3D打印技术之SLA(立体光固化成型法)

合集下载

SLA, DLP,FDM三种成型技术的特点

SLA, DLP,FDM三种成型技术的特点

SLA 、DLP、FDM三种成型技术的特点?SLA 、DLP、FDM这三种都是3D打印机常用到的三种技术。

FDM:全称叫“熔融沉积”技术,基本原理是通过加热装置将ABS、PLA等丝材加热融化,然后通过挤出头像挤牙膏一样挤出来,一层一层堆积上去,最后成形。

大家如果见过春蚕吐丝,就清楚了(我估计90后多半没见过),类似的也是如此。

蚕体内含有绢丝蛋白质的绢丝液,蚕用嘴挤压吐出,一层一层环绕,这种液体凝固后就成了丝茧。

SLA:全称叫“立体光固化成型”,基本原理是激光束在液态树脂表面勾画出物体的第一层形状,然后制作平台下降一定的距离(0.05-0.025mm之间),再让固化层浸入液态树脂中,如此反复。

使用的树脂是光敏树脂,激光束照射后会形成固态。

DLP:全称叫“数字光投影”技术。

使用的耗材和SLA一样,都是光固化树脂。

那和SLA有什么区别呢?为什么叫数字光投影呢?其实在机械结构方面,DLP与SLA最大的不同在于,DLP用的是投影仪的数字光源(没用用过投影仪?买一个试试,哈哈),SLA用的是激光头。

正因为如此,DLP一扫就是一片,SLA成形只能靠一个激光点。

一些DLP机器还可以打多种材料,例如DLP200台面可以打印多种材料,树脂ABS亚克力。

打印尺寸:FDM > SLA ≈DLPFDM的机器,在架构上灵活多样,有XYZ框架结构的,有三角州结构的,有机械手臂的,因此成形尺寸可以做得很小,也可以做得很大;而而SLA和DLP在成形原理上的限制,暂时就无法做出大型的机器,SLA理论上和FDM一样可以做的无限大的尺寸,只不过速度会慢,SLA也是通过光轴移动来打印的。

而DLP呢?如果做大的话,会牺牲精度,而SLA和FDM不会。

3D打印机有XYZ三个轴来控制精度,Z轴是步进电机精度,就是咱们说的层厚,这个精度FDM、DLP、SLA没什么区别,因为买的都是市面上的步进电机,理论上最小可以到0.01MM。

差别主要是在X、Y轴精度上。

SLA光固化3D打印成型误差分析

SLA光固化3D打印成型误差分析

SLA光固化3D打印成型误差分析SLA光固化3D打印技术是一种快速成型技术,它利用光敏树脂在紫外线的照射下固化成型。

SLA光固化3D打印技术具有成型速度快、成型精度高、成型效率高的优势,广泛应用于航空航天、医疗器械、工业制造等领域。

在SLA光固化3D打印过程中,会存在一定的成型误差,对成型误差进行分析是提高打印质量的关键。

一、成型误差的定义SLA光固化3D打印的成型误差是指在打印过程中,实际成型物件与设计模型之间的差异,包括尺寸误差、形状误差等。

成型误差的存在会影响打印件的精度和质量,因此需要对成型误差进行分析,找出产生误差的原因,并采取相应的措施进行改进。

1. 设计模型精度不足在SLA光固化3D打印过程中,设计模型的精度直接影响着实际成型件的精度。

如果设计模型的精度不足,那么实际成型件的精度也会受到影响。

设计模型的精度要求较高,需要使用专业的建模软件进行设计,确保模型精准无误。

2. 光固化树脂的性能问题光固化树脂是SLA光固化3D打印的主要材料,其性能直接影响着打印件的质量。

如果光固化树脂的性能不稳定或者杂质较多,就会导致成型件表面粗糙、尺寸不准确等问题。

选择优质的光固化树脂对于提高打印质量非常重要。

3. 光源与打印平台的校准SLA光固化3D打印是通过紫外线的照射固化树脂,而光源的光强和打印平台的位置都会影响成型件的质量。

如果光源的光强不均匀或者打印平台的位置不准确,就会导致成型件的质量不稳定,出现成型误差。

4. 打印参数设置不当在SLA光固化3D打印过程中,打印参数的设置直接影响着成型件的质量。

如果打印参数设置不当,如光照时间、光强度、层厚等参数不合理,就会导致成型件表面光滑度不够、尺寸不准确等问题。

三、成型误差的分析方法1. 数值模拟分析通过数值模拟软件对SLA光固化3D打印过程进行模拟分析,可以得出成型件的理论尺寸和形状,然后与实际成型件进行对比分析,找出成型误差的原因。

2. 成型件的实测分析对实际成型件进行三维测量,使用光学显微镜、扫描电子显微镜等设备对成型件进行表面形貌和尺寸特性的分析,找出成型误差的具体位置和原因。

立体光固化成型原理

立体光固化成型原理

立体光固化成型原理立体光固化成型(stereolithography,SLA)是一种聚合物3D打印技术,其原理是利用紫外线光源固化液态光敏树脂。

SLA是最早的商业化3D打印技术之一,其能将百万级零件制造到数天内,是高精度、高速度的打印技术之一。

SLA的原理简单来说是,通过把一层液态光敏树脂放置在建造平台上,利用逐层递增的方法将树脂被照射到随后的固化过程中。

然后,创造出的骨架被下降到接触涂层树脂中一层,将继续过程,并固化到下一层,最终产生一个立体复制品。

这种方法可实现高精度的3D打印零件,具有高表面质量的特点,结构可以非常复杂,同时可以实现非常精细的内部结构。

具体来说,SLA技术由三个主要的组成部分组成:液态树脂材料、光源和建造平台。

液态树脂材料是整个打印过程中的主要材料,它是在紫外线光的作用下固化成固态的材料;光源通常是一个固定的紫外线激光器,其通过数字坐标机器(DCM)获取并控制光的属性和位置;建造平台则提供了一个打印区域,用于固定和移动树脂瓶,并用于建立3D零件的缩放、旋转和位置。

总体来说,SLA技术是一种高度精确的3D打印方法,其在行业中具有一定的优势。

它可以制造出非常复杂的结构,具有很高的表面质量和准确度,并可以在非常短的时间内生产出零件。

此外,SLA技术还可以打印出精细的内部结构,这通常是其他3D打印方法难以准确实现的。

SLA技术也存在一些缺点。

由于材料本身的限制,其打印出的零件通常比其他3D打印技术弱一些,经常需要进一步的处理和处理。

此外,SLA技术通常比其他3D打印技术更昂贵,需要更高的能源和更多的材料,因此成本也更高。

总之,SLA技术是一种高度精确的3D打印技术,可以用于制造复杂的结构和精细的内部结构。

它在许多不同的行业中得到了广泛应用,包括医疗、汽车、航空航天等等。

随着技术的不断发展,SLA技术已经变得越来越成熟和成熟,为行业中的很多领域带来了巨大的变革。

SLA

SLA

SLA(光固化成型法)快速成形系统的原理"Stereo lithography Appearance"的缩写,即立体光固化成型法.用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面.这样层层叠加构成一个三维实体.3D Systems 推出的Viper Pro SLA systemSLA 的优势1. 光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验.2. 由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具.3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具.4. 使CAD数字模型直观化,降低错误修复的成本.5. 为实验提供试样,可以对计算机仿真计算的结果进行验证与校核.6. 可联机操作,可远程控制,利于生产的自动化.SLA 的发展趋势与前景立体光固化成型法的的发展趋势是高速化,节能环保与微型化.不断提高的加工精度使之有最先可能在生物,医药,微电子等领域大大缩短新产品研制周期,确保新产品上市时间;------使模型或模具的制造时间缩短数倍甚至数十倍;提高了制造复杂零件的能力;------使复杂模型的直接制造成为可能;显著提高新产品投产的一次成功率;------可以及时发现产品设计的错误,做到早找错、早更改,避免更改后续工序所造成的大量损失;支持同步(并行)工程的实施;------使设计、交流和评估更加形象化,使新产品设计、样品制造、市场定货、生产准备、等工作能并行进行;支持技术创新、改进产品外观设计;------有利于优化产品设计,这对工业外观设计尤为重要。

成倍降低新产品研发成本;------节省了大量的开模费用快速模具制造可迅速实现单件及小批量生产。

使新产品上市时间大大提前,迅速占领市场。

总而言之,RP技术是九十年代世界先进制造技术和新产品研发手段。

3D打印技术种类

3D打印技术种类

3D打印技术种类-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII3D打印技术种类SLA/DLP技术SLA 是"Stereo lithography Appearance"的缩写,即立体光固化成型法。

用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。

这样层层叠加构成一个三维实体。

SLA 是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。

SLA 技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分, SLA用原型模代替熔模精密铸造中的蜡模。

SLA 技术成形速度较快,精度高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。

DLP激光成型技术和SLA立体平版印刷技术比较相似,不过它是使用高分辨率的数字光处理器(DLP)投影仪来固化液态光聚合物,逐层的进行光固化,由于每层固化时通过幻灯片似的片状固化,因此速度比同类型的SLA立体平版印刷技术速度更快。

该技术成型精度高,在材料属性、细节和表面光洁度方面可匹敌注塑成型的耐用塑料部件。

精细度指数★★★★★硬度强度指数★★★FDM熔融层积成型技术FDM即是Fused DepositionModeling,熔融挤出成型工艺的材料一般是热塑性材料,如ABS、PC、尼龙等,以丝状供料。

材料在喷头内被加热熔化。

喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结。

每一个层片都是在上一层上堆积而成,上一层对当前层起到定位和支撑的作用。

随着高度的增加,层片轮廓的面积和形状都会发生变化,当形状发生较大的变化时,上层轮廓就不能给当前层提供充分的定位和支撑作用,这就需要设计一些辅助结构-“支撑”,对后续层提供定位和支撑,以保证成形过程的顺利实现。

3D打印中常见的光固化技术介绍

3D打印中常见的光固化技术介绍

3D打印中常见的光固化技术介绍随着科技的不断发展,3D打印技术正逐渐走进我们的生活。

而在3D打印中,光固化技术是一种常见且重要的技术。

本文将介绍几种常见的光固化技术及其应用。

一、SLA技术SLA(StereoLithography Apparatus)技术是光固化技术的一种。

它是通过使用紫外线激光束照射在光敏树脂上,使其逐层固化,最终形成所需的物体。

SLA技术具有高精度、高表面质量等优点,广泛应用于模型制造、医疗器械、工业设计等领域。

二、DLP技术DLP(Digital Light Processing)技术是另一种常见的光固化技术。

它通过使用一块微小的DMD(Digital Micromirror Device)芯片,将光源反射到光敏树脂上,实现固化。

DLP技术具有高速度、高精度的特点,适用于大批量生产,常用于珠宝、鞋类、汽车零部件等行业。

三、LCD技术LCD(Liquid Crystal Display)技术是一种新兴的光固化技术。

它利用液晶显示屏作为光源,通过调节液晶屏的透光和不透光来控制光的照射,实现光敏树脂的固化。

LCD技术具有成本低、易于控制的优势,适用于个人用户和小型企业。

目前,LCD技术在3D打印领域的应用正逐渐增多。

四、多光束技术多光束技术是一种新兴的光固化技术,它通过使用多个光束同时照射在光敏树脂上,实现多个区域的同时固化。

多光束技术具有高速度、高效率的特点,能够大大提高3D打印的生产效率。

目前,多光束技术正在不断研究和发展中,有望成为未来3D打印技术的重要方向。

除了上述介绍的几种常见的光固化技术外,还有其他一些光固化技术,如SLS (Selective Laser Sintering)技术、PolyJet技术等。

每种光固化技术都有其独特的特点和应用领域,可以根据具体需求选择适合的技术。

总结起来,光固化技术在3D打印中扮演着重要的角色。

它们通过使用光源照射在光敏树脂上,实现物体的逐层固化,最终形成所需的3D打印产品。

sla技术原理

sla技术原理

SLA(Stereo Lithography Apparatus)技术,即立体光固化成型法,是一种最早实现商品化的快速成形(Rapid Prototyping)技术。

SLA技术基于液态光敏树脂的光聚合原理,通过逐层固化光敏树脂来生成三维实体模型。

SLA技术的工作原理如下:
1. 设计:首先通过计算机辅助设计(CAD)软件设计出三维实体模型。

2. 切片处理:利用离散程序将模型进行切片处理,将三维模型分解成一系列二维层。

3. 生成数据:根据切片处理结果,生成精确控制激光扫描器和升降台运动的路径数据。

4. 激光扫描:激光光束通过振镜的反射,按照设计的扫描路径照射到液态光敏树脂表面,使特定区域内的树脂固化。

5. 升降台运动:在激光扫描的同时,升降台按照设定的速度和路径进行运动,使激光扫描的区域逐层叠加,形成三维工件。

6. 固化层叠加:当一层加工完毕后,升降台上升一定距离,再覆盖一层液态树脂,进行下一层的扫描和固化。

这样一层层叠加,最终形成三维工件。

7. 后处理:将生成好的三维工件从树脂中取出,进行后续的固化、抛光、电镀、喷漆或着色等处理,得到最终产品。

总之,SLA技术通过逐层扫描和固化光敏树脂,实现三维物体的快速成型。

作为一种成熟的光固化技术,SLA具有加工速度快、精度高、材料选择范围广等优点。

3D打印的主流技术

3D打印的主流技术

5主流技术许多相互竞争的技术是可用的。

它们的不同之处在于以不同层构建创建部件,并且以可用的材料的方式。

一些方法利用熔化或软化可塑性材料的方法来制造打印的“墨水”,例如:选择性激光烧结(selective laser sintering,SLS)和混合沉积建模(fused deposition modeling,FDM),还有一些技术是用液体材料作为打印的“墨水”的,例如:立体平板印刷(stereolithography,SLA)、分层实体制造(laminated object manufacturing,LOM)。

3D打印的技术主要包括SLA、FDM、SLS、LOM等工艺,下面我们简单介绍三种主流技术:1、立体光刻造型技术(SLA):网友们可以想象一下把一根黄瓜切成很薄的薄片再拼成一整根。

先由软件把3D的数字模型,“切”成若干个平面,这就形成了很多个剖面,在工作的时候,有一个可以举升的平台,这个平台周围有一个液体槽,槽里面充满了可以紫外线照射固化的液体,紫外线激光会从底层做起,固化最底层的,然后平台下移,固化下一层,如此往复,直到最终成型。

其优点是精度高,可以表现准确的表面和平滑的效果,精度可以达到每层厚度0.05毫米到0.15毫米。

缺点则为可以使用的材料有限,并且不能多色成型。

2、熔融沉积成型技术,同样是需要把3D的模型薄片化,但是成型的原理不一样。

学过高等数学的朋友都知道积分,熔融沉积成型技术,就是把材料用高温熔化成液态,然后通过喷嘴挤压出一个个很小的球状颗粒,这些颗粒在喷出后立即固化,通过这些颗粒在立体空间的排列组合形成实物。

这种技术成型精度更高、成型实物强度更高、可以彩色成型,但是成型后表面粗糙。

3、选择性激光烧结(简称SLS)不同材料的粉末为原料SLS工艺又称为选择性激光烧结,由美国德克萨斯大学奥斯汀分校的C.R. Dechard于1989年研制成功。

SLS工艺是利用粉末状材料成形的。

SLA光固化3D打印成型技术研究

SLA光固化3D打印成型技术研究

207中国设备工程C h i n a P l a n t E n g i n e e r i ng中国设备工程 2021.06 (上)3D 打印机的原理是将数据和原材料放入3D 打印机中,然后机器根据该程序制造产品。

光敏树脂选择性光固化是采用立体雕刻(Stereo Lithography Apparatus)原理工艺,并且也是最早,最成熟且使用最广泛的快速成型技术。

SLA 光固化3D 打印技术已进入所有领域,提高了打印精度,简化了复杂零件的制造,节省了产品开发周期,降低了人工成本。

目前,国内外制造商正在出现小收缩、快速固化并具有高强度的光敏材料,正是这些因素使SLA 光固化3D 打印机在我国越来越受欢迎。

本文以SLA 光固化3D 打印成型技术为研究对象,简述在教学过程中的体会。

1 SLA 光固化3D 打印成型技术SLA 光固化3D 打印主要以光敏树脂为原料,其基本理论是以光敏树脂快速固化为基础,光敏树脂在特定波长(250~400nm)的紫外线照射下,会发生聚合反应立并固化,从点到线依次固化,完成层截面绘制,然后层层重叠,完成3D 实体打印工作。

图1为SLA立体光固化工艺的原理。

图1 SLA 3D 光固化成型工艺原理图2 SLA 光固化3D 打印成型工艺2.1 前处理前处理的主要操作步骤包括CAD 模型、数据转换、确定摆放方位、施加支撑和切片分层等。

(1)CAD 三维模型。

3D 实体建模是CAD 模型所需的原始数据源的最佳表示,可以使用CAD 软件(例如UG,Pro/E)来实现CAD 模型的3D 建模。

图2为扳手的3D 建模。

(2)数据转换。

如图3,数据处理实际上使用了许多小三角形近似CAD 模型,在这一阶段需要关注的是STL 文件生SLA 光固化3D 打印成型技术研究孔祥忠(湖南理工学院机械工程学院,湖南 岳阳 414000)摘要:SLA 是最早、最成熟且使用最广泛的快速成型技术,SLA 光固化3D 打印技术具有提高了打印精度,节省产品开发周期,降低人工成本的优点,因此SLA 光固化3D 打印机在我国越来越受欢迎。

SLA光固化3D打印成型误差分析

SLA光固化3D打印成型误差分析

SLA光固化3D打印成型误差分析随着3D打印技术的发展,SLA光固化3D打印成为一种常见的快速成型方法,它在制造高精度和复杂形状的零件方面表现出色。

然而,SLA光固化3D打印过程中会产生成型误差,这会影响零件的准确性和质量。

因此,理解SLA光固化3D打印成型误差的来源和机理对提高零件制造的精度至关重要。

1.光固化树脂材料性能误差光固化树脂是SLA3D打印过程中最重要的原材料之一,其物理和化学性质会影响3D 打印成型的准确性和质量。

光固化树脂的流动性、收缩率和机械性能是影响SLA3D打印的主要因素之一。

例如,低流动性的树脂可能会导致边角出现缺陷:一些区域可能因过度喷涂而变得厚重,另一些区域则可能在薄壁处发生塌陷。

高收缩率的树脂则会导致印刷出来的物件尺寸变小,影响到最终的准确度和质量。

2.光固化方法SLA 3D打印机使用激光或DLP光源照射光敏树脂,以形成零件的形状。

然而,由于光敏树脂的光学特性有所不同,不同的光源会产生不同的成型误差。

例如,使用DLP光源进行3D打印时,它的光源会投射在整个构建平台上,使整层树脂同时固化,因此在高度方向产生误差的可能性较小。

而使用激光光源进行3D打印时,光束只能聚焦在一个点上,使得在Z方向很容易产生误差。

3.构件设计设计的复杂性和内置结构会影响SLA 3D打印的成型效果。

在SLA 3D打印过程中,支撑材料用于支撑零件的较小和更脆弱的部分。

如果不合理开发支撑结构,就容易导致成品表面不平整、倾斜等问题。

因此,设计人员需要针对SLA 3D打印工艺进行设计优化,以最大程度地减少支撑材料带来的误差。

总体而言,SLA光固化3D打印成型误差源头较多。

在实际操作过程中,需要根据具体情况来选择合适的光固化树脂材料,并针对零件的设计和支撑要素进行优化,以提高SLA 3D打印的成型精度和质量。

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析3D打印技术的快速发展已经改变了传统制造业的格局,各种不同的3D打印技术应运而生,在这些技术中,SLA、FDM和SLS是应用最为广泛的,各自具有自身独特的特点和应用。

本文将对这三种技术进行比较分析,以便读者能更好地了解它们的优缺点以及应用领域。

1. SLA(光固化3D打印技术)SLA是一种通过光敏树脂材料的光固化来实现零件制造的技术。

在SLA打印中,光固化树脂通过激光光束或UV光固化灯照射,将液体材料逐层固化成固体结构,从而实现3D打印。

特点:- SLA打印精度高,可打印出细小的细节和曲线;-制造的零件密度高,尺寸精确,表面光滑;-材料种类多,可选用透明、硬质和柔软材料等;-适用于制造模型、原型、珠宝等精细零件。

应用:-工程原型制作;-珠宝、手表等奢侈品设计与制造;-医疗行业的模型、器械等制造。

2. FDM(熔融沉积建模技术)FDM是一种利用熔融塑料丝材料层层积累而成的3D打印技术。

在FDM打印中,热塑性聚合物材料通过喷嘴加热熔化后,由机器按照程序设计的路径进行沉积成型。

特点:- FDM打印速度快,制造成本低;-可选材料种类多,包括ABS、PLA、PETG等;-零件结构强度高,适用于功能性部件制造;-可批量生产,适用于器械、工业设计等领域。

应用:-工业制造中的功能基础部件;-制造耐热、耐腐蚀功能零件;-教育领域的原型制作。

3. SLS(选择性激光烧结技术)SLS是一种通过激光照射可熔性粉末材料层层烧结而形成零件的3D打印技术。

在SLS打印中,通过激光照射将粉末材料烧结成型,无需支撑结构,制造出的零件具有良好的强度和表面质量。

特点:- SLS打印具有很高的制造自由度,支撑结构可避免;-零件强度高,可承受较大的载荷;-可使用多种工程级材料,如尼龙、PA12等;-适合于小批量或定制化零件制造。

应用:-汽车、航空航天等领域的功能零部件制造;-医疗领域的人造假体、手术模型等制造;-艺术创作和设计制造。

SLA成型材料的组成

SLA成型材料的组成

SLA成型材料的组成SLA(光固化)是一种常见的3D打印技术,用于制造高精度的模型和零件。

SLA成型材料的组成是关键的,它决定了材料的机械性能、耐化学性、光固化特性以及所制作零件的表面质量。

以下是SLA成型材料的几个主要组成部分:1.光敏单体:光敏单体是SLA成型材料的主要组成部分。

它是一种液体或半固体物质,具有特殊的化学结构,能够响应紫外线(UV)光源的照射而发生光固化。

常见的光敏单体包括丙烯酸酯类物质和环氧树脂。

不同的光敏单体具有不同的机械性能和化学特性,可以满足不同应用领域的需求。

2.光引发剂:光引发剂是SLA成型材料中的另一个重要组成部分。

它是一种能够吸收紫外线光能并将其转化为化学能的物质。

光引发剂与光敏单体发生反应,引发聚合反应,从而实现材料的光固化。

常见的光引发剂包括有机过氧化物、芳香酮类物质等。

3.添加剂:SLA成型材料中还可以添加各种添加剂,以满足特定应用的需求。

添加剂可以调整材料的物理和化学性质,改善材料的光固化特性、增强材料的机械性能、提高材料的耐化学性等。

常见的添加剂包括增韧剂、增强剂、填充剂、抗氧剂等。

4.溶剂和稀释剂:SLA成型材料通常是以溶剂或稀释剂的形式出现的。

溶剂和稀释剂可以调整材料的粘度和流动性,改善材料的打印性能。

此外,溶剂和稀释剂还可以用于清洗打印后的零件,去除未固化的部分材料。

5.颜料和染料:为了制造具有特殊颜色或外观效果的模型和零件,可以向SLA成型材料中添加颜料和染料。

颜料和染料可以使打印的零件呈现出各种不同的颜色和效果,满足用户的个性化需求。

总的来说,SLA成型材料的组成包括光敏单体、光引发剂、添加剂、溶剂和稀释剂、颜料和染料等。

这些组成部分的选择和比例可以根据应用需求进行调整,以实现所需的物理、化学和外观性能。

3D打印技术之SLA(立体光固化成型法)

3D打印技术之SLA(立体光固化成型法)

3D打印技术之SLA(立体光固化成型法)SLA(Stereo lithography Appearance),即立体光固化成型法。

SLA技术3d打印机的原理用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面.这样层层叠加构成一个三维实体。

SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示.其工艺过程是:首先,通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;其次,激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后, 当一层加工完毕后,就生成零件的一个截面;然后, 升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型,最后,将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。

SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模.SLA技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。

因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。

SLA 技术的优势1.光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验。

2。

由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具。

3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具。

4.使CAD数字模型直观化,降低错误修复的成本。

5。

为实验提供试样,可以对计算机仿真计算的结果进行验证与校核。

6。

可联机操作,可远程控制,利于生产的自动化。

SLA 技术的缺陷1.SLA系统造价高昂,使用和维护成本过高。

d打印技术之sla(立体光)

d打印技术之sla(立体光)
成三维实体。
在SLA过程中,液态光敏树脂被倒入一 已固化的层面上再次覆盖一层液态树脂, 个容器中,激光束在液面按计算机指令 以便进行下一层的扫描和累积。这个过 逐层进行扫描,使树脂发生聚合反应形 程反复进行,直至整个工件完成。
成固化层。
SLA技术的特点
高精度
由于SLA技术采用激光逐层扫描 固化,因此可以获得高精度的 打印结果。
科研领域
在材料科学、生物医学、机械工程等学科中,SLA 技术可用于制造实验所需的样品和模型。
学生创新实践
通过SLA技术,学生可以自主设计和制造创新产品, 培养实践能力和创新思维。
THANKS FOR WATCHING
感谢您的观看
05 SLA(立体光)3D打印的实 际应用案例
工业设计领域
01
02
03
复杂零件制造
SLA技术能够制造出复杂 形状和结构的零件,广泛 应用于航空、汽车、电子 等工业领域。
功能测试模型
通过SLA技术快速制造出 产品原型,用于进行功能 测试和优化设计。
模具制作
在塑料、陶瓷等材料的模 具制作中,SLA技术能够 提高模具的精度和寿命。
光敏树脂材料在打印过程中通过 光聚合反应固化,形成精确的三
维结构。
光敏树脂材料的性能直接影响打 印成品的精度、强度和耐久性。
其他可用的材料
01
除了光敏树脂材料,SLA(立体光 )3D打印技术还可以使用其他可用 的材料,如陶瓷、玻璃、金属等 。
02
这些材料的加入可以扩展SLA(立 体光)3D打印技术的应用范围,满 足更多领域的需求。
光敏树脂材料选择
根据模型需求选择合适的光敏 树脂材料,确保打印质量。
打印开始
按照切片处理后的指令,逐层 进行打印。

SLA光固化3D打印成型误差分析

SLA光固化3D打印成型误差分析

SLA光固化3D打印成型误差分析1. 引言1.1 SLA光固化3D打印成型误差分析概述SLA光固化3D打印是一种基于光敏树脂材料的3D打印技术,通过使用紫外线激光束对树脂进行点状固化,逐层堆叠最终形成三维物体。

在SLA光固化3D打印过程中,由于各种因素的影响,可能会导致成型误差的产生,影响打印物体的准确性和表面质量。

对成型误差进行深入分析和探讨,对于提高打印精度和产品质量具有重要意义。

本文旨在对SLA光固化3D打印成型误差进行综合分析,探讨其原理、误差来源、参数优化、表面质量以及光固化时间等方面的影响。

通过对这些关键问题的研究,可以为进一步优化SLA光固化3D打印工艺提供重要参考。

深入了解成型误差的产生机制,有助于解决相关问题,提高打印精度和效率,推动SLA光固化3D打印技术的发展与应用。

在接下来的章节中,我们将详细探讨SLA光固化3D打印成型误差的相关问题,为读者提供全面的研究成果和分析结论。

2. 正文2.1 SLA光固化3D打印技术原理SLA光固化3D打印技术原理主要是指采用光敏树脂作为材料,通过UV光源照射将其固化成具有一定形状的物体的制造技术。

这项技术首先需要将3D模型分层切片,然后通过控制UV光源的照射区域和时间来逐层固化树脂,最终将所有层叠加形成完整的物体。

在这个过程中,关键的部件包括光源、镜片、槽体和平台。

光源产生的UV光被反射并聚焦到树脂表面,镜片的角度和位置决定了光束的照射范围,槽体用来装载光敏树脂和提供材料循环,平台则用来支撑和固定被制造物体。

除了硬件设备,SLA技术中还需要控制软件来协调整个制造过程。

通过控制软件,用户可以调整每一层的厚度、固化时间和光源的参数,以实现对成品的精细控制。

总的来说,SLA光固化3D打印技术原理是一种高精度、高效率的制造方法,可以应用于多种领域,如医疗、航空航天和工程等。

该技术的原理深入了解对于提高成型质量和减小误差具有重要意义。

2.2 误差来源分析误差来源分析是对SLA光固化3D打印过程中可能导致成型误差的各种因素进行深入分析和研究。

3D打印总结

3D打印总结

3D打印方法总结3D打印(3 dimensional printing)是由1985年前后由美国兴起的种成型技术,由扫描或者三维建模得到三维数字模型,然后将切片后的模型输入打印机,分层打印并逐层粘合或者融合,最终得到三维实体。

3D打印是一种增材制造快速成型技术,3D打印一般与数字化技术结合,其核心思想是分层制造。

目前有立体平板印刷术(SLA法)、选择性激光烧结法(SLS法)、逐层轮廓成型法(LOM法)、光掩膜法(SGC法)、融化沉积法(FDM法)、陶瓷壳法(DSPC法)等3D 打印方法被提出【1】。

1、立体平板印刷术(SLA法)又称立体光刻造型技术(SLA):光刻在光固化树脂槽内进行,槽里面充满了可以紫外线照射固化的液体,液体内有一个可以举升的平台,紫外线激光会从底层做起,固化最底层的,然后平台下移,固化下一层,如此往复,直到最终成型【1】。

优缺点:精度高,成型面平滑,但是使用材料种类受限,不能多色打印。

2、选择性激光烧结法(SLS法): SLS工艺是利用粉末状材料成形,将材料粉末铺洒在已成形零件的上表面,并刮平;用高强度的CO2激光器在刚铺的新层上扫描出零件截面;材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成形的部分粘接;当一层截面烧结完后,铺上新的一层材料粉末,选择地烧结下层截面【1】。

优缺点:1)比SLA法成品坚固,通常可以用来制作结构功能件;2)激光束可对多种材料成型,如尼龙、弹性体和金属;3)可以成型结构相当复杂零件;但是由于没有碾压步骤,Z向精度不易保证,表面粗糙度相对较低【2】。

3、逐层轮廓成型法(LOM法):LOM法主要用于高分子和低熔点金属成型,工艺流程主要为铺料带,热压,激光切割,移除废料带。

优缺点:使用料带,铺设方便,只需切出内外轮廓,速度较快,成本较低。

但成型形状和材料受到局限【3】。

4、光掩膜法(SGC法):使用可编程控制的光膜照射树脂成型,光掩膜上的图形是掩膜机在模型片参数控制下,利用电传照相或静电喷涂而形成零件断面图形,零件断面部分通过紫外线固化。

SLA光固化3D打印设备与操作介绍

SLA光固化3D打印设备与操作介绍

03
树脂槽:存储光 敏树脂,供打印
使用
04
升降平台:控制 打印件的高度,
实现分层打印
05
控制系统:控制 整个打印过程, 包括激光强度、 扫描速度等参数
06
冷却系统:冷却 打印件,提高打
印精度和速度
07
支撑结构:用于 支撑打印件,防
止变形和损坏
08
安全防护:保护 操作人员,防止
激光伤害
09
电源:提供设备 所需的电力
陶瓷粉末:通过 激光烧结成型,
2 具有较高的强度
和耐磨性
3 金属粉末:通过
激光熔融成型, 具有较高的强度 和导电性
材料选择与使用
STEP1
STEP2
STEP3
STEP4
光敏树脂:SLA光 固化3D打印的主 要材料,种类繁多, 性能各异
支撑材料:用于支 撑打印件,防止变 形和塌陷
清洗材料:用于清 洗打印件表面的残 留物和支撑材料
材料处理:使用前需充 分搅拌,防止材料分层
SLA光固化3D打印 案例
典型案例展示
汽车零部件制造:快速原 型制作,降低研发成本
医疗领域:定制化假体、手 术模型,提高手术成功率
艺术设计:雕塑、建筑模 型,实现创意设计
教育领域:教学模型、实 验设备,提高教学效果
案例分析与启示
01
案例一:汽车零部 件制造
02
案例二:医疗设 备制造
03
案例三:建筑模 型制作
04
案例四:艺术作 品创作
05
启示一:SLA光固 化3D打印技术在 多个领域具有广泛
的应用前景
06
启示二:SLA光固 化3D打印技术可 以提高生产效率和产品质量 Nhomakorabea07

SLA光固化3D打印成型误差分析

SLA光固化3D打印成型误差分析

SLA光固化3D打印成型误差分析SLA光固化3D打印是一种通过将液态光敏树脂通过光固定方式逐层叠加成型的技术。

它具有制造复杂结构的能力和高精度的优势,因此在医疗、航空航天、模型制作等领域得到了广泛应用。

SLA光固化3D打印在成型过程中仍然存在一定的误差,影响零件的尺寸精度和表面质量。

本文将对SLA光固化3D打印成型误差进行分析,并探讨其产生原因和解决方法。

成型误差主要由以下几个方面引起:1. 光固化尺寸收缩:光敏树脂在光照后会发生固化,但固化过程中会引起尺寸收缩。

尺寸收缩的大小与光敏树脂的种类、光照时间和强度有关。

正确选择光敏树脂和光照参数是减小尺寸收缩误差的重要因素。

2. 建模误差:由于SLA光固化3D打印是通过在液态树脂表层照射光线进行固定,然后逐渐向下移动,叠加形成物体的方式进行的,因此对于具有悬空结构的零件或垂直细长结构的零件,容易发生倾斜或变形。

正确设计零件的支撑结构和增加加固辅助支撑是减小建模误差的方法之一。

3. 光斑大小和分辨率:光斑的大小和分辨率也会影响成型的精度。

光斑越小,零件表面的细节和曲面光滑度越高。

降低光斑的大小和提高打印分辨率可以减小成型误差。

在了解成型误差的原因后,可以采取一些方法和措施来减小误差并提高成型精度:1. 充分进行光敏树脂的性能测试和选择,选择适合需要的树脂,使其具备合适的收缩率和凝固时间。

2. 合理设计零件的支撑结构和增加加固辅助支撑,防止零件变形和倾斜。

3. 优化光固化参数,如光照强度、光照时间、打印层厚等,实验找到最佳参数来减小误差。

4. 适当增加光斑层厚,减小光斑尺寸和增加打印分辨率,以提高成型的精度。

5. 对于特殊要求的零件,可以采用后处理工艺进行精细加工,如机械加工、研磨和抛光等,以提高表面光滑度和精度。

SLA光固化3D打印成型误差是由多个因素共同作用引起的,可以通过合理选择光敏树脂、优化光固化参数、设计合理的支撑结构等措施来减小误差并提高成型精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3D打印技术之SLA(立体光固化成型法)
SLA(Stereo lithography Appearance),即立体光固化成型法。

SLA技术3d打印机的原理
用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。

这样层层叠加构成一个三维实体。

SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。

其工艺过程是:
首先,通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;
其次,激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面;
然后,升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型,
最后,将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。

SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。

SLA技术成形速度较快,精度较
高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。

因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。

SLA 技术的优势
1.光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验。

2.由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具。

3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具。

4.使CAD数字模型直观化,降低错误修复的成本。

5.为实验提供试样,可以对计算机仿真计算的结果进行验证与校核。

6.可联机操作,可远程控制,利于生产的自动化。

SLA 技术的缺陷
1.SLA系统造价高昂,使用和维护成本过高。

2.SLA系统是要对液体进行操作的精密设备,对工作环境要求苛刻。

3.成型件多为树脂类,强度,刚度,耐热性有限,不利于长时间保存。

4.预处理软件与驱动软件运算量大,与加工效果关联性太高。

5.软件系统操作复杂,入门困难;使用的文件格式不为广大设计人员熟悉。

【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】
精品文档交流 2。

相关文档
最新文档