b .【点评】本题考查了分式的混合运算和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解(1)的关键,能灵活运用分式的运算法则进行化简是解(2)的关键,注意运算顺序.17.(6分)(2017•青岛)小华和小军做摸球游戏:A 袋装有编号为1,2,3的三个小球,B 袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同.从两个袋子中分别随机摸出一个小球,若B 袋摸出小球的编号与A 袋摸出小球的编号之差为偶数,则小华胜,否则小军胜,这个游戏对双方公平吗?请说明理由.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字的差为偶数的情况,再利用概率公式求解即可求得答案.【解答】解:不公平,画树状图得:∵共有9种等可能的结果,数字的差为偶数的有4种情况,∴P (小华胜)=49,P (小军胜)=59, ∵49≠59, ∴这个游戏对双方不公平.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18.(6分)(2017•青岛)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是126度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.【分析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以1200即可得到结果.【解答】解:(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°;故答案为:126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全条形统计图,如图所示:(3)根据题意得:1200×64%=768(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有768人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.19.(6分)(2017•青岛)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需绕行B 地,已知B 地位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数)(参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,√3≈1.73)【分析】过点B 作BD ⊥AC 于点D ,利用锐角三角函数的定义求出AD 及CD 的长,进而可得出结论.【解答】解:过点B 作BD ⊥AC 于点D ,∵B 地位于A 地北偏东67°方向,距离A 地520km ,∴∠ABD=67°,∴AD=AB•sin67°=520×1213=624013=480km , BD=AB•cos67°=520×513=260013=200km . ∵C 地位于B 地南偏东30°方向,∴∠CBD=30°,∴CD=BD•tan30°=200×√33=200√33, ∴AC=AD +CD=480+200√33≈480+115=595(km ). 答:A 地到C 地之间高铁线路的长为595km .【点评】本题考查的是解直角三角形的应用﹣方向角问题,熟记锐角三角函数的定义是解答此题的关键.20.(8分)(2017•青岛)A ,B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发,图中l 1,l 2表示两人离A 地的距离s (km )与时间t (h )的关系,请结合图象解答下列问题:(1)表示乙离A 地的距离与时间关系的图象是 l 2 (填l 1或l 2);甲的速度是 30 km/h ,乙的速度是 20 km/h ;(2)甲出发多少小时两人恰好相距5km ?【分析】(1)观察图象即可知道乙的函数图象为l 2,根据速度=路程时间,利用图中信息即可解决问题; (2)分相遇前或相遇后两种情形分别列出方程即可解决问题;【解答】解:(1)由题意可知,乙的函数图象是l 2,甲的速度是602=30km/h ,乙的速度是603=20km/h . 故答案为l 2,30,20.(2)设甲出发多少小时两人恰好相距5km .由题意30x +20(x ﹣0.5)+5=60或30x +20(x ﹣0.5)﹣5=60解得x=1.3或1.5,答:甲出发1.3小时或1.5小时两人恰好相距5km .【点评】本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.21.(8分)(2017•青岛)已知:如图,在菱形ABCD 中,点E ,O ,F 分别为AB ,AC ,AD 的中点,连接CE ,CF ,OE ,OF .(1)求证:△BCE ≌△DCF ;(2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由.【分析】(1)由菱形的性质得出∠B=∠D ,AB=BC=DC=AD ,由已知和三角形中位线定理证出AE=BE=DF=AF ,OF=12DC ,OE=12BC ,OE ∥BC ,由SAS 证明△BCE ≌△DCF 即可;(2)由(1)得:AE=OE=OF=AF ,证出四边形AEOF 是菱形,再证出∠AEO=90°,四边形AEOF 是正方形.【解答】(1)证明:∵四边形ABCD 是菱形,∴∠B=∠D ,AB=BC=DC=AD ,∵点E ,O ,F 分别为AB ,AC ,AD 的中点,∴AE=BE=DF=AF ,OF=12DC ,OE=12BC ,OE ∥BC , 在△BCE 和△DCF 中,{BE =DF∠B =∠D BC =DC,∴△BCE ≌△DCF (SAS );(2)解:当AB ⊥BC 时,四边形AEOF 是正方形,理由如下:由(1)得:AE=OE=OF=AF ,∴四边形AEOF 是菱形,∵AB ⊥BC ,OE ∥BC ,∴OE ⊥AB ,∴∠AEO=90°,∴四边形AEOF 是正方形.【点评】本题考查了正方形的判定、菱形的性质与判定、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和全等三角形的判定是解决问题的关键.22.(10分)(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:淡季 旺季 未入住房间数10 0 日总收入(元) 24000 40000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【解答】解:(1)设淡季每间的价格为x 元,酒店豪华间有y 间,{x(y −10)=24000x(1+13)y =40000, 解得,{x =600y =50,∴x +13x=600+13×600=800, 答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x 元,日总收入为y 元,y=(800+x )(50﹣x 25)=−125(x −225)2+42025, ∴当x=225时,y 取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.23.(10分)(2017•青岛)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究一:求不等式|x ﹣1|<2的解集(1)探究|x ﹣1|的几何意义如图①,在以O为原点的数轴上,设点A′对应的数是x﹣1,有绝对值的定义可知,点A′与点O的距离为|x﹣1|,可记为A′O=|x﹣1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x﹣1|,因此,|x﹣1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.(2)求方程|x﹣1|=2的解因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1.(3)求不等式|x﹣1|<2的解集因为|x﹣1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x﹣1|<2的解集,并写出这个解集.探究二:探究√(x−a)2+(y−b)2的几何意义(1)探究√x2+y2的几何意义如图③,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,则MO=√OP2+PM2=√|x|2+|y|2=√x2+y2,因此,√x2+y2的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离MO.(2)探究√(x−1)2+(y−5)2的几何意义如图④,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究二(1)可知,A′O=√(x−1)2+(y−5)2,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=√(x−1)2+(y−5)2,因此√(x−1)2+(y−5)2的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离AB.(3)探究√(x+3)2+(y−4)2的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.(4)√(x−a)2+(y−b)2的几何意义可以理解为:点(x,y)与点(a,b)之间的距离.拓展应用:(1)√(x−2)2+(y+1)2+√(x+1)2+(y+5)2的几何意义可以理解为:点A(x,y)与点E(2,﹣1)的距离和点A(x,y)与点F(﹣1,﹣5)(填写坐标)的距离之和.(2)√(x−2)2+(y+1)2+√(x+1)2+(y+5)2的最小值为5(直接写出结果)【分析】探究一(3)由于|x﹣1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围,从而画出数轴即可.探究二(3)由于√(x+3)2+(y−4)2的几何意义是:点A(x,y)与B(﹣3,4)之间的距离,所以构造直角三角形利用勾股定理即可得出答案.(4)根据前面的探究可知√(x−a)2+(y−b)2的几何意义是表示点(x,y)与点(a,b)之间的距离;拓展研究(1)根据探究二(4)可知点F的坐标;(2)根据三角形的三边关系即可求出答案.【解答】解:探究一:(3)如图所示,∴|x﹣1|<2的解集是﹣1<x<3,探究二:(3)√(x+3)2+(y−4)2的几何意义是:点A(x,y)与B(﹣3,4)之间的距离,∴过点B作BD⊥x轴于D,过点A作AC⊥BD于点C,∴AC=|x+3|,BC=|y﹣4|,∴由勾股定理可知:AB2=AC2+BC2,∴AB=√(x+3)2+(y−4)2,(4)根据前面的探究可知√(x−a)2+(y−b)2的几何意义是表示点(x,y)与点(a,b)之间的距离;拓展研究:(1)由探究二(4)可知√(x+1)2+(y+5)2表示点(x,y)与(﹣1,﹣5)之间的距离,故F(﹣1,﹣5),(2)由(1)可知:√(x−2)2+(y+1)2+√(x+1)2+(y+5)2表示点A(x,y)与点E(2,﹣1)的距离和点A(x,y)与点F(﹣1,﹣5)的距离之和,当A(x,y)位于直线EF外时,此时点A、E、F三点组成△AEF,∴由三角形三边关系可知:EF<AF+AE,当点A位置线段EF之间时,此时EF=AF+AE,∴√(x−2)2+(y+1)2+√(x+1)2+(y+5)2的最小值为EF的距离,∴EF=√(2+1)2+(−1+5)2=5故答案为:探究二(4)点(x,y)与点(a,b)之间的距离;拓展研究(1)(﹣1,﹣5);(2)5.。
山东省青岛市2017年中考数学真题试题(含解析)
山东省青岛市2017年中考数学真题试题(考试时间:120分钟;满分:120分)第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.的相反数是().A.8B.C.D.【答案】C【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:的相反数是.故选:C考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是().【答案】A考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A、众数是6吨B、平均数是5吨C、中位数是5吨D、方差是【答案】C考点:1、方差;2、平均数;3、中位数;4、众数4.计算的结果为().A. B. C. D.【答案】D【解析】试题分析:根据幂的混合运算,利用积的乘方性质和同底数幂相除计算为:故选:D考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算的坐标为()5. 如图,若将△ABC绕点O逆时针旋转90°则顶点B的对应点B1A. B. C. D.【答案】B【解析】试题分析:将△ABC绕点O逆时针旋转90°后,图形如下图的坐标为所以B1故选:B考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算6. 如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD,根据同弧所对的圆周角相等,可知∠ABD=∠AED=20°,然后根据直径所对的圆周角为直角得到∠ADB=90°,从而由三角形的内角和求得∠BAD=70°,因此可求得∠BCD=110°.故选:B考点:圆的性质与计算7. 如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,,AC=2,BD=4,则AE的长为()A. B.C. D.【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. 一次函数的图像经过点A(),B(2,2)两点,P为反比例函数图像上的一个动点,O为坐标原点,过P作y轴的垂线,垂足为C,则△PCO的面积为()A、2B、4C、8D、不确定【答案】【解析】试题分析:如下图,考点: 1、一次函数,2、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。
青岛崂山九下一模2017-2018学年度数学试题
初中教学质量抽测九年级数学试题真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题,第Ⅰ卷1-8题为选择题,共24分;第Ⅱ卷9-14题为选择题,15题为作图题,16-24为解答题,共96分,要求所有题目均在答题卡上作答,在本卷上作答无效。
第Ⅰ卷(共24分)一.选择题:下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,每小题选对得3分;不选,错选或选出的标号超过一个的不得分。
1. 下列命题中正确的是( )A. -2018的绝对值是2018B.-3的平方是-9C.15的倒数是1-5 22. 莫拉、沃姆两位博士及其同事在《PloS Biology 》期刊发表了一篇关于地球物种数量预测的文章。
根据他们采用的最新分析方法,这个星球总共拥有870万个物种,误差浮动为130万,870万用科学计数法可以表示为( )A.58.710⨯ B.68.710⨯ C.78.710⨯ D.70.8710⨯3.中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A. B. C. D.4. 下列运算中,计算正确的是( ) A.22422a a -= B.()235aa = C.527a a a ⋅= D.()33a a -=5.在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A. 18,18,1B. 18,17.5,3C. 18,18,3D. 18,17.5,1第5题图 第6题图 6.如图,四边形ABCD 内接于o ,连接OB ,OD ,若BOD BCD ∠=∠,则BAD ∠的大小为( )A.30︒B.120︒C.45︒D.60︒7.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB =E 为OC 上一点,OE =1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )第7题图8. 已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①a +b +c <0;②24b ac < ;③0abc >;④4a −2b +c <0;⑤c −a >1,其中所有正确结论的序号是( )A. ④⑤B. ①③⑤C. ①②③⑤D. ①②③④第8题图第Ⅱ卷(共96分)二.填空题(本题满分18分,共有6道小题,每小题3分)9.计算=_____________________10.某花卉基地有玫瑰花和牡丹花两种花卉,若基地有甲乙两家种植户,种植面积与卖花总收入如下表(假设不同种植户种植的同种花卉每亩卖花平均收入相等)11.如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为___________.第11题图第12题图12.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F. 若∠B=50∘,∠DAE=20∘,则∠FED′的大小为___度。
2017年山东省青岛市中考数学试卷-答案
16.【答案】(1)
(2)
【解析】解:(1)∵解不等式①得: ,解不等式②得: ,∴不等式组的解集为 ;
(2)原式
【提示】(1)先求出每个不等式的解集,再求出不等式组的解集即可;
(2)先算减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.
【考点】分时的混合运算,解一元一次不等式组
17.【答案】不公平,见解析
(2)求出3小时以上的人数,补全条形统计图即可;
(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以1200即可得到结果.
【考点】条形统计图,用样本估计总体,扇形统计图
19.【答案】
【解析】解:过点B作 于点D,∵B地位于A地北偏东 方向,距离A地 ,
∴ ,
∴ , .
∵C地位于B地南偏东 方向,∴ ,
【考点】反比例甘薯系数k的几何意义,一次函数图象上点的坐标特征
第Ⅱ卷
二、填空题
9.【答案】
【解析】解: ,故答案为:
【提示】科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值 时,n是非负数;当原数的绝对值 时,n是负数.
【考点】科学计数法—表示较大的数
10.【答案】13
【解析】解:原式二次根式,然后把括号内合并后进行二次根式的乘法运算即可.
【考点】二次根式的混合计算
11.【答案】
【解析】解:∵抛物线 与x轴没有交点,∴ ,
∴ ,解得 ,∴m的取值范围是 .故答案为: .
6.【答案】B
【解析】解:连接AC,∵AB为 的直径,∴ ,∵ ,∴ ,
∴ ,故选B.
【提示】连接AC,根据圆周角定理,可分别求出 , ,即可求 的度数.
山东省青岛市青岛第二中学2017_2018学年九年级数学下学期期中试卷(含解析)
2017-2018学年山东省青岛市青岛第二中学九年级(下)期中数学试卷一.选择题(共8小题,满分24分,每小题3分)1.3的相反数是()A.﹣3 B.3 C.D.﹣2.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.某中学篮球队12名队员的年龄情况如下表:关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为145.小明家承包了一个鱼塘,快到年底了,爸爸想知道这个鱼塘大约有多少条鱼.小明采用“捉放法”先随机抓1000条鱼做上标记,再放回鱼塘过一段时间后再随机抓1000条鱼发现有5条鱼是做标记的,再以此来估算整个池塘的鱼大约有()A.10000条B.100000 C.200000条D.2000000条6.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x 人,则所列方程为()A.B.C.D.7.如图,正五边形ABCDE内接于⊙O,若⊙O的半径为5,则的长度为()A.πB.2πC.5πD.10π8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x的图象与反比例函数y=的图象在同一坐标系中大致是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)9.计算:()﹣2﹣×=.10.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.11.如图,在平行四边形ABCD中,已知AD=12cm,AB=8m,AE平分∠BAD交BC边于点E,则CE的长等于厘米.12.已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为o.13.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为.14.如图,由四个全等的直角三角形围成的大正方形ABCD的面积为34,小正方形EFGH的面积为4,则tan∠DCG的值为.三.解答题(共1小题,满分4分,每小题4分)15.(4分)如图,已知AB是⊙O的切线,过点A作⊙O的另一条切线(尺规作图,保留作图痕迹,不要求写作法),并证明你的结论.四.解答题(共9小题,满分74分)16.(8分)已知:A=(﹣)÷(1)化简A;(2)当x是满足不等式组的整数时,求A的值.17.(6分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?18.(6分)某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P为;(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为.19.(6分)如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号).20.(8分)为迎接北京2022年冬奥会,某工艺厂准备生产奥运会标志与奥运会吉祥物,该厂主要用甲、乙两种原料.已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完.(1)求该厂能生产奥运会标志和奥运会吉祥物各多少套?(2)如果奥运会标志的成本为16元,奥运会吉祥物的成本为15元,若东营客商购进奥运会标志和奥运会吉祥物共250件进行试销,其中奥运会标志的件数不大于奥运会吉祥物的件数,且不小于80件,已知奥运会标志的售价为24元/件,奥运会吉祥物的售价为22元/件,且全部售出,设购进奥运会标志m件,求该客商销售这批商品的利润y与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,东营客商决定在试销活动中毎售出一件奥运会标志,就从一件奥运会标志的利润中捐献慈善资金a元,求该客商售完所有商品并捐献资金后获得的最大收益.21.(8分)如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.(1)求证:△ADE≌△BCF;(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.22.(10分)某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x 元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?23.(10分)一张正方形纸的内部被针扎了2010个孔,这些孔和正方形的顶点之中的任何3点都不共线.作若干条互不相交的线段,它们的端点都是这些孔或正方形的顶点,这些线段将正方形分割成一些三角形,并且在这些三角形的内部和边上都不再有小孔.请问一共作了多少条线段?共得到了多少个三角形?24.(12分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.2017-2018学年山东省青岛市青岛第二中学九年级(下)期中数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.3的相反数是()A.﹣3 B.3 C.D.﹣【分析】依据相反数的定义回答即可.【解答】解:3的相反数是﹣3.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.某中学篮球队12名队员的年龄情况如下表:关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为14【分析】根据众数、中位数、平均数与极差的定义逐一计算即可判断.【解答】解:A、这12个数据的众数为14,正确;B、极差为16﹣12=4,错误;C、中位数为=14,错误;D、平均数为=,错误;故选:A.【点评】本题主要考查众数、极差、中位数和平均数,熟练掌握众数、极差、中位数和平均数的定义是解题的关键.5.小明家承包了一个鱼塘,快到年底了,爸爸想知道这个鱼塘大约有多少条鱼.小明采用“捉放法”先随机抓1000条鱼做上标记,再放回鱼塘过一段时间后再随机抓1000条鱼发现有5条鱼是做标记的,再以此来估算整个池塘的鱼大约有()A.10000条B.100000 C.200000条D.2000000条【分析】第二次捕上的1000条,发现其中带标记的鱼有5条,说明有标记的占到,而有标记的共有1000条,从而根据所占比例求出总数.【解答】解:1000÷=20000条.故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x 人,则所列方程为()A.B.C.D.【分析】设原来参加游览的同学共x人,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,可列方程.【解答】解:设原来参加游览的同学共x人,由题意得﹣=3.故选:D.【点评】本题考查由实际问题抽象出分式方程,关键以钱数差价做为等量关系列方程.7.如图,正五边形ABCDE内接于⊙O,若⊙O的半径为5,则的长度为()A.πB.2πC.5πD.10π【分析】连接OA、OB,根据正五边形的性质求出∠AOB,根据弧长公式计算即可.【解答】解:连接OA、OB,∵五边形ABCDE是正五边形,∴∠AOB=360°÷5=72°,∴的长度==2π,故选:B.【点评】本题考查的是正多边形的性质、弧长的计算,掌握正多边形的中心角的计算公式、弧长的计算公式是解题的关键.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x的图象与反比例函数y=的图象在同一坐标系中大致是()A.B.C.D.【分析】由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围,对称轴可以确定b的取值范围,再利用f(0)和f(1)的值即可确定c的取值,然后就可以确定反比例函数与正比例函数y=(b+c)x在同一坐标系内的大致图象.【解答】解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的右边,∴x=﹣>0,∴b>0,当x=0时,y=c=0,当x=1时,a+b+c>0,∵a<0,∴b+c>0,∴反比例函数的图象在第二四象限,正比例函数y=(b+c)x的图象在第一三象限.故选:A.【点评】本题主要考查函数图象的知识点,此题从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;对称轴的位置即可确定b的值及f(0)和f(1)的值确定c的取值范围.二.填空题(共6小题,满分18分,每小题3分)9.计算:()﹣2﹣×=﹣8 .【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=4﹣2×=4﹣2×6=4﹣12=﹣8故答案为:﹣8【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.10.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为 6.7×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.如图,在平行四边形ABCD中,已知AD=12cm,AB=8m,AE平分∠BAD交BC边于点E,则CE的长等于 4 厘米.【分析】由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:4【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.12.已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为45或135 o.【分析】根据题意画出图形,由OC垂直于AB,利用垂径定理得到C为AB的中点,求出AC的长,在直角三角形AOC中,利用勾股定理求出OC=AC,确定出三角形AOC为等腰直角三角形,同理三角形BOC为等腰直角三角形,确定出∠AOB度数,利用圆周角定理即可求出∠ADB与∠AEB的度数.【解答】解:如图所示,∵OC⊥AB,∴C为AB的中点,即AC=BC=AB=,在Rt△AOC中,OA=1,AC=,根据勾股定理得:OC==,即OC=AC,∴△AOC为等腰直角三角形,∴∠AOC=45°,同理∠BOC=45°,∴∠AOB=∠AOC+∠BOC=90°,∵∠AOB与∠ADB都对,∴∠ADB=∠AOB=45°,∵大角∠AOB=270°,∴∠AEB=135°,∴弦AB所对的圆周角为45°或135°.故答案为:45或135.【点评】本题考查的是圆周角定理,在解答此题时要进行分类讨论,不要漏解.13.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为 1.5或3 .【分析】分两种情况:①当∠EFC=90°时,先判断出点F在对角线AC上,利用勾股定理列式求出AC,设BE=x,表示出CE,根据翻折变换的性质可得AF=AB,EF=BE,然后在Rt△CEF中,利用勾股定理列出方程求解即可;②当∠CEF=90°时,判断出四边形ABEF是正方形,根据正方形的四条边都相等可得BE=AB.【解答】解:分两种情况:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC===5,设BE=x,则CE=BC﹣BE=4﹣x,由翻折的性质得,AF=AB=3,EF=BE=x,∴CF=AC﹣AF=5﹣3=2,在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4﹣x)2,解得x=1.5,即BE=1.5;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=3,综上所述,BE的长为1.5或3.故答案为:1.5或3.【点评】本题考查了翻折变换的性质,勾股定理,矩形的性质,正方形的判定与性质,此类题目,利用勾股定理列出方程求解是常用的方法,本题难点在于分情况讨论,作出图形更形象直观.14.如图,由四个全等的直角三角形围成的大正方形ABCD的面积为34,小正方形EFGH的面积为4,则tan∠DCG的值为.【分析】依据大正方形ABCD的面积为34,小正方形EFGH的面积为4,即可得到CD2=34,HG=2,再根据勾股定理,即可得到DG=5,CG=3,进而得出tan∠DCG的值.【解答】解:∵大正方形ABCD的面积为34,小正方形EFGH的面积为4,∴CD2=34,HG=2,∵四个直角三角形全等,∴可设DH=CG=x,则DG=2+x,由勾股定理得,Rt△CDG中,x2+(2+x)2=34,解得x1=3,x2=﹣5(舍去),∴DG=5,CG=3,∴Rt△CDG中,tan∠DCG=,故答案为:.【点评】此题考查勾股定理以及解直角三角形的运用,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.三.解答题(共1小题,满分4分,每小题4分)15.(4分)如图,已知AB是⊙O的切线,过点A作⊙O的另一条切线(尺规作图,保留作图痕迹,不要求写作法),并证明你的结论.【分析】连接AO,作∠AOC=∠AOB,与⊙O交于点C,连接AC,即为所求,证△ACO≌△ABO得∠ACO=∠ABO=90°,从而得证.【解答】解:如图所示,AC即为所求,由作图知∠AOC=∠AOB,∵AO=AO,OB=OC,∴△AOB≌△AOC(SAS),∴∠ACO=∠ABO,∵AB是⊙O的切线,∴∠ACO=∠ABO=90°,∵OC是⊙O的半径,∴AC是⊙O的切线.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握作一个角等于已知角的尺规作图、全等三角形的判定与性质及切线的判定与性质.四.解答题(共9小题,满分74分)16.(8分)已知:A=(﹣)÷(1)化简A;(2)当x是满足不等式组的整数时,求A的值.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)求出不等式组的解集确定出整数解得到x的值,代入(1)中结果计算即可得到结果.【解答】解:(1)A=•=•=;(2),由①得:x≥﹣1,由②得:x<3,∴不等式组的解集为﹣1≤x<3,即整数解为﹣1,0,1,2,当x=﹣1,0,1时,原式没有意义;则当x=2时,原式=.【点评】此题考查了分式的混合运算,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.17.(6分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200 名同学;(2)条形统计图中,m=40 ,n=60 ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72 度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)利用360°乘以对应的百分比即可求解;(4)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册). 答:学校购买其他类读物750册比较合理.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.18.(6分)某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m 、200m 、1000m (分别用A 1、A 2、A 3表示);田赛项目:跳远,跳高(分别用T 1、T 2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P 为 ; (2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P 1,利用列表法或树状图加以说明;(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P 2为.【分析】(1)直接根据概率公式求解;(2)先画树状图展示所有20种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P 1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P 2.【解答】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P =;(2)画树状图为:共有20种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为12,所以一个径赛项目和一个田赛项目的概率P 1==; (3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P 2==.故答案为,.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.19.(6分)如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号).【分析】在Rt△CED中,已知铅直高度以及坡度比,可求出坡角α、DE的长;过B作BF⊥AD于F,在Rt△ABF中,根据铅直高度和坡长,可求出AF的长.AD=AF+BC+DE.【解答】解:过B作BF⊥AD于F.在Rt△ABF中,AB=5,BF=CE=4.∴AF=3.在Rt△CDE中,tanα==i=.∴∠α=30°且DE==4,∴AD=AF+FE+ED=3+4.5+4=7.5+4.答:坡角α等于30°,坝底宽AD为7.5+4.【点评】此题考查的知识点是解直角三角形的应用﹣坡度坡角问题,关键是作“两高”构造出直角三角形和矩形,是解有关梯形问题时常作的辅助线.20.(8分)为迎接北京2022年冬奥会,某工艺厂准备生产奥运会标志与奥运会吉祥物,该厂主要用甲、乙两种原料.已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完.(1)求该厂能生产奥运会标志和奥运会吉祥物各多少套?(2)如果奥运会标志的成本为16元,奥运会吉祥物的成本为15元,若东营客商购进奥运会标志和奥运会吉祥物共250件进行试销,其中奥运会标志的件数不大于奥运会吉祥物的件数,且不小于80件,已知奥运会标志的售价为24元/件,奥运会吉祥物的售价为22元/件,且全部售出,设购进奥运会标志m件,求该客商销售这批商品的利润y与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,东营客商决定在试销活动中毎售出一件奥运会标志,就从一件奥运会标志的利润中捐献慈善资金a元,求该客商售完所有商品并捐献资金后获得的最大收益.【分析】(1)设该厂能生产奥运会标志x套,能生产奥运会吉祥物z套,根据该厂购进甲、乙原料的数量,即可得出关于x、z的二元一次方程,解之即可得出结论;(2)设购进奥运会标志m件,则购进奥运会吉祥物(250﹣m)件,根据总利润=单价利润×购进数量,即可得出y关于m的函数关系式,再由奥运会标志的件数不大于奥运会吉祥物的件数且不小于80件,即可得出m的取值范围;(3)设该客商售完所有商品并捐献资金后获得的收益为w元,根据收益=利润﹣捐献总资金,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该厂能生产奥运会标志x套,能生产奥运会吉祥物z套,根据题意得:,解得:.答:该厂能生产奥运会标志2000套,能生产奥运会吉祥物2400套.(2)设购进奥运会标志m件,则购进奥运会吉祥物(250﹣m)件,根据题意得:y=(24﹣16)m+(22﹣15)(250﹣m)=m+1750.∵奥运会标志的件数不大于奥运会吉祥物的件数,且不小于80件,∴,∴80≤m≤125.(3)设该客商售完所有商品并捐献资金后获得的收益为w元,根据题意得:w=y﹣am=(1﹣a)m+1750(80≤m≤125),∴①当a<1时,1﹣a>0,∴w随m值的增大而增大,∴当m=125时,w取最大值,最大收益为[125(1﹣a)+1750]元;②当a=1时,1﹣a=0,∴w=1750,即在80≤m≤125中,该客商均为1750元;③当a>1时,1﹣a<0,∴w随x值的增大而减小,∴当m=80时,w取最大值,最大收益为[80(1﹣a)+1750]元.【点评】本题考查了二元一次方程组的应用、一次函数的性质以及解一元一次不等式组,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,找出y关于m的函数关系式;(3)利用一次函数的性质解决最值问题.21.(8分)如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.(1)求证:△ADE≌△BCF;(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的判定和菱形的判定解答即可.【解答】证明:(1)∵平行四边形ABCD,∴AD=BC,AD∥BC,∴∠DAC=∠BCF,∵DE∥AC,∴∠DAC=∠EDA,∴∠FCB=∠EDA,在△ADE与△BCF中,∴△ADE≌△BCF(SAS);(2)∵DE∥AC,且DE=AC,∴四边形EFCD是平行四边形,∴DC=EF,且DC∥EF,又∵AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠BAF+∠AED=180°,∴∠BAF+∠BFC=180°,又∠BFA+∠BFC=180°,∴∠BAF=∠BFA,∴BA=BF,∴四边形ABFE为菱形.【点评】此题考查菱形的判定,关键是根据平行四边形的判定、菱形的判定和全等三角形的判定解答.22.(10分)某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x 元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?【分析】(1)根据销售利润=每件的利润×销售数量,构建函数关系即可.(2)利用二次函数的性质即可解决问题.(3)列出方程,解方程即可解决问题.【解答】解:(1)由题意得:y=(40+x﹣30)(180﹣5x)=﹣5x2+130x+1800(0≤x≤10)(2)对称轴:x=﹣=﹣=13,∵13>10,a=﹣5<0,∴在对称轴左侧,y随x增大而增大,∴当x=10时,y最大值=﹣5×102+130×10+1800=2600,∴售价=40+10=50元。
2o17年青岛中考数学试题及答案
2o17年青岛中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于4B. 3的平方等于9C. 4的平方等于16D. 5的平方等于25答案:D2. 一个数的绝对值是它本身,这个数是:A. 负数B. 正数C. 零D. 非负数答案:D3. 以下哪个图形是轴对称图形?A. 平行四边形B. 圆C. 矩形D. 不规则多边形答案:B4. 计算下列哪个表达式的结果是正数?A. (-3) * (-2)B. (-3) * 2C. 3 * (-2)D. (-3) * (-3)答案:A5. 一个三角形的两边长分别为3和4,第三边长为x,根据三角形不等式,x的取值范围是:A. 1 < x < 7B. 2 < x < 5C. 3 < x < 7D. 4 < x < 7答案:C6. 一个圆的半径为5,那么它的周长是:A. 10πB. 15πC. 20πD. 25π答案:C7. 函数y=2x+3的图象与x轴的交点是:A. (-3/2, 0)B. (3/2, 0)C. (0, -3)D. (0, 3)答案:B8. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bD. y = a(x - h)^2 + k答案:A9. 一个数的立方根等于它本身,这个数可以是:A. 1B. -1C. 0D. 所有选项答案:D10. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 圆的周长公式是______。
答案:C = 2πr2. 一个数的相反数是-5,那么这个数是______。
答案:53. 一个三角形的内角和是______。
答案:180度4. 函数y=3x-2与y轴的交点坐标是______。
2017年青岛中考市北二模数学试题及答案
九年级数学参考答案三、作图题15.(1)正确做出图形;-----3分 (2)写出结论。
-----4分四、解答题 16.(1)解:(每个变形1分)(2)解:a=k b=-2 c=3∆=b 2-4ac=4-12k>0 2分 k<313分 答: k<31且 k ≠0 4分17. 解:(1)a=16 b=0.28 2分 (2)略 3分 (3)48% 4分 (4)略 6分1111111211111211-=-++=-+--+-=-+++=x x x x x x x x x x x x ))(())(())(())((18.(1)P(获得购物卷)= 212010= 2分 答:(略)(2)40208002065031001200==⨯+⨯+⨯列式 4分答案 5分∵40>30∴转转盘合算答(略) 6分 19.过点A ,作AD ⊥BC 于D 在Rt ∆ABD 中 tan31º=BDADBDAD=53 AD BD 35=1分 在Rt ∆ACD 中tan39º=CDADCDAD =119 DAD CD 911=2分∴BD-CD-BC8091135=-AD AD 3分 AD=180 4分在Rt ∆ACD 中 san39º=ACAD 5分AC180117=9282.≈AC 6分20.(1)解:设购买一个甲种足球需要x 元 则购买一个乙种足球需要(x+20)元22014002000•+=x x2分解得:x=50 3分 经检验……X+20=70 4分答:(略)(2)解:设可以购买乙种足球m 个 则购买一个甲种足球(50-m )个50(1+10%)(50-m )+70(1-10%)m ≤2900 6分 解得 m ≤18.75 ∵m 是正整数∴m 的最大值为18 8分 答 21.(1)证明:∵四边形ABCD 是平行四边形∴AD//BC AD=BC ∴∠1=∠2 1分又∵DE=AD AD=BC∴DE=BC 2分 在∆BOC 和∆DOE 中 ∠2=∠112 3 4∠4=∠3 BC=DE∴∆BOC ≌∆DOE 3分(2)答:当∠ABE=90º时,四边形BCED 是菱形 4分 证明:∵∆BOC ≌∆DOE∴OB=OE OC=OD∴四边形BCED 是平行四边形 6分 ∵四边形ABCD 是平行四边形 ∴AB//CD∴∠DOE=∠ABE=90º ∴DC ⊥BE∴平行四边形BCED 是菱形 8分22.(1)解:观察表格可知 y 是x 的一次函数 1分 设y=kx+b⎩⎨⎧+=+=b k bk 3200963000100解得:⎪⎩⎪⎨⎧=-=160501b k160501+-=x y 3分(3)解:设公司月收益为w 元)())((6050150160501150--+--=x x x w 8分整理得:210001625012-+-=x x w501-=a 162=b 21000=c405050121622=-⨯-=-)(ab把4050=x代入307050=max w 10分23解:(1)BN. 2分(2)证明:∵点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,∴222=+EC DE BD . 3分 ∵在△ABC 中,FG 是中位线,AD ,AE 分别交FG 于点M ,N , ∴F M 、MN 、NG 分别是△ABD 、△ADE 、△AEC 的中位线. ∴BD =2FM ,DE =2MN ,EC =2NG. 4分 ∴()()()222222=+NG MN FM ,即222444=+NG MN FM . ∴222=+NG MN FM .∴点M ,N 是线段FG 的勾股分割点. 6分(3)2 1AN ×AC , 7分2 1MB ×BH 8分21AB×FN 9分S∆CAN + S∆MBH =S∆APB 10分24(1)过点A,作AH⊥BC于H设PP’与AC相交于点O易证∆CPO∽∆ACHACPCCHOC=25104020)(tOC-=)()(tOCtOC-=-=482842分由题意得 AC=OC)(m-=482587=m答:m的值为873分(2)①∆CPO∽∆ACHACPCAHOP=OH25104015)(t OP-=)()(t OP t OP -=-=46283)('t PP -=412 4分t t t CQ OC OQ 1332548-=--=-=)( 5分)()(t t y 133241221-⋅-⋅=化简得768504782+-=t t y 7分②3213485-=--=-=t t t CO CQ OQ)()()(321341221-⋅-⋅=t t y化简得 768504782-+-=t t y8分(3) 过点Q 作QF ⊥BC 于F ∵PQ 平分∠P ’PCQF ⊥BC QO ⊥P ’P∴OQ=QF 9分易证∆CQF ∽∆ACHACCQAH QF =25515tQF=t QF 3= 11分 t t t CQ OC OQ 1332548-=--=-=)(t t 31332=-2=t 12分。
山东省青岛九年级数学下学期期初试题(无答案)
山东省青岛2017届九年级数学下学期期初试题(考试时间:90分钟;满分:120分)一.单项选择题(每小题3分)1.下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是()A.1 B.2 C.3 D.42.下列基本几何体中,三视图都是相同图形的是()3. :2:3a b=,则下列各式中正确的式子是()A.23a b= B.32a b= C.23ba=D.13a bb-=4、有三条绳子穿过一片木板,姐妹两人分别站在木板的左、右两边,各选该边的一条绳子。
若每边每条绳子被选中的机会相等,则两人选到同一条绳子的机率为()A.21B.31C.61D.915、函数y=ax-a与y=ax(a≠0)在同一直角坐标系中的图象可能是()圆柱A三棱柱B球C长方体D6、如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则 ∠BFC 为( )A.45︒B.55︒C.60︒D.75︒(第6题图) (第7题图) (第8题图)7、汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图).则A 、B 两个村庄间的距离是( )米A .300 3B .900C .3002D .3008、 抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x 的取值范围是( )A.14<<-xB. 13<<-xC. 4-<x 或1>xD.3-<x 或1>x 9、将一块矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好围成一 个容积为15m3的无盖长方体水箱,且此长方体水箱的底面长比宽多2米.求该矩形铁皮的长和宽各是多少米?若设该矩形铁皮的宽是x 米,则根据题意可得方程为( )A .(x+2)(x ﹣2)×1=15B .x (x ﹣2)×1=15C .x (x+2)×1=15D .(x+4)(x ﹣2)×1=1510、二次函数y =(x -1)2+2的最小值是 ( )A .2B .1C .-1D .-2 11、直线y =kx 经过二、四象限,则抛物线y =kx 2+2x +k 2图象的大致位置是( )A.B.C. D.12、四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=B D C.AB=BC D.AD=BC13、菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.1014、菱形具有而矩形不一定具有的性质是()A.内角和等于360° B.对角相等 C.对边平行且相等 D.对角线互相垂直15、下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形16、抛物线y=-3x2+2x-l的图象与坐标轴的交点个数是 ( )A.无交点 B.1个 C.2个 D.3个17、从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够组成三角形的概率是()A. B. C. D.18、抛物线y=-2x2-4x-5经过平移后得到抛物线y=-2x2,平移方法是 ( )A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位19、点(2,5),(4,5)是抛物线y=ax2+bx+c 上的两点,那么该抛物线的对称轴为( )A .x =ba -B .x=1C .x =0D .x=320、直线y =ax -6与抛物线y=x 2-4x+3只有一个交点,则a 的值为 ( )A .a =2B .a=10C .a =2或a =-10D .a =2或a =1021、二次函数y=ax 2+b (b >0)与反比例函数y= 在同一坐标系中的图象可能是( )AB C D22、二次函数y=ax 2+bx+c 的图象如图所示.下列结论:①abc >0;②2a ﹣b <0;③4a ﹣2b+c <0;④(a+c )2<b 2. 其中正确的个数有( )A.1B.2C.3 D . 423、在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论: ①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形, ③四边形CDFE 的面积保持不变; ④△CDE 面积的最大值为8.其中正确的结论有 ( )个A 、1个B 、2个C 、3个D 、4个二、填空题(每小题3分)请将答案写在试卷上24、关于x 的一元二次方程()02212=-+-x x k 有实数根,则k 的取值范围是__________. 25、透明的口袋中有6个红色的小正方体和若干个黄色的小正方体,这些小正方体除颜色外其他都相同。
山东省青岛市2017年中考数学真题试题(无答案)
青岛市二〇一七年初中学业水平考试数学试题一、选择题: 1.81-的相反数是( ) A .8 B .8- C .81 D .81- 2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( )3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是( )A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是344.计算326)2(6m m -÷的结果为( ) A .m - B .1- C .43 D .43- 5.如图,若将ABC ∆绕点O 逆时针旋转090,则顶点B 的对应1B 的坐标为( )A .)2,4(-B .)4,2(-C .)2,4(-D .)4,2(-6.如图,AB 是⊙O 的直径,点E D C ,,在⊙O 上,若020=∠AED ,则BCD ∠的度数为( )A .0100 B .0110 C. 0115 D .01207.如图,□ABCD 的对角线AC 与BD 相交于点O ,BC AE ⊥,垂足为E ,3=AB ,2=AC ,4=BD ,则AE 的长为( )A .23 B .23C.721 D .7212 8.一次函数)0(≠+=k b kx y 的图象经过)4,1(--A ,)2,2(B 两点,P 为反比例函数xkby =图象上一动点,O 为坐标原点,过点P 作y 轴的垂线,垂足为C ,则PCO ∆的面积为( )A .2B .4 C. 8 D .不确定 二、填空题9. 近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫.65000000用科学记数法可表示为 . 10.计算:=⨯+6)6124( . 11.若抛物线m x x y +-=62与x 轴没有交点,则m 的取值范围是 .12.如图,直线CD AB ,分别与⊙O 相切于D B ,两点,且CD AB ⊥,垂足为P ,连接BD ,若4=BD ,则阴影部分的面积为 .13.如图,在四边形ABCD 中,090=∠=∠ADC ABC ,E 为对角线AC 的中点,连接BD ED BE ,,,若058=∠BAD ,则EBD ∠的度数为 度.14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为 .三、作图题用圆规、直尺作图,不写作法,但要保留作图痕迹 15.已知:四边形ABCD .求作:点P ,使B PCB ∠=∠,且点P 到边AD 和CD 的距离相等.四、解答题16.(1)解不等式组:⎪⎩⎪⎨⎧-<+>-23221x x x(2)化简:bb a a b a 222)(-÷- 17.小华和小军做摸球游戏:A 袋装有编号为1,2,3的三个小球,B 袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同.从两个袋子中分别随机摸出一个小球,若B 袋摸出小球的编号与A 袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.18.某中学开展了“手机伴我健康行”主题活动.他们随机抽取部分学生进行“使用手机的目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图.已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是 度; (2)补全条形统计图;(3)该校有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数.19.如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需绕行B 地.已知B 地位于A 地北偏东067方向,距离A 地520km ,C 地位于B 地南偏东030方向.若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数) (参考数据:73.13,51267tan ,13567cos ,131267sin 000≈≈≈≈)20.B A ,两地相距km 60,甲、乙两从两地出发相向而行,甲先出发.图中21,l l 表示两人离A 地的距离)(km s 与事件)(h t 的关系.请结合图象解答下列问题:(1)表示乙离A 地的距离与时间关系的图象是 (填1l 或2l );甲的速度是 h km /;乙的速度是 h km /;(2)甲出发多少小时两人恰好相距km 5?21.已知:如图,在菱形ABCD 中,点F O E ,,分别为AD AC AB ,,的中点,连接OF OE CF CE ,,,. (1)求证:BCE ∆≌DCF ∆;(2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由.22.青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨31.下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?23.数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用. 探究一:求不等式2|1|<-x 的解集 (1)探究|1|-x 的几何意义如图①,在以O 为原点的数轴上,设点'A 对应的数是1-x ,有绝对值的定义可知,点'A 与点O 的距离为|1|-x ,可记为|1|'-=x O A .将线段O A '向右平移1个单位得到线段AB ,此时点A 对应的数是x ,点B 对应的数是1.因为O A AB '=,所以|1|-=x AB ,因此,|1|-x 的几何意义可以理解为数轴上x 所对应的点A 与1所对应的点B 之间的距离AB .(2)求方程2|1|=-x 的解因为数轴上3和1-所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,1-. (3)求不等式2|1|<-x 的解集因为|1|-x 表示数轴上x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x 的范围.请在图②的数轴上表示2|1|<-x 的解集,并写出这个解集.探究二:探究22)()(b y a x -+-的几何意义 (1)探究22y x +的几何意义如图③,在直角坐标系中,设点M 的坐标为),(y x ,过M 作⊥MP x 轴于P ,作y MQ ⊥轴于Q ,则P 点坐标为)0,(x ,Q 点坐标为),0(y ,||x OP =,||y OQ =,在O P M Rt ∆中,||y OQ PM ==,222222||||y x y x PM OP MO +=+=+=,因此,22y x +的几何意义可以理解为点),(y x M 与点)0,0(O 之间的距离MO .(2)探究22)5()1(-+-y x 的几何意义如图④,在直角坐标系中,设点'A 的坐标为)5,1(--y x ,由探究二(1)可知,22)5()1('-+-=y x O A ,将线段O A '先向右平移1个单位,再向上平移5个单位,得到线段AB ,此时点A 的坐标为),(y x ,点B 的坐标为)5,1(,因为O A AB '=,所以22)5()1(-+-=y x AB ,因此22)5()1(-+-y x 的几何意义可以理解为点),(y x A 与点)5,1(B 之间的距离AB .(3)探究22)4()3(-++y x 的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.(4)22)()(b y a x -+-的几何意义可以理解为: . 拓展应用:(1)2222)5()1()1()2(++++++-y x y x 的几何意义可以理解为:点),(y x A 与点)1,2(-E 的距离和点),(y x A 与点F (填写坐标)的距离之和.(2)2222)5()1()1()2(++++++-y x y x 的最小值为 .(直接写出结果)24.已知:EFP Rt ∆和矩形ABCD 如图①摆放(点P 与点B 重合),点)(,P B F ,C 在同一直线上,cm EF AB 6==,cm FP BC 8==,090=∠EFP .如图②,EFP ∆从图①的位置出发,沿BC方向匀速运动,速度为1s cm /,EP 与AB 交于点G ;同时,点Q 从点C 出发,沿CD 方向匀速运动,速度为1s cm /.过点Q 作BD QM ⊥,垂足为H ,交AD 于点M ,连接PQ AF ,,当点Q 停止运动时,EFP ∆也停止运动.设运动事件为)60)((<<t s t .解答下列问题: (1)当t 为何值时,BD PQ //?(2)设五边形AFPQM 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使8:9:=A B C D A F P Q M S S 矩形五边形?若存在,求出t 的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t ,使点M 在线段PG 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年度第二学期期初检测九年级数学试题
(考试时间:90分钟;满分:120分)
一.单项选择题(每小题3分)
1.下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;
③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是()
A.1 B.2 C.3 D.4
2.下列基本几何体中,三视图都是相同图形的是()
3. :2:3
a b=,则下列各式中正确的式子是()
A.23
a b
= B.32
a b
= C.
2
3
b
a
=
D.
1
3
a b
b
-
=
4、有三条绳子穿过一片木板,姐妹两人分别站在木板的左、右两边,各选该边的一条绳
子。
若每边每条绳子被选中的机会相等,
则两人选到同一条绳子的机率为()
A.2
1
B.3
1
C.6
1
D.9
1
5、函数y=ax-a与y=
a
x
(a≠0)在同一直角坐标系中的图象可能是(
)
圆柱
A
三棱柱
B
球
C
长方体
D
6、如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则
∠BFC 为( )A.45︒
B.55︒
C.60︒
D.75︒ (第6题图) (第7题图) (第8题图)
7、汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图).则A 、B 两个村庄间的距离是( )米
A .300 3
B .900
C .3002
D .300
8、 抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x 的取值范围是( )
A.14<<-x
B. 13<<-x
C. 4-<x 或1>x
D.3-<x 或1>x
9、将一块矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好围成一 个容积为15m3的无盖长方体水箱,且此长方体水箱的底面长比宽多2米.求该矩形铁皮的长和宽各是多少米?若设该矩形铁皮的宽是x 米,则根据题意可得方程为( )
A .(x+2)(x ﹣2)×1=15
B .x (x ﹣2)×1=15
C .x (x+2)×1=15
D .(x+4)(x ﹣2)×1=15 10、二次函数y =(x -1)2+2的最小值是 ( )
A .2
B .1
C .-1
D .-2
11、直线y =kx 经过二、四象限,则抛物线y =kx 2+2x +k 2图象的大致位置是( )。