最新2019年初中数学100题练习试卷 中考模拟试题210911
2019中考数学模拟试题附答案(2021年整理)
2019中考数学模拟试题附答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019中考数学模拟试题附答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019中考数学模拟试题附答案(word版可编辑修改)的全部内容。
2016中考数学信息试卷一、选择题(每题3分,共24分)1.6-的绝对值等于( )A .6B .16C .16- D .6- 2.下列计算正确的是( )A .2x x x += B. 2x x x ⋅= C.235()x x = D 。
32x x x ÷=3. 一个几何体的主视图和左视图都是正方形,俯视图是一个圆,那么这个几何体是( )A .长方体B .正方体C .圆锥D .圆柱 4.如图,已知⊙O 是△ABC 的内切圆,且∠ABC =50°,∠ACB =80°, 则∠BOC 是( )A 。
110° B. 115° C 。
120° D. 125°第4题 第7题 第8题5.下列说法正确的是( )A .要了解人们对“低碳生活”的了解程度,宜采用普查方式B .一组数据3、4、5、5、6、7的众数和中位数都是5C .随机事件的概率为50%,必然事件的概率为100%D .若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定6.圆锥的侧面积为8π ,母线长为4,则它的底面半径为( )45°CBAA .2B .1C .3D .47.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分的面积为( )A . 错误!cm 2B .错误!cm 2C .错误!cm 2D . 错误!cm 2 8.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( )A .y=x 53 B .y=x 43 C .y=x 109D .y=x二、填空题(每题3分,共30分) 9.25的平方根是 .10.写出一个大于1且小于2的无理数 .11.太阳的半径约是6。
2019中考模拟卷数学(含答案)
2019年中考模拟试题一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0B.5C.﹣D.﹣2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)2019年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1046.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140D.﹣140=10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.A、5B、2C、D、二、填空题(本题共6小题,每小題3分,共18分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n 的横坐标为(结果用含正整数n的代数式表示)三、解答题(第17题6分,第18、19题各5分,第20、21题各6分,第22、23题各10分,第24、25题各12分,共,72分)17.计算:(1)(﹣2)2++6(2)÷+18.某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.19.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.22.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.23.某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?24.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.24.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).25.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.2019年中考模拟试题参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A (4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x 轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:17.【解答】(1)解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.(2)解:原式=×﹣=﹣=.18.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.19.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.20.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621、【解答】解:(1)∵顶点A的坐标是(0,2),顶点C的纵坐标是﹣4,∴AE=6,又▱ABCD的面积是24,∴AD=BC=4,则D(4,2)∴k=4×2=8,∴反比例函数解析式为y=;(2)由题意知B的纵坐标为﹣4,∴其横坐标为﹣2,则B(﹣2,﹣4),设AB所在直线解析式为y=kx+b,将A(0,2)、B(﹣2,﹣4)代入,得:,解得:,所以AB所在直线解析式为y=3x+2.22.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.24.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF ∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴25.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m=或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).。
2019年中考模拟测试卷数学试题卷及答案
2019年初中学业考试模拟测试卷数学试题卷一.选择题:(本题有10小题,每小题3分,共30分) 1.16的算术平方根是(▲). A . 4B .4± C .2D .2±2.下列计算正确的是(▲).A .1243a a a =∙ B .a a a =-34C .()1243a a = D .428a a a =÷3.如图,直线a//b ,直线c 与直线a ,b 分别交于A,B 两点,射线AC ⊥直线c ,则图中与∠1互余的角有(▲). A .4个B . 3个C . 2个D .1个4.使代数式42-+x x 有意义的x 的取值范围是(▲).A .x >-2B .x ≥-2C .x ≥4D .x ≥-2且x ≠45.下列图形中,既是轴对称图形又是中心对称图形的是(▲).6.从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程kx 2-x +1=0 的k 值,则所得的方程中有两个不相等的实数根的概率是(▲). A .51 B .52 C . 53 D . 547.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是(▲).8.请运用所学知识判断sin 44.9°与cos 44.9°的大小(▲).A . sin 44.9°> cos 44.9°B .sin 44.9°< cos 44.9°C .sin 44.9°= cos 44.9°D .无法判断 9.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M是AE 的中点,下列结论:①tan ∠AEC =BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM .正确结论的个(▲).A . 1个B . 2个C . 3个D . 4个10.如图,P 为正方形ABCD 对角线BD 上一动点,若AB=2,则AP+BP+CP 的最小值为(▲).A .26+B . 23C . 2210+D .无法确定二、填空题:(本题有6小题,每小题4分,共24分)11.分解因式:2am 2﹣8a = ▲ .12.如图,在△ABC 中,∠CAB =65°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′= ▲ .13.若一组数据 2、2、3、3、4、4、x 的平均数是3,则这组数据的众数是 ▲ . 14.对于实数a ,b 定义一种新运算“@”为a @b=ba -21,这里等式右边是实数运算。
(2021年整理)2019年中考模拟数学试题
……
【结论】用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?
(直接写出an与an—1,an-2的关系式,不写解答过程).
【应用】用10个2×1矩形,镶嵌一个2×10矩形,有种不同的镶嵌方案.
24.(本小题满分12分)
如图,在四边形ABCD中,AD∥BC,CD⊥BC,BC=12cm,CD=8cm,AD=6cm.点P从点A出发,沿DA方向匀速运动,速度为3cm/s;同时,点Q从点C出发,沿CD方向匀速运动,速度为4cm/s.过点Q作QE∥AB交BC于点E,连接PE,交AB于点F.设运动时间为t(s)(0<t<2).解答下列问题:
(结果保留整数,参考数据:sin67°≈ ,cos67°≈ ,tan67°≈ )
20.(本小题满分8分)
某幼儿园购买了A,B两种型号的玩具,A型玩具的单价比B型玩具的单价少9元,
已知该幼儿园用3120元购买A型玩具的件数与用4200元购买B型玩具的件数相等.
(1)求该幼儿园购买的A,B型玩具的单价各是多少元?
18.(本小题满分6分)
每到春夏交替时节,杨树的杨絮漫天飞舞,易引发皮肤病、呼吸道疾病等,给人们生活造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(调查问卷如下),并根据调查结果绘制了如下尚不完整的统计图:
调查问卷
治理杨絮:您选哪一项?(每人只选一项)
A.减少杨树新增面积,控制杨树每年的栽种量;
为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上(如图所示).该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为45°,平面镜E的俯角为67°,测得FD=2.4米.求旗杆AB的高度约为多少米?
最新2019年初中数学100题练习试卷 中考模拟试题131916748792384296454881
数学模拟测试考试范围:xxx;满分:***分;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.在A),B(22,-2),C(-22 D)四个点中,在第四象限的点的个数为()A.1个B.2个C.3个D.4个2.如图所示的长方体的三视图是()A.三个正方形B.三个一样大的长方形C.三个大小不_样的长方形但其中可能有两个大小一样D.两个正方形和一个长方形3.由四个大小相同的小正方体搭成的几何体的左视图如图,则这个几何体的搭法不可能是()A. B.C.D.4.将一个立方体沿某些棱展开后,能够得到的平面图形是()A.B.C.D.5.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a6.对于数据3,3,2,3,6,3,10,3,6,3,2. 有以下结论:①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位教与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的有( )A .1个B . 2个C .3个D .4个7.下列不等式组无解的是( ) A .1020x x -<⎧⎨+<⎩ B .1020x x -<⎧⎨+>⎩ C .1020x x ->⎧⎨+<⎩ D .1020x x ->⎧⎨+>⎩ 8.点A (5,y 1)和B (2,y 2)都在直线y =-x 上,则y 1与y 2的关系是( )A .y 1≥ y 2B . y 1= y 2C . y 1 <y 2D . y 1 >y 29.如图,直线AB 对应的函数表达式是( )A .3y x 32=-+B .3y x 32=+C .2y x 33=-+D .2y x 33=+ 10.如图,△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB ,垂足为D ,如果AC=3 cm ,那么AE+DE 的值为( )A .2cmB .3cmC .5cmD .4cm11.一个容器装满40 L 纯酒精,第一次倒出若干升后,用水注满,第二次倒出第一次倒出量的一半的液体,已知两次共倒出纯酒精25L ,则第一次倒出纯酒精 ( )A .10 LB .15 LC .20 LD .25 L12.已知关于x 的不式组200x x a +>⎧⎨-≤⎩的整数解共有4个,则a 的最小值为( ) A .2 B . 2.1 C .3 D .113.下列说法中,正确的是( )A .图形平移的方向只有水平方向和竖直方向B .图形平移后,它的位置、大小、形状都不变C .图形平移的方向不是唯一的,可向任何方向平行移动D .图形平移后对应线段不可能在一条直线上14.在直角坐标系中,已知A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则。
河南省2019年中考数学模拟试题(含解析)
2019年河南省中考数学模试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1. - 3的绝对值是()A.— 3B. 3C. . —D.—3 32. 中国的陆地面积和领水面积共约9970000km2, 9970000这个数用科学记数法可表示为()A. 9.97 X 105B. 99.7 X 105C. 9.97 X 106D. 0.997 X 1074. 一次函数y= - 3x+b和y=kx+1的图象如图所示,其交点为P (3, 4),则不等式kx+1 >-3x+b的解集在数轴上表示正确的是()A. *B. * C ' D5. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.03. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是A. 9B.左视图C. 7D. 6主视图根据以上图表信息,参赛选手应选()血成绩环* X10 ---------9 —…“…”8 ”4“ ■-7 --------A.甲B.乙C.丙D. 丁A. 1 : 3B. 1: 5C. 1: 6D. 1: 119.如图,在平面直角坐标系中,抛物线y=. x2经过平移得到抛物线y=ax2+bx,其对称轴与6.如图,四边形ABCD内接于O 0,F是二上一点,且~7=-,连接CF并延长交AD的延长线于点E,连接AC,若/ ABC=105 ,/ BAC=25,则/ E的度数为(7.如图,菱形0ABC的一边0A在x轴上,将菱形0ABC绕原点0顺时针旋转75°至0A B'DC于点F,60°连接AE并延长交C'的位置,若0B=「,/ C=120°,则点B'的坐标为(则S A DEF:S A AOB的值为(两段抛物线所围成的阴影部分的面积为;,则a 、b 的值分别为(C 2、巳、E 4、G 3…在x轴上,已知正方形 A i B i C i D二、填空题(本小题共 5小题,每小题3分,共15分)11. ________________________________________ 计算:一二 + ( n - 2) 0+ (- 1) 2017= . 12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 _______ .10.在平面直角坐标系中,正方形A BCD 、 Di E 1E 2B 2、AB 2C 2D 、DBE4B …按如图所示的方式放置,其中点 B 在y 轴上,点G 、E 、E 、的边长是(13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=14. ____________________________________________ 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在-爲上,CD! OA垂足为点D, 当厶OCD的面积最大时,图中阴影部分的面积为 .O D .415. 如图,在矩形ABCD中, AB=5 BC=3点E为射线BC上一动点,将△ ABE沿AE折叠,得到△ AB' E.若B'恰好落在射线CD上,贝U BE的长为__________ .三、解答题(本题共8小题,共75分.)::一1 r, 216. 先化简,再求值:十一=,其中m是方程x+2x- 3=0的根.3 ID1 2 3-6m rn-2 717. 在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A, B两组户数频数直方图的高度比为 1 : 5.月信息消费额分组统计表1这次接受调查的有 _________ 户;2在扇形统计图中,“ E”所对应的圆心角的度数是 ________(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于 200元的户数是多少?(户数)18. 如图,AB 是半圆O 的直径,点P 是半圆上不与点 A B 重合的一个动点,延长BP 到点C, 使PC=PB D 是AC 的中点,连接 PD PO (1) 求证:△ CDP^A POB (2) 填空:① 若AB=4,则四边形AOPD 勺最大面积为 _________ ;② 连接OD 当/ PBA 的度数为 ______ 时,四边形BPDC 是菱形.C19. 如图,在大楼 AB 的正前方有一斜坡 CD CD=4米,坡角/ DCE=30,小红在斜坡下的点 C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A C E 在同一直线上.(1) 求斜坡CD 的高度DE(2) 求大楼AB 的高度(结果保留根号)20.同庆中学为丰富学生的校园生活, 准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元, 购买2个月信JS 湾奏颤分组頻数直方图各粗户数扇球统计圈2015 105・・・10足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21. 根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1 ,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1 所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为___________ ;③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为_________ .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x 的不等式ax2+bx+c > 0 (a > 0)的解集.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 ,位置关玄阜 系是 (2)拓展探究:请出判断判断予以证明; (3) 类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,23. 如图,二次函数 y=ax 2+bx+c 的图象与x 轴的交点为 A D (A 在D 的右侧),与y 轴的交 点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 . (1 )求二次函数的解析式;(2)若M 是第四象限抛物线上一动点,且横坐标为 m 设四边形 OCMA 勺面积为s .请写出 s 与m 之间的函数关系式,并求出当 m 为何值时,四边形 OCMA 勺面积最大;(3) 设点B 是x 轴上的点,P 是抛物线上的点,是否存在点 P,使得以A , B 、C, P 四点为如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, (1)中结论是否仍然成立?GBB(1)中结论是否仍然成立?其它条件不变, 请直接写出你的判断.顶点的四边形为平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.参考答案与试题解析 一、选择题(本大题共 13的绝对值是( )A.— 3B. 3C. . —D.—3 3【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解. 第一步列出绝对值的表达式; 第二步根据绝对值定义去掉这个绝对值的符号. 【解答】解:| - 3|=3 . 故-3的绝对值是3. 故选:B. 2.中国的陆地面积和领水面积共约 9970000km 2, 9970000这个数用科学记数法可表示为 ( )55 —67A. 9.97 X 10 B . 99.7 X 10 C. 9.97 X 10 D. 0.997 X 10 【考点】科学计数法.【分析】 科学记数法的表示形式为 a x 10n 的形式,其中1W |a| v 10, n 为整数.确定 n 的 值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当 原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数. 【解答】 解:9970000=9.97 X 106, 故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a X 10n 的形式,其中1w |a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为10小题,每小题3分,共30 分) 主视图A. 9B. 8*左视图C. 7D. 61的正方体的个数是【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有 2层,由俯视图可得第一层正方体的个数, 由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有 6个正方体,第二层有 2个正方体,那么共有 6+2=8 个正方体组成, 故选B.4. 一次函数y= — 3x+b 和y=kx+1的图象如图所示,其交点为 P (3, 4),则不等式kx+1 > —• ••当 x 》3 时,kx+1》—3x+b , •不等式kx+1 >— 3x+b 的解集为x > 3,在数轴上表示为: *故选B.5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示, 丁的成绩如图所示.甲乙 丙 平均数 7.9 7.9 8.0 方差3.290.491.8元一次不等式;C4:在数轴上表示不等式的解集.【分析】 观察图象,直线 y=kx+1落在直线 y= - 3x+b 上方的部分对应的 x 的取值范围即为所 求.【解答】 解:•一次函数 y= - 3x+b 和y=kx+1的图象交点为 P (3, 4),3x+b 的解集在数轴上表示正确的是(FD 一次函数与 【考C .根据以上图表信息,参赛选手应选( )【考点】W7方差;W1:算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可. 【解答】解:由图可知丁射击 10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为: —X( 8+8+9+7+8+8+9+7+8+8) =8, 丁的成绩的方差为: 了一X [ (8 - 8)+ ( 8 - 8)2+ (8 - 9) 2+ ( 8 - 7) 2+ (8 -8)+ (8 - 8)2 2 2 2 2+ (8 - 9) + (8 - 7) + (8 - 8) + (8 - 8) ]=0.4 , •••丁的成绩的方差最小, •••丁的成绩最稳定, •••参赛选手应选丁, 故选:D.F 是•上一点,且| ; =「,连接CF 并延长交AD 的延长根据三角形外角的性质即可得出结论.【解答】 解:••四边形 ABCD 内接于O 0,Z ABC=105,6.如图,四边形 ABCD 内接于O 0,线于点E ,连接AC,若/ ABC=105,/ BAC=25,则/ E 的度数为(M6圆内接四边形的性质;M4: 圆心角、弧、弦的关系.【分析】 先根据圆内接四边形的性质求出/ ADC 的度数,再由圆周角定理得出/ DCE 的度数,【考60°•••/ ADC=180 -Z ABC=180 - 105 ° =75 °.•••衣=| ,/ BAC=25 , • Z DCEZ BAC=25 ,• Z E=Z ADC-Z DCE=75 - 25° =50 °. 故选B.7.如图,菱形OABC 的一边OA 在 x 轴上,将菱形OABC 绕原点0顺时针旋转75°至OA B ' C'的位置,若 OB= _,Z C=120°,则点B'的坐标为( )/A ”oX1%帕\L J A r7 R fA.( 3,二)B .( 3,一) C.(「,「)D.(「,7)【考点】R7:坐标与图形变化-旋转; L8:菱形的性质.【分析】 首先根据菱形的性质,即可求得Z AOB 的度数,又由将菱形 OABC 绕原点O 顺时针 旋转75°至OA B ' C'的位置,可求得Z B' OA 的度数,然后在 Rt △ B' OF 中,利用三角 函数即可求得 OF 与B ' F 的长,则可得点 B '的坐标.【解答】 解:过点B 作BE X OA 于E ,过点B'作B' F 丄OA 于 F , • Z BE0=Z B ' FO=9C ° , •••四边形OABC 是菱形, • OA// BC, Z AOB= Z AOC • Z AOC-Z C=180°,•••Z C=120° ,• Z AOC=60 , • Z AOB=30 ,• •菱形OABC 绕原点O 顺时针旋转75°至OA B' C'的位置, • Z BOB =75°, OB =OB=2 :, • Z B' OF=45 ,在Rt△ B' OF中,•••点B'的坐标为:(唧匚,-i :).&如图,在?ABCD 中, AC 与BD 相交于点 O, E 为OD 的中点,连接 AE 并延长交 DC 于点F , 则 S A DEF : S A AOB 的值为()A. 1 : 3 B . 1: 5 C . 1: 6 D . 1: 11 【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质可知 BO=DO 又因为E 为OD 的中点,所以DE BE=1: 3,根S A iQR 9 据相似三角形的性质可求出 S A DE :S A BAE .然后根据=p ,即可得到结论.仏 ABE 3【解答】解:I O 为平行四边形ABCD 对角线的交点, • DO=BO又••• E 为OD 的中点, • DE= DB4• DE: EB=1: 3, 又••• AB// DC• △ DFE^A BAEOF=OB? cos45 •-B ' F= 7,=2 r =",故选D.・'二=(1)2=1'△BAE 39• I S A DE = S A BAE ,■..S AADB = 2 S A ABE 3,确定出抛物线y=ax 2+bx 的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点可得解.• °. S A AO =S :△ BAE,V S ^EAE…S A DEF : S A AO ==1 : 6,y S ABAE9.如图,在平面直角坐标系中,抛物线 两段抛物线所围成的阴影部分的面积为y= . x 2经过平移得到抛物线 y=ax 2+bx ,其对称轴与 [,则a 、b 的值分别为(H6:二次函数图象与几何变换.【分析】 坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即故选C.【考c •一,3 3 2 4•••平移后抛物线的顶点坐标为(- 爭,-电右),对称轴为直线x=-爭, 当x=-丄一时,y=2 4•平移后阴影部分的面积等于如图三角形的面积,'x( ■)X(-)=2 4 4234解得b= - -y故选:C.ABCD、D1E1E2B、A2B2 C2D、D>E3E4B B…按如图所示的方的边长为I,/ B i C i O=60°, BQ// B2C2// B3C3…,则正方形A2017R0仃C2o仃D2o仃的边长是()【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长, 可得出答案.【解答】解:•••正方形A i B i CD的边长为1,/ B i CO=60°, BC // B2C2 / RC3,• D E1=B2E2, D>E3=B S E4, / DCE1=/ GB2E2=/仑£3巳=30°,式放置,其中点B在y轴上,点C、E、E>、C2、巳、巳、C3…在x轴上,已知正方形A i B i G D 10.在平面直角坐标系中,正方形El E: Q Ej E4 G x进而得出变化规律即31【考点】D2:规律型:点的坐标.则 B 2C>== = () 1cos30fl 33 同理可得:RG==(—二)2,33故正方形 ABGD 的边长是:()「13则正方形A 2017B 2017C 2017 D 2017的边长为: 故选:C.二、填空题(本小题共 5小题,每小题3分,共15分) 11. 计算:-二 +( n - 2) 0+ (- 1) 2017= - 2 . 【考点】2C:实数的运算;6E :零指数幕.【分析】直接利用零指数幕的性质以及立方根的定义分别化简进而求出答案. 【解答】 原式=-2+1 - 1 =-2. 故答案为:-2.12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 a=1.【考点】AA 根的判别式.【分析】由一元二次方程的定义可得出 a z 0,再利用根的判别式△ =b 2- 4ac ,套入数据即可 得出△ = (a - 2) 2> 0,可得出a z 2且a z 0,设方程的两个根分别为刘、X 2,利用根与系数9的关系可得出X 1?X 2=,再根据X 1、X 2均为正整数,a 为整数,即可得出结论.a【解答】 解:•••方程ax 2-( a+2) X +2=0是关于X 的一元二次方程, a z 0.•/△ = (a+2) 2- 4a X 2= (a - 2) 2> 0,•••当a=2时,方程有两个相等的实数根, 当a z 2且a z 0时,方程有两个不相等的实数根. •• •方程有两个不相等的正整数根, 设方程的两个根分别为 X I 、X 2,--DE i =CDsin30一, 20169/. X1?X2=,a•/X I、X2均为正整数,•••「为正整数,a■/ a为整数,a^ 2且a^ 0,a=1,故答案为:a=1.13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=【考点】G6:反比例函数图象上点的坐标特征.【分析】作AC± X轴于点C,作BD丄X轴于点D,易证△ OB/A AOC则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.【解答】解:作ACLX轴于点C,作BD丄X轴于点D.则/ BD02 ACO=90 ,则/ BOD丄OBD=90 ,•/ OA! OB•••/ BOD丄AOC=90 ,•••/ B0D2 AOC•••△ OBD^A AOC二口工 2 /»八2一•••..,.= —) =( tanA )=,又••• S A AO(=_77 X 2=1 ,• S _1・・S A OB=,■-9故答案为:-•・k=-二14. 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在富上,CtU OA垂足为点D, 当厶OCD勺面积最大时,图中阴影部分的面积为2 n —4 .BO D A【考点】MO扇形面积的计算;H7:二次函数的最值;KQ勾股定理.【分析】由OC=4点C在亦上,CDL OA求得DC彳0严4)!)鼻&&~0卫,运用& OC誌OD ? !..厂,求得OD=2 —时厶OCD的面积最大,运用阴影部分的面积=扇形AOC的面积-△ OCD的面积求解.【解答】解:••• OC=4点C在「上,CDL OA•DC“「」「=厂厂•S A OC=;O D? i / .■ pr'Q 1 1 1•••,「= ’O D?( 16—O D)=——O D+4OD=—’(O D- 8) 2+16•••当O D=8,艮卩OD=2】时厶OCD的面积最大,•- DC=foF_)2= =2 _,•••/ COA=45 ,2•••阴影部分的面积 = 扇形AOC 勺面积-△ OCD 的面积=!打八"- X 2 7X 2 7=2 n - 4, 360 2 % % 故答案为:2 n - 4.【分析】如图1,根据折叠的性质得到 AB' =AB=5, B' E=BE 根据勾股定理得到 B E= ( 3 -BE 2+12,于是得到吨,如图2,根据折叠的性质得到AB =沖求得AB =BF =5根据勾股定理得 到CF=4根据相似三角形的性质列方程得到CE=12即可得到结论.【解答】 解:如图1,v 将厶ABE 沿 AE 折叠,得到△ AB' E ,• AB' =AB=5 B' E=BE •- CE=3- BE,: AD=3 •- DB' =4,二 B ' C=1,v B ' h=cE+B' C 2,• BE "= ( 3 - BE 2+12, • BE =,如图2,:将厶ABE 沿 AE 折叠,得到△ AB' E , • AB' =AB=5 :CD// AB,:丄仁/ 3,:/ 仁/2,• / 2=7 3,:AE 垂直平分 BB', • AB=BF=5 • CF=4, :CF // AB,• △ CEF^A ABE15.如图,在矩形 ABCD 中, AB=5 BC=3 点E 为射线BC 上一动点,将△ ABE 沿AE 折叠, 得到△ AB' E .若B'恰好落在射线CD 上,则BE 的长为—或15 .【考点】PB:翻折变换(折叠问题) ;LB: 矩形的性质.即 d =:,5 CE+3.CE=12,. BE=15,综上所述:BE 的长为:一或15, 故答案为:一或15 .38小题,共75分.)* J .I . 一 ,其中m 是方程X 2+2X -3=0的根. 3 m -6m叶<【考点】6D:分式的化简求值;A8:解一元二次方程-因式分解法.m —35【分析】首先根据运算顺序和分式的化简方法, 化简十-,然后应用因3 in" -6n前一2数分解法解一元二次方程, 求出m 的值是多少;最后把求出的m 的值代入化简后的算式,求叶3/5、出算式 -* :,的值是多少即可.3 m -6m叶2m-3E【解答】解: _* ■ I :.-3 m -on.(TD +3) (E -3)(X +3) (X - 1) =0, 解得 X i =- 3, X 2=1,■/m 是方程X 2+2X - 3=0的根,••• m= - 3, m=l ,三、解答题(本题共 16•先化简,再求值:=IP -3________________ 3m(n5—2) m -2= 12•/x +2x - 3=0,•/ m+趺0,•• m^- 3,• m=1,所以原式=「一厂=3X1 X (1+3)=11217•在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分•某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图•已知A, B两组户数频数直方图的高度比为 1 : 5. 月信息消费额分组统计表请结合图表中相关数据解答下列问题:(1) 这次接受调查的有50户;(2) 在扇形统计图中,“E”所对应的圆心角的度数是28.8 °;(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?【考点】VB 扇形统计图;V5:用样本估计总体; V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)根据A B 两组户数直方图的高度比为 1 : 5,即两组的频数的比是 1 : 5,据此 即可求得A 组的频数;利用 A 和B 两组的频数的和除以两组所占的百分比即可求得总数; (2)用“ E ”组百分比乘以360°可得;(3 )禾9用总数乘以百分比即可求得 C 组的频数,从而补全统计图; (4) 利用总数2000乘以C 、D E 的百分比即可. 【解答】 解:(1) A 组的频数是:10=2;5•••这次接受调查的有(2+10)十(1 - 8%- 28%- 40%) =50 (户), 故答案为:50 ;故答案为:28.8(3) C 组的频数是:50X 40%=2Q 如图,(4) 2000X( 28%+8%+40%=1520 (户),月信星涔妻頼分组頻數曹左圉各組户数屈形统计图201010 --■ ■ ■ ■■ ■广 ■ ■ ■ ■ ■ ■ ■ ■¥ >9 ■ ■(2) “E ”所对应的圆心角的度数是360°X 8%=28.8°,月信星涔妻頼分组頻數曹左圉各組户数福形统计图5E18. 如图,AB是半圆O的直径,点P是半圆上不与点A B重合的一个动点,延长BP到点C, 使PC=PB D是AC的中点,连接PD PO(1)求证:△ CDP^A POB(2)填空:①若AB=4,则四边形AOPD勺最大面积为 4;②连接OD当/ PBA的度数为60°时,四边形BPDC是菱形.C【考点】L9:菱形的判定;KD全等三角形的判定与性质.【分析】(1)根据中位线的性质得到DP// AB, DP=AB由SAS可证厶CDP^A POB(2)①当四边形AOPD勺A0边上的高等于半径时有最大面积,依此即可求解;②根据有一组对应边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形, 再根据邻边相等的平行四边形是菱形,以及等边三角形的判定和性质即可求解.【解答】(1)证明:T PC=PB D是AC的中点,••• DP/ AB,••• DP=.AB,Z CPD2 PBOLa•/ BO=_AB,• DP=BO在厶CDP-与^ POB中,r DP=B0ZCPD^ZPBOPC=PB•••△CDP^A POB( SAS ;(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,=2X 2 =4;②如图:•••DP// AB, DP=BO•••四边形BPDO是平行四边形,••四边形BPDO是菱形,•PB=BQ•/ PQ=BQ•PB=BQ=PQ•△ PBQ是等边三角形,•/ PBA的度数为60°.故答案为:4; 60°.C19. 如图,在大楼AB的正前方有一斜坡CD CD=4米,坡角/ DCE=30,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A C E在同一直线上.(1)求斜坡CD的高度DE(2)求大楼AB的高度(结果保留根号)【考点】TA:解直角三角形的应用-仰角俯角问题;T9:解直角三角形的应用-坡度坡角问题.【分析】(1)在直角三角形 DCE 中,禾U 用锐角三角函数定义求出 DE 的长即可;(2)过D 作DF 垂直于AB,交AB 于点F,可得出三角形 BDF 为等腰直角三角形, 设BF=DF=x 表示出BC, BD, DC 由题意得到三角形 BCD 为直角三角形,禾U 用勾股定理列出关于 x 的方 程,求出方程的解得到 x 的值,即可确定出 AB 的长.【解答】 解:(1)在 Rt △ DCE 中, DC=4米,/ DCE=30,/ DEC=90 , ••• DE= DC=2 米;2(2)过D 作DF 丄AB 交AB 于点F , •••/ BFD=90,/ BDF=45 ,•••/ BFD=45,即△ BFD 为等腰直角三角形, 设 BF=DF=x 米,•••四边形DEAF 为矩形, • AF=DE=2米,即卩 AB=(x+2)米, 在 Rt △ ABC 中,/ ABC=30 ,BD= =BF=「X 米, DC=4米, •••/ DCE=30,/ ACB=60 , •••/ DCB=90 ,在Rt △ BCD 中,根据勾股定理得: 2x 2=」T +16, 解得:x=4+4 .:, 则 AB= ( 6+4 .=)米.球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元,…B C =;os30' =詈=二=「;「、米,20.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮购买2个足球和5个篮球共需500元. (1) 购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共 96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?【考点】C9: 一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据费用可得等量关系为: 购买3个足球和2个篮球共需310元;购买2个足 球和5个篮球共需500元,把相关数值代入可得一个足球、一个篮球的单价; (2)不等关系为:购买足球和篮球的总费用不超过 5720元,列式求得解集后得到相应整数解,从而求解.•••购买一个足球需要 50元,购买一个篮球需要80元.(2 )方法一:解:设购买a 个篮球,则购买(96 - a )个足球. 80a+50 (96- a )< 5720, 亦30.•/ a 为正整数,• a 最多可以购买30个篮球.•••这所学校最多可以购买 30个篮球. 方法二:解:设购买n 个足球,则购买(96 - n )个篮球. 50n+80 (96- n )< 5720, n 》65厶 •/ n 为整数,•- n 最少是66 96 - 66=30 个.【解答】(1)解:设购买一个足球需要 ■・」根据题意得- 解得沪50y=80,x 元,购买一个篮球需要y 元,•••这所学校最多可以购买30个篮球.21 •根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为 _ 1=0, x2=- 2③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为 -2 < x w 0 .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3) 参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于的不等式ax2+bx+c > 0 (a > 0)的解集寸■・■ ■皆■ ■管5 ■■ 込一卜冷f I 4 ■§V 1 li 1:厶二為…;・・;L h I I II【分析】(1)直接解方程进而利用函数图象得出不等式- 2x2-4x>0的解集;(2)首先画出y=x2-2x+1的函数图象,再利用当y=4时,方程x2- 2x+仁4的解,得出不等式x2- 2x+1 V 4的解集;(3)利用ax +bx+c=0的解集,利用函数图象分析得出答案.【解答】解:(1)②方程-2x2- 4x=0的解为:x i=0, X2=- 2; ③不等式-2x2- 4x > 0的解集为:-2<§■耳■4)«h tl fl丿* • J te- n J ■ w "¥f【考点】HC二次函数与不等式(组) ;H2:二次函数的图象;H3:二次函数的性质.x w 0;(2)①构造函数,画出图象,如图2,:构造函数y=x2- 2x+1,抛物线的对称轴x=1, 且开口向上,顶点坐标(1, 0),关于对称轴x=1对称的一对点(0, 1), (2, 1), 用三点法画出图象如图2所示:②数形结合,求得界点:2当y=4 时,方程x - 2x+1=4 的解为:x i=- 1, X2=3;③借助图象,写出解集:由图2知,不等式x2- 2x+1 V 4的解集是:-1 v x v 3;(3)解:①当b2- 4ac> 0时,关于x的不等式ax2+bx+c > 0 (a> 0)的解集是x> 或x V =22a 2a当b2- 4ac=0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是:X M-当b2- 4ac v 0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是全体实数.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 FG=CE,位置关系是 FG// CE . (2) 拓展探究:如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, 请出判断判断予以证明; (3)类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,其它条件不变,【考点】LO 四边形综合题.利用等量代换即可求出 FG=CE FG// CE(2) 构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形 GHBF 是矩形后,利用等 量代换即可求出 FG=CE FG// CE(3) 证明△ CBF ^A DCE 即可证明四边形 CEGF 是平行四边形,即可得出结论. 【解答】 解:(1) FG=CE FG// CE;理由如下: 过点G 作GHLCB 的延长线于点 H,如图1所示: 则 GH// BF,Z GHE=90 , •/ EG 丄 DE•••/ GEH 丄 DEC=90 , •••/ GEH 丄 HGE=90 , •••/ DEC=z HGE^ZGHE=ZDCE在^ HGE" CED 中, ZHGE^ZDEC EG 二 DE :• △ HGE^A CED( AAS ,••• GH=CE HE=CD(1)中结论是否仍然成立?(1)中结论是否仍然成立?【分析】(1)构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形GHBF 是矩形后,请直接写出你的判断.医1•/ CE=BF•GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH•FG// CE•••四边形ABCD是正方形,•CD=BC•HE=BC•HE+EB=BC+EB•BH=EC•FG=EC故答案为:FG=CE FG// CE;(2) FG=CE FG// CE仍然成立;理由如下:过点G作GHLCB的延长线于点H ,如图2所示:•/ EG丄DE•/ GEH丄DEC=90 ,•••/ GEH丄HGE=90 ,•/ DEC=z HGE'ZGHE=ZDCE 在厶日6£与4 CED中,ZHGE=ZDEC ,EG-DE•△HGE^A CED( AAS ,•GH=CE HE=CD•/ CE=BF • GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH• FG// CE•••四边形ABCD是正方形,••• CD=BC••• HE=BC•HE+EB=BC+EB•BH=EC•FG=EC(3) FG=CE FG// CE仍然成立.理由如下: •••四边形ABCD是正方形,•BC=CD / FBC=/ ECD=90 ,在厶CBF与厶DCE中,1 ZFBC-ZECDBC=DC•△CBF^A DCE( SAS ,•/ BCF=/ CDE CF=DE•/ EG=DE • CF=EG•••DE 丄EG•/ DEC/ CEG=90•/ CDE/ DEC=90•/ CDE/ CEG•/ BCF=/ CEG•CF/ EQ•四边形CEGF平行四边形,_ 223. 如图,二次函数y=ax+bx+c的图象与x轴的交点为A D (A在D的右侧),与y轴的交点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 .(1 )求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m设四边形OCMA勺面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA勺面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A, B、C, P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1 )利用抛物线的对称性可得到点D的总表,然后将A、C D的坐标代入抛物线的解析式可求得a、b、c的值,从而可得到二次函数的解析式;(2 )设M( m, —x 2 x —3), |y M= 卅+― m+3 由S=S^ACM+S A OA M可得到S 与m 的函数关8 4 8 4系式,然后利用配方法可求得S的最大值;(3)当AB为平行四边形的边时,则AB// PC则点P的纵坐标为-3,将y=—3代入抛物线的解析式可求得点P的横坐标;当AB为对角线时,AB与CP互相平分,则点P的纵坐标为3, 把y=3代入抛物线的解析式可求得点P的横坐标.【解答】解:(1)v A (4, 0),对称轴是直线x=l ,二 D (—2, 0).又••• C (0,—3)1二-3 二“ 16a+4b+c-04a-2b+c~0解得., b=——,c= - 3,8 4•••二次函数解析式为:丫= X- — x - 3.8 4••• s 冷 x OC X 吨 X OA X |yM =* X 3 x 吨 x 4X (-討计+3 =-討伽+6=一 弓2+9,当m=2时,s 最大是9.(3)当AB 为平行四边形的边时,则 AB// PC,• PC// x 轴.•••点P 的纵坐标为-3.3 2 3将y= - 3代入得:-匚x - ,x - 3= - 3,解得:x=0或x=2 . ••点 P 的坐标为(2,- 3). 当AB 为对角线时. ••• ABCP 为平行四边形, • AB 与CP 互相平分, •••点P 的纵坐标为3.把 y=3 代入得:一 x 2-—x - 3=3,整理得:x 2- 2x - 16=0,解得:x=1+屯厂.j 或 x=1 o 4综上所述,存在点 P (2,- 3)或P (1+ —, 3)或P (1 - —3)使得以A , B C, P四点为顶点|y M=-易 m 4m+3(m — 2)-S=S\ ACI\+S\的四边形为平行四边形.。
2019九年级中考数学模拟试卷含参考答案(12)
2019九年级中考数学模拟试卷含参考答案(12)一.选择题(共12小题,满分36分,每小题3分)1.﹣3的倒数是()A.3 B.C.﹣D.﹣32.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2?a3=2a54.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10106.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.如图,钟面上的时间是8:30,再经过t分钟,时针、分针第一次重合,则t为()A.B.C.D.8.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.709.二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.a>0 B.b>0 C.c<0 D.abc>010.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,11.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB =5,则AE的长为()A.4 B.6 C.8 D.1012.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于()A.4 B.5 C.6 D.14二.填空题(共4小题,满分12分,每小题3分)13.因式分解:a3﹣ab2=.14.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是.15.用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.16.如图,已知点O是△ABC的内切圆的圆心,若∠BOC=124°,则∠A=.三.解答题(共7小题,满分52分)17.(6分)计算:﹣24﹣+|1﹣4sin60°|+(2015π)0.18.(6分)解不等式组:,并写出该不等式组的整数解.19.(7分)佳佳调査了七年级400名学生到校的方式,根据调查结果绘制出统计图的一部分如图:(1)补全条形统计图;(2)求扇形统计图中表示“步行”的扇形圆心角的度数;(3)估计在3000名学生中乘公交的学生人数.20.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=100千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)21.(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.22.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),BC=6,求∠ABN的度数;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.23.(9分)如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2?a3=2a5,故D选项正确,故选:D.【点评】本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.4.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.6.【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.【分析】解决这个问题就要弄清楚时针与分针转动速度的关系:每一小时,分针转动360°,而时针转动30°,即分针每分钟转动6°,时针每分钟转动0.5°.【解答】解:设从8:30点开始,经过x分钟,时针和分针第一次重合,由题意得:6x﹣0.5x=755.5x=75x=,答:至少再经过分钟时针和分针第一次重合.故选:B.【点评】此题考查一元一次方程的应用,钟表上的分钟与时针的转动问题本质上与行程问题中的两人追及问题非常相似,行程问题中的距离相当于这里的角度,行程问题中的速度相当于这里时(分)针的转动速度.8.【分析】根据中位数、众数的定义即可解决问题.【解答】解:这些运动员成绩的中位数、众数分别是 4.70,4.75.故选:C.【点评】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.9.【分析】由抛物线的开口方向向上可以得到a>0,由与y轴的交点为在y轴的负半轴上可以推出c<0,而对称轴为x=>0可以推出b<0,由此可以确定abc的符号.【解答】解:∵抛物线的开口方向向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∵对称轴为x=>0,∴a、b异号,即b<0,∴abc>0.故选:B.【点评】考查二次函数y=ax2+bx+c系数符号的确定.10.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.11.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.12.【分析】如图,易证△CDE≌△ABC,得AB2+DE2=DE2+CD2=CE2,同理FG2+LK2=HL2,S1+S2+S3+S4=1+3=4.【解答】解:∵在△CDE和△ABC中,,∴△CDE≌△ABC(AAS),∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,同理可证FG2+LK2=HL2=1,∴S1+S2+S3+S4=CE2+HL2=1+3=4.故选:A.【点评】本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB2+DE2=DE2+CD2=CE2是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).14.【分析】列举出所有情况,看出现2个男婴、1个女婴的情况数占总情况数的多少即可.【解答】解:可能出现的情况如下表婴儿1 婴儿2 婴儿3男男男男男女男女男男女女女男男女男女女女男女女女一共有8种情况,出现2个男婴、1个女婴的情况有3种,故答案为.【点评】用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:设第n个图形的棋子数为Sn.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;…第n个图形,S n=1+4+7+…+(3n﹣2)=.故答案为:;【点评】主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.16.【分析】根据三角形内角和定理求出∠OBC+∠OCB,根据内心的性质得到∠ABC=2∠OBC,∠ACB=2∠OCB,根据三角形内角和定理计算即可.【解答】解:∵∠BOC=124°,∴∠OBC+∠OCB=180°﹣124°=56°,∵点O是△ABC的内切圆的圆心,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=112°,∴∠A=180°﹣112°=68°,故答案为:68°.【点评】本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握角形的内心是三角形三个内角角平分线的交点是解题的关键.三.解答题(共7小题,满分52分)17.【分析】根据实数的运算法则以及特殊角的锐角三角函数值即可求出答案.【解答】解:原式=﹣16﹣2+|1﹣2|+1=﹣16﹣2+2﹣1+1=﹣16.【点评】本题考查实数的运算,解题的关键是熟练运用实数的运算法则,本题属于基础题型.18.【分析】首先解每个不等式,然后确定两个不等式的解集的公共部分即可得到不等式组的解集及整数解.【解答】解:,解①得:5x+6>2x﹣6,5x﹣2x>﹣6﹣6,3x>﹣12,x>﹣4,解②得:3(1﹣5x)≥2(3x+1)﹣6,3﹣15x≥6x+2﹣6,﹣15x﹣6x≥2﹣6﹣3,﹣21x≥﹣7,x≤,∴不等式组的解集为:﹣4<x≤,∴该不等式组的整数解为﹣3,﹣2,﹣1,0.【点评】此题考查了一元一次不等式组的解法和确定其整数解,属常规题,其步骤一般为:去分母,去括号,移项合并同类项,将x的系数化为1.19.【分析】(1)乘公交的学生数=400﹣步行人数﹣骑自行车人数﹣乘私车人数;(2)先计算步行所占调查人数的比,再计算步行扇形圆心角的度数;(3)先计算乘公交的学生占调查学生的百分比,再估计3000人中乘公交的人数.【解答】解:(1)乘公交的人数为:400﹣80﹣20﹣60=240(人)补全的条形图如右图所示(2)“步行”的扇形圆心角的度数为:360°×=72°(3)因为调查的七年级400名学生中,乘公交的学生有240人,所以乘公交的学生占调查学生的百分比为:×100%=60%.所以3000名学生中乘公交的约为:3000×60%=1800(人)答:3000名学生中乘公交的学生有1800人.【点评】本题考查了条形图和扇形图及用样本估计总体.题目难度不大,看懂条形图和扇形图是解决本题的关键.20.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出答案.【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=100千米,∴CD=BC?sin30°=100×=50(千米),AC==50(千米),AC+BC=(100+50)千米,答:开通隧道前,汽车从A地到B地要走(100+50)千米;(2)∵cos30°=,BC=100(千米),∴BD=BC?cos30°=100×=50(千米),CD=BC=50(千米),∵tan45°=,∴AD==50(千米),∴AB=AD+BD=(50+50)千米,答:开通隧道后,汽车从A地到B地可以少走(50+50)千米.【点评】本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.22.【分析】(1)得出AN、AB,利用直角三角形的性质解答即可;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∴AM=MC=2,∵AN是⊙M的直径,∴∠ACN=∠BCN=90°,∴△ACN∽△BNC,∵BC=6,∴AC=2,∴AB=2AN=8,∴∠ABN=30°,(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2019陕西数学中考模拟试题(1)
6.若关于 x 的一元一次不等式组 ⎧⎨ 无解,则 a 的2019 年陕西数学中考模拟试题一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)1. (﹣2)-1+1 的绝对值是()A-2B .﹣1C .3D .2. 一个几何体的三视图如图所示,则这个几何体是()12A.B.C. D.3.下列计算结果正确的是( )A a 8 ÷ a 4 = a 2B a 2 ⋅ a 3 = a 6C (a 3 )2 = a 6D (-2a 2 )3 = 8a 64. 下面四条直线,其中直线上每个点的坐标都是二元一次方程x - 2 y = 2 的解的是()A.B. C. D.5. 如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD =70°,那么∠ACD 的度数为( )A .40°B .35°C .50°D .45°x - 1 < 0 ⎩x - a > 0取值范围是( )CA BDA.a≥1B.a>1C.a≤1D.a<-17.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为()A.4B.52C.53D.58.如图4,四边形ABCD是⊙O的内接四边形,若DCB∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°OA图4 D.136°9.(3分)如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.3C.D.10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<n(an+b)(n≠1的实数)其中正确16. (本小题 5 分)化简: a1- ÷ ,的结论有()A. ①②③B. ①③④C.③④⑤D. ①③⑤二.填空题(本大题共 4 小题,每小题 3 分,共 12 分)11.PM 2.5 是指大气中直径小于或等于 0.0000025m 的颗粒物,将 0.0000025 用科学记数法表示为_________________。
2019年九年级数学中考模拟试卷(K12教育文档)
2019年九年级数学中考模拟试卷(word版可编辑修改) 2019年九年级数学中考模拟试卷(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年九年级数学中考模拟试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年九年级数学中考模拟试卷(word版可编辑修改)的全部内容。
122019年九年级数学模拟试卷一、选择题(本大题10个小题,每小题3分,共30分) 1.与21互为倒数的是( )A.-2 B .-21 C .21D .22.下列各式中,计算错误的是( )A .235a a a += B.231x x -=- C 。
2(2)2x x x x --=-D .326()x x -=3。
为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( )A.企业男员工B 。
企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工 4. 如图,立体图形的左视图是( )DCBA正面5。
计算+++++……+的值为( )A .B .C .D .6.用科学记数法表示数5。
8×10-5,它应该等于 ( ) A 。
0.005 8 B .0。
000 58 C 。
0.000 058D .0。
O00 005 87.A 车站到B 车站之间还有3个车站,那么从A 车站到B 车站方向发出的车辆,一共有多少种不同的车票( )A .8B .9C .10D .11 8.某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。
2019中学数学模拟试卷(附答案)
2019年中学数学模拟考试题目(全卷共4页,考试用时100 分钟.满分为 120 分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.计算3)1(⨯-的结果是( ) A.3 B.2-C. 3-D.13-2.据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为( )A. 2.78×1010B. 2.78×1011C. 27.8×1010D. 0.278×10113.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )4. 下列计算正确的是( )A.632a a a =∙ B.2224)2(b a ab =- C.532)(a a = D.ab b a b a 332223=÷5. 如图,AB∥CD,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50° 6. 下列命题中的真命题是( )A .两边和一角分别相等的两个三角形全等B .相似三角形的面积比等于相似比C .有一个角是直角的四边形是矩形D .圆内接四边形的对角互补 7. 下列各统计量中,表示一组数据波动程度的量是( )A .平均数B .众数C .方差D .频率8.化简xx x -+-1112的结果是( ) A. 1+x B.11+x C. 1-x D. 1-x x 9. 如图,点A 、B 、C 均在⊙O 是上,若∠BOC=100°,则∠A 的度数为( ).A 、200°B 、50°C 、100°D 、30°10. 如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,当蚂蚁运动的时间为t 时,蚂蚁与O 点的距离为s ,则s 关于t 的函数图象大致是( )stOOts s tOOtsA B C D二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.D11. 因式分解:282x -= . 12. 方程组3126x y x y -=⎧⎨+=⎩的解是_____________.13.112(1)4sin 60()2π--+--︒+=_____________.14. 如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 .15. 如图,分别以Rt △ABC 的直角边AC 及斜边AB 为边向外作等边△ACD 、等边△ABE ,EF⊥AB ,垂足为F ,连接DF ,当ACAB=___________时,四边形ADFE 是平行四边形.第14题 第15题 16. 如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE⊥OA 交AB 于点E ,以点O为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 . 三、解答题(一)(本大题3小题,每小题6分,共18分)17.求不等式组32122x x x x ì+ïïíï-<-ïî≤,的整数解18. 解方程:31112=-+-xx x .19.如图,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F ,求证:PC=PE .20. 九一班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:(1)该班的学生共有 名;(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;(3)九一班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.21. 小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m ,这栋楼有多高?22. 如图,在△ABC 中,A B ??.(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B=50°,求∠AEC 的度数.C(第21题图) 第22题图BCA 23. 某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资) (1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时? (2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为W 元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?24. 如图,点O 为Rt△ABC 斜边AB 上的一点,∠C = 90°,∠BAC = 60°,以OA 为半径的⊙O 与BC 切于点D ,与AC 交于点E ,连接AD.(1)求证:AD 平分∠BAC;(2)求证:△ABC ∽ △DAC(3)若,OA = 2,求阴影部分的面积(结果保留π).25.如图,已知二次函数 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)求二次函数的表达式; (2)判断△ABC 的形状,并说明理由;(3)若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.c x ax y ++=232c x ax y ++=2322019年中学数学模拟考试答题卡二、填空题(本题有6小题,每小题4分,共24分) 三、解答题一(本题3小题,每小题6分,共18分.) 17、解:18、 解:19、解:2019年中学数学模拟考试参考答案一、(本大题10小题,每小题3分,共30分)二、填空题(本大题6小题,每小题4分,共24分) 11.2(2)(2)x x +- 12.⎩⎨⎧==14y x 13.1 14.5 15 16.2312+π 三.解答题(一)(本大题3小题,每小题6分,共18分)17.解:32122x x x x ì+ïïíï-<-ïî≤,②①解①式得:1x ≥- ……………………(2分) 解②式得:1x < ……………………(4分)∴不等式组的解集为11x -≤< ……………………(5分)∴不等式组的整数解为:1-和0 ……………………(6分)18.解:去分母得:213(1)x x -=- …………………………(2分) 2x -=- …………………………………………………(3分) 2=x ……………………………………………………(4分)经检验2=x 是原方程的根,………(5分) ∴2=x 是原分式方程的解 ………(6分)19.证明:∵四边形ABCD 是在正方形∴AB=BC ,∠ABP=∠CBP=45° ……………………(2分) 在△ABP 和△CBP 中∴△ABP ≌△CBP (SAS ) ……………………(4分) ∴PA=PC ……………………(5分) ∵PA=PE∴PC=PE ……………………(6分)四.解答题(二)(本大题3小题,每小题7分,共21分) 20.解:(1)∵参加“读书社”的学生有15人,且在扇形统计图中,所占比例为:25%,∴该班的学生共有:15÷25%=60(人); 故答案为:60;……………………(2分)(2)参加“吉他社”的学生在全班学生中所占比例为:=10%,所以,“吉他社”对应扇形的圆心角的度数为:360°×10%=36°;………(4分) (3)画树状图如下:,……………………(6分)由树状图可知,总共有6种结果,每种结果出现的可能性相同, 其中恰好选中甲和乙的情况有2种,故P (选中甲和乙)==.……………………(7分)21.解:如图,α = 30°,β = 60°,AD = 42. ……………(1分)∵tan BD AD α=,tan CDADβ=, ∴BD = AD ·tan α = 42×tan30°= 42……………(3分)CD =AD tan β=42×tan60°=……………………(5分) ∴BC =BD +CD =(6答:这栋楼高为……………(7分) 22. (1) 如图 ,…………………(3分)(2) 解:如图 ,…………………(4分)是的垂直平分线,,…………………(5分),…………………(6分)是 的外角,.…………………(7分)C11五.解答题(三)(本大题3小题,每小题9分,共27分)23.解:(1)设熟练工加工1件A 型服装需要x 小时,加工1件B 型服装需要y 小时,由题意得:⎩⎨⎧=+=+7342y x y x………………(2分)解得:⎩⎨⎧==12y x………………(3分)答:熟练工加工1件A 型服装需要2小时,加工1件B 型服装需要1小时.…(4分) (2)当一名熟练工一个月加工A 型服装a 件时,则还可以加工B 型服装)2825(a -⨯件.800)2825(1216+-⨯+=∴a a W32008+-=∴a W………………(6分) 又∵a ≥)2200(21a -,解得:a ≥50………………(7分)08<- ,W ∴随着a 的增大则减小 ∴当50=a 时,W 有最大值2800. ………………(8分)30002800<∴该服装公司执行规定后违背了广告承诺. ………………(9分)24.(1)证明:连接OD.∵BC 是⊙O 的切线,D 为切点,∴OD⊥BC. 又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD. 又∵OD=OA, ∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD 平分∠BA C. ………………(3分) (2)证明:∵在Rt△ABC 中:∠C = 90°,∠BAC = 60°∴∠B = 30° ∵AD 平分∠BA C∴∠CAD =1122BAC ∠=⨯60°=30°∴∠B=∠CAD∵∠C=∠C ∴△ABC ∽ △DAC ………………(6分) (3)解:方法一:连接OE ,OD,ED.∵∠BAC=60°,OE=OA ,∴△OAE 为等边三角形,∴∠AOE=60°, ∴∠ADE=30°.BCABC A12又∵1302OAD BAC ∠=∠=,∴∠ADE=∠OAD , ∴ED∥AO, ∴S △AED =S △OED ,∴阴影部分的面积 = S 扇形ODE = 60423603ππ⨯⨯=.………………(9分)方法二:同方法一,得ED∥AO,∴四边形AODE 为平行四边形,∴1S S 22AED OAD ==⨯V V又S 扇形ODE -S △OED=60423603ππ⨯⨯-∴阴影部分的面积 = (S 扇形ODE -S △OED ) + S △AED=2233ππ=.…(9分)25.解:(1)已知二次函数232y ax x c =++的图象经过点A (0,4)与点C (8,0),∴把点A (0,4)与点C (8,0)分别代入二次函数232y ax x c =++得:406412ca c =⎧⎨=++⎩ 解得:414c a =⎧⎪⎨=-⎪⎩抛物线表达式为:423412++-=x x y ……………………(3分)(2)△ABC 是直角三角形,理由:令y=0,则0423412=++-x x 解得,x 1=8,x 2= -2∴点B 的坐标为(-2,0) 由题意可得:在Rt △ABO 中:AB 2=BO 2+AO 2=22+42=20 在Rt △AOC 中:AC 2=AO 2+CO 2=42+82=80 又∵BC=OB+OC=2+8=10∴在△ABC 中AB 2+ AC 2=20+80=102=BC 2∴△ABC 是直角三角形 ……………………(6分) (3)设点N 的坐标为(n ,0),则BN=n+2,过M 点作MD ⊥x 轴于点D ,∴MN ∥AC ∴△BMN ∽△BAC ∴ ∵OA=4,BC=10,BN =n+2BCBNOAMD =()252+n13∴MD =∵S △AMN = S △ABN - S △BMN= =∴当△AMN 面积最大时,N 点坐标为(3,0) ……………………(9分)(其它解法参考此标准赋分)()()()22522142212121+⨯+⨯-⨯+⨯=⋅-⋅⋅n n n MD BN OA BN ()53512+--n。
2019年初三数学中考模拟训练题含答案
2019年中考模拟训练题数 学亲爱的考生:欢迎参加考试!请认真审题,仔细答题,发挥最佳水平. 答题时请注意以下几点: 1.全卷共6页,满分150分,考试时间120分钟;2.答案必须写在答题纸相应的位置上,写在试卷、草稿纸上无效;3.答题前,请认真阅读答题纸上的“注意事项”,按规定答题;4.本次考试不得使用计算器.一、选择题(本题共有10小题,每小题4分,共40分. 请选出一个符合题意的正确选项,不选,多选,错选均不得分) 1.比-2大1的数是( ▲ )A . -3B . -1C . 3D . 12.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )3.为迎接中考体育加试,小明和小亮分别统计了自己最近10次的游泳成绩,下列统计量中,能反映两人游泳成绩稳定性的是( ▲ )A . 平均数B . 中位数C . 众数D . 方差 4.估计16-的值在( ▲ ) A . 1到2之间B . 2到3之间C . 3到4之间D . 4到5之间5.正八边形的每一个内角的度数为( ▲ )A . 120°B . 60°C . 135°D . 45°6.将一块三角板如图放置,∠ACB =90°,∠ABC =60°,点B ,C 分别在PQ ,MN 上,若 PQ ∥MN ,∠ACM =42°,则∠ABP 的度数为( ▲ ) A . 45°B . 42°C . 21°D . 12°7.计算1112---a a a 的结果为( ▲ ) 第6题图 A . 1-aB . 1+aC . aD . 12-a8.如图,在△ABC 中,∠C =90°,∠B =15°,AC =1,分别以点A ,B 为圆心,大于AB 21的长为半径画弧,两弧相交于点M ,N ,作直线MN 交BC 于点D ,连接AD ,则AD 的 长为( ▲ ) A . 1.5B . 3C . 2D . 5第8题图 第9题图9.如图,△P AB 与△PCD 均为等腰直角三角形,点C 在PB 上,若△ABC 与△BCD 的面积 之和为10,则△P AB 与△PCD 的面积之差为( ▲ ) A . 5B . 10C . 15D . 2010.已知函数x y 2=与c x y -=2(c 为常数,21≤≤-x )的图象有且仅有一个公共点,则常数c 的值为( ▲ )A . 30≤<c 或1-=cB . 01<≤-c 或3=c C . 31≤≤-cD .31≤<-c 且0≠c 二、填空题(本题共有6小题,每小题5分,共30分)11.因式分解:a 2-2a = ▲ .12.已知点A 与B 关于x 轴对称,若点A 坐标为(-3,1),则点B 的坐标为 ▲ . 13.如图,在一张直径为20 cm 的半圆形纸片上,剪去一个最大的等腰直角三角形,剩余部分恰好组成一片树叶图案,则这片树叶的面积是 ▲ cm 2.第13题图 第14题图 第15题图14.如图是小明在科学实验课中设计的电路图,任意闭合其中两个开关,能使灯泡L 发光的概率是 ▲ .15.如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含x 的代数式表示y , y = ▲ .16.如图,矩形ABCD 周长为30,经过矩形对称中心O 的直线分别交AD ,BC 于点E ,F .将矩形沿直线EF 翻折,A'B'分 别交AD ,CD 于点M ,N ,B'F 交CD 于点G . 若MN :EM =1:2,则△DMN 的周长为 ▲ .三、解答题(本题共有8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分) 17.计算:︒+--30sin 24|2|.18.解不等式组:⎩⎨⎧>--<-.0)2(343x x x ,19.如图,函数y =x 与xky =(x >0)的图象交于点P (2,m ). (1)求m ,k 的值;(2)直线x =4与函数y =x 的图象交于点A ,与函数xky =(x >0)的图象交于点B , 求线段AB 的长度.20.如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM 与底座A 0N 平行,长度均为2.4米,B ,B 0分别在AM 和A 0N 上滑动,且始终保持点B 0,C 1,A 1成一直线.(1)这种升降平台的设计原理是利用了四边形的 ▲ 性;(2)为了安全,该平台在作业时∠B 1不得超过40°,求平台高度(AA 0)的最大值. (参考数据:34.020sin ≈︒,94.020cos ≈︒,36.020tan ≈︒,结果保留小数点后一位).21.为了解学生身高,某校随机抽取了25位同学的身高,按照身高分为:A ,B ,C ,D ,E 五个小组,并绘制了如下的统计图,其中每组数据均包含最小值,不包含最大值.请结合统计图,解决下列问题: (1)这组数据的中位数落在 ▲ 组;(2)根据各小组的组中值,估计该校同学的平均身高;(3)小明认为在题(2)的计算中,将D ,E 两组的组中值分别用1.70 m 和1.90 m 进行替换,并不影响计算结果.他的想法正确吗?请说明理由.22.如图,点A ,B ,C 在⊙O 上,AB ∥OC . (1)求证:∠ACB +∠BOC =90°;(2)若⊙O 的半径为5,AC =8,求BC 的长度.备用图AA23.如图1,皮皮小朋友燃放一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同. 皮皮小朋友发射出的第一发花弹的飞行高度h (米)随飞行时间t (秒)变化的规律如下表.(1)根据这些数据在图2的坐标系中画出相应的点,选择适当的函数表示h 与t 之间的关系,并求出相应的函数解析式;(2)当t =t 1时,第一发花弹飞行到最高点,此时高度为h 1. 在t ≠t 1的情况下,随着t 的增大,||||11t t h h --的变化趋势是( ▲ )A .一直增大B .一直减小C .先增大后减小D .先减小后增大(3)为了安全,要求花弹爆炸时的高度不低于15米. 皮皮发现在第一发花弹爆炸的同时,第三发花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求?图1 图224.定义:如图1,点M ,N 在线段AB 上,若以线段AM ,MN ,NB 为边恰好能组成一个直 角三角形,则称点M ,N 为线段AB 的勾股分割点.(1)如图1,M ,N 为线段AB 的勾股分割点,且AM =4,MN =3,则NB = ▲ ; (2)如图2,在□ABCD 中,CD =21,E 为BC 中点,F 为CD 边上一动点,AE ,AF 分别交BD 于点M ,N ,当点M ,N 为线段BD 的勾股分割点时,求FD 的长;(3)如图3,△ABC 中,∠ACB =90°,AC =BC =2,延长BA 到点M ,延长AB 到点N ,使点A ,B 恰好是线段MN 的勾股分割点(AB >AM ≥BN ),过点M ,N 分别作AC ,BC 的平行线交于点P .①PC 的长度是否为定值?若是,请求出该定值;若不是,请说明理由; ②直接写出△PMN 面积的最大值.图1 图2 图32019年中考模拟训练题数学参考答案一、选择题(本题共有10小题,每小题4分,共40分. 请选出一个符合题意的正确选项,不选,多选,错选均不得分)部分试题剖析:9.①如图1,102121))((21ΔΔ22ΔΔ=-=-=-+=+PCD PAB BCD ABC S S a b a b b a S S ; ②如图1,△P AC ≌△PBD ,10ΔΔΔΔΔΔΔΔΔ=-++=-+=-PCD PCD BCD ABC PCD PAC ABC PCD PAB S S S S S S S S S ;图1 图210.(1)当直线x y 2=与抛物线c x y -=2相切时,由0Δ=,得1-=c ; (2)当直线x y 2=与抛物线c x y -=2相交时,提供三种方法:法①:如图1,可得⎩⎨⎧-≥-<-2144c c ,则30≤<c;法②:如图2,直接可得30≤<c ;法③:如图3,直接可得30≤<c ,或1-=c .二、填空题(本题共有6小题,每小题5分,共30分)11.)2(-a a 12.(-3,-1) 13. 50π-100 14.3215. 2x -7 16. 5部分试题剖析:15.如图,可得337+++-=++x x x y x ,则72-=x y .注:解法不唯一,总和为x 9.16.如图,可得△A ’EM ≌△CFG ,△DMN ≌△B ’GN ,且四个直角三角形均相似, 由MN :EM =1:2可得,△DMN 与A ’EM 的相似比为1:2,设△DMN 各边长分别为x ,y ,z ,可得x z y AD ++=22,x z y CD 2++=, 则15333=++=+z y x CD AD ,即5=++z y x .实际上,三角形与四边形折叠后,如果不重叠部分均为三角形,则这些三角形的周长 之和恰好等于原图形周长,而且可以推广到任意多边形.三、解答题(本题共有8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分) 17.计算:︒+--30sin 24|2|. 21222⨯+-= (6分) 1= (2分) 18.由①得7<x (3分), 由②得3>x (3分), 则73<<x (2分)19.(1)2=m ,4=k (4分) (2)AB =3 (4分) 20.(1)不稳定 (2分)(2))(3.3264.3820sin 2.10米≈=⨯︒⨯≤AA (6分,米2.3也给分) 21.(1)D (2分,写出该组数据的取值范围也可得分) (2))(69.125)485.1975.1765.1355.1245.1(米=÷⨯+⨯+⨯+⨯+⨯(5分)(3)回答“不正确”,且能利用“权”描述的,得3分; 通过计算,回答“不正确”的,得3分;回答“不正确”,但利用“组中值不正确”来描述的,得2分; 回答“正确”,理由言之有理的得1分;“不正确”,但没有理由,得1分; 回答“正确”,没有理由的,不得分. 22.(1)法①:设α=∠ACB , 则α2=∠AOB ,2xz2y2z 2y2x z yx由AB ∥OC 得,α902α2180-︒=-︒=∠=∠OBA BOC (6分) 法②:作OH ⊥AB ,︒=∠=∠+∠=∠+∠90COH BOC BOH BOC ACB(2)BC =6 (623.(1)图略(3分,描出点即给满分,是否连线不作要求);解析式:8.19)3(22+--=t h (3分,其它形式也可以,过程酌情给、扣分) (2)D (3分)(3)利用第一条抛物线与第三条抛物线的对称关系,得爆炸时间约为4.4秒, 直接代入解析式可求爆炸时的高度高于15米;或利用抛物线对称性与增减性,可得153.155.15.44.4>==>h h h 米, (3分,过程酌情给、扣分).24.(1)5或7 (3分,只答出一个正确答案,给2分) (2)设BD 长单位1,求得31=BM (1分), 设x DN =,x MN -=32,列出三个方程: 222)32(31x x -=+)(,222)32(31x x =-+)(或222)31()32(=+-x x ,(前面两个方程,每列出一个分别给1分,第三个不做要求) 分别解得41=x ,125=x (每个结果给1分) 则721141=⨯-=DF (1分) A∠APB=45°→PC =AC =BC =2PC 2=CG 2+CH 2=12(CD 2+CE 2)则15215125=⨯-=DF (1分,此小题一共7分)(3)①是定值2,解法见下列各图 (3分,过程酌情给、扣分)②246)22(2+=+ (1分,下列方法仅供参考)PC 2=PQ 2+CQ 2=...=12(CD 2+CE 2)PC 2=12CD 2+CE 2)=12AB 2b )≤2∙22=42ab ≥0。
2019年中考数学模拟试卷(一)(2)
2019年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( )A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( ) A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( ) A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( )A. 平行四边形B. 矩形C. 正方形D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名 C. 400名 D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变圆弧 角 扇形 菱形 等腰梯形 A. B. C. D. (第7题图)形为( )A. (x + 2)2 = 9B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( )A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为( ) A.3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大 B. 一直减小 C. 先减小后增大 D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= .14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .(第9题图) (第11题图)(第12题图)17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - nm n +)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC= 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……② (第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数; (2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N.(1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM的长.(第23题图)25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的 直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第26题图)2019年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D A C B C B D A B C A C 说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题13. 31; 14. k <0; 15. 54(若为108扣1分); 16.x2400-x %)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) =0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m –n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, (1)分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233 = 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt△BDC中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC·cos30°……………………1分 = 63×23= 9,........................2分∴DF = DC + CF = 9 + 1 = 10, (3)分∴GE = DF = 10. (4)分在Rt△BGE中,∠BEG = 20°,∴BG = CG·tan20°…………………5分=10×0.36=3.6,…………………6分在Rt△AGE中,∠AEG = 45°,∴AG = GE = 10,……………………7分∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB的高度约为6.4米. ……………8分24. 解(1)如图,连接OA,则OA⊥AP. (1)分∵MN⊥AP,∴MN∥OA. ………………2分∵OM∥AP,∴四边形ANMO是矩形.∴OM = AN. ………………3分(2)连接OB,则OB⊥AP,∵OA = MN,OA = OB,OM∥BP,∴OB = MN,∠OMB =∠NPM.∴Rt△OBM≌Rt△MNP. ………………5分∴OM = MP.设OM = x,则NP = 9-x. ………………6分在Rt△MNP中,有x2 = 32+(9- x)2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. …………… 1分∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.2(200 - a),a≤3∴…………… 4分 180 a + 220(200-a)≤40880.解得78≤a≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 -a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当 a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2018年中考数学模拟试题(二) 姓名---------座号---------成绩-----------一、 选择题 1、 数中最大的数是()A 、BC 、D 、2、9的立方根是( )A 、B 、3C 、D 3、已知一元二次方程的两根、,则( )A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为25、若,则下列式子一定成立的是( ) A 、 B 、 C 、 D 、6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( )A 、20°B 、80°C 、60°D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( )5,0,2-1-5023±39392430x x -+=1x 2x 12x x +=a b >0a b +>0a b ->0ab >0a b>BDECA22 主视图左视图俯视图A 、正方形B 、矩形C 、菱形D 、等腰梯形8、不等式组的整数解有( )A 、0个B 、5个C 、6个D 、无数个9、已知点是反比例函数图像上的点,若,则一定成立的是( )A 、B 、C 、D 、 10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算: 13、分解因式:14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角,则飞机A 到控制点B 的距离约为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学模拟测试
考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
一、选择题
1.如图,在等腰△ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于( )
A . 68°
B .46°
C .44°
D .22°
2.将△ABC 的3个顶点坐标的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是 ( )
A .关于x 轴对称
B .关于y 轴对称
C .关于原点对称
D .将原图向x 轴的负向平移了1个单位
3.方程27x y +=在自然数范围内的解有( )
A .1个
B . 2个
C .3个
D .4个
4.从 1、2、3、…、9这九个数字中,任取一个数字是偶数的概率是( )
A . 0
B .49
C .12
D .59 5.对于任何整数n ,多项式22(3)n n +-都能被( )
A .3n +整除
B .n 整除
C .3整除
D .不能确定 6.把式子2(3)(2)a a a -+-化简为13
a +,应满足的条件是( ) A . 2a -是正数 B . 20a -≠ D . 2a -是非负数 D .20a -=
7.若22440a ab b -+=,则代数式
23a b a b -+的值是( ) A .1 B . 35 C .45 D .无法确定
8.如图,从图(1)到图(2)的变换是( )
A .轴对称变换
B .平移变换
C .旋转变换
D .相似变换
9.用如图所示的两个转盘设计一个“配紫色”的游戏,则获胜的概率为( )
A .12
B .13
C .14
D .23
10.如图,∠ADE 与∠DEC 是( )
A .同位角
B .内错角
C .同旁内角
D .不能确定
11.如图,AB ∥CD ,那么( )
A .∠1=∠2
B .∠2=∠3
C .∠1=∠4
D .∠3=∠4
12. 下图中,正确画出△ABC 的AC 边上的高的是( )
A .
B .
C .
D .
13.等腰三角形的周长为l3,各边长均为自然数,这样的三角形有( )
A .0个
B .l 个
C . 2个
D .3个
14.在下列条件中,不能说明△ABC ≌△A ′B ′C ′的是( )。