新型含能体能源:氢能与储氢技术的最新进展

新型含能体能源:氢能与储氢技术的最新进展
新型含能体能源:氢能与储氢技术的最新进展

论文关键词:氢能制氢技术储氢技术

论文摘要:氢能是21世纪解决化石能源危机和缓解环境污染问题的绿色能源。实现氢能的利用,氢的储运是目前要解决的关键问题。文章综述了氢气制备技术和储备技术的最新研究进展,并探讨了制氢与储氢技术的关键问题。最后对进一步的研究进展进行展望,提出了可供研究的课题方向。

0 引言

资源减少、能源短缺、环境污染日益严重。为了我国经济可持续发展的战略国策,寻找洁净的新能源和可再生能源来替代化石能源已经迫在眉睫。氢能以其热值高、无污染、来源丰富等优点,越来越受到人们的重视,被称为21世纪的理想能源。是人类能够从自然界获取的、储量非常丰富而且高效的含能体能源。

作为能源,氢能具有无可比拟的潜在开发价值:氢是自然界最普遍存在的元素,它主要以化合物的形态储存于水中,而水是地球上最广泛的物质;除核燃料外,氢的发热值在所有化石燃料、化工燃料和生物燃料中最高;氢燃烧性能好,点燃快,与空气混合时有广泛的可燃围,而且燃点高,燃烧速度快;氢本身无毒,与其他燃料相比氢燃烧时最清洁。氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。用氢代替煤和石油,不需对现有的技术装备作重大的改造,现在的燃机稍加改装即可使用。所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,在能源工业中氢是极好的传热载体。所以,研究利用氢能已成为国外学者研究的热点[1、2、3、4]。

1国外氢能发展状况

2003年11月19-21日在美国首都华盛顿欧米尼·西海姆大酒店举行“国际氢能经济合作伙伴组织”[The International Partnership For The Hydrogen Economy( IPHE)]成立大会,共有澳大利亚、巴西、加拿大、中国、法国、德国、冰岛、印度、意大利、日本、国、俄罗斯、英国、美国和欧盟的政府代表团及工商业界代表数百人出席会议。IPHE是一种新的氢能国际合作关系,这种合作将支持未来的氢能和电动汽车技术,建设一个安全、有效和经济的世界围的氢能生产、储存、运输、分配和使用设施的大系统。氢能作为解决当前人类所面临困境的新能源而成为各国大力研究的对象。

氢能广泛应用的关键,在于研制出成本低的制氢技术。目前,氢能利用技术开发已在世界主要发达国家和发展中国家启动,并取得不同程度的成果。美国已研制成功世界上第一辆以氢为燃料的汽车,可将60%-80%的氢能转换成动能,其能量转换率比普通燃机高一倍。1989年,美国太平洋能源公司发明了能大量生产廉价氢燃料的新技术。可用于水分解的一种化学催化剂。用这种方法分解出来的氢成本很低,因而成为世界上最便宜的燃料[1-3,6]。

欧盟(EU)也加紧对氢能的开发利用。在2002-2006年欧盟第6个框架研究计划中,对氢能和燃料电池研究的投资为2,500万-3,000万欧元,比上一个框架计划提高了1倍。北欧国家2005年成立了“北欧能源研究机构”,通过生物制氢系统分析,提高生物生产氢能力。2005年7月,德国宝马( BMW)汽车公司推出了一款新型氢燃料汽车,充分利用了氢不会造

成空气污染和可产生强大动力的两大优点。该车时速最高可达226 km/h,行驶极限可达400 km/h。日本研究氢能比较早,目前燃料电池是日本氢能的主要发展方向。日本政府为促进氢能实用化和普及,进一步完善了汽车燃料供给制,全国各地建造了不少“加氢站”,现在已有近百辆燃料电池车已经取得牌照上路,计划到2030年将发展到1500万辆[1-6]。

对我国来说,能源建设战略是国民经济发展之重点战略,我国化石能源探明可采储量中煤炭、石油、天然气分别占世界储量的11.6% ,2.6% ,0.9%。人均煤炭为世界平均值的1/ 2,石油仅为1/ 10左右,我国人口众多,人均资源严重不足。因此,寻找新的洁净能源对我国的可持续发展具有特别重要的意义。

2 储氢技术发展状况 2. 1 氢气的制备技术进展 2.1.1 目前制氢的主要方法

现代工业能制取的方法很多。如表1所示。

表1 获取氢气的方法

( table.1 methods of acquire hydrogen)

但是没有真正可以规模生产,实现现实社会生产力的方法。代替常规能源的制氢工艺并不成熟,也没有很好的成功实例。当代工业的制氢方法主要有以下三种:(1) 从含烃的化石燃料中制氢。这是过去以及现在采用最多的方法。用蒸汽和煤作原料的基本反应过程为:

C + H2O → CO+ H2(1)

用蒸汽和天然气为原料的基本反应过程:

CH4 + H2O → CO+ 3H2(2)

上述反应均为吸热反应,反应过程中所需的热量可以从煤或天然气的部分燃烧中获得,也可利用外部热源[5]。现在氢的制取大都是以天然气为原料,但是天然气和煤炭都是宝贵

的燃料和化工原料,其储量有限,用它们来制氢显然摆脱不了人们对常规能源的依赖和对自然环境的破坏。

(2)电解水制氢。这种方法是基于如下的可逆反应:

2H2O → 2H2+ O2(3)

分解水所需要的能量由外加电能提供。为了提高制氢效率,电解通常在高压下进行,采用的压力多为3-5MPa。目前电解效率约为50%-70%[5]。由于电解水的效率不高目前需消耗大量的电能,因此利用常规能源生产电能来大规模的电解水制氢显然也是不合算的。

(3) 热化学制氢。这种方法是通过外加高温使水起化学分解反应来获取氢气。到目前为止虽有多种热化学制氢方法,但总效率都不高,仅为20%-50%,而且还有许多工艺问题需要解决。依靠这种方法来大规模制氢还有待进一步研究。

2.1.2 生物制氢

(1) 微生物制氢。利用微生物在常温常压下进行酶催化反应可制得氢气。近年来,已查明在常温常压下以含氢元素物质包括植物淀粉、纤维素、糖等有机物和水进行生物酶催化反应来制得氢气的微生物可分为5类:异养型厌氧菌、固氮菌、光合厌氧细菌、蓝细胞和真核藻类。其中蓝细胞和真核藻类产氢所利用的氢源是水;异养型厌氧菌、固氮菌、光合厌氧细菌所利用的氢源是有机物。按氢能转化的能量来源来分,异养型厌氧菌,固氮菌依靠分解有机物产生ATP来产氢;而真核藻类、蓝细胞、光合厌氧细菌则能通光合作用将太能转化为氢能[6]。近年来发现有30种化能异养菌可以发酵糖类、醇类、有机酸等产生氢气,其中有些细菌产氢气能力较强,发酵1g的葡萄糖可以产生约0.5L的氢气,葡萄糖总利用率达65%以上;而天然产氢的光合细菌据报道也有十几种之多,其中也有些细菌产氢气能力较强。

日本北里大学研究人员以各种生活垃圾,如剩菜肉骨等经处理后作为生产氢的原料,借助3种微生物[6],丁酸梭菌(Clostridium butyricum)、产气肠杆菌(Enterobacter aerogenes)和麦芽糖假丝酵母(Candida maltose)在36oC混和发酵废弃有机物48小时,平均产氢量为15,145 mL。这3种菌有协同产氢效应,即产气肠杆菌起主导作用,而另2种菌起协同作用,使代产物不易积累,为彼此创造生存环境。由此可见,选择混和菌制氢,利用其互补性,创造互为有利的生态条件,是一条可取的微生物制氢途径。但是,对产氢细胞,不论是游离细胞或是固定化细胞,发酵生产氢所需的复杂的生态条件因素不可忽视。

(2)光合细菌利用有机废水和活性污泥制氢。2000年1月,我国以厌氧活性污泥和有机质废水为生产原料的有机废水发酵法生物制氢技术在工业大学通过中试研究验证,该项研究在国外首创并实现了中试规模连续非固定化菌种长期持续生物制氢技术,并实现了中试规模连续流长期持续产氢[8]。是生物制氢领域的一项重大突破,其成果国际领先。该技术突破了生物制氢技术必须采用纯菌种和固定技术的局限,开创了利用非固定化菌种生产氢气的新途径。试验表明,在一个容积为50 m3的容器中,含糖或植物纤维的废水发酵后,每天能产生280 m3左右的氢气,纯度达99%以上,产氢能力大大加强,氢气产率比国外同类的实验研究水平高10倍,生产成本约为目前采用的电解水法制氢成本的1/2。这一开创性成

果利用淀粉厂,食品厂等含高碳水化合物的工厂废水发酵制氢,具有广阔的应用前景和较好的环境效益、经济效益和社会效益。

在国外,采用活力强的产气夹膜杆菌,在容积为10L的发酵器中,经8h发酵作用后,产氢气约45 L,最大产氢气速度为18-23 L/h;泰国的Watan-abed在曼谷分离的Rhodobacter Sphaeroides B6以乳酸为底物,1g干菌体产氢能力62.5mL /h,转化率达68. 8 %。 [7-9]。

(3)生物质制氢。生物质包括高等植物,农作物及秸秆,藻类及水生植物等。利用生物质制氢是指用某种化学或物理方式把生物质转化成氢气的过程。降低生物制氢成本的有效方法是应用廉价的原料,常用的有富含有机物的有机废水,城市垃圾等。利用生物质制氢同样能够大大降低生产成本,而且能够改善自然界的物质循环,很好地保护生态环境[9]。

通过陆地和海洋中的光合作用每年地球上所产生物量中约含3×1021 J的能量,是全世界人类每年消耗量的10倍。就纤维素类生物质而言,我国农村可供利用的农作物秸秆达5亿至6亿吨。相当于2亿多吨标准煤。林产加工废料约为300多万吨。此外还有1万吨左右的甘蔗渣。这些生物质资源中,有16%-38%是作为垃圾处理的,其余部分的利用也多处于低级水平,如造成环境污染的随意焚烧、采用热效率仅约为1%的直接燃烧方法等。

开发生物质制氢技术将是解决上述问题的一条很好途径,生物质制氢包括两种方法:

= 1 \* GB3 ①生物转化制氢法:以秸秆为例,秸秆主要由纤维素,半纤维素和木质素通过复杂的方式连接形成,这3种物质的基本成分都是小分子糖类。但由于天然纤维素的结晶结构十分复杂,难以降解,因而很难被微生物所利用。发酵方式采用压力脉动固态发酵法,能够充分利用原料且大大降低废水排放量,在环境保护方面具有极大的优势,为生物质制氢技术开辟了新途径。

= 2 \* GB3 ②生物质气化法:将生物质通过热化学转化方式转化为高品位的气体燃气或合成气,产品气主要是H2 、CO、少量CO2、水和烃。相对来说,生物质气化技术已比较完善,但存在着制取成本高,气体净化难,副产物多污染环境等缺点,还有待工艺的进一步改进。

从国外生物制氢技术的研究现状看,虽然利用生物产氢目前尚处于研究探索或小规模试产阶段,离大规模工业化生产尚有不小距离。但是,有关这方面的研究进展,展现了利用生物生产清洁燃料氢气的广阔前景。在探索利用生物生产氢气的道路上,需要不断寻找产氢气能力高的各种微生物,深入研究生物产氢的原理和条件,完成天然菌种的人工训化,在此基础上,设计出相应的大规模生产装置系统,推进生物制氢工业化革命的到来[7-9]。

2. 2 氢气的储备技术进展 2.2.1 金属及其氧化物系列储氢材料

储氢技术是氢能利用走向实用化、规模化的关键。金属储氢材料通常由一种吸氢元素或与氢有很强亲和力的元素和另一种吸氢量小或根本不吸氢的元素共同组成。

镁系合金有很高的储氢密度,但放氢温度高,吸放氢速度慢,因此研究镁系合金在储氢过程中的关键问题,可能是解决氢能规模储运的重要途径。因此对金属Mg表面催化改性引起了研究者的兴趣。近年来,有人利用射频喷溅方法制备了Pd包覆的纳米结构的多层Mg

薄膜,并对储氢性质进行了研究。结果显示,在100oC, 0.1M Pa氢气压力条件下,氢的吸附量约为5wt% ,薄膜在100oC真空的条件下释放出全部的氢。2006年,Au[14]报道了四氢呋喃处理的镁的氢化-脱氢性质,并且考察了样品的电力能态、晶格结构和微观形貌。研究表明四氢呋喃处理的镁在100oC, 3.5M Pa条件下吸附了6.3w t%的氢,同时四氢吠喃的处理改善了镁吸附-脱附氢的动力学,在623 K具有较理想的反应速率[5,11,12]。

Fe3O4与Fe的可逆氧化还原是储氢和放氢的反应模板。氢以金属铁的形式储存起来,然后与H2O反应释放,具体过程如方程式所示[15]

Fe3O4 + 4H2 → 3 Fe + 4H2O (4)

3 Fe + 4H2O → Fe3O

4 + H2↑ (5)

通常的四氧化三铁粉末由于较低的表面积,在低于400oC时不能有效地与H2或H2O发生氧化还原反应。 Wang[15]等人研究了钢铁公司的含铁烟气灰尘FeOx,实验证明改进的FeOx通过氧化还原反应可以化学储氢并能直接为PEFC提供纯氢。FeO x的改进是通过浸渍法将Cr,Al, Zn, Mo,Mo-Al, Mo-Ti, Mo-Zn, Mo-Cr,Mo-Ni,Mo-Cu等离子作为添加剂加入,在提高H2的产生速率和氧化还原循环稳定性方面,Mo是最有效的元素,它以

2FeO.MoO2合成物的形式存在。

2.2.2 氢配位-化学氢化物储氢材料

LiBH4由于具有非常高的储氢量,成为储氢体系最有吸引力的候选材料,理论上通过反应(6)可以脱附13. 5 wt%的氢。

LiBH4 SHAPE \* MERGEFORMAT LiH + B + 3/2H2 ↑(6)

由于LiBH4脱附氢的焓变约为-70 kJ/mol,实际应用过于稳定。不能有效、可逆吸附-脱附氢。因此,改变LiBH4的热力学稳定性,降低脱氢温度(低于100 0C)成为目前研究的焦点。2006年,有报道用LiBH4 +0.2MgCl2+0. 1TiCl3材料作为稳定剂来降低脱氢温度,改善吸附-脱附的可逆性很有效,在60oC脱附5 w t%的氢。目前在60oC和70 bar条件下可以吸附4.5 w t%的氢 [16]。

四方晶体结构的NaAlH4,是另一种有前途的储氢材料。NaAlH4的储氢量约为5 . 6 w t% , NaAlH4的脱氢过程是根据下面的化学反应(7)、 (8)进行的:

3NaAlH4 →NaAlH6 + 2Al + 3H2↑(7)

Na3AlH6 →3NaH + Al + 3/2H2↑(8)

2.2.3 碳系列储氢材料

对碳系列储氢材料的研究是近些年兴起的一个热门课题。大家知道,由于碳的多孔结构和碳原子对气体分子的特殊吸引作用,碳对几乎所有的气体都存在或大或小的吸附作用。所以把它作为一种储氢材料来研究也就是自然而然的事。目前对碳系列储氢材料的研究主要是集中在石墨、活性碳、纳米碳管和纳米碳纤维等方面,纳米碳管和纳米碳纤维之所以成为一种热门的储氢材料,一是它们的储氢量大,一般也达到10wt%,有的甚至达到60wt%以上。但此前曾有科学工作者对此进行检验,却以失败告终,然其储氢量比储氢合金高却是不争的事实。

近年来,纳米碳在储氢方面已表现出优异的性能,清华大学碳纳米材料研究小组发现一种经处理后表现出显著储氢性能的碳纳米管,它有望作为新的清洁能源成为氢能电池的制造材料。该研究小组的科技人员对定向碳纳米管的电化学储氢特性进行了系统研究,发现这种碳纳米管具有许多全新的力学、电学、热学和光学性能,尤其是将它混以铜粉后表现出的很高的储氢性能。他们将碳纳米管制成电极,进行随流充放电电化学实验,结果表明,混铜粉定向多壁碳纳米管电极的储氢量是石墨电极的10倍,是非定向电极的13倍,比电容量高达1,625mAh/s,对应储氢量为5.7%(质量分数),具有优异的电化学储氢性能。已经接近美国能源部对车用储氢技术制定的标准对储氢材料的重量和储氢密度的要求[11、12]。

目前用于储氢研究的无机材料有10种以上,除了以上介绍的,还有金属硫化物储氢材料储、金属-C-H体系、金属-N-H体系储氢材料、碳基储氢材料和氨基硼烷、氮化硼纳米管、碳化硅纳米管等。在研究过程中,纳米技术、掺杂催化技术以及氧化还原理论的应用,使材料的储氢研究得到了长足发展,缩短了与应用要求的距离。从目前的研究结果来看,对于无机储氢材料,多组分材料的储氢研究是较好的研究方向,因为很难找到一种物质既有较大的储氢量(大于6 W t% ),在低温(低于100℃)下又有较好的动力学性质,同时还兼具能够反复吸氢-脱氢的循环稳定性。因此对照世界能源署或美国能源部的标准,进一步开发多组分复合材料,同时研究该材料的热力学性质及其与氢气的分了反应动力学,对拓展储氢的理论研究和实际应用具有重要意义[12—16]。

3 结语

国际能源界预测,21世纪人类社会将告别化石能源,进入氢能经济时代。纵观世界能源发展战略,专家们认为,氢将在2050年前取代石油而成为主要能源,人类将进入完全的氢经济社会。

当前我国经济持续高速增长,能源需求量持续上涨,能源战略储备严重低下,国际石油市场的波动已经对我国经济社会发展产生明显影响,由此而产生的矛盾已经成为遏制我国长期健康可持续发展的战略瓶颈。率先全面启动氢经济是我国取得长期战略优势的关键。因此,集中优势力量发展清洁高效的氢能源也许是我国抢先进入氢经济,摆脱百年来科技和战略落后,走可持续健康发展的最佳切入点。

节能减排,保护环境是人类实现可持续发展的迫切要求,而清洁能源的开发及利用,是一种切实可行的道路,以氢能经济为主的工业经济模式将在可期的未来,给人类生活带来巨大变革。氢能研究的舞台是广阔的,研究开发氢能将大有作为。.

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国对运输机械的“FreedomCAR”计划和针对规模制氢的“FutureGen”计划,日本的“NewSunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态储氢发展的历史较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3%。而且存在很大的安全隐患,成本也很高。 金属氢化物储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeOx等物质,质量储氢密度为2%-5%。金属氢化物储氢具有高体积储氢密度和高安全性等优点。在较低的压力(1×106Pa)下具有较高的储氢能力,可达到100kg/m3以上。最近,中科院大连化学物理研究所陈萍团队发现Mg(NH2)/2LiH储氢体系可在110℃条件下实现约5%(质量分数)氢的可逆充放。但是,金属氢化物储氢最大的缺点是金属密度很大,导致氢的质量百分含量很低,一般只有2%-5%,而且释放氢时需要吸热,储氢成本偏高。 目前大量的储氢研究是基于物理化学吸附的储氢方法。物理吸附是基于吸附剂的表面力场作用,根源于气体分子和固体表面原子电荷分布的共振波动,维系吸附的作用力是范德华力。吸附储氢的材料有碳质材料、金属有机骨架(MOFs)材料和沸石咪唑酯骨架结构(ZIFs)材料、微孔/介孔沸石分子筛等矿物储氢材料。 碳质储氢材料主要是高比表面积活性炭、石墨纳米纤维(GNF)和碳纳米管(CNT),是最好的吸附剂,它对少数的气体杂质不敏感,且可反复使用。超级活性炭在94K、6MPa下储氢量

金属氢化物贮氢技术研究与发展

作者:陈长聘王启东(浙江大学) 【摘要】氢的贮存与输送是氢能利用中的重要环节。石油化工、合成氨、冶金、电子、电力、医药、食品、玻璃生产、火箭燃料和科学实验等以氢作为原料气、还原气、冷却气或燃料。由于氢的易燃性、易扩散性和重量轻,因此其贮存与输送中的安全、高效和无泄漏损失是人们在实际应用中优先考虑的问题。原则上,氢可以以气体、液体、固体(氢化物)或化合物(如氨、甲醇等)的形式贮存与运输。 引言 氢的贮存与输送是氢能利用中的重要环节。石油化工、合成氨、冶金、电子、电力、医药、食品、玻璃生产、火箭燃料和科学实验等以氢作为原料气、还原气、冷却气或燃料。由于氢的易燃性、易扩散性和重量轻,因此其贮存与输送中的安全、高效和无泄漏损失是人们在实际应用中优先考虑的问题。原则上,氢可以以气体、液体、固体(氢化物)或化合物(如氨、甲醇等)的形式贮存与运输。工业实际应用中大致有五·种贮氢方法,即:(1)常压贮存,如湿式气柜、地下储仓;(D高压容器,如钢制压力容器和钢瓶;(3)液氢贮存(真空绝热贮槽和液化机组);(4)金属氢化物方式(可逆和不可逆氢化物);(5)吸附贮存,如低温吸附和高压吸附。除管道输送外1高压容器和液氢槽车也是目前工业上常规应用的氢气输送方法。表:列出了一些氢贮存介质的贮氢能力和贮氢密度比较。显然,液氢具有较高的单位体积贮氢能力,但是装料和绝热不完善造成的蒸发损失可达容器体积的4.5%,所以比较适用于快装快用的场合。高压容器贮氢,无论单位体积贮氢能力或能量密度均为最低,当然还有安全性差的问题。金属氢化物贮存和输送氢最大优点是其特有的安全佐和高的体积贮氢密度。利用金属氢化物贮运氢气涉及到贮氢材料、氢化物工程技术以及贮氢器的结构设计等多方面问题。本文在扼要回顾有关研究与发展状况的同时,将着重介绍该领域近年来所取得的新的进展。 1金属氢化物贮氢技术原理 称得上“贮氢合金”的材料应具有像海绵吸收水那样能可逆地吸放大量氢气的特性。原则上说,这种合金大都属金属氢化合物,其特征是由一种吸氢元素或与氢有很强亲和力的元素(A)和另一种吸氢量小或根本不吸氢的元素(B)共同组成。贮氢合金与氢接触首先形成含氢固溶体(MHx),其溶解度[H]M与固溶体平衡氢压PH2的平方根成正比,即 (1)其后,在一定的温度和压力条件下,固溶相MHx继续与氢反应生成金属氢化物,这

氢能源的开发与利用

氢能源的开发和利用 菜大兴 (中南大学化学化工学院湖南长沙410083) 摘要:随着化石燃料等不可再生资源的日益紧缺和环境污染日益加重,人们迫切需要寻找替代能源。氢能作为可持续、清洁的能源而被广泛研究,是未来人类的理想能源之一,对整个世界经济的可持续发展具有重要的战略意义。本文主要述评了氢能制备、氢能储运、氢能利用在国际和国内的最新研究动态,并对氢能未来开发利用前景进行了展望。 关键词:氢能源、氢能制备、储氢技术、氢能利用 0 引言 能源是现代社会人类生活、生产中必不可缺的东西。随着社会经济的发展,人们对能源的需求越来越高。然而在能源开发及利用的研究中,人们发现有的能源与一般传统的矿物能源不同,如太阳能、风能、潮汐熊等再生性能源。氢能作为一种储量丰富、来源广泛、能量密度高、清洁的绿色能源及能源载体,被认为是连接化石能源向可再生能源过渡的主要桥梁[1]。 作为能源,氢能具有无可比拟的潜在开发价值。氢是自然界最普遍存在的元素,它主要以化合物的形态储存于水中,而水是地球上最广泛的物质;除核燃料外,氢的发热值在所有化石燃料、化工燃料和生物燃料中最高;氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快;氢本身无毒,与其他燃料相比氢燃烧时最清洁。氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。用氢代替煤和石油,不需对现有的技术装备作重大的改造,现在的内燃机稍加改装即可使用。所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,在能源工业中氢是极好的传热载体。所以,研究利用氢能已成为国内外学者研究的热点[2]。 1 氢能制备方法 1.1 矿物燃料制氢 在传统的制氢工业中,矿物燃料制氢是采用最多的方法,并已有成熟的技术及工业装置。

新型含能体能源:氢能与储氢技术的最新进展

论文关键词:氢能制氢技术储氢技术 论文摘要:氢能是21世纪解决化石能源危机和缓解环境污染问题的绿色能源。实现氢能的利用,氢的储运是目前要解决的关键问题。文章综述了氢气制备技术和储备技术的最新研究进展,并探讨了制氢与储氢技术的关键问题。最后对进一步的研究进展进行展望,提出了可供研究的课题方向。 0 引言 资源减少、能源短缺、环境污染日益严重。为了我国经济可持续发展的战略国策,寻找洁净的新能源和可再生能源来替代化石能源已经迫在眉睫。氢能以其热值高、无污染、来源丰富等优点,越来越受到人们的重视,被称为21世纪的理想能源。是人类能够从自然界获取的、储量非常丰富而且高效的含能体能源。 作为能源,氢能具有无可比拟的潜在开发价值:氢是自然界最普遍存在的元素,它主要以化合物的形态储存于水中,而水是地球上最广泛的物质;除核燃料外,氢的发热值在所有化石燃料、化工燃料和生物燃料中最高;氢燃烧性能好,点燃快,与空气混合时有广泛的可燃围,而且燃点高,燃烧速度快;氢本身无毒,与其他燃料相比氢燃烧时最清洁。氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。用氢代替煤和石油,不需对现有的技术装备作重大的改造,现在的燃机稍加改装即可使用。所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,在能源工业中氢是极好的传热载体。所以,研究利用氢能已成为国外学者研究的热点[1、2、3、4]。 1国外氢能发展状况 2003年11月19-21日在美国首都华盛顿欧米尼·西海姆大酒店举行“国际氢能经济合作伙伴组织”[The International Partnership For The Hydrogen Economy( IPHE)]成立大会,共有澳大利亚、巴西、加拿大、中国、法国、德国、冰岛、印度、意大利、日本、国、俄罗斯、英国、美国和欧盟的政府代表团及工商业界代表数百人出席会议。IPHE是一种新的氢能国际合作关系,这种合作将支持未来的氢能和电动汽车技术,建设一个安全、有效和经济的世界围的氢能生产、储存、运输、分配和使用设施的大系统。氢能作为解决当前人类所面临困境的新能源而成为各国大力研究的对象。 氢能广泛应用的关键,在于研制出成本低的制氢技术。目前,氢能利用技术开发已在世界主要发达国家和发展中国家启动,并取得不同程度的成果。美国已研制成功世界上第一辆以氢为燃料的汽车,可将60%-80%的氢能转换成动能,其能量转换率比普通燃机高一倍。1989年,美国太平洋能源公司发明了能大量生产廉价氢燃料的新技术。可用于水分解的一种化学催化剂。用这种方法分解出来的氢成本很低,因而成为世界上最便宜的燃料[1-3,6]。 欧盟(EU)也加紧对氢能的开发利用。在2002-2006年欧盟第6个框架研究计划中,对氢能和燃料电池研究的投资为2,500万-3,000万欧元,比上一个框架计划提高了1倍。北欧国家2005年成立了“北欧能源研究机构”,通过生物制氢系统分析,提高生物生产氢能力。2005年7月,德国宝马( BMW)汽车公司推出了一款新型氢燃料汽车,充分利用了氢不会造

碳质储氢材料的研究进展

碳质储氢材料的研究进展 摘要 碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。 关键词:碳质材料储氢储氢材料进展 Abstract Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress 、八、, 前言 能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。 氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

浅谈储氢材料

储氢材料的背景 人类社会发展进步到今天,生活现代化了。但是由于资源的大量开发、使用,使人类面临着全地球的能源危机和环境污染问题。长期以来,地球上的主 要能源煤炭、石油、天然气现在已面临枯竭的境地。在能源危机警钟响起时, 人们把注意力集中到太阳能、原子能、风能、地热能等新能源上。但是要使这 些自然存在形态的能量转变为人们直接能使用的电能,必须要把它们转化为二 次能源。那么最佳的二次能源是什么呢?氢能就是一种最佳的二次能源。 氢是地球上一种取之不尽的元素。用电解水法取氢就是氢元素的广阔源泉。氢是一种热值很高的燃料。燃烧1千克氢可放出62.8千焦的热量,1千克氢可以代替3千克煤油。氢氧结合的燃烧产物是最干净的物质--水,没有任何污染。未来最有前途的燃料电池也主要是以氢为能源。所以人们很自然地把注意力集 中在氢能源的开发和利用上。要利用好氢能源。摆在人们面前的问题是如何把 氢储存、运输和利用。 氢的来源非常丰富,若能从水中制取氢,则可谓取之不尽、用之不竭。氢 能的利用,主要包括两个方面:一是制氢工艺,二是储氢方法。 传统储氢方法有两种,一种方法是利用高压钢瓶(氢气瓶)来储存氢气, 但钢瓶储存氢气的容积小,瓶里的氢气即使加压到150个大气压,所装氢气的质量也不到氢气瓶质量的1%,而且还有爆炸的危险;另一种方法是储存液态氢,将气态氢降温到-253 0C变为液体进行储存,但液体储存箱非常庞大,需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化。近年来,一种新型 简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。 储氢材料的定义 储氢材料是一种能够储存氢的材料,储氢材料是能与氢反应生成金属氢化 物的物质,(狭义)具有高度的吸氢放氢反应可逆性;(广义)储氢材料是能 够担负能量储存、转换盒输送功能的物质,“载氢体”、或“载能体” 研究证明,某些金属具有很强的捕捉氢的能力,在一定的温度和压力条件下,这些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。 其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。 这些会“吸收”氢气的金属,称为储氢合金。 储氢材料的分类 化学吸附材料 金属氢化物及合金(如LaAlH4) 复合氢化物(NaAlH4、NaBH4、LiBH4等)等 物理吸附材料

新能源及可再生能

新能源及可再生能源概念股: 太阳能 天威保变(600550) 形成太阳能原材料、电池组件的全产业布局 小天鹅(000418) 大股东参股无锡尚德太阳能电力 岷江水电(600131) 参股西藏华冠科技涉足太阳能产业 生益科技(600183) 控股的东海硅微粉公司是国内最大硅微粉生产企业 维科精华(600152) 成立的宁波维科能源公司专业生产各种动力、太阳能电池 安泰科技(000969) 与德国ODERSUN公司合作薄膜太阳能电池产业' 长城电工(600192) 参股长城绿阳太阳能公司涉足太阳能领域股参网, 乐山电力(600644) 参股四川新光硅业主要生产多晶硅太阳能硅片 华东科技(000727) 国内最大的太阳能真空集热管生产商 春兰股份(600854) 大股东计划投资30亿开发新能源 威远生化(600803) 实际控股股东新奥集团从事太阳能等新能源产品生产 力诺太阳(600885) 太阳能热水器的原材料供应商 西藏药业(600211) 发起股东之一为西藏科光太阳能工程技术公司 新华光(600184) 太阳能特种光玻基板股参网 特变电工(600089) 控股的新疆新能源从事太阳能光伏组件制造 航天机电(600151) 控股的上海太阳能科技电池组件产能迅速提升 南玻A(000012) 05年10月拟首期2亿元建设年产能30兆瓦太阳能光伏电池生产线。 新南洋(600661)(600661) 控股的交大泰阳从事太阳能电池组件生产

杉杉股份(600884) 参股尤利卡太阳能,掌握单晶硅太阳能硅片核心技术 王府井(600859) 全资子公司深圳王府井(600859)联合了中国最大的太阳能专业研究开发机构--北京太阳能研究所成立了北京桑普光电技术公司 风帆股份(600482) 投巨资参与太阳能电池组件生产, 金山股份(600396) 风力发电,风力发电设备安装及技术服务 湘电股份(600416) 控股股东与德国莱茨鼓风机有限公司签订了合资生产离心风机协议,目前风电资产主要在控股股东中 粤电力(000539) 风力发电 特变电工(600089)(600089) 与沈阳工业大学等设立特变电工(600089)沈阳工大风能有限公司 京能热电(600578) 为国华能源第二大股东,间接参与风能建设 东方电机(600875) 风电设备制造 金风科技(002202) 风电设备制造 乙醇汽油 丰原生化(000930) 是安徽省唯一一家燃料乙醇供应单位 华润生化(600893) 控股股东华润集团控股吉林燃料乙醇和黑龙江华润酒精二大定点企业 *ST甘化(000576) 利用甘蔗、玉M(资讯,行情)(资讯,行情)(资讯,行情)等可再生性糖料资源生产燃油精,成为汽油代替品 华资实业(600191) 利用可再生性糖料资源生产燃油精,成为纯车用汽油代替品 荣华实业(600311) 赖氨酸(豆粕(资讯,行情)(资讯,行情)(资讯,行情)的替代品)新增产能最大的企业之一 华冠科技(600371) 在国内率先拥有了玉M深加工多项最新技术的所有权或使用权 氢能 同济科技(600846) 公司与中科院上海有机化学研究所、上海神力科技合资组建中科同力化工材料有限公司开发燃料电池电动车。 中炬高新(600872) 子公司中炬森莱生产动力电池 春兰股份(600854) 春兰集团研发20-100AH系列的大容量动力型高能镍氢电池 力元新材(600478) 主要生产泡沫镍

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.360docs.net/doc/0213262004.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

我国储氢技术发展

促进我国储氢技术发展的必要 氢气是一种易燃、易爆、易泄漏的危险化学介质。日益加重的能源危机和环境污染问题迫切要求人们开发新能源。氢能以其燃烧产物洁净、燃烧效率高、可再生等优点被认为是新世纪的重要二次能源。随着氢燃料电池和电动汽车的迅速发展与产业化,氢源技术及氢能基础设施的研究和建设已引起发达国家的高度关注 发展氢燃料电池汽车的确需要高效储氢技术,因为这是方便使用氢能源的必须. 传统储氢方法有两种,一种方法是利用高压钢瓶(氢气瓶)来储存氢气,但钢瓶储存氢气的容积小,而且还有爆炸的危险;另一种方法是储存液态氢,但液体储存箱非常庞大,需要极好的绝热装置来隔热。近年来,一种新型简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。 研究证明,在一定的温度和压力条件下,一些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来。这些会“吸收”氢气的金属,称为储氢合金。其储氢能力很强。单位体积储氢的密度,是相同温度、压力条件下气态氢的1000倍,也即相当于储存了1000个大气压的高压氢气。储氢合金都是固体,需要用氢时通过加热或减压使储存于其中的氢释放出来,因此是一种极其简便易行的理想储氢方法。目前研究发展中的储氢合金,主要有钛系储氢合金、锆系储氢合金、铁系储氢合金及稀土系储氢合金。 储氢合金还有将储氢过程中的化学能转换成机械能或热能的能量转换功能。储氢合金在吸氢时放热,在放氢时吸热,利用这种放热-吸热循环,可进行热的储存和传输,制造制冷或采暖设备。此外它还可以用于提纯和回收氢气,它可将氢气提纯到很高的纯度。例如,采用储氢合金,可以以很低的成本获得纯度高于99.9999%的超纯氢。 储氢合金的飞速发展,给氢气的利用开辟了一条广阔的道路。目前中国已研制成功了一种氢能汽车,它使用储氢材料90千克,可行驶40千米,时速超过50千米。今后,不但汽车会采用燃料电池,飞机、舰艇、宇宙飞船等运载工具也将使用燃料电池,作为其主要或辅助能源。 现在最常用的储氢手段 高压储氢是最常用和最直接的储氢方式。高压储氢可在常温下使用,通过阀门的调节就可以直接将氢气释放出来["],具有储氢罐结构简单、压缩氢气制备的能耗较少、充装速度快等优点,已成为现阶段氢能储运的主要方式 高压储氢缺点 高压氢气储罐不但有可能发生因强度不足(特别是高强钢脆化)引起的物理爆炸,而且有可能发生因氢气泄漏而引发的火灾、爆炸事故,且其风险程度随罐体容积增大、压力升高而加大。因此,如何降低高压储氢的风险程度,是加氢站建设十分关注的一个问题。 高压下运行的高压储氢罐,一旦发生破坏,罐内巨大的能量在瞬间释放,会产生冲击波、容器碎片猛然飞出和易燃、易爆氢气喷漏。冲击波的超压可以将建筑物破坏,也会直接危害在它所波及范围内的人身安全,冲击波后面的高速气流夹杂着碎片往往加重对人员的伤害。具

金属储氢材料研究进展_范士锋

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

表面吸附与效储氢材料

表面吸附与高效储氢材料 0809401083 匡鹏 一.能源危机与应用氢气的瓶颈 人类的历史某种程度上也是能源的发展历史,过去的五千年里,人类主要能源由草木,秸秆到煤天然气,尤其是近代以来,工业革命的发展与人们生活水平的快速提高使能源的需求快速增长,而据估计地球的化石能源只可以再支持50年的这种消耗速度,而即使没有能源枯竭的危机,人类使用化石能源也会受到极大的制约,因为化石带来的巨大污染近几十年来不断的浮现,更加促使人们寻找替代的能源。 当前几种有前途的能源解决方案——核聚变,裂变(体积太大,且危险过大),风能(不适宜携带,且有间隔性),太阳能(功率不够),都有各种缺陷,而不可以完全取代化石能源。氢能作为一种储量丰富,来源广泛(海水)能量密度高(氢气热值:143kJ/g,为汽油的3倍,酒精的3.9倍,焦炭的4.5倍)清洁(生成水),取代方便(利用原理与汽油等一样,稍加改进即可用于现在的发动机)的绿色能源受到了广泛的关注。 氢能是一种二次能源,其开发与利用需要解决氢的制取,储存,和利用三个问题,由于氢易燃,易爆且已扩散,这就使得人们实际应用中优先考虑氢储存,运输中的安全,高效和无泄漏损失,因此,氢的规模安全存储是现阶段氢能利用的瓶颈。 二.可以采用的氢气存储方法 根据氢的气体特征,其存储方式可以分为物理法与化学法。目前采用的储氢方式主要有四种:高压储氢,液化储氢,金属氢化物储氢以及吸附储氢。高压储氢的最大优点是操作方便,能耗小。

由以上表可以看到无论传统还是最近的金属氢化物,固态储氢都没有达到可以大规模应用的技术成熟水平。而吸附储氢在储氢密度,能源效率及操作安全性等方面颇具技术优势,其发展前景被看好。 三.表面吸附的原理及其对吸附材料的要求 固体表面的原子,由于周围原子对他的作用力不对称,即表面原子所受的力不饱和,因而有剩余力场,可以吸附气体或液体。制糖时,用活性炭来处理糖液,以吸附其中的杂质,得到洁白的产品,就是利用了活性炭的吸附能力。固体吸附有如下几个特点:1.固体表面分子移动困难,所以只可以靠降低界面张力的方法降低表面能2.固体表面是不均匀的,各个不同位置的吸附热与催化活性差别很大3.固体表面层的组成不同于体相内部。 按照吸附分子与固体表面的作用力的不同可以将吸附分为两类

智慧树可再生能源与低碳社会答案 网课2018知到可再生能源与低碳社会答案

智慧树知到可再生能源与低碳社会答案 绪论单元测试第一章单元测试第二章单元测试第三章单元测试 名称可再生能源与低碳社会对应章节绪论成绩类型分数制截止时间2018-08-15 23:59 题目数1 总分数100 说明:评语: 提示:选择题选项顺序为随机排列,若要核对答案,请以选项内容为准100

更多答案就在徽信公丛呺【校园柠檬】获取 第四章单元测试 名称可再生能源与低碳社会对应章节第四章成绩类型分数制截止时间2018-08-15 23:59 题目数5 总分数100 说明:评语: 提示:选择题选项顺序为随机排列,若要核对答案,请以选项内容为准100 第1部分总题数:5 1 【单选题】(20分) 加快转变经济发展方式的重要着力点是 A. 建设资源节约型、环境友好型社会 B. 建设资源节约型、能源创新型社会 C. 建设科技开发型、能源创新型社会 D. 建设科技开发型、环境友好型社会

查看答案解析 本题总得分:20分 2 【单选题】(20分) 在我国的能源消费结构中,消费比例最大的能源是 A. 天然气 B. 煤炭 C. 石油 D. 水电 正确 查看答案解析 本题总得分:20分 3 【单选题】(20分) 从终端用能角度看,能源消费最大的三个部门是 A. 交通、工业和农业 B. 交通、农业和建筑 C. 工业、交通和建筑 D. 工业、农业和建筑 正确 查看答案解析 本题总得分:20分 4 【多选题】(20分) 《中国应对气候变化国家方案》提出的我国应对气候变化的指导思想是 A. 以保障经济发展为核心 B. 以控制温室气体排放,增强可持续发展能力为目标 C. 坚持节约资源和保护环境的基本国策 D. 全面贯彻落实科学发展观,推动和谐社会建设

先进能源技术概述

863计划先进能源技术领域 2006年度专题课题申请指南 前言 “十一五”期间,863计划先进能源技术领域以《国家中长期科学和技术发展规划纲要》、《国家“十一五”科学技术发展规划》和《863计划“十一五”发展纲要》为指导,立足当前,着眼未来,大力开发节能和能源清洁高效开发、转化和利用技术,积极发展新能源技术,促进能源多元化。攻克一批能源开发、利用和节能重大关键技术与装备,形成一批新兴能源产业生长点,掌握新能源、氢能和燃料电池等战略高技术,建立起能源科技持续创新平台,为经济、社会可持续发展提供清洁高效能源技术的支撑。 按照以上总体考虑,863计划先进能源技术领域将在项目和专题两个层次进行部署,设置“氢能与燃料电池技术”、“高效节能与分布式供能技术”、“洁净煤技术”和“可再生能源技术”四个专题。氢能与燃料电池技术专题重点是研究开发制氢、储氢和输氢、氢能安全及燃料电池技术,为氢能发展奠定技术基础。高效节能与分布式供能技术专题重点是研究开发工业和建筑等主要耗能领域的节能技术;研究开发分布式供能系统技术,提高能源系统的综合利用效率。洁净煤技术专题重点是开发煤炭的燃烧、加工与转化、污染控制、发电等洁净煤技术,整体提升我国洁净煤技术水平。可再生能源技术专题重点是研究开发风能、太阳能、海洋能和地热等技术,提高可再生能源在能源结构中比重。专题将分年度公开发布专题课题申请指南。以下为本领域2006年度专题课题申请指南。 专题一、氢能与燃料电池技术专题

一、指南说明 本专题根据氢能及燃料电池技术发展趋势,结合我国氢能及燃料电池技术发展现状和已有基础,将安排探索导向类和目标导向类研究课题。本专题主要围绕氢的制备、储存、输运、应用、燃料电池关键技术安排课题,主要研究内容为:制氢技术、储氢技术、输氢技术、燃料电池技术、氢安全技术以及技术规范标准等。通过专题的实施,提高我国在氢能及燃料电池技术领域的创新能力,获取一批自主知识产权的创新性成果,为我国氢能及燃料电池的发展提供技术储备;突破一批关键技术,提高氢能及燃料电池系统的能量转换效率、降低成本,推进氢能及燃料电池技术发展,为我国能源的多元化发展做出贡献。 此次发布的是本专题2006年度课题申请指南,年度经费预算为7500万元。拟支持的课题分两类,一类是探索导向类课题,重点为制氢技术、储氢和输氢技术及燃料电池技术等,课题支持强度为100万元以下,支持年限原则上不超过3年;一类是目标导向类课题,重点为新型储氢技术、加氢站系统技术、质子交换膜燃料电池技术、固体氧化物燃料电池技术等,课题支持强度为500万元以下,支持年限原则上不超过3年。 二、指南内容 (一)探索导向类课题 1.制氢技术 主要研究内容:可再生能源制氢新技术;化石能源制氢(包括副产氢纯化利用)新技术;化学氢化物水解制氢技术;制、储氢一体化技术;其它新型制氢技术等。 本方向2006年拟安排经费1000万元。 2.储氢和输氢技术

纳米储氢材料的研究进展

纳米储氢材料的研究进展* 刘战伟? (桂林电子科技大学信息材料科学与工程系,广西 桂林 541004) 摘 要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料 的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米;储氢材料;储氢性能 中图分类号:TB383 文献标识码:A文章编号:1003-7551(2009)01-0033-04 1 引言 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视[1]。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型[4],储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少为5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。 纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性,成为继互联网和基因研究之后科学领域的又一研究热点,引发了世界各国科学工作者在相关理论研究及应用开发的广泛兴趣。纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高[5,6],具有更高的氢扩散系统[7,8],并具有优良的吸放氢动力学性能[7,9,10]。储氢材料的纳米化为新兴的储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 2 纳米储氢材料储氢性能提高机理 一般认为,储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)量子尺寸效应和宏观量子隧道效应:对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低;(2)纳米材料的表面效应:纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定,金属氢化物能够大量生成。单位体积吸纳的氢的质量明显大于宏观颗粒。(3)比表面积和催化特性:纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子, 有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶 * 基金项目:广西研究生教育创新计划资助项目(2008105950805M438) ? 通讯作者:liuzhanwei@https://www.360docs.net/doc/0213262004.html, 收稿日期:2009-01-13 33

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属 →MHx+ΔH(生成热)。 氢化物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

《能源化学》习题与思考题-精选.pdf

《能源化学》习题与思考题 (可再生能源和新能源部分) 第一章绪论 1.能源是如何分类的?并给出“可再生能源”与“非再生能源”的定义。 2.何为能源当量,中国的1000tce相当于多少toe? 3.能源利用与社会发展、环境保护有什么关系? 第二章太阳能 4. 太阳能具有那些资源特性? 5. 太阳日射分为那几种形式? 6. 太阳能技术包括那几种类型? 7. 举例说明1~2种太阳能技术的工作原理。 8. 氢能有什么优越性? 第三章风能 9. 风是如何产生的,为什么会出现全球风和局部风? 10. 风能具有那些资源特性? 11. 风能的利用有那几种基本形式? 12. 风能的利用对环境有什么影响? 第四章地热能 13.地热能具有那些资源特性? 14.地热能资源分为哪几种形式? 15.地热发电分哪几种工艺类型? 第五章生物质能 16.生物质能资源分为哪几种类型? 17.生物质能如何利用? 第六章海洋能 18.潮汐能产生的原因是什么?它有那些基本形式? 19.波浪能、海洋热能、盐度梯度能有那些可能的利用途径? 第七章水电 20.水电有那些优越性,对环境有什么影响? 21.中国的水电资源有那些特点? 22.世界能源理事会为何特别重视小水电的发展? 第八章核能 23.发展核电有什么优越性? 24.核反应有那些基本类型? 25.核能有那些利用途径? 参考文献: 新的可再生能源·未来发展指南世界能源理事会编北京海洋出版社1998 可持续能源的前景Edward S. Cassedy著清华大学出版社2002 新能源概论吉世印编著贵州科技出版社2001

《能源化学》习题与思考题 (不可再生能源部分) 第一章天然气水合物 1.什么是天然气水合物?写出其分子式。 2.天然气水合物如何分类,说明其基本晶穴结构。 3.天然气水合物具有那些外表特征和物理性质? 4.天然气水合物是如何形成的,形成的物理化学条件有那些? 5.人类准备怎样开发利用天然气? 第二章石油 1.什么是石油?按照1983年第11届世界石油大会提出的定义,说明“石油”与“原油”,“石油”与“天然气”的定义。 2. 石油的加工技术有那些类型? 3. 什么是石油的有机成因学说,其主要依据是什么? 4. 天然气的烃类组成与非烃组成如何? 5. 原油的元素组成大致范围是什么? 6. 原油的馏分组成如何分类,其相应的温度范围是多少? 7. 原油的烃组成有哪几种类型?如何表示? 8. 汽油馏分单体烃组成有那些基本规律? 9. 原油不同馏分的族组成如何分类 10. 原油中有那些杂原子化合物,它们对原油的加工与石油产品的性质有什么影响? 11. 石油产品有那些类型? 12. 汽油一般质量要求是什么? 13. 什么是抗爆性、辛烷值?可以采取哪些措施来提高其辛烷值? 14. 润滑油的基础油是什么成分,采用那些主要添加剂? 15.石油合成产品的主要类型有那些?

相关文档
最新文档