第3章 对称密码体制
对称密码体制和非对称密码体制
对称密码体制和⾮对称密码体制⼀、对称加密 (Symmetric Key Encryption)对称加密是最快速、最简单的⼀种加密⽅式,加密(encryption)与解密(decryption)⽤的是同样的密钥(secret key)。
对称加密有很多种算法,由于它效率很⾼,所以被⼴泛使⽤在很多加密协议的核⼼当中。
⾃1977年美国颁布DES(Data Encryption Standard)密码算法作为美国数据加密标准以来,对称密码体制迅速发展,得到了世界各国的关注和普遍应⽤。
对称密码体制从⼯作⽅式上可以分为分组加密和序列密码两⼤类。
对称加密算法的优点:算法公开、计算量⼩、加密速度快、加密效率⾼。
对称加密算法的缺点:交易双⽅都使⽤同样钥匙,安全性得不到保证。
此外,每对⽤户每次使⽤对称加密算法时,都需要使⽤其他⼈不知道的惟⼀钥匙,这会使得发收信双⽅所拥有的钥匙数量呈⼏何级数增长,密钥管理成为⽤户的负担。
对称加密算法在分布式⽹络系统上使⽤较为困难,主要是因为密钥管理困难,使⽤成本较⾼。
⽽与公开密钥加密算法⽐起来,对称加密算法能够提供加密和认证却缺乏了签名功能,使得使⽤范围有所缩⼩。
对称加密通常使⽤的是相对较⼩的密钥,⼀般⼩于256 bit。
因为密钥越⼤,加密越强,但加密与解密的过程越慢。
如果你只⽤1 bit来做这个密钥,那⿊客们可以先试着⽤0来解密,不⾏的话就再⽤1解;但如果你的密钥有1 MB⼤,⿊客们可能永远也⽆法破解,但加密和解密的过程要花费很长的时间。
密钥的⼤⼩既要照顾到安全性,也要照顾到效率,是⼀个trade-off。
分组密码:也叫块加密(block cyphers),⼀次加密明⽂中的⼀个块。
是将明⽂按⼀定的位长分组,明⽂组经过加密运算得到密⽂组,密⽂组经过解密运算(加密运算的逆运算),还原成明⽂组,有 ECB、CBC、CFB、OFB 四种⼯作模式。
序列密码:也叫流加密(stream cyphers),⼀次加密明⽂中的⼀个位。
对称密码体制
实例二:对压缩文档解密
• 任务描述:
李琳同学在电脑里备份了一份文档,当时 出于安全考虑,所以加了密码,时间久了,密 码不记得了。请帮李琳同学找回密码。
实例二:对压缩文档解密
• 任务分析:
WinRAR对文档的加密方式属于对称性加 密,即加密和解密的密码相同,这种文档的解 密相对来说比较简单,网上有很多专用工具, 可以实现密码的硬解。
推荐:RAR Password Unlocker
实例二:对压缩文档解密
• 操作步骤:
– (1)启动软件; – (2)打开加密的文件; – (3)单击“STRAT”按钮,开始解密; – (4)弹出结果对话框,找到密码。
实例三:Office文档加密
• 操作步骤:
– (1)启动word;
– (2)文件——另存为;
走进加密技术
对称密码体制
知识回顾
• 密码技术的发展经历了三个阶段
• 1949年之前 密码学是一门艺术 (古典密码学) • 1949~1975年 密码学成为科学 • 1976年以后 密码学的新方向
传 统 加 密 方 法
(现代密码学)
——公钥密码学
密码体制
• 密码体制也叫密码系统,是指能完整地解
决信息安全中的机密性、数据完整性、认
小结
对称密码体制 对称密码体制也称为单钥体制、私钥体制或对 称密码密钥体制、传统密码体制或常规密钥密码体 制。 主要特点是:加解密双方在加解密过程中使用 相同或可以推出本质上等同的密钥,即加密密钥与 解密密钥相同,基本原理如图所示。
– (3)文件类型为:2003-07文档; – (4)单击“工具”选择“常规选项”; – (5)设置文档打开密码,存盘。
实例四:Office文档解密
信息安全概论课后答案
四45五3六57十4十一34十二47没做“信息安全理论与技术”习题及答案教材:《信息安全概论》段云所,魏仕民,唐礼勇,陈钟,高等教育出版社第一章概述(习题一,p11) 1.信息安全的目标是什么答:信息安全的目标是保护信息的机密性、完整性、抗否认性和可用性;也有观点认为是机密性、完整性和可用性,即CIA(Confidentiality,Integrity,Avai lability)。
机密性(Confidentiality)是指保证信息不被非授权访问;即使非授权用户得到信息也无法知晓信息内容,因而不能使用完整性(Integrity)是指维护信息的一致性,即信息在生成、传输、存储和使用过程中不应发生人为或非人为的非授权簒改。
抗否认性(Non-repudiation)是指能保障用户无法在事后否认曾经对信息进行的生成、签发、接收等行为,是针对通信各方信息真实同一性的安全要求。
可用性(Availability)是指保障信息资源随时可提供服务的特性。
即授权用户根据需要可以随时访问所需信息。
2.简述信息安全的学科体系。
解:信息安全是一门交叉学科,涉及多方面的理论和应用知识。
除了数学、通信、计算机等自然科学外,还涉及法律、心理学等社会科学。
信息安全研究大致可以分为基础理论研究、应用技术研究、安全管理研究等。
信息安全研究包括密码研究、安全理论研究;应用技术研究包括安全实现技术、安全平台技术研究;安全管理研究包括安全标准、安全策略、安全测评等。
3. 信息安全的理论、技术和应用是什么关系如何体现答:信息安全理论为信息安全技术和应用提供理论依据。
信息安全技术是信息安全理论的体现,并为信息安全应用提供技术依据。
信息安全应用是信息安全理论和技术的具体实践。
它们之间的关系通过安全平台和安全管理来体现。
安全理论的研究成果为建设安全平台提供理论依据。
安全技术的研究成果直接为平台安全防护和检测提供技术依据。
平台安全不仅涉及物理安全、网络安全、系统安全、数据安全和边界安全,还包括用户行为的安全,安全管理包括安全标准、安全策略、安全测评等。
对称密码体制
分组密码的工作模式
电码本模式(1/2) ECB (electronic codebook mode)
P1 K 加密
P2
K
加密
…K
Pn 加密
C1
C2
Cn
C1 K 解密
C2
K
解密
…K
Cn 解密
P1
P2
Pn
Ci = EK(Pi) Pi = DK(Ci)
对称密码体制
分组密码的工作模式
电码本模式(2/2) ECB特点
对称密码体制
分组密码的工作模式
密码反馈模式(2/6)
加密:Ci =Pi(EK(Si)的高j位) Si+1=(Si<<j)|Ci
V1
Shift register 64-j bit |j bit
64
Shift register 64-j bit |j bit
64
Cn-1 Shift register 64-j bit |j bit
对称密码体制
分组密码的工作模式
密码反馈模式(6/6) Pi=Ci(EK(Si)的高j位) 因为: Ci=Pi(EK(Si)的高j位)
则: Pi=Pi(EK(Si)的高j位) (EK(Si)的高j位) =Pi 0 = Pi
CFB的特点 ❖分组密码流密码 ❖没有已知的并行实现算法 ❖隐藏了明文模式 ❖需要共同的移位寄存器初始值V1 ❖对于不同的消息,V1必须唯一 ❖误差传递:一个单元损坏影响多个单元
对称密码体制
分组密码的工作模式
密码分组链接模式(3/3)
CBC特点 ❖没有已知的并行实现算法 ❖能隐藏明文的模式信息 ❖需要共同的初始化向量V1 ❖相同明文不同密文 ❖初始化向量V1可以用来改变第一块 ❖对明文的主动攻击是不容易的 ❖信息块不容易被替换、重排、删除、重放 ❖误差传递:密文块损坏两明文块损坏 ❖安全性好于ECB ❖适合于传输长度大于64位的报文,还可以进行用 户鉴别,是大多系统的标准如 SSL、IPSec
对称密钥密码体制
第三,流密码能较好地隐藏明文的统计特征等。
流密码的原理
❖ 在流密码中,明文按一定长度分组后被表示成一个序列,并 称为明文流,序列中的一项称为一个明文字。加密时,先由 主密钥产生一个密钥流序列,该序列的每一项和明文字具有 相同的比特长度,称为一个密钥字。然后依次把明文流和密 钥流中的对应项输入加密函数,产生相应的密文字,由密文 字构成密文流输出。即 设明文流为:M=m1 m2…mi… 密钥流为:K=k1 k2…ki… 则加密为:C=c1 c2…ci…=Ek1(m1)Ek2(m2)…Eki(mi)… 解密为:M=m1 m2…mi…=Dk1(c1)Dk2(c2)…Dki(ci)…
同步流密码中,消息的发送者和接收者必须同步才能做到正确 地加密解密,即双方使用相同的密钥,并用其对同一位置进行 操作。一旦由于密文字符在传输过程中被插入或删除而破坏了 这种同步性,那么解密工作将失败。否则,需要在密码系统中 采用能够建立密钥流同步的辅助性方法。
分解后的同步流密码
பைடு நூலகம்
密钥流生成器
❖ 密钥流生成器设计中,在考虑安全性要求的前提下还应考虑 以下两个因素: 密钥k易于分配、保管、更换简单; 易于实现,快速。
密钥发生器 种子 k
明文流 m i
明文流m i 加密算法E
密钥流 k i 密钥流 发生器
密文流 c i
安全通道 密钥 k
解密算法D
密钥流 发生器
明文流m i
密钥流 k i
图1 同步流密码模型
内部状态 输出函数
内部状态 输出函数
密钥发生器 种子 k
k
第3章 密码与身份认证技术-物联网安全导论(第2版)-李联宁-清华大学出版社
3.1 密码学基本概念
数据加密的模型
3.1 密码学基本概念
• 编码密码学主要致力于信息加密、信息认证、数 字签名和密钥管理方面的研究。
• 信息加密的目的在于将可读信息转变为无法识别 的内容,使得截获这些信息的人无法阅读,同时 信息的接收人能够验证接收到的信息是否被敌方 篡改或替换过;
3.1 密码学基本概念
3.1.2 密码学的发展历程 • 人类有记载的通信密码始于公元前400年。 • 1883年Kerchoffs第一次明确提出了编码的原则:
加密算法应在算法公开时不影响明文和密钥的安 全。 • 这一原则已得到普遍承认,成为判定密码强度的 衡量标准,实际上也成为传统密码和现代密码的 分界线。
是把明文中所有字母都用它右边的第k个字母替 代,并认为Z后边又是A。
恺撒(Caesar)加密法
3.1 密码学基本概念
这种映射关系表示为如下函数: F(a)=(a+k) mod 26
• 其中:a表示明文字母;k为密钥。 • 设k=3,则有 • 明文:a b c d e f g h i j k l m n o p q r s t u v
• 而如果不合法的用户(密码分析者)试图从这种 伪装后信息中分析得到原有的机密信息,那么, 要么这种分析过程要么是根本是不可能的,要么 代价过于巨大,以至于无法进行。
3.1 密码学基本概念
在互联网环境下使用加密技术的加密/解密过程
3.1 密码学基本概念
使用密码学可以达到以下目的: • (1)保密性:防止用户的标识或数据被读取。 • (2)数据完整性:防止数据被更改。 • (3)身份验证:确保数据发自特定的一方。
第3章 密码技术概述
目录
3.1 密码术及发展 3.2 数据保密通信模型 3.3 对称密码体制 3.4 公钥密码体制 3.5 数字签名 3.6 消息完整性保护 3.7 认证 3.8 计算复杂理论 3.9 密码分析
3.2 数据保密通信模型
如何在开放网络中保密传输数据?
目录
3.1 密码术及发展 公钥密码体制 3.5 数字签名 3.6 消息完整性保护 3.7 认证 3.8 计算复杂理论 3.9 密码分析
3.3 对称密码体制
如何使用相同的密钥加/解密数据?
Symmetric Cryptography
?
3.3 对称密码体制
古典密码原理简单,容易遭受统计分析攻击。
3.1 密码术及发展
现代密码
1863年普鲁士人卡西斯基著《密码和破译技术》, 1883年法国人克尔克霍夫所著《军事密码学》; 20世纪初,产生了最初的可以实用的机械式和电动式密 码机,同时出现了商业密码机公司和市场; 第二次世界大战德国的Enigma转轮密码机,堪称机械式 古典密码的巅峰之作。 1949年美国人香农(C.Shannon)发表论文《保密系统的 通信理论》标志现代密码学的诞生。
3.1 密码术及发展
古典密码
北宋曾公亮、丁度等编撰《武经总要》“字验”; 公元前405年,斯巴达将领来山得使用了原始的错乱密码; 公元前一世纪,古罗马皇帝凯撒曾使用有序单表代替密码;
古典密码使用的基本方法
置换加密法:将字母的顺序重新排列。 替换加密法:将一组字母用其它字母或符号代替。
3.2 数据保密通信模型
密码技术、密码体制与密码算法
密码技术是利用密码体制实现信息安全保护的技术; 密码体制是使用特定密码算法实现信息安全保护的具
对称密码体制
对称密码体制对称密码体制是一种有效的信息加密算法,它尝试在满足基本安全约束的同时提供最大的加密强度和性能。
它是最常用的信息加密类型之一,甚至在金融机构、政府机构、企业以及个人之间都被广泛使用。
对称密码体制通过使用单个密钥(称为“秘密密钥”)来确保信息的安全传输和接收,而无需在发送方和接收方之间共享保密信息。
这一密钥的特点在于,既可以用来加密信息,也可以用于解密信息。
由于秘密密钥是由发送方和接收方共同拥有,因此不需要额外的通信,也无需额外的身份验证。
在使用对称密码体制时,发送方必须在发送数据之前将其加密,而接收方则必须使用相同的密钥对数据进行解密,以此来识别发送方。
然而,有一种特殊情况除外,即发送方可以使用密钥来加密消息,而接收方可以使用相同的密钥来解密消息,而无需在发送方和接收方之间共享信息。
在实际使用中,对称密码体制有三种形式:数据加密标准(DES)、高级加密标准(AES)和哈希密码(HMAC)。
其中,DES是一种最常用的对称密码体制,它采用了比较古老的56位密钥来加密数据,并且它的加密强度受到比较严格的限制。
而AES是一种更新的,比DES更安全的对称加密算法,它使用128位或256位密钥,并且可以提供更强的安全性和性能。
最后,HMAC是一种哈希加密算法,它使用128位或256位密钥来确保信息的完整性和真实性,同时也可以使用相同的密钥来加密和解密数据。
对称密码体制是一种有效的信息加密算法,它在满足基本安全约束的同时还能提供最大的加密强度和最高的性能。
它是最常用的信息加密类型之一,甚至在金融机构、政府机构、企业以及个人之间都被广泛使用,并且有三种形式:数据加密标准(DES)、高级加密标准(AES)和哈希密码(HMAC),可以满足各种要求。
其中,AES可以提供更高的安全性和性能,而HMAC可以确保信息的完整性和真实性,因此在实际应用中,对称密码体制也被广泛应用。
对称密码体制在许多领域都有着广泛的应用,尤其是在安全传输方面。
信息安全考试重点
第1章信息安全概述1.被动攻击:攻击者在未被授权的情况下,非法获取信息或数据文件,但不对数据信息作任何修改。
被动攻击手段:搭线监听、无线截获、其他截获、流量分析阻止被动攻击:加密对付被动攻击的重点是预防,不是检测被动攻击使得机密信息被泄露,破坏了信息的机密性2.主动攻击:包括对数据流进行篡改或伪造主动攻击四种类型:伪装、重放、消息篡改、拒绝服务伪装、重放、消息篡改,破坏了信息的完整性,拒绝服务,破坏了信息系统的可用性3.信息安全的目标:机密性:Confidentiality,指保证信息不被非授权访问。
完整性:Integrity,指信息在生成、传输、存储和使用过程中不应被第三方篡改。
可用性:Availability,指授权用户可以根据需要随时访问所需信息。
其它信息安全性质:可靠性,不可抵赖性,可审查性,可控性4.信息安全基础研究的主要内容:密码学研究和网络信息安全基础理论研究密码理论是信息安全的基础,信息安全的机密性,完整性和抗否认性都依赖密码算法密码学的主要研究内容是:加密算法(保护信息机密性)消息认证算法(保护信息的完整性)数字签名算法(保护信息的抗否认性)密钥管理5.网络攻击方式:①泄密:将消息透露给未被授权的任何人或程序②传输分析:分析通信双方的通信模式③伪装:欺诈源向网络中插入一条消息④内容修改:对消息内容进行插入、删除、转换或修改⑤顺序修改:对通信双方的消息顺序进行插入、删除或重新排序⑥计时修改:对消息的延时和重放⑦发送方否认:发送方否认发过来某消息⑧接收方否认:接收方否认接收到某消息6.安全理论的主要内容:身份认证、授权和访问控制、安全审计和安全协议7.安全技术:防火墙技术、漏洞扫描和分析、入侵检测、防病毒等8.平台安全:物理安全、网络安全、系统安全、数据安全、用户安全和边界安全物理安全是指保障信息网络物理设备不受物理损害,或是损坏时能及时修复或替换,通常是针对设备的自然损害、人为破坏或灾害损害而提出的网络安全的目标是防止针对网络平台的实现和访问模式的安全威胁9.信息安全管理研究:①安全策略研究,主要内容包括安全风险评估、安全代价评估、安全机制的制定以及安全措施的实施和管理等安全策略是安全系统设计、实施、管理和评估的依据②安全标准研究,主要内容包括安全等级划分、安全技术操作标准、安全体系结构标准、安全产品测评标准和安全工程实施标准等③安全测评研究,主要内容有测评模型、测评方法、测评工具、测评规程等第2章密码学基础1.研究各种加密方案的学科称为密码编码学,加密方案则被称为密码体制或者密码,研究破译密码的学科称为密码分析学数据安全基于密钥而不是算法的保密,也就是说,对于一个密码体制,其算法是可以公开的,但具体对于某次加密过程中所使用的密钥则是保密的2.根据密钥的使用方式分类:对称密码体制(秘密钥密码体制)和非对称密码体制(公钥密码体制)对称密码体制分为两类:序列密码或流密码,分组密码3.攻击密码体制一般有两种方法:密码分析和穷举攻击穷举攻击是指攻击者对一条密文尝试所有可能的密钥,直到把它转化成为可读的有意义明文如果无论有多少可以使用的密文,都不足以唯一地确定在该体制下地密文所对应的明文,则此加密体制是无条件安全的5.加密算法应该至少满足下面的两个条件之一:①破译密码的代价超出密文信息的价值②破译密码的时间超出密文信息的有效期满足上述两个条件之一的密码体制被称为在计算上是安全的第3章对称密码体制1.雪崩效应:明文或密钥的微小改变将对密文产生很大的影响2.弱密钥:DES算法在每次迭代时都有一个子密钥供加密用,如果一个外部密钥所产生的所有子密钥都是一样的,则这个密钥就称为弱密钥。
信息安全概论课后答案
四45五3六57十4十一34十二47没做“信息安全理论与技术”习题及答案教材:《信息安全概论》段云所,魏仕民,唐礼勇,陈钟,高等教育出版社第一章概述(习题一,p11)1.信息安全的目标是什么?答:信息安全的目标是保护信息的机密性、完整性、抗否认性和可用性;也有观点认为是机密性、完整性和可用性,即CIA(Confidentiality,Integrity,Availability)。
机密性(Confidentiality)是指保证信息不被非授权访问;即使非授权用户得到信息也无法知晓信息内容,因而不能使用完整性(Integrity)是指维护信息的一致性,即信息在生成、传输、存储和使用过程中不应发生人为或非人为的非授权簒改。
抗否认性(Non-repudiation)是指能保障用户无法在事后否认曾经对信息进行的生成、签发、接收等行为,是针对通信各方信息真实同一性的安全要求。
可用性(Availability)是指保障信息资源随时可提供服务的特性。
即授权用户根据需要可以随时访问所需信息。
2.简述信息安全的学科体系。
解:信息安全是一门交叉学科,涉及多方面的理论和应用知识。
除了数学、通信、计算机等自然科学外,还涉及法律、心理学等社会科学。
信息安全研究大致可以分为基础理论研究、应用技术研究、安全管理研究等。
信息安全研究包括密码研究、安全理论研究;应用技术研究包括安全实现技术、安全平台技术研究;安全管理研究包括安全标准、安全策略、安全测评等。
3. 信息安全的理论、技术和应用是什么关系?如何体现?答:信息安全理论为信息安全技术和应用提供理论依据。
信息安全技术是信息安全理论的体现,并为信息安全应用提供技术依据。
信息安全应用是信息安全理论和技术的具体实践。
它们之间的关系通过安全平台和安全管理来体现。
安全理论的研究成果为建设安全平台提供理论依据。
安全技术的研究成果直接为平台安全防护和检测提供技术依据。
平台安全不仅涉及物理安全、网络安全、系统安全、数据安全和边界安全,还包括用户行为的安全,安全管理包括安全标准、安全策略、安全测评等。
第3章对称密码体制
流密码与分组密码
❖ 流密码每次加密数据流中的一位或一个字节。 ❖ 分组密码,就是先把明文划分为许多分组,每个明
文分组被当作一个整体来产生一个等长(通常)的 密文分组。通常使用的是64位或128位分组大小。 ❖ 分组密码的实质,是设计一种算法,能在密钥控制 下,把n比特明文简单而又迅速地置换成唯一n比特 密文,并且这种变换是可逆的(解密)。
23
63
31
38
6
46
14
54
22
62
30
37
5
45
13
53
21
61
29
36
4
44
12
52
20
60
28
35
3
43
11
51
19
59
27
34
2
42
10
50
18
58
26
33
1
41
9
49
17
57
25
❖ 解密的时候一样步骤,只是在做第六步的时候,将K[16]变 为K[1],依次类推倒用K[i]即可。
❖ 第十步:回到第五步,重复运算到第九步,每轮计算有 R[i],L[i],K[i]来计算,总计重复16轮结束,最终生成新的L[16] 和R[16]。
❖ 第十一步:合并L[16]和R[16]为64位数据,然后按照表8做
置换,生成最终加密数据。
❖ 表8:
40
8
48
16
56
24
64
32
39
7
47
15
55
DES算法原理
❖ 第一步:要被加密的数据被分割成为若干以 64bit为单位的数据,如果位数不够,那么补
密码学
1.密码体制分类:1)对称密码体制(密钥必须完全保密、加密与解密密钥相同,或可由其中一个很容易推出另一个,又称秘密密钥、单钥、传统密码体制,包括分组密码和序列密码)优点:加解密速度较快,有很高的数据吞吐率;使用的密钥相对较短;密文的长度与明文长度相同;缺点:密钥分发需要安全通道;密钥量大,难于管理;难以解决不可否认问题。
2)非对称密码体制(使用两个密钥,一个是对外公开的公钥,一个是必须保密的私钥,不能由公钥推出私钥,又称双钥或公开密钥密码体制)优点:密钥的分发相对容易;密钥管理简单;可以有效地实现数字签名。
缺点:与对称密码体制相比,非对称密码体制加解密速度较慢;同等安全强度下,非对称密码体制要求的密钥位数要多一些;密文的长度往往大于明文长度。
2.AES与DES对比:1)相似处:二者的圈(轮)函数都是由3层构成:非线性层、线性混合层、子密钥异或,只是顺序不同;AES的子密钥异或对应于DES中S盒之前的子密钥异或;AES的列混合运算的目的是让不同的字节相互影响,而DES中F函数的输出与左边一半数据相加也有类似的效果;AES的非线性运算是字节代换,对应于DES中唯一的非线性运算S盒;行移位运算保证了每一行的字节不仅仅影响其它行对应的字节,而且影响其他行所有的字节,这与DES中置换P相似。
2)不同之处:AES的密钥长度(128位192位256位)是可变的,而DES的密钥长度固定为56位;DES是面向比特的运算,AES是面向字节的运算;AES的加密运算和解密运算不一致,因而加密器不能同时用作解密器,DES 则无此限制。
3.Hash函数:也称散列、哈希、杂凑函数等,是一个从消息空间到像空间的不可逆映射;可将任意长度的输入经过变换得到固定长度的输出;是一种具有压缩特性的单向函数。
性质:1)H可应用于任意长度的消息2)H产生定长的输出3)对任意给定的消息x,计算H(x)较容易,用硬件和软件均可实现4)单向性5)抗弱碰撞性6)抗强碰撞性应用:数字签名;生成程序或者文档的数字指纹;用于安全传输和存储口令特点:1)输入数字串与输出数字串具有唯一的对应关系;输入数字串中2)任何变化会导致输出数字串也发生变化;从输出数字串不能够反求出输入数字串。
信息安全概论课后答案解析
_四45五3六57十4十一34十二47没做“信息安全理论与技术”习题及答案教材:《信息安全概论》段云所,魏仕民,唐礼勇,陈钟,高等教育出版社第一章概述(习题一,p11)1.信息安全的目标是什么?答:信息安全的目标是保护信息的机密性、完整性、抗否认性和可用性;也有观点认为是机密性、完整性和可用性,即CIA(Confidentiality,Integrity,Availability)。
机密性(Confidentiality)是指保证信息不被非授权访问;即使非授权用户得到信息也无法知晓信息内容,因而不能使用完整性(Integrity)是指维护信息的一致性,即信息在生成、传输、存储和使用过程中不应发生人为或非人为的非授权簒改。
抗否认性(Non-repudiation)是指能保障用户无法在事后否认曾经对信息进行的生成、签发、接收等行为,是针对通信各方信息真实同一性的安全要求。
可用性(Availability)是指保障信息资源随时可提供服务的特性。
即授权用户根据需要可以随时访问所需信息。
2.简述信息安全的学科体系。
解:信息安全是一门交叉学科,涉及多方面的理论和应用知识。
除了数学、通信、计算机等自然科学外,还涉及法律、心理学等社会科学。
信息安全研究大致可以分为基础理论研究、应用技术研究、安全管理研究等。
信息安全研究包括密码研究、安全理论研究;应用技术研究包括安全实现技术、安全平台技术研究;安全管理研究包括安全标准、安全策略、安全测评等。
3. 信息安全的理论、技术和应用是什么关系?如何体现?答:信息安全理论为信息安全技术和应用提供理论依据。
信息安全技术是信息安全理论的体现,并为信息安全应用提供技术依据。
信息安全应用是信息安全理论和技术的具体实践。
它们之间的关系通过安全平台和安全管理来体现。
安全理论的研究成果为建设安全平台提供理论依据。
安全技术的研究成果直接为平台安全防护和检测提供技术依据。
平台安全不仅涉及物理安全、网络安全、系统安全、数据安全和边界安全,还包括用户行为的安全,安全管理包括安全标准、安全策略、安全测评等。
对称密码体制的原理
对称密码体制的原理
对称密码体制是指使用相同的密钥进行加密和解密的密码算法。
其原理基于异或运算和分组加密算法。
在对称密码体制中,发送方和接收方之间共享一个密钥,该密钥被用来对数据进行加密和解密。
加密使用密钥对数据进行加密,解密则使用相同的密钥对数据进行解密。
密钥的加密和解密使用异或运算,即将要加密或解密的数据与密钥进行异或运算,得到一个新的比特序列,该比特序列作为新的密钥,再次用于加密或解密。
分组加密算法是将数据分成若干组,每组数据使用密钥进行加密,从而实现数据的安全性。
常用的分组加密算法有 DES、3DES、AES 等。
对称密码体制具有高效、安全、易于实现等优点,被广泛运用于网络通信、电子邮件等领域。
【学习课件】第三章对称密码体制
2021/7/9
7
个人攻击 小组攻击 院、校网 大公司 络攻击
40 ( bits ) 数周
数日
数小时 数毫秒
56
数百年 数十年 数年
数小时
64
数千年
数百年
数十年
数日
80
不可能 不可能 不可能 数百年
128
不可能
不可能
不可能
不可能
军事情报 机构 数微秒 数秒钟 数分钟 数百年 数千年
2021/7/9
225-228
243
军 事 情 报 配有价值1百万美元的硬件 255
机构
及先进的攻击技术
2021/7/9
9
抵御系统分析法攻击能力
1982年,能破解3次或者4次迭代的DES系统 1985年,6次 1990年,以色列学者发明了差分分析方法,他证明任何少 于16次的DES算法都可以用比穷举法更有效的方法破译 IBM公司的D.CopperSmith:“1974年IBM设计小组就掌握 了差分分析方法”
0 0 1 0 输出4位
使用选择函数S1 的例子
置换P(单 纯换位表)
选择函数的输出
(32位)
16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10 2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25
置换P
加密函数的结果
(32位)
L(i+1)= R(i)
行=10 坐标为(2,6),然后在S1表中查得对应的数为2,以4位二 进制表示为0010,此即选择函数S1的输出。
2021/7/9
25
10
1 0 1 1 0 0 输入6位
第三章对称密钥体制
•
分组密码的典型攻击方法
最可靠的攻击办法:强力攻击 最有效的攻击:差分密码分析,通过分析明文对的 差值对密文对的差值的影响来恢复某些密钥比特. 线性密码分析:本质上是一种已知明文攻击方法, 通过寻找一个给定密码算法的有效的线性近似表 达式来破译密码系统 插值攻击方法 密钥相关攻击
强力攻击
穷尽密钥搜索攻击:
P-盒置换为:
16 7 20 21 29 12 28 17 1 15 23 26 10 2 8 24 14 32 27 3 9 19 13 30 6 25 5 18 31 4 22 11
在变换中用到的S1,S2...S8为选择函数,俗称为S-盒,是 DES算法的核心。其功能是把6bit数据变为4bit数据。 S1: 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 在S1中,共有4行数据,命名为0,1、2、3行;每行有16列, 命名为0、1、2、3,......,14、15列。 现设输入为: D=D1D2D3D4D5D6 令:列=D2D3D4D5 行=D1D6 然后在S1表中查得对应的数,以4位二进制表示,此即 为选择函数S1的输出。
密钥Ki(48bit)的生成算法
DES的破解
DES的实际密钥长度为56-bit,就目前计算机的计 算机能力而言,DES不能抵抗对密钥的穷举搜索攻击。 1997年1月28日,RSA数据安全公司在RSA安全年 会上悬赏10000美金破解DES,克罗拉多州的程序员 Verser在Inrernet上数万名志愿者的协作下用96天的时 间找到了密钥长度为40-bit和48-bit的DES密钥。 1998年7月电子边境基金会(EFF)使用一台价值25 万美元的计算机在56小时之内破译了56-bit的DES。 1999年1月电子边境基金会(EFF)通过互联网上的 10万台计算机合作,仅用22小时15分就破解了56-bit 的DES。 不过这些破译的前提是, 不过这些破译的前提是,破译者能识别出破译的结 果确实是明文,也即破译的结果必须容易辩认。 果确实是明文,也即破译的结果必须容易辩认。如果 明文加密之前经过压缩等处理,辩认工作就比较困难。 明文加密之前经过压缩等处理,辩认工作就比较困难。
什么是密码体制怎么组成的
什么是密码体制怎么组成的 密码体制是指能完整地解决信息安全中的机密性、数据完整性、认证、⾝份识别、可控性及不可抵赖性等问题中的⼀个或⼏个的⼀个系统。
那么你对密码体制了解多少呢?以下是由店铺整理关于什么是密码体制的内容,希望⼤家喜欢! 密码体制的定义 完成加密和解密的算法。
通常,数据的加密和解密过程是通过密码体制(cipher system) +密钥(keyword)来控制的。
密码体制必须易于使⽤,特别是应当可以在微型计算机使⽤。
密码体制的安全性依赖于密钥的安全性,现代密码学不追求加密算法的保密性,⽽是追求加密算法的完备,即:使攻击者在不知道密钥的情况下,没有办法从算法找到突破⼝。
密码体制的基本模式 通常的密码体制采⽤移位法、代替法和代数⽅法来进⾏加密和解密的变换,可以采⽤⼀种或⼏种⽅法结合的⽅式作为数据变换的基本模式,下⾯举例说明: 移位法也叫置换法。
移位法把明⽂中的字符重新排列,字符本⾝不变但其位置改变了。
例如最简单的例⼦:把⽂中的字母和字符倒过来写。
或将密⽂以固定长度来发送 5791ECNI SYLDIPAT DEVLOBES AHYTIRUC ESATAD** 密码体制的技术分类 密码体制分为私⽤密钥加密技术(对称加密)和公开密钥加密技术(⾮对称加密)。
1、对称密码体制 对称密码体制是⼀种传统密码体制,也称为私钥密码体制。
在对称加密系统中,加密和解密采⽤相同的密钥。
因为加解密密钥相同,需要通信的双⽅必须选择和保存他们共同的密钥,各⽅必须信任对⽅不会将密钥泄密出去,这样就可以实现数据的机密性和完整性。
对于具有n个⽤户的⽹络,需要n(n-1)/2个密钥,在⽤户群不是很⼤的情况下,对称加密系统是有效的。
但是对于⼤型⽹络,当⽤户群很⼤,分布很⼴时,密钥的分配和保存就成了问题。
对机密信息进⾏加密和验证随报⽂⼀起发送报⽂摘要(或散列值)来实现。
⽐较典型的算法有DES(Data Encryption Standard数据加密标准)算法及其变形Triple DES(三重DES),GDES(⼴义DES);欧洲的IDEA;⽇本的FEAL N、RC5等。
信息安全概论复习材料
第一章:1、机密性:是指保证信息不被非授权访问;即使非授权用户得到信息也无法知晓信息内容,因而不能使用。
通常通过访问控制阻止非授权用户获得机密信息,通过加密交换阻止非授权用户获知信息内容。
2、完整性:完整性是指维护信息的一致性,即信息在生成、传输、存储和使用过程中不应发生认为或非人为的非授权篡改。
一般通过访问控制阻止篡改行为,同时通过信息摘要算法来检测信息是否被篡改。
3、抗否认性:抗否认性是指能保障用户无法在事后否认曾今对信息进行的生成、签发、接受等行为,是针对通信各方信息真实同一性的平安要求。
一般通过数字签名来提供抗否认效劳。
4、可用性:可用性是指保障信息资源随时可提供效劳的特性,即授权用户根据需要可以随时访问所需信息。
可用性是信息资源效劳功能和性能可靠性的度量,设计物理、网络、系统、数据、应用和用户等多方面的因素,是对信息网络总体可靠性的要求。
可靠性的要求。
5、身份认证:是指验证用户身份与其所声称的身份是否一致的过程。
最常见的身份认证是口令认证。
6、授权和访问控制的区别:授权侧重于强调用户拥有什么样的访问权限,这种权限是系统预先设定的,并不关心用户是否发出访问请求;而访问控制是对用户访问行为进行控制,它将用户的访问行为控制在授权允许的范围之内,因此,也可以说,访问控制是在用户发起访问请求是才起作用的。
7、物理平安:物理平安是指保障信息网络物理设备不受物理损坏,或是损坏时能及时修复和替换。
8、经典信息平安:通常采用一些简单的替代和置换来保护信息。
9、现代密码理论的标志性成果是DES算法和RSA算法。
第二章:1、密码学:研究如何实现秘密通信的科学,包括两个分支,即密码编码学和密码分析学。
2、加密和加密算法:对需要保密的信息进行编码的过程称为加密,编码的规那么称为加密算法。
3、密码系统从原理上分为两大类,即单密钥系统和双密钥系统。
单密钥系统又称为对称密码系统或秘密密钥密码系统,单密钥系统的加密密钥和解密密钥相同,或者实质上等同。
对称密钥密码体制的原理和特点
对称密钥密码体制的原理和特点一、对称密钥密码体制的原理1. 对称密钥密码体制是一种加密方式,使用相同的密钥进行加密和解密。
2. 在对称密钥密码体制中,加密和解密使用相同的密钥,这个密钥必须保密,只有合法的用户才能知道。
3. 对称密钥密码体制使用单一密钥,因此在加密和解密过程中速度较快。
4. 对称密钥密码体制中,发送者和接收者必须共享同一个密钥,否则无法进行加密和解密操作。
二、对称密钥密码体制的特点1. 高效性:对称密钥密码体制使用单一密钥进行加密和解密,因此速度较快,适合于大量数据的加密和解密操作。
2. 安全性有限:尽管对称密钥密码体制的速度较快,但密钥的安全性存在一定的风险。
一旦密钥泄露,加密数据可能会遭到破解,因此密钥的安全性对于对称密钥密码体制至关重要。
3. 密钥分发困难:在对称密钥密码体制中,发送者和接收者必须共享同一个密钥,因此密钥的分发和管理可能会存在一定的困难。
4. 密钥管理困难:对称密钥密码体制密钥的管理和分发往往需要借助第三方机构或者密钥协商协议来实现,这增加了密钥管理的复杂性。
5. 广泛应用:尽管对称密钥密码体制存在一定的安全性和管理困难,但由于其高效性,仍然广泛应用于网络通信、金融交易等领域。
对称密钥密码体制是一种加密方式,使用相同的密钥进行加密和解密。
它具有高效性和广泛应用的特点,然而安全性较差并且密钥管理困难。
在实际应用中,需要权衡其优劣势,并采取相应的安全措施来确保其安全性和有效性。
对称密钥密码体制的应用对称密钥密码体制作为一种快速高效的加密方式,在现实生活中有着广泛的应用。
主要的应用领域包括网络通信和数据传输、金融交易、安全存储、以及移动通信等。
1. 网络通信和数据传输在网络通信和数据传输中,对称密钥密码体制被广泛应用于加密数据传输过程。
在互联网传输中,大量的数据需要在用户和服务器之间进行传输,为了保护数据的安全性,对称密钥密码体制被用来加密数据,确保传输过程中数据不被窃取或篡改。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) DES算法的主要过程
① 初始置换: ② 子密钥生成: ③ 乘积变换: ④ 末置换:
……48
选择压缩运算S
将前面送来的48bit 数据自左至右分成 8组,每组6bit。然 后并行送入8个S盒, 每个S盒为一非线 性代换网络,有4 个输出。
S 盒 的 内 部 结 构
S盒的内部计算
若输入为b1b2b3b4b5b6其中b1b6两位二进制数表 达了0至3之间的数。b2b3b4b5为四位二进制数, 表达0至15之间的某个数。 在S1表中的b1b6行b2b3b4b5列找到一数m (0≤m≤15),若用二进制表示为m1m2m3m4,则 m1m2m3m4便是它的4bit输出。 例如,输入为001111,b1b6=01=1,b2b3b4b5 =0111=7,即在S1盒中的第1行第7列求得数1,所 以它的4bit输出为0001。
Ci Di= b1b2…b56 ,则ki= b14 b17 b11 b24…b36 b29 b32
1.初始置换
将64个明文比
特的位置进行 置换,得到一 个乱序的64bit 明文组,然后 分成左右两段, 每段为32bit 以 L和R表示。
Li-1(32比特)
Ri-1(32比特) 选择扩展运算E 48比特寄存器
试写出K2的表达式
试写出解密算法的数学表示
试证明加密算法的正确性
对S-DES的深入描述
(1) S-DES的密钥生成:
设10bit的密钥为( k1,k2,…,k10 ) 几个重要的定义: P10(k1,k2,…,k10)=(k3,k5,k2,k7,k4,k10,k1,k9,k8 ,k6) P8= (k1,k2,…,k10)=(k6,k3,k7,k4,k8,k5,k10,k9 )
3.2 DES(Data Encryption Standard)
美国国家标准局NBS于1973年5月发出通告,公开 征求一种标准算法用于对计算机数据在传输和存储 期间实现加密保护的密码算法。 1975 年美国国家标准局接受了美国国际商业机器公 司IBM 推荐的一种密码算法并向全国公布,征求对 采用该算法作为美国信息加密标准的意见。 经过两年的激烈争论,美国国家标准局于1977年7 月正式采用该算法作为美国数据加密标准。1980年 12月美国国家标准协会正式采用这个算法作为美国 的商用加密算法。
P10
P8
3 5 2 7 4 10 1 9 8 6
6 3 7 4 8 5 10 9
对S-DES的深入描述 LS-1为循环左移1位:abcdebcdea LS-2为循环左移2位: abcdecdeab
S-DES的密钥生成
10-bit密钥
P10 :3 5 2 7 4 10 1 9 8 6
P8 :6 3 7 4 8 5 10 9
(2)
S-DES的加密运算:
初始置换用IP函数: IP= 12345678 26314857
末端算法的置换为IP的逆置换: IP-1= 1 2 3 4 5 6 7 8 41357286
(2) S-DES的加密运算:
试举例证明: IP-1是IP的逆置换
S-DES加密图
8-bit 明文(n)
fk(L,R)=(LF(R,SK),R) R 4 8 E/P 4 1 2 3 2 3 4 1 8-bit子密钥:
IP fk1 SW fk2 IP-1 8bit密文
IP-1 fk1
K1
(3)置换函数SW (4)复合函数fk2
移位
SW fk2
P8
K2 K2
(5)初始置换IP的逆置换IP-1
IP
8bit密文 S-DES方案示意图
2*.
加密算法的数学表示: IP-1*fk2*SW*fk1*IP 也可写为 密文=IP-1(fk2(SW(fk1(IP(明文))))) 其中 K1=P8(移位(P10(密钥K)))
流密码与分组密码
流密码每次加密数据流中的一位或一个字节。 分组密码,就是先把明文划分为许多分组,每个明 文分组被当作一个整体来产生一个等长(通常)的 密文分组。通常使用的是64位或128位分组大小。 分组密码的实质,是设计一种算法,能在密钥控制 下,把n比特明文简单而又迅速地置换成唯一n比特 密文,并且这种变换是可逆的(解密)。
关于S盒
S
盒是DES的核心,也是DES算法最敏感的 部分,其设计原理至今仍讳莫如深,显得非 常神秘。所有的替换都是固定的,但是又没 有明显的理由说明为什么要这样,有许多密 码学家担心美国国家安全局设计S盒时隐藏了 某些陷门,使得只有他们才可以破译算法, 但研究中并没有找到弱点。
置换运算P
对S1至S8盒输出的32bit 数据进行坐标变换 置换P输出的32bit数据与 左边32bit即Ri-1诸位模2相 加所得到的32bit作为下一 轮迭代用的右边的数字段, 并将Ri-1并行送到左边的 寄存器作为下一轮迭代用 的左边的数字段。
3.1分组密码
分组密码算法实际上就是在密钥的控制下,
简单而迅速地找到一个置换,用来对明文分 组进行加密变换,一般情况下对密码算法的 要求是: 分组长度m足够大(64~128比特) 密钥空间足够大(密钥长度64~128比特) 密码变换必须足够复杂(包括子密钥产生算
法)
分组密码的设计思想
0 1 2 3 0 0 1 2 3 1 2 0 1 3 S1 2 3 0 1 0 3 2 1 0 3
4
4 E/P 8 + 4 S1 P4 + 2 8
K2
F
4 S0 2
4
IP-1 8
8-bit 密文
S盒按下述规则运算: 将第1和第4的输入比特做为2- bit数,指示为S盒的一个行; 将第2和第3的输入比特做为S盒的一个列。如此确定为S盒 矩阵的(i,j)数。 例如:(P0,0, P0,3)=(00),并且(P0,1,P0,2)=(1 0) 确定了S0中的第0行2列(0,2)的系数为3,记为(1 1) 输出。 由S0, S1输出4-bit经置换
பைடு நூலகம்
56 55 54 53 52 51 50 49
24 23 22 21 20 19 18 17
64 63 62 61 60 59 58 57
32 31 30 29 28 27 26 25
密文(64bit)
1,2,……
……64
3.2.3 DES的解密
解密算法与加密算法相同,只是子密钥的使
用次序相反。
S-DES加密图(续)
SW 4 E/P 8 + 8 4 S1 P4 + 4 IP-1 8 8-bit 密文 2
K2
fk
4
F
2
4 S0
两个S盒按如下定义:
SW
0 1 2 3 0 1 0 3 2 1 3 2 1 0 S0 2 0 2 1 3 3 3 1 3 2
3.逆初始置换IP-1
将16轮迭代
1,2,…… ……64 置换码组(64bit)
后给出的 64bit组进行 置换得到输 出的密文组
40 39 38 37 36 35 34 33
8 7 6 5 4 3 2 1
48 47 46 45 44 43 42 41
16 15 14 13 12 11 10 9
3.2.4 DES的安全性
DES在20多年的应用实践中,没有发现严重的安全 缺陷,在世界范围内得到了广泛的应用,为确保信 息安全做出了不可磨灭的贡献。 存在的安全弱点:
第3章 对称密码体制
主要内容
3.1分组密码
3.2数据加密标准DES
3.3高级加密标准AES
3.4序列密码
3.5其他对称加密算法
概述
对称密码体制就是在加密和解密是用到的密
钥相同,或者加密密钥和解密密钥之间存在 着确定的转换关系。 对称密码体制又有两种不同的实现方式,即 分组密码和序列密码(或称流密码)。
fk
IP
4 L E/P +
F
S0
4
4
S1
K1
K1=k11,k12,k13,k14,
k15,k16,k17,k18,
与E/P的结果异或得:
P4
+
n4+k11 n1+k12 n2+k13 n3+k14 n2+k15 n3+k16 n4+k17 n1+k18
第一行输入进S-盒S0,第二行的4位输 入进S盒S1,分别产生2-位的输出。
P10
5 LS-1 8 LS-2 5 P8 K2 8 P8 LS-2 5 5 LS-1 按照上述条件, 若K选为 (1010000010), 产生的两个子密钥分别为: K1=(1 0 1 0 0 1 0 0) K2=(0 1 0 0 0 0 1 1)
K1
对S-DES的深入描述 --趁热打铁 若输入密钥K为(1001001010), 问产生的两个子密钥分别为: ? K1=( ) ? K2=( )
输入64位明文(密文) 初始置换(IP) 64位密钥组
乘积变换
子密钥生成
末置换(IP-1)
输出64位密文(明文)
加密
8bit明文
10bit密钥
解密 8bit明文
P10
移位 P8
K1
(1)初始置换IP(initial permutation)
(2)复合函数fk1,它是由密钥K确定 的,具有置换和代换的运算。