分式_习题(教案 华师大)

合集下载

华师大版八下数学《16.1.1分式》教学设计

华师大版八下数学《16.1.1分式》教学设计

华师大版八下数学《16.1.1分式》教学设计一. 教材分析《分式》是华师大版八年级下册数学的重要内容,主要介绍分式的概念、分式的运算、分式的性质以及分式方程的解法。

本节课主要讲解分式的概念和分式的基本运算。

教材通过丰富的例题和练习题,帮助学生理解和掌握分式的知识,为后续的分式方程学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式等知识,具备了一定的代数基础。

但部分学生对代数式的运算规则掌握不牢,对分式的理解可能存在困难。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。

三. 教学目标1.了解分式的概念,掌握分式的基本运算规则。

2.能够运用分式解决实际问题,提高学生的数学应用能力。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.分式的概念理解,分式的基本运算规则。

2.分式方程的解法。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的教学PPT,展示分式的概念和例题。

2.准备练习题,巩固学生的学习成果。

3.准备分式方程的实际问题,提高学生的应用能力。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,激发学生的学习兴趣。

例如:某商品的原价是120元,现在打8折出售,求打折后的价格。

2.呈现(15分钟)讲解分式的概念,展示分式的基本运算规则。

通过PPT展示分式的定义,解释分式的分子和分母,举例说明分式的基本运算。

3.操练(15分钟)让学生进行分式的基本运算练习。

布置练习题,让学生独立完成,然后进行讲解和辅导。

4.巩固(10分钟)通过一些具体的例子,让学生进一步巩固分式的运算规则。

可以让学生分组讨论,共同解决问题。

5.拓展(10分钟)讲解分式方程的解法,让学生学会如何运用分式解决实际问题。

可以通过一些实际问题,让学生思考并解决问题。

6.小结(5分钟)对本节课的内容进行总结,强调分式的概念和运算规则,提醒学生注意分式方程的解法。

华东师大版八年级下册数学 16.1.1 分式(2) 教案

华东师大版八年级下册数学  16.1.1 分式(2)   教案

课题:《分式》【课标要求】了解分式的概念,能识别出哪些是分式,并能指出分式有意义、分式无意义、分式的值为0时,分式中字母的取值范围。

【学习目标】1、学生能了解分式的概念,并会从一些代数式中识别出哪些是分式。

(概念性知识的理解)2、学生会把字母的值代入分式中,求出分式的值。

(概念性知识的运用)3、学生会指出分式有意义、分式无意义、分式的值为0时,分式中字母的取值范围。

(概念性知识的运用)【任务分析】(一)使能目标分析(寻找“先行条件”,建立逻辑关系)(二)起点能力分析(判断学生是否掌握与本节课内容相关的起点能力)1.知道单项式和多项式统称为整式,并会识别单项式和多项式。

2.已知代数式中字母的值,会代入并求出代数式的值。

3.知道分数的分母不能为0,分母为0时,分数没有意义。

【教学策略】(一)学习结果分类:类比思想的学习和概念学习。

(二)支持性条件:数学的概括能力、类比的思想。

(三)教学重点:了解分式的概念及分式有无意义、值为零的条件。

(通过与分数类比的思想学习分式)(四)教学难点:分式的值为0时,分式中字母的取值范围。

(需要同时考虑分子和分母的取值)(五)教具、学具准备:课件、导学案。

(六)目标、教学与测评的一致性分析表:目标、教学活动和测评在分类表中的位置知识维度认知过程维度记忆理解运用分析评价创造事实性知识概念性知识目标1 目标2、3、4程序性知识元认知知识【教学过程】一、告知目标(约2分钟)知道他是谁吗?他就是前NBA火箭队的中国球员——姚明,期间,姚明7场球共得115分,他平均每场比赛得16.42分。

若他x场球共得y分,则他平均每场球得多少分?(yx)知道这位运动员是谁吗?他就是刘翔。

在雅典奥运会110米栏比赛中以12.91秒的成绩夺冠,被称为“世界飞人”,他的平均速度是8.52米/秒。

若他跑完110米栏需要y秒,则他的平均速度是多少?(110y)汽车从广州开往黔西约为1100千米,汽车的平均速度为V千米/小时,由于开通了高速公路,路程缩短了a千米,平均速度提高了b千米/小时,则现在它到达黔西所需要的时间为多少?(1100++av b)对于yx、110y和1100++av b,它们是我们学过的整式吗?(不是)它们叫什么呢?本节课我们将与它们交朋友并展开学习。

新版华东师大版八年级数学下册《16.1.1分式》教学设计2.

新版华东师大版八年级数学下册《16.1.1分式》教学设计2.

新版华东师大版八年级数学下册《16.1.1分式》教学设计2.一. 教材分析华东师大版八年级数学下册《16.1.1分式》是学生在学习了实数、代数式、函数等知识后,进一步学习的知识点。

本节内容主要介绍了分式的概念、分式的基本性质和分式的运算。

通过学习分式,为学生今后学习高中阶段的化学、物理等学科打下基础。

教材从实际问题出发,引导学生认识和理解分式的概念,并通过大量的例题和习题,使学生掌握分式的基本性质和运算方法。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,能够理解和掌握一些基本的代数知识。

但是,对于分式这种新的数学概念,学生可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际情况进行针对性的教学。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.学会分式的运算方法,能够熟练地进行分式的化简、运算。

3.能够运用分式解决实际问题,提高学生的数学应用能力。

四. 教学重难点1.分式的概念和基本性质。

2.分式的运算方法。

五. 教学方法1.情境教学法:通过实际问题引入分式的概念,让学生在解决问题的过程中理解和掌握分式。

2.例题教学法:通过大量的例题,让学生学会分式的运算方法。

3.小组合作学习:让学生在小组讨论中,共同解决问题,提高学生的合作能力。

六. 教学准备1.准备相关的实际问题,用于引入分式的概念。

2.准备大量的例题和习题,用于巩固学生的知识点。

3.准备PPT,用于展示相关的知识点和例题。

七. 教学过程1.导入(5分钟)利用实际问题,引导学生思考,从而引入分式的概念。

例如,某商品的原价是200元,现在进行打折促销,打8折后的价格是多少?让学生在解决问题的过程中,理解分式的概念。

2.呈现(10分钟)通过PPT,展示分式的基本性质和运算方法。

让学生在视觉上对分式有一个直观的认识。

3.操练(10分钟)让学生独立完成一些分式的化简和运算,巩固所学知识点。

华东师大版分式教案

华东师大版分式教案

华东师大版分式教案Title: Fractions Teaching Plan - Hua Dong Normal University EditionI. Introduction (150 words)II. Learning Objectives (100 words)1. Understand the concept of fractions and their representation.3. Perform basic operations on fractions, including addition, subtraction, multiplication, and division.4. Solve real-world problems involving fractions.5. Develop critical thinking and problem-solving skills through fraction-based activities and exercises.III. Teaching Strategies (400 words)1. Introduction to Fractions (100 words)- Begin with a simple definition of fractions as a part of a whole or a set.- Use visual aids, such as manipulatives or pictures, to illustrate the concept of fractions.- Explore different ways of representing fractions,including fraction bars, circles, and number lines.- Provide practice exercises and activities to reinforce the concept of equivalent fractions.- Engage students in discussions to explain their reasoning and justify their answers.3. Operations with Fractions (100 words)- Demonstrate multiplication and division of fractions through real-life examples and applications.- Encourage students to simplify fractions whenever possible.4. Real-World Applications of Fractions (100 words)- Show students how fractions are used in everyday situations, such as cooking, measurement, and money.- Provide examples and problem-solving tasks that involve fractions, reinforcing their relevance in real-life scenarios.- Facilitate discussions on how fractions can be used to solve problems and make informed decisions.5. Critical Thinking and Problem-Solving Activities (100 words)- Implement activities that require students to think critically and solve fraction-based problems independently or collaboratively.- Incorporate open-ended questions and tasks that foster creativity and higher-order thinking skills.- Encourage students to reflect on their problem-solving strategies and explain their reasoning.IV. Assessment and Evaluation (150 words)1. Formative Assessment: Use quizzes, class discussions, and individual/group activities to monitor students' understanding and progress throughout the teaching process.3. Provide constructive feedback to students to help them improve their understanding and skills in fractions.4. Adjust instruction based on assessment results to address any gaps or challenges identified.V. Conclusion (100 words)。

华东师大版分式教案

华东师大版分式教案

《§ 16.1分式及其基本性质》教学设计【教学目标】(1)熟练掌握分式的基本性质,会进行分式的约分、?通分和加减乘除混合运算.(2)能解决一些与分式、分式方程有关的实际问题,具有一定的分析问题、’ 解决问题的能力和应用意识.(3)经历通过观察、归纳、类比、猜想,获得分式的基本性质、?分式乘除运算法则、分式加减运算法则的过程;发展学生的合情推理能力与代数恒等变形能力.(4)通过学习,获取代数知识的常用方法,感受代数学习的实际应用价值. 【教学重点和难点】一、教学重点(1)分式的混合运算以及分式方程的应用.(2)把握分式的基本性质,在通分中的充分应用.抓住最简公分母的寻找方法是解决通分这一难点的关键.二、教学难点异分母的分式的通分,特别是分母是多项式的分式的通分,另一个是分式方程的“建模”问题.【教学时数】2课时【教学准备】多媒体【课型】新授课【教学过程与设计】第一课时一、创设情境,揭示目标:请你来填一填:(1) 面积为2平方米的长方形一边长3米,则它的另一边长为 ________________ ;(2) 面积为S 平方米的长方形一边长a 米,则它的另一边长为 ________________ ;⑶ 已知正方形的周长是a cm ,则一边的长是 ___________ cm 面积是 __________ cm2(4) 一箱苹果售价P 元,总重m 千克,箱重n 千克,则每 千克苹果的售价是元.本节课的学习目标是【教师口述或投影】1.分式的定义:形如A (A 、B 是 ,且B 中含有 ,B M )的式子,叫B—做分式.B ^_;分式A 没有意义 B = _;分式△的值为0 A—B — B何分类?、指导学生自学【投影】分钟后看谁能回答。

问题:①1 2② 1 ( x y),③- 3,④0x5 x⑤ ab 1 ,⑥x y ,⑦x y2 c 2⑧ 5 x1 ⑨2x ,⑩ 12 ,2 '3 a(11) a -,(12)1 ( x y),(13) 433 x三、学生自学,教师巡视。

新版华东师大版八年级数学下册《16.1.1分式》教学设计2

新版华东师大版八年级数学下册《16.1.1分式》教学设计2

新版华东师大版八年级数学下册《16.1.1分式》教学设计2一. 教材分析华东师大版八年级数学下册《16.1.1分式》是学生在学习了实数、有理数、无理数等基础知识后,进一步学习代数知识的重要内容。

本节课主要让学生了解分式的概念、分式的基本性质以及分式的运算。

通过学习分式,为学生今后学习函数、方程等高级代数知识打下基础。

教材从实际问题出发,引导学生认识分式,并在分式的概念、性质和运算方面进行深入探讨。

二. 学情分析学生在之前的学习中已经掌握了实数、有理数、无理数等基础知识,具备了一定的代数思维。

但部分学生对代数知识的运用能力仍待提高,对分式的理解和运用可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.学会分式的运算方法,提高代数运算能力。

3.培养学生的逻辑思维和解决问题的能力。

四. 教学重难点1.分式的概念和基本性质。

2.分式的运算方法。

五. 教学方法1.情境教学法:通过实际问题引入分式,让学生在解决问题的过程中感受分式的重要性。

2.启发式教学法:引导学生主动思考、探讨分式的性质和运算方法。

3.小组合作学习:让学生在小组内讨论、交流,共同解决问题,提高学生的合作能力。

六. 教学准备1.课件:制作与教学内容相关的课件,以便于引导学生直观地理解分式。

2.练习题:准备适量的练习题,用于巩固学生的学习效果。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用课件展示实际问题,引导学生思考问题中涉及到的数,从而引入分式的概念。

2.呈现(10分钟)讲解分式的定义,让学生明确分式的构成和特点。

通过示例,讲解分式的基本性质,如分式的分子分母都乘以(或除以)同一个不为0的整式,分式的值不变。

3.操练(10分钟)让学生进行分式的基本运算,如分式的乘法、除法、加法和减法。

教师在旁边指导,解答学生的疑问。

4.巩固(10分钟)让学生解决一些实际问题,运用所学的分式知识。

八年级数学下册16分式习题课教案4[华东师大版]

八年级数学下册16分式习题课教案4[华东师大版]

16章
教材内容16章习题课4 上课时间月日第节
教具多媒体课型习题课




知识与技能掌握零指数幂与负整指数幂的意义及运算,会用科学记数法
过程与方法探索实践,交流合作
情感态度价值观体验数学的作用和简洁美.
教学重点负整指数幂的运算与科学记数法
教学难点负整指数幂的运算与科学记数法
教学内容与过程教法学法设计一、典型例题:
例4.用科学记数法表示下列各数
例7. (1)原子弹的原料——铀,每克含有2.56×1021个原子核,
一个原子核裂变时能放出3.2×10-11J的热量,那么每克铀全部裂变
时能放出多少热量?
让学生通过自主探
究,发现问题并学会分
析解决问题。

鼓励学生自主总结
归纳知识,加强理解并
帮助记忆.
(2)1块900mm2的芯片上能集成10亿个元件,每一个这样的元件约占多少mm2?约多少m2?(用科学计数法表示).
二、练习题
通过例题讲解和纠错,加深学生对知识的理解,使学生灵活应用.
通过练习巩固知识,提高难度,使学生学会应用并得到发展.。

【华东师大版】八年级数学下册 全册教案 16.1分式

【华东师大版】八年级数学下册 全册教案 16.1分式

16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v-2060小时,所以v +20100=v-2060.3. 以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x xx x --21(1) (2) (3)七、课后练习 1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义? 3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作x x 57+xx 3217-x 802332xx x --21231-+x x为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号. a b 56--, y x 3-, n m --2, n m 67--, yx 43---.[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解:ab56--= a b 56, y x 3-=y x 3-,n m --2=n m 2, n m 67--=n m 67 , y x 43---=yx 43. 六、随堂练习1.填空:4320152498343201524983(1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -2.约分:(1)c ab b a 2263 (2)2228m n n m (3)532164xyzyz x - (4)x y y x --3)(23.通分:(1)321ab 和c b a 2252 (2)xy a 2和23x b (3)223ab c 和28bc a - (4)11-y 和11+y 4.不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233aby x -- (2) 2317b a --- (3) 2135x a -- (4) m b a 2)(-- 七、课后练习1.判断下列约分是否正确:(1)c b c a ++=b a (2)22yx y x --=y x +1 (3)nm n m ++=0 2.通分: (1)231ab 和b a 272 (2)x x x --21和xx x +-21 3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)b a b a +---2 (2)y x y x -+--32 八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1)bc a 2 (2)n m 4 (3)24zx - (4)-2(x-y)2 3.通分:(1)321ab = cb a ac 32105, c b a 2252= c b a b 32104 (2)xy a 2= y x ax 263, 23x b = y x by 262(3)223ab c = 223812cab c 28bc a -= 228c ab ab (4)11-y =)1)(1(1+-+y y y 11+y =)1)(1(1+--y y y 4.(1) 233ab y x (2) 2317b a - (3) 2135x a (4) mb a 2)(--课后反思:。

八年级数学下册16.1分式教案华东师大版

八年级数学下册16.1分式教案华东师大版

16.1分式16.1。

1从分数到分式一、 教学目标1. 了解分式、有理式的概念。

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v -2060小时,所以v +20100=v-2060. 3。

以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解 P5例1。

当x 为何值时,分式有意义。

[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:错误!分母不能为零;错误!分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 1-m m 32+-m m 112+-m m2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时。

华师大版数学八年级下册第16章《分式》(第1课时)单元复习教学设计

华师大版数学八年级下册第16章《分式》(第1课时)单元复习教学设计

华师大版数学八年级下册第16章《分式》(第1课时)单元复习教学设计一. 教材分析华师大版数学八年级下册第16章《分式》是学生在掌握了实数、代数式、方程等基础知识后的进一步学习。

本章主要介绍了分式的概念、分式的运算、分式方程的解法等。

本章内容在学生的数学知识体系中起到承上启下的作用,为后续学习函数、几何等知识打下基础。

二. 学情分析八年级的学生已经具备了一定的代数基础,对实数、代数式、方程等概念有一定的了解。

但学生在学习过程中,对于分式的理解容易出现模糊不清、概念混淆等问题。

此外,学生对于分式的运算和分式方程的解法,也需要通过实例讲解和练习来进一步巩固。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.学会分式的运算,包括分式的加减乘除。

3.掌握分式方程的解法,并能应用于实际问题中。

四. 教学重难点1.分式的概念和基本性质的理解。

2.分式的运算方法。

3.分式方程的解法及应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过问题引导学生思考,案例讲解分式的概念和运算方法,小组合作探讨分式方程的解法,提高学生的学习兴趣和参与度。

六. 教学准备1.教学PPT,包括分式的概念、运算方法和分式方程的解法等内容。

2.练习题,包括分式的运算和分式方程的应用问题。

3.教学视频或动画,用于讲解分式的概念和运算方法。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如计算“某商品打八折后的价格是120元,求原价”。

让学生思考如何用数学表达式表示原价和打折后的价格,从而引出分式的概念。

2.呈现(15分钟)讲解分式的概念,通过PPT展示分式的定义和基本性质。

结合实例讲解分式的运算方法,包括分式的加减乘除。

同时,展示教学视频或动画,帮助学生更好地理解分式的概念和运算方法。

3.操练(10分钟)让学生分组练习分式的运算,包括分式的加减乘除。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)讲解分式方程的解法,通过PPT展示分式方程的解法步骤。

八年级数学下册16分式习题课教案1新版华东师大版_

八年级数学下册16分式习题课教案1新版华东师大版_

八年级数学下册16分式习题课教案1新版华东师大版_
本性质交流合作,探究实践分式基本性质的教法学法设计
p m a a s a (5)面积为4平方米的长方形一边长为3米,则它的另一边长为_____米;(6)面积为4平方米的长方形一边长为3米,则它的另一边长为_____米;(7)面积为平方米的长方形一边长为米,则它的另一边长为_____米;(8)一箱苹果每千克售价为p 元,总重m 千克,箱重n 千克,则这箱苹果的售价是_____元;(9)一箱苹果售价元,总重千克,箱重
四、解答题
五、总结归纳:
根据练习题,总结你有哪些感想和收获?。

八年级数学下册16.1分式教案华东师大版

八年级数学下册16.1分式教案华东师大版

16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v-2060小时,所以v +20100=v-2060.3. 以上的式子v +20100,v -2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x xx x --221(1) (2) (3)七、课后练习 1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义? 3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标 1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作x x 57+xx 3217-x 802332xx x --212312-+x x为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b56--, y x 3-, n m --2, n m 67--, yx 43---。

华师大版八下数学16《分式》教学设计

华师大版八下数学16《分式》教学设计

华师大版八下数学16《分式》教学设计一. 教材分析《分式》是华师大版八年级下册数学第16节的内容,主要包括分式的概念、分式的运算、分式的性质和分式的应用。

本节内容是学生学习代数的基础,也是进一步学习高中数学的重要基础。

通过本节内容的学习,学生能理解分式的概念,掌握分式的运算和性质,提高解决实际问题的能力。

二. 学情分析学生在学习本节内容前,已经学习了有理数、整式等知识,具备一定的数学基础。

但分式作为新的数学概念,对学生来说较为抽象,需要通过实例和练习来逐步理解和掌握。

同时,学生对于代数式的运算和性质有一定的了解,但分式的运算和性质与其有所不同,需要学生在已有的知识体系上进行拓展和深化。

三. 教学目标1.知识与技能:理解分式的概念,掌握分式的运算和性质,能够运用分式解决实际问题。

2.过程与方法:通过自主学习、合作交流和探究活动,培养学生的数学思维能力和问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:分式的概念、分式的运算和性质。

2.难点:分式的运算规律和性质的运用。

五. 教学方法1.引导法:通过问题引导,让学生自主探究和发现分式的概念和性质。

2.互动法:通过小组讨论和交流,促进学生对分式的理解和运用。

3.实践法:通过实例分析和练习,让学生在实际问题中运用分式。

六. 教学准备1.教学课件:制作课件,展示分式的概念、运算和性质。

2.练习题:准备分式的练习题,巩固学生的理解和运用能力。

3.教学资源:收集与分式相关的实际问题,丰富教学内容。

七. 教学过程1.导入(5分钟)通过展示实际问题,引出分式的概念,激发学生的兴趣。

示例:某商品的原价是80元,打8折后的价格是多少?2.呈现(10分钟)介绍分式的定义和基本性质,让学生理解分式的概念。

示例:分式的定义、分式的性质。

3.操练(10分钟)进行分式的运算练习,让学生掌握分式的运算方法。

华师大版数学八年级下册《分式》教学设计3

华师大版数学八年级下册《分式》教学设计3

华师大版数学八年级下册《分式》教学设计3一. 教材分析华师大版数学八年级下册《分式》是学生在学习了初中数学基础知识后,进一步深入研究数学的一个重要的知识点。

本节课主要让学生掌握分式的概念、性质和运算法则,培养学生解决实际问题的能力。

教材内容共有5个小节,分别是分式的概念,分式的性质,分式的运算,分式方程的解法,分式的应用。

本节课是第三个小节,主要讲解分式的运算。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式的基本知识,对有理数的运算也有一定的了解。

但学生对分式的概念和性质可能还比较陌生,因此需要教师在课堂上进行详细的讲解和引导。

此外,学生可能对分式的运算规则感到困惑,需要教师通过具体的例子进行解释和巩固。

三. 教学目标1.让学生理解分式的概念和性质。

2.让学生掌握分式的运算规则。

3.培养学生解决实际问题的能力。

四. 教学重难点1.分式的概念和性质。

2.分式的运算规则。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法。

通过具体的例子引导学生理解分式的概念和性质,通过小组合作让学生探讨分式的运算规则,通过解决问题培养学生解决实际问题的能力。

六. 教学准备1.PPT课件。

2.教学案例和问题。

3.分组合作的素材。

七. 教学过程1.导入(5分钟)利用PPT课件,展示一些与分式相关的实际问题,引导学生思考如何解决这些问题。

例如,讲解分式方程的应用,如人口增长问题、利润问题等。

通过实际问题的导入,激发学生的学习兴趣,引出本节课的主题——分式的运算。

2.呈现(15分钟)讲解分式的概念和性质。

利用PPT课件,展示分式的定义,解释分式的组成和意义。

通过具体的例子,让学生理解分式的性质,如分式的分子和分母都乘以(或除以)同一个非零数,分式的值不变。

3.操练(15分钟)让学生进行分式的基本运算。

给出一些分式运算的题目,让学生独立完成。

教师在过程中进行巡视指导,解答学生的疑问。

同时,选取一些典型的题目进行讲解,引导学生总结分式运算的规则。

八年级数学下册 第16章 分式热点专题训练教案 (新版)

八年级数学下册 第16章 分式热点专题训练教案 (新版)

分式【知识与技能】1.使学生进一步熟悉分式的意义及分式的运算.2.会解分式方程,利用分式方程解决实际问题.【过程与方法】通过复习,发展学生的代数表达能力、运算能力和有条理地思考问题的能力.【情感态度】提高学生解决实际问题的能力,培养学生的符号感,提高分析问题和解决问题的能力.【教学重点】会解分式方程,并利用分式方程解决实际问题. 【教学难点】会解分式方程,并利用分式方程解决实际问题.一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.分式概念形如A/B ,其中分母B 中含有字母,分数是整式而不是分式.2.分式的基本性质分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:.A M A M AB AB B M B M⨯÷==⨯÷, 分式的约分和通分:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.求几个分式的最简公分母的步骤:(1)取各分式的分母中系数最小公倍数;(2)各分式的分母中所有字母或因式都要取到;(3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.(5)各个分式的分母都是多项式,并且可以分解因式.这时,可先把各分式的分母中的多项式分解因式,再确定各分式的最简公分母,最后通分.3.分式的运算(1)同分母分式的加减法法则:同分母的分式相加减,分母不变,分子相加减.(2)异分母分式的加减法法则:异分母的分式相加减,先通分,变为同分母后再加减.(3)分式的四则混合运算顺序与分数的四则运算顺序一样,先乘方,再乘除,最后加减,有括号要先算括号内的.有些题目先运用乘法分配律,再计算更简便些.4.分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.分式方程的解法:①去分母,方程两边同时乘以最简公分母,将分式方程化为整式方程;②按解整式方程的步骤求出未知数的值;③验根.5.分式方程的应用列分式方程与列整式方程解应用题一样,应仔细审题,找出反映应用题中所有数量关系的等式,恰当地设出未知数,列出方程.与整式方程不同的是求得方程的解后,应进行两次检验,一是检验是否是增根,二是检验是否符合题意.6.零指数幂与负整数指数幂零指数幂:任何不等于零的数的零次幂都等于1.即:a 0=1(a≠0)负整数指数幂:任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数.1n na a -= (a≠0,n 是正整数) 7.科学记数法:我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a×10-n 的形式,其中n 是正整数,1≤|a|<10.【教学说明】通过学生的回顾与思考,加深学生对解分式方程的步骤及解应用题的步骤的认识.三、典例精析,复习新知1.解分式方程:1122x x x-=-- 解:方程两边同乘x-2,得1=-(1-x)1=-1+x∴x=2检验:将x=2代入x-2=2-2=0∴x=2为原方程的增根.2.有一道题:“先化简,再求值:()22241244x x x x x -+÷+--其中,x=-3”. 小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?解:原式计算的结果等于x 2+4,所以不论x 的值是+3还是-3结果都为13.3.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.解:设前一小时的速度为xkm/小时,则一小时后的速度为 1.5xkm/小时,由题意得:()18018021 1.53x x x --+=, 解这个方程为x=60,经检验,x=60是所列方程的根,答:前一小时的速度为60km/小时.4.某市从今年1月1日起调整居民用天燃气的价格为每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m 3,5月份的燃气费是90元.求该市今年居民用气的价格.解:设该市去年居民用气的价格为x 元/m 3,则今年的价格为(1+25%)x 元/m 3. 根据题意,得()969010125%x x-=+. 解这个方程,得x=2.4.经检验,x=2.4是所列方程的根.2.4×(1+25%)=3(元/m 3).所以,该市今年居民用气的价格为3元/m 3.【教学说明】通过设置恰当的、有一定梯度的题目,关注学生知识技能的发展和不同层次的需求.四、复习训练,巩固提高1.用科学记数法表示下列各数:0.00004,-0.034,0.00000045,0.003009解:(1)4×10-5 (2)-3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.计算(1)(3×10-8)×(4×103)(2)(2×10-3)2÷(10-3)3解:(1)1.2×10-4(2)4×1033.若2123x x x -+-的值为零,则x 的值是_____ 4.若分式31x -的值是正整数,则整数x 的值是____ 5.解方程(1)21521x x =+- 解:略(2)222273711x x x x x x --=++-- 解:略6.先化简,再求值: ()11422a a a a a -+÷--,其中a=13. 解:原式=3a-1把a=13代入得:原式=3×13-1=1-1=0 7.求代数式的值: ()22224242x x x x x x --÷---+,其中 解:原式=12x -当时原式=12x -= 8.(1)原子弹的原料——铀,每克含有 2.56×1021个原子核,一个原子核裂变时能放出3.2×10-11J 的热量,那么每克铀全部裂变时能放出多少热量?(2)1块900mm 2的芯片上能集成10亿个元件,每一个这样的元件约占多少mm 2?约多少m 2?(用科学记数法表示)分析:第(1)题直接列式计算;第(2)题要弄清m 2和mm 2之间的换算关系,即1m=1000mm=103mm ,1m 2=106mm 2,再根据题意计算.解:(1)由题意得:2.56×1021×3.2×10-11=2.56×3.2×1021×10-11=8.192×1010(J)答:每克铀全部裂变时能放出的热量8.192×1010J 的热量.(2)9001000000000=900×10-9=9×102×10-9=9×10-7(mm 2) 9×10-7÷106=9×10-7-6=9×10-13(m 2)答:每一个这样的元件约占9×10-7mm 2,约9×10-13m 2.9.轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/小时,求船在静水中的速度.解:设船在静水中的速度为x 千米/小时. 则302022x x =+- 去分母得30(x-2)=20(x+2)∴30x-60=20x+4010x=100∴x=10将x=10代入方程得:x=10是方程组的根,也是本问题的解,∴x=10答:船在静水中的速度是10千米/小时.10.某车间加工1200个零件,采用了新工艺后,工效是原来的1.5倍,这样加工零件就少用10小时,采用新工艺前、后每小时分别加工多少个零件?解:设采用新工艺前每小时加工x 个零件,则采用新工艺后每小时加工1.5x 个零件. 由题意得12001200101.5x x-=1800-1200=15x15x=600x=40(个)经检验:x=40是方程的解∴1.5x=60(个)答:采用新工艺前、后每时分别加工40个、60个零件【教学说明】让学生能从具体的情境中抽象出数量关系和变化规律,并用符号表示,发展学生的符号感.通过解决生活中的实际问题,提高分析问题和解决问题的能力.五、师生互动,课堂小结通过复习,你对本章的知识还有哪些疑惑?1.布置作业:教材“复习题”中第3、6、7、8题.2.完成本课时对应练习.通过学生的回顾与思考,使学生对分式的基本性质、乘除法、加减法等基本运算有一个更深层次的认识;加深学生对解分式方程的步骤及解应用题的步骤的认识.通过设置恰当的、有一定梯度的题目,关注学生知识技能的发展和不同层次的需求.加强学生对分式的运算等基本技能的训练.部分学生能举一反三,较好地掌握分式方程及其应用题的有关知识与解决生活中的实际问题等基本技能.。

(华东师大版)数学八下教案:16.1分式

(华东师大版)数学八下教案:16.1分式

16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x xx x --221(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质x x 57+xx 3217-x 802332xx x --212312-+x x一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17章 分式全章教案§17.1.1 分式的概念学习目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。

学习重点:探索分式的意义及分式的值为某一特定情况的条件。

学习难点:能通过回忆分数的意义,探索分式的意义。

学习过程: 一、探究新知 做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米; (3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元; 概括:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)yx xy +2; (4)33y x -.注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .注意: 要使分式有意义,必须且只须分母不等于零.§17.1.2 分式的基本性质学习目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。

2、使学生理解分式通分的意义,掌握分式通分的方法及步骤。

学习重点:让学生知道约分、通分的依据和作用,学会分式约分与通分的方法。

学习难点:1、分子、分母是多项式的分式约分;2、几个分式最简公分母的确定。

学习过程:一、探究新知在进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本 性质.类似地,分式有如下基本性质: 分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示是:MB MA B A M B M A B A ÷÷=⨯⨯=, ( 其中M 是不等于零的整式)。

与分数类似,根据分式的基本性质,可以对分式进行约分和通分. 例3 约分(1)4322016xy y x -; (2)44422+--x x x注意 分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.约分后,分子与分母不再有公因式. 分子与分母没有公因式称为最简分式..... 4、例4 通分(1)b a 21,21ab ; (2)y x -1,y x +1; (3)221y x -,xyx +21课堂小结(1)请你分别用数学语言和文字表述分式的基本性质; (2)分式的约分运算,用到了哪些知识?归结为:①因式分解;②分式基本性质;③分式中符号变换规律;约分的结果 是,一般要求分、分母不含“-”。

(3)把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分。

分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变。

通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母。

确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母。

二、当堂训练 1. 约分:(1)2232axy y ax ; (2))(3)(2b a b b a a ++-; (3)32)()(a x x a --; (4)y xy x 242+-.2. 通分: (1)231x ,xy 125; (2)x x +21,xx -21.3. 军训期间,小华打靶的成绩是m 发9环和n 发7环,请问,小华的平均成绩是每发多少环?习题17.11. 用分式填空:(1) 小明t 小时走了s 千米的路,则他走这段路的平均速度是____千米/时;(2) 一货车送货上山,上山速度为x 千米/时,下山速度为y 千米/时,则该货车的平均速度为____千米/时.2. 指出下列有理式中,哪些是分式?x 1, 21(x +y ), 3x, x m -2, 3-x x ,1394y x +3. 当x 取什么值时,下列分式有意义?(1)x21; (2)22+-x x ; (3)142++x x ; (4)534-x x .4. 通分:(1)ab c 、bc a 、ac b ; (2)x x +21,1212++-x x .5. 某机械厂欲成批生产某种零件,第一道工序需要将一批长l 厘米、底面半径为2r 厘米的圆钢锻造成底面半径为r 厘米的圆钢.请问锻造后的圆钢长多少厘米?三、课后作业§17.2 分式的运算 §17.2.1 分式的乘除法学习目标:1、让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。

2、使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算3、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力 学习重点:分式的乘除法、乘方运算 学习难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。

学习过程: 一、复习回顾(1) :什么叫做分式的约分?约分的根据是什么? (2):下列各式是否正确?为什么?二、探究新知试一试 (1)ab b a 32232⋅; (2)b ab a 232÷.概括:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(用式子表示如右图所示) 例题:例1计算:(1)xb ay by x a 2222⋅; (2)222222x b yz a z b xy a ÷.例2计算:493222--⋅+-x x x x .思考怎样进行分式的乘方呢?试计算:(1)(m n )3 (2)(mn)k (k 是正整数)(1)(m n )3 =m n m n m n ⋅⋅=)()(m m m n n n ∙∙∙∙=________; (2)(m n )k =个k m n m n m n ⋅⋅⋅=)()(m m m n n n ∙∙∙∙∙∙ =___________. 仔细观察所得的结果,试总结出分式乘方的法则.课堂小结:1、怎样进行分式的乘除法?2、怎样进行分式的乘方? 三、当堂训练 1.计算:(1)c a a b ⋅; (2)y x xyxy y x 234322+⋅-; (3)2226103x y x y ÷; (4)2221x x x x x +⋅-.2.计算:(1)(xy2-)2 ; (2)(22c a -)33.上海到北京的航线全程s 千米,飞行时间需a 小时;铁路全长为航线长的m倍,乘车时间需b 小时.飞机的速度是火车速度的多少倍?(用含a 、b 、s 、m 的分式表示)四、课后作业回忆:如何计算5251+、6141+, 从中可以得到什么启示?§17.2.2 分式的加减法学习目标:1、掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算。

2、通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式通分,培养分式运算的能力。

3、渗透类比、化归数学思想方法,培养能力。

学习重点:熟练地掌握同分母、异分母分式的加减法。

学习难点:分式的分子是多项式的分式减法的符号法则,去括号法则应用。

学习过程: 一、复习回顾回忆:同分母的分数的加减法法则:同分母的分数相加减,分母不变,把分子相加减。

二、探究新知 试一试: 计算:(1)a a b 2+;(2)ab a 322-总结一下怎样进行分式的加减法? 概括同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.例3计算:xy y x xy y x 22)()(--+例4 计算:1624432---x x .注意..这里两个加项的分母不同,要先通分.为此,先找出它们的最简公分母. 注意到162-x =)4)(4(-+x x ,所以最简公分母是)4)(4(-+x x 课堂小结:1、同分母分式的加减法:类似于同分母的分数的加减法;2、异分母分式的加减法步骤:①. 正确地找出各分式的最简公分母。

求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。

取这些因式的积就是最简公分母。

②. 准确地得出各分式的分子、分母应乘的因式。

③. 用公分母通分后,进行同分母分式的加减运算。

④. 公分母保持积的形式,将各分子展开。

⑤. 将得到的结果化成最简分式(整式)。

三、当堂训练 1. 计算:(1)a a 21+; (2)ab ab 610-; (3)b a b b a a +++; (4)ab b b a a -+-.2. 计算:(1)v u 11+; (2)24a ba b -;(3)a a a +--22214; (4)224-++a a .习题17.2 1. 计算:(1)nx my mx ny ⋅; (2)y x yx28712÷;(3)x x x x x x +-÷-+-2221112; (4)223⎪⎭⎫ ⎝⎛-a b .2. 计算:(1)a c b a c b ++-; (2)bca c -; (3)x x -++1111; (4)112---x x x .3. 计算:(1)323111x x x x ⋅⎪⎭⎫⎝⎛+-;(2)⎪⎭⎫⎝⎛--+⋅+-y x x y x y x x 2121.4. 林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能使到达学校的时间和往常一样?5.周末,小颖跟妈妈水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m千克,售a元;乙种苹果每箱重n千克,售b元.请问,甲种苹果的单价是乙种苹果的多少倍?四、课作业§17.3 可化为一元一次方程的分式方程(1)教学目标:1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2、使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.3、使学生领会“ 转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解.4、培养学生自主探究的意识,提高学生观察能力和分析能力。

相关文档
最新文档