正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制2010-09-18 ylw527+关注献花(4)为了使变压变频器输出交流电压得波形近似为正弦波,使电动机得输出转矩平稳,从而获得优秀得工作性能,现代通用变压变频器中得逆变器都就是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制得,只有在全控器件尚未能及得特大容量时才采用晶闸管变频器。
应用最早而且作为pwm控制基础得就是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。
图3-1与正弦波等效得等宽不等幅矩形脉冲波序列3、1正弦脉宽调制原理一个连续函数就是可以用无限多个离散函数逼近或替代得,因而可以设想用多个不同幅值得矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅得波形(假设分出得波形数目n=12),如果每一个矩形波得面积都与相应时间段内正弦波得面积相等,则这一系列矩形波得合成面积就等于正弦波得面积,也即有等效得作用。
为了提高等效得精度,矩形波得个数越多越好,显然,矩形波得数目受到开关器件允许开关频率得限制。
在通用变频器采用得交-直-交变频装置中,前级整流器就是不可控得,给逆变器供电得就是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅得矩形波用一系列等幅不等宽得矩形脉冲波来替代(见图3-2),只要每个脉冲波得面积都相等,也应该能实现与正弦波等效得功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分得正弦曲线与横轴所包围得面积都用一个与此面积相等得矩形脉冲来代替,矩形脉冲得幅值不变,各脉冲得中点与正弦波每一等分得中点相重合,这样就形成spwm波形。
同样,正弦波得负半周也可用相同得方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效得spwm 波形称作单极式spwm。
正弦波脉宽调制代码
正弦波脉宽调制代码
脉宽调制(PWM)是一种常用的信号调制技术,用于控制电子设备中的各种功能。
它可以通过改变信号的脉冲宽度来控制输出信号的平均功率。
正弦波脉宽调制(SPWM)是一种特殊的PWM技术,它使用正弦波信号作为调制信号。
SPWM技术在电力电子领域有着广泛的应用。
例如,它可以用于变频器控制,将直流电源转换为交流电源。
此外,SPWM技术还可以在音频放大器中使用,通过调制音频信号的脉冲宽度来控制音量大小。
SPWM技术的实现相对简单。
首先,需要一个正弦波信号作为调制信号。
这个信号可以通过一个简单的振荡电路产生。
然后,将调制信号与一个高频的方波信号进行比较。
当调制信号的幅度大于方波信号时,输出信号为高电平;当调制信号的幅度小于方波信号时,输出信号为低电平。
通过改变调制信号的幅度和频率,可以控制输出信号的平均功率和频率。
SPWM技术的优点在于可以产生接近正弦波的输出信号。
由于正弦波信号具有较低的谐波含量,因此SPWM技术可以减小输出信号中的谐波成分,提高系统的效率。
此外,SPWM技术还可以实现精确的电压和频率控制,满足不同应用的需求。
正弦波脉宽调制是一种常用的信号调制技术,广泛应用于电力电子
和音频放大器等领域。
它通过改变信号的脉冲宽度来控制输出信号的平均功率和频率。
SPWM技术具有接近正弦波的输出特性,可以减小谐波成分,提高系统的效率。
通过合理的调制信号设计,可以实现精确的电压和频率控制,满足各种应用需求。
正弦脉宽调制SPWM及其控制方法
$number {01}
目 录
• SPWM简介 • SPWM原理 • SPWM控制策略 • SPWM实现方法 • SPWM性能分析 • SPWM发展趋势与展望
01
SPWM简介
SPWM的基本概念
脉宽调制(PWM)
通过调节脉冲宽度来控制输出电压或电流的幅度,以实现对模拟信号的数字化 处理。
06
SPWM发展趋势与展望
SPWM在新能源领域的应用
要点一
太阳能逆变器
要点二
风力发电系统
利用SPWM技术实现太阳能电池板的高效逆变,提高能源 转换效率。
通过SPWM控制技术,优化风力发电机的并网性能和输出 功率稳定性。
SPWM在智能电网中的应用
智能配电网
智能微电网
利用SPWM技术实现分布式能源与电网的 协调优化控制,提高电网的可靠性和稳定性。
规则采样法
总结词
规则采样法是一种简单有效的PWM控制方法,通过在每个采 样周期内规则地选择开关状态来实现正弦波的逼近。
详细描述
规则采样法根据正弦波的幅值和相位信息,在每个采样周期 内按照一定的规则选择开关状态(开或关),从而控制输出 电压的幅度和频率。这种方法实现简单,但精度相对较低。
优化PWM(OPWM)
05
SPWM性能分析
谐波分析
谐波含量
SPWM产生的脉冲信号中包含多种谐 波成分,这些谐波成分会对电网造成 污染,影响其他设备的正常工作。
谐波抑制
通过优化SPWM的控制参数,可以降 低谐波含量,提高输出信号的纯净度。
效率分析
转换效率
SPWM的转换效率取决于调制波的占空比和载波比,通过合理设置这些参数,可以提 高转换效率。
spwm工作原理
spwm工作原理
SPWM(正弦波脉宽调制)是一种常见的电力电子技术,可用于将直流电源转换为交流电源。
其工作原理是通过改变脉冲宽度来模拟产生一个高频的正弦波信号。
SPWM的原理基于三角波和参考信号之间的比较。
首先,通
过一个三角波发生器产生一个连续的三角形波形,并设定一个参考正弦波信号。
这个正弦波信号的频率和幅值是由外部的反馈信号或控制参数决定的。
然后,将三角波和参考信号输入到一个比较器中进行比较。
比较器会将比较结果转化为一个相应的脉冲信号。
如果参考信号的幅值大于三角波的幅值,那么脉冲的宽度就更长。
反之,如果参考信号的幅值小于三角波的幅值,脉冲的宽度就变窄。
这样,通过不断改变脉冲宽度,就可以模拟生成一个高频的正弦波信号。
最后,通过电路中的滤波器将脉冲信号转换为平滑的交流信号。
滤波器可以去除脉冲信号中的高频成分,使输出信号更接近于所需的正弦波形。
通过不断调节参考信号或控制参数,可以改变输出信号的频率和幅值,实现对输出信号的调节。
总的来说,SPWM的工作原理是通过比较三角波和参考信号,根据比较结果来调节脉冲宽度,从而模拟产生一个高频的正弦
波信号。
这种技术在以太阳能逆变器、无线通信和电机控制等领域中得到广泛应用。
SPWM控制技术
2-3
SPWU
0
ωt
0
ωt
变频器根据调制方式分类:
脉幅调制(PAM):Plus Amplitude Modulation 脉宽调制(PWM):Plus Width Modulation
一、SPWM原理
SPWM:正弦脉宽调制
正弦PWM的信号波为正弦波,就是正 弦波等效成一系列等幅不等宽的矩形脉冲 波形(与我们课件上画的一致),这个由 n个等幅不等宽的矩形脉冲所组成的波形 就与正弦波的半周波形等效,称为SPWM 波形。
课外知识:
正弦波波形产生的方法有很多种,但较典型的
主要有:对称规则采样法、不对称规则采样法和 平均对称规则采样法三种。 第一种方法由于生成的PWM脉宽偏小,所以变 频器的输出电压达不到直流侧电压的倍;第二种 方法在一个载波周期里要采样两次正弦波,显 然输出电压高于前者,但对于微处理器来说, 增加了数据处理量当载波频率较高时,对微机 的要求较高;第三种方法应用最为广泛的,它兼 顾了前两种方法的优点。
uda电压:
1. ura> ut 2. ura< ut
uda为“正”电平 uda为“零”电平
单极性脉宽调制波的形成
U
ut
ura
ωt U uda
ωt
注意:载波的最大值大于调制波的最大值
注意:SPWM脉冲系列中,脉冲的宽度以
及相互间的间隔是由正弦波(基准波或调 制波)和等腰三角波(载波)的焦点来决 定的。
三、双极性SPWM技术
1、调制波和载波 ut是载波,采用了双极性等腰三角波,周期决定
了载波频率,振幅不便,和电动机的电压为额 定电压的调制波的振幅相同; ura是正弦调制波,其周期决定了所需电压波形 的频率,其振幅决定所需电压波形的振幅; uAO电压: 1. ura> ut V1通,V2断 uAO=+Us/2 2. ura< ut V1断,V2通 uAO=-Us/2
正弦脉宽调制的控制方法
正弦脉宽调制的控制方法以正弦脉宽调制的控制方法为标题,写一篇文章。
正弦脉宽调制(Sinusoidal Pulse Width Modulation,SPWM)是一种常用的调制技术,用于控制电力电子器件的输出波形。
在电力电子领域中,SPWM被广泛应用于交流调速系统、逆变器、电力变换器等设备中。
本文将介绍SPWM的工作原理、控制方法及其应用。
SPWM的工作原理是通过调节脉冲宽度的方式来控制输出电压的幅值。
当输入信号为正弦波时,通过比较器将正弦波信号与一个三角波进行比较,根据比较结果来确定输出脉冲的宽度。
当正弦波信号的幅值大于三角波信号时,输出脉冲宽度增大;当正弦波信号的幅值小于三角波信号时,输出脉冲宽度减小。
通过这种方式,可以实现对输出电压的精确控制。
SPWM的控制方法主要包括三角波发生器、比较器和滤波器。
三角波发生器产生一个稳定的三角波信号,作为参考波形;比较器将输入的正弦波信号与三角波信号进行比较,产生脉冲宽度调制信号;滤波器用于去除脉冲信号中的高频成分,得到平滑的输出波形。
在SPWM的控制中,三角波的频率和幅值是两个关键参数。
频率的选择要根据被控制设备的要求来确定,一般选择合适的频率可以减小谐波干扰。
而幅值的选择则取决于输出电压的需求,通过调节幅值可以实现输出电压的精确控制。
SPWM技术在电力电子领域具有广泛的应用。
在交流调速系统中,SPWM可以实现对电机的精确控制,提高系统的效率和稳定性。
在逆变器中,SPWM可以将直流电转换为交流电,用于驱动电机等设备。
在电力变换器中,SPWM可以将电能从一种形式转换为另一种形式,实现能量的传递和分配。
总结一下,正弦脉宽调制是一种常用的控制方法,通过调节脉冲宽度来控制输出电压的幅值。
SPWM的控制方法包括三角波发生器、比较器和滤波器。
它在交流调速系统、逆变器和电力变换器等设备中有着广泛的应用。
通过合理选择三角波的频率和幅值,可以实现对输出电压的精确控制,提高系统的效率和稳定性。
spwm原理
spwm原理
脉宽调制(SPWM)是一种用于控制交流电源输出的方法。
其原理是通过调整脉冲宽度来控制电源输出的平均值。
脉宽调制通常被用于变频器、电机控制和逆变器等应用中。
脉宽调制的原理是将一个固定频率的正弦波信号与一个可调节脉冲宽度的方波信号进行比较。
比较的结果可以用来调整输出的脉冲宽度,从而实现对电源输出电压或电流的控制。
在SPWM中,首先需要确定一个基准正弦波信号,其频率通
常与所需要的输出电源频率相同。
然后,通过一个比较器来将基准正弦波信号与方波信号进行比较。
比较器的输出结果可以用来控制开关电路的开关状态。
当基准正弦波信号的幅值大于方波信号的幅值时,开关电路闭合;当基准正弦波信号的幅值小于方波信号的幅值时,开关电路断开。
通过调整方波信号的脉冲宽度和占空比,可以控制开关电路开关的时间比例。
因此,通过调整方波信号的脉冲宽度,就可以实现对输出电压或电流的控制。
脉宽调制技术具有高效、精确和可靠的特点。
它可以通过调整脉冲宽度来实现对输出功率的精确控制,从而充分利用电源的能量。
此外,脉宽调制技术还可以有效减小电源的谐波失真,提高电源的功率因数,以及降低电源的噪声和干扰。
总之,脉宽调制技术是一种有效的电源控制方法,通过调整脉冲宽度来实现对输出电压或电流的精确控制。
它在各种应用中
都有广泛的应用,为电力系统的稳定运行和节能减排提供了重要的支持。
multisim仿真教程正弦波脉宽调制SPWM逆变电路业界精制
技术教育
1
如果将每一等份的正弦曲线与横轴所包围的面 积用一个与此面积相等的等高矩形脉冲代替, 就得到图11.8.1(b)所示的脉冲序列。这样, 由N个等幅而不等宽的矩形脉冲所组成的波形 与正弦波的正半周等效,正弦波的负半周也可 用相同的方法来等效。
技术教育
2
SPWM(Sine Pulse Width Modulation正弦波 脉宽调制)的控制思想,就是利用逆变器的 开关元件,由控制线路按一定的规律控制开 关元件的通断,从而在逆变器的输出端获得 一组等幅、等距而不等宽的脉冲序列。其脉 宽基本上按正弦分布,以此脉冲列来等效正 弦电压波。
方向变化,所得到输出电压的PWM波形也只在 一个方向变化的控制方式称为单极性PWM控制 方式。
3. 双极性PWM控制方式
技术教育
15
图11.8.2的单相桥式逆变电路采用双极性PWM 控制方式的波形如图11.8.4所示。在双极性方
式中ur的半个周期内,三角波载波是在正、负
两个方向变化的,所得到的PWM波形也是在两
11.8.1正弦脉宽调制(SPWM)逆变电路工作原理
1. SPWM控制的基本原理 图11.8.1(a)示出正弦彼的正半周波形,
并将其划分为N等份,这样就可把正弦半波看成 由N个彼此相连的脉冲所组成的波形。这些脉冲 的宽度相等,都等于π/ N,但幅值不等,且 脉冲顶部是曲线,各脉冲的幅值按正弦规律变 化。
技术教育
8
如负载电流较大,那么直到使VT4再一次导通之 前,VD3一直持续导通。如负载电流较快地衰减 到零,在VT4再一次导通之前,负载电压也一直
为零。这样,负载上的输出电压uo就可得到零
和UD交替的两种电平。
技术教育
9
试说明spwm控制的工作原理
试说明spwm控制的工作原理SPWM全称为Sinusoidal Pulse Width Modulation,即正弦脉宽调制。
它是一种常用于交流电机调速和逆变器控制的技术。
SPWM通过控制脉冲宽度使其与正弦波形进行调制,从而实现对输出电压或电流的精确控制。
下面将详细介绍SPWM控制的工作原理。
SPWM控制的基本原理是改变电源开关器件的导通和截止时间,以控制输出电压或电流的有效值和相位角。
在SPWM控制中,有两个主要的时序信号:参考正弦信号和比较信号。
参考正弦信号是一个预先确定的正弦波形,用于建立期望的输出信号;比较信号是将参考正弦信号与三角波形进行比较,决定开关器件的导通和截止时间。
根据比较信号的情况,控制开关器件的导通和截止时间来控制输出信号的波形和参数。
SPWM控制的关键是生成一个比较信号,该信号决定了开关器件的导通和截止时间。
实现这一点的一种常用方法是使用三角载波发生器。
三角载波发生器是一个周期为Tp的三角波形信号发生器,它的频率形成了SPWM波形的基础频率。
比较信号是将参考正弦信号与三角波形进行比较,这样就可以得到一个PWM信号,用于控制开关器件的导通和截止时间。
SPWM控制的具体步骤如下:1. 参考正弦信号生成:首先需要生成一个参考正弦信号,其频率和幅值由控制系统确定。
常用的方法是使用数字正弦波表格,根据需要的频率和幅值,在每个采样周期内逐步读取表格中的数值,如此可生成一个与所需正弦波形接近的参考正弦信号。
2. 三角波形生成:采用三角载波发生器产生一个周期为Tp的三角波形信号。
该三角波形信号的频率通常大于参考正弦信号的频率,以保证调制后的PWM 信号具有足够的细腻度。
3. 参考正弦信号与三角波形比较:将上述生成的参考正弦信号与三角波形信号进行比较。
比较的方法是通过比较器将两者相减,结果分为三种情况:正输入、零输入和负输入。
4. 正输入:当参考正弦信号的幅值大于三角波形信号的幅值时,比较器的输出为高电平,开关器件导通;当参考正弦信号的幅值小于三角波形信号的幅值时,比较器的输出为低电平,开关器件截止。
SPWM在电路当中的控制原理是什么?
SPWM 在电路当中的控制原理是什么?
SPWM 比普通PWM 更加先进的一种技术,其能够帮助设计者快速高效的完成设计。
在本文中,小编将为大家介绍SPWM 控制,以及SPWM 控制的原理,感兴趣的朋友快来看一看吧。
SPWM 的概念
在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。
当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小,反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。
SPWM 脉冲系列中,各脉冲的宽度以及相互间的间隔宽度是由正弦波(基准波或调制波)和等腰三角波(载波)的交点来决定的。
具体方法如后所述。
单极性SPWM 法
(1)调制波和载波:曲线①是正弦调制波,其周期决定于需要的调频比kf,振幅值决定于ku,曲线②是采用等腰三角波的载波,其周期决定于载波频率,振幅不变,等于ku=1 时正弦调制波的振幅值,每半周期内所有三角波的极性均相同(即单极性)。
调制波和载波的交点,决定了SPWM 脉冲系列的宽度和脉冲音的间隔宽度,每半周期内的脉冲系列也是单极性的。
(2)单极性调制的工作特点:每半个周期内,逆变桥同一桥臂的两个逆变器件中,只有一个器件按脉冲系列的规律时通时通时断地工作,另一个完全截止;而在另半个周期内,两个器件的工况正好相反,流经负载ZL 的便是正、负交替的交变电流。
简述SPWM的基本原理及应用
简述SPWM的基本原理及应用1. 什么是SPWMSPWM(Sine-wave Pulse Width Modulation),中文名为正弦波脉宽调制,是一种常用的调制技术。
它通过将一个参考信号与一个三角波进行比较,通过改变脉冲宽度来实现输出波形的调制。
SPWM技术广泛用于电力电子领域,特别是在交流调压供电系统中,通过控制晶闸管或IGBT开关管的通断条件,控制输出电压的大小和波形。
SPWM能够产生质量较高的交流电源,被广泛应用于交流电动机驱动、UPS、逆变器等领域。
2. SPWM的基本原理SPWM的基本原理是通过对比参考信号与三角波信号的相位差,确定脉冲宽度的长度,从而控制输出波形的形状。
具体原理如下:•生成参考信号:根据输入的目标频率和幅值,生成一个和所需输出波形一致的正弦信号。
•生成三角波信号:三角波信号是一种连续的、呈线性变化的信号,通常由一个积分单元产生。
该信号用于与参考信号进行比较。
•比较参考信号与三角波信号相位差:参考信号和三角波信号在一个比较器中进行比较,产生一个以三角波信号为基准的脉冲信号。
•控制脉冲宽度:当参考信号的幅值大于三角波信号的幅值时,脉冲宽度较宽;反之,若参考信号幅值小于三角波信号幅值,则脉冲宽度较窄。
•输出波形调制:通过控制脉冲宽度的变化,实现对输出波形的调制。
脉冲宽度的改变导致输出波形的有效值和形状发生变化。
3. SPWM的应用SPWM技术在电力电子领域有着广泛的应用,以下是几个常见的应用场景:3.1 交流电动机驱动SPWM技术可以用于交流电动机驱动系统中,通过控制变频器输出的电压和频率,实现对电动机的速度和转矩的精确控制。
通过调整脉冲宽度和频率,可以使电动机在不同负载条件下运行效果更佳。
3.2 UPS(不间断电源)UPS系统通常使用SPWM技术来实现交流电转直流电并通过逆变器将直流电转换为交流电供应给负载。
SPWM技术可以提供较高的转换效率和高质量的输出电压,保证负载设备的稳定供电。
脉冲宽度调制(PWM)和正弦波脉宽调制(SPWM)变频技术简介
变频技术之PWM调制技术与SPWM调制技术详解变频技术通过改变电力信号的频率来调节电动机、压缩机和其他电气设备的运行速度。
在实际应用中,变频器是变频技术的核心装置,而脉冲宽度调制(PWM)技术和正弦波脉宽调制(SPWM)技术是实现变频器控制的重要手段。
什么是PWM调制技术PWM调制技术通过控制脉冲信号的宽度,实现对输出电压的调节。
在变频技术中,PWM被广泛应用于变频器中,以控制电动机的速度和转矩输出。
通过改变脉冲信号的占空比(脉冲宽度与周期之比),可以实现对电动机的精确控制。
当需要增大输出电压时,增加脉冲信号的宽度;当需要减小输出电压时,减小脉冲信号的宽度。
这种方式使得电动机可以在不同负载条件下保持稳定的转速和扭矩输出。
同时,PWM调制技术还具有响应快、控制精度高、效率高等优点,被广泛应用于各种电力控制系统中。
PWM调制波形如图1所示:图1PWM调制波形PWM技术具有以下优点:高效性:由于PWM技术可以通过调整脉冲宽度来控制电机的输出电压和频率,因此可以实现电机在不同负载条件下的高效运行。
通过减小电机额定电压,PWM技术可以降低电机的功耗,提高整体效率。
精确控制:PWM技术具有响应速度快、控制精度高的特点。
通过微调脉冲宽度和周期,可以实现对电机转速和扭矩的精确调节,满足不同应用的需求。
减少机械冲击:PWM技术可以实现电机的软启动和软停止,减少了机械系统的冲击和磨损,延长了设备的使用寿命。
尽管PWM技术具有许多优点,但也存在一些局限性:谐波问题:PWM技术在产生脉冲信号时会引入谐波成分,可能对电力网络和其他设备造成干扰。
为了减少谐波,需要采取滤波和抑制措施,增加了系统的复杂性和成本。
开关损耗:PWM技术使用高频开关装置,开关的频繁操作会产生开关损耗。
这些损耗会转化为热能,需要适当的散热系统来冷却电路。
EMI干扰:由于高频开关操作,PWM技术可能会产生电磁干扰(EMI),对周围的电子设备和无线通信系统造成干扰。
spwm控制的基本原理
spwm控制的基本原理
SPWM(正弦脉宽调制)是一种常用的控制技术,用于将直流电源转换为交流电源,常应用于交流电机驱动、逆变器等领域。
SPWM的基本原理如下:
1. 参考波形生成:首先需要生成一个参考正弦波形。
通常采用的方法是通过一个参考信号作为正弦波的频率和幅值控制参数。
这个参考信号可以是一个固定的正弦波形,也可以是由系统需求决定的动态波形。
2. 比较脉宽调制:将参考波形与一个三角波信号进行比较。
三角波信号的频率通常比参考波形的频率高,这样可以获得更高的分辨率。
比较的目的是确定脉冲宽度,以便产生与参考波形相对应的脉冲宽度调制信号。
3. 输出脉冲生成:通过比较脉冲调制产生的调制信号,将其与一个固定的载波信号进行比较,产生最终的PWM输出信号。
比较的过程可以通过比较器、运算放大器或数字控制器来实现。
输出脉冲的宽度由比较脉冲调制信号决定,决定了电源中相应的电压或电流。
4. 滤波和逆变:输出脉冲经过一个滤波电路进行平滑,去除其高频成分,获得近似于正弦波的输出信号。
然后,通过逆变器将直流电源转换为交流电源,供电给需要的设备或系统。
通过不断调节参考波形和比较脉冲调制信号,可以实现对输出
信号的频率、幅值和相位的精确控制。
这种调制技术具有高效性和精确性,适用于许多应用场合。
正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制2010-09-18 ylw527 + 关注献花 (4)为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。
应用最早而且作为pwm 控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称 spwm)。
图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列3.1正弦脉宽调制原理一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1 所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n 等分(在图 3-2 中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm 波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm 波形称作单极式 spwm。
正弦波脉宽调制(SPWM)
为使一相的PWM波正负半周镜对称,N 应取奇数;
fr 很低时,fc 也很低,由调制带来的谐波 不易滤除;
fr 很高时,fc 会过高,使开关器件难以承 受。
•同步调制三 u 相PWM波形
O
u UN'
Ud 2
0
Ud 2
u VN'
0
u WN'
0
u rU
u c u rV
u rW t
t t t
u a)
O
t
u
b)
O
t
图6-3
PWM调制原理
按照波形面积相等的原则,每一个矩形 波的面积与相应位置的正弦波面积相等, 因而这个序列的矩形波与期望的正弦波等 效。这种调制方法称作正弦波脉宽调制 (Sinusoidal pulse width modulation,简称 SPWM),这种序列的矩形波称作SPWM 波。
1.2
0.8
0.4
0 10 20 30 40 50 60 70 80 fr /Hz
(4)混合调制
可在低频输出时采用异步调制方式,高 频输出时切换到同步调制方式,这样把两 者的优点结合起来,和分段同步方式效果 接近。
5. PWM逆变器主电路及输出波形
Ud 2
+ VVT11 C
U
VD1 VVT3 3
(3)分段同步调制
把 fr 范围划分成若干个频段,每个频段内 保持N恒定,不同频段N不同;
在 fr 高的频段采用较低的N,使载波频率 不致过高;
在 fr 低的频段采用较高的N,使载波频率 不致过低;
• 分段同步调制方式
fc /kHz 201 147 99
2.4
正弦脉宽调制的控制方法
正弦脉宽调制的控制方法正弦脉宽调制(SPWM,Sine Pulse Width Modulation)是一种常用的电力电子调制技术,广泛应用于交流电力变换、逆变等领域。
本文将介绍正弦脉宽调制的基本原理、控制方法及其在实际应用中的优势。
一、正弦脉宽调制基本原理正弦脉宽调制是基于正弦波的周期性特点,通过改变脉冲的宽度实现对输出波形的控制。
在正弦脉宽调制中,输入的控制信号通常为一个正弦波,而输出信号则为一串脉冲,脉冲的宽度与输入信号的幅度成正比,频率与输入信号的频率相同。
通过改变输入信号的幅度,可以实现对输出信号的幅度调制;通过改变输入信号的频率,可以实现对输出信号的频率调制。
二、正弦脉宽调制控制方法1. 基于比较器的控制方法基于比较器的控制方法是正弦脉宽调制最常用的一种方法。
通过将正弦信号与一个三角波信号进行比较,得到一个脉冲信号。
这个脉冲信号的宽度与正弦信号的幅度成正比。
通过改变三角波信号的频率和幅度,可以实现对输出信号的频率和幅度的调制。
这种方法简单直观,实现方便。
2. 基于微处理器的控制方法随着微处理器技术的发展,基于微处理器的正弦脉宽调制控制方法也得到了广泛应用。
通过编写相应的软件算法,将正弦波信号转化为数字信号,然后通过微处理器的输出口控制输出信号的脉冲宽度。
这种方法可以实现对输出信号的高精度控制,并可以根据需要进行实时调整。
三、正弦脉宽调制的优势1. 输出波形质量高正弦脉宽调制可以实现对输出波形的精确控制,可以得到质量较高的正弦波输出。
相比于其他调制技术,如方波脉宽调制,正弦脉宽调制能够减少谐波的产生,降低输出波形的失真度。
2. 系统效率高正弦脉宽调制在输出功率不变的情况下,可以通过调整脉冲宽度来实现输出电压的调节。
与传统的线性电压调节方式相比,正弦脉宽调制可以大大提高系统的效率,减少能量的损耗。
3. 抗干扰能力强正弦脉宽调制在实际应用中,具有较强的抗干扰能力。
通过合理设计调制电路和滤波电路,可以有效抑制各种噪声和干扰信号的影响,提高系统的稳定性和可靠性。
电力电子spwm 调制解读
t'2 t'2'
t2
t3
Tc
t
图1.2.1 SPWM脉冲信号自然采 样法生成原理
若令三角载波幅值 ucm=1,调制度为M,正弦调制波角频率
为 1 ,则正弦调制波的瞬时值为源自ur M sin 1t1
A
由右图可知,并根据相似三角形的几何关系可
得自然采样法SPWM脉宽t2的表达式为
tA
B
Msin1t
tB t
在同步调制方式中,由于载波比N保持恒定,因而当 fr 变化 时,调制波信号与载波信号应保持同步,即 fr 与 fc 成正比, 因此,同步调制具有以下特点: 由于载波频率 fc 与调制波频率 fr 成正比,因而当调制波频率 fr 变化时,载波频率 fc 也相应变化,这就使逆变器开关频率不固定。 例如,当调制波频率 fr 变高时,载波频率 fc 同步提高,从而使开 关频率变高。
演讲人:王宁
➢主要内容
一、SPWM工作原理
SPWM(Sinusoide Pulse Width Modulation)即正弦波
脉冲宽度调制,它是脉冲宽度按正弦函数变化的
PWM调试。
在采样控制理论中有一个重要的结论—冲量等 效原理: 大小、波形不相同的窄脉冲变量作 用于惯性系统时,只要它们的冲量(面积), 即变量对时间的积分相等,其作用效果相同。 这里所说的效果基本相同,是指惯性系统的输 出或响应是基本相同的。
如右图所示
1.1 调制方式
在SPWM逆变器中,载波频率 f c 与调制信号 频率 f c 之比 N fc / fr ,称之为载波比。根 据载波与信号波是否同步及载波比的变化 情况,SPWM逆变器调制方式分为同步调制 与异步调制
(1) 同步调制
正弦波脉宽调制技术
一、正弦波脉宽调制1、正弦脉宽调制法(SPWM ):是将每一正弦周期内的多个脉冲作自然或规则的宽度调制,使其依次调制出相当于正弦函数值的相位角和面积等效于正弦波的脉冲序列,形成等幅不等宽的正弦化电流输出。
其中每周基波(正弦调制波)与所含调制输出的脉冲总数之比即为载波比。
2、正弦脉宽调制原理(以单相为例):以正弦波作为逆变器输出的期望波形,以频率比期望波高得多的等腰三角波作为载波(Carrier wave ),并用频率和期望波相同的正弦波作为调制波(Modulation wave ),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄中间宽的一系列等幅不等宽的矩形波。
矩形波的面积按正弦规率变化。
这种调制方法称作正弦波脉宽调制(Sinusoidal pulse width modulation ,简称SPWM ),这种序列的矩形波称作SPWM 波。
等效原理:如图1所示,把正弦分成 n 等分,每一区间的面积用与其相等的等幅不等宽的矩形面积代替,正弦的正负半周均如此处理。
3、SPWM 控制方式:SPWM 控制技术有单极性控制和双极性控制两种方式。
如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得的SPWM 波也只处于一个极性的范围内,叫做单极性控制方式。
如果在正弦调制波的半个周期内,三角载波在正负极性之间连续变化,则SPWM 波也在正负之间变化,叫作双极性控制方式。
4、正弦脉宽调制的特点是脉宽调制是以逆变器的功率器件的快速而有规律的开关,形成一系列有规则的矩形方波,以和期望的控制电压等效。
其特点是基波分量大,2N-1次以下谐波得到有效的拟制,输出电流接近正弦波。
二、交流电动机动态数学模型:1、交流电机数学模型的性质:(1)、多变量,强耦合(如图2)输入变量:电压(或电流),频率输出变量: 转速、磁通(2)、有两个变量的乘积项。
正弦波脉宽调制SPWM
三相桥式PWM逆变器的双极性SPWM波形
上图为三相PWM波形,其中 urU 、urV 、urW为U,V,W三相的正弦调制波, uc为双极性三角载波; uUN’ 、uVN’ 、uWN’ 为U,V,W三相输出与电源
中性点N’之间的相电压矩形波形;
uUV为输出线电压矩形波形,其脉冲幅值为+Ud和
根据载波和信号波是否同步及载波比的 变化情况,PWM调制方式分为异步调制和 同步调制。
(1)异步调制 异步调制——载波信号和调制信号不 同步的调制方式。
通常保持 fc 固定不变,当 fr 变化时,载 波比 N 是变化的;
在信号波的半周期内,PWM波的脉冲个 数不固定,相位也不固定,正负半周期 的脉冲不对称,半周期内前后1/4周期的 脉冲也不对称;
为使一相的PWM波正负半周镜对称,N 应取奇数;
不易滤除;
fr 很低时,f使开关器件难以承
受。
•同步调制三 相PWM波形
u
u rU
uc
u rV
u rW
O
t
u UN'
Ud 2 Ud 2
0
t
u VN' 0 u WN' t
0
t
(3)分段同步调制
1 M sin r tD 2 /2 Tc / 2
因此可得
Tc (1 M sin r t D ) 2
三角波一周期内,脉冲两边间隙宽度
Tc 1 ' Tc (1 M sin r tD ) 2 4
根据上述采样原理和计算公式,可以用 计算机实时控制产生SPWM波形,具体实 现方法有:
VT V 1 1
正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制2010—09-18 ylw527+关注献花(4)为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。
应用最早而且作为pwm控制基础的是正弦脉宽调制(sinusoidal pulse width modulation,简称spwm).图3—1与正弦波等效的等宽不等幅矩形脉冲波序列3。
1正弦脉宽调制原理一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1所示.图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直—交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式spwm.图3-2spwm波形图3-3是spwm变压变频器主电路的原理图,图中vt1~vt6是逆变器的六个全控型功率开关器件,它们各有一个续流二极管(vd1~vd6)和它反并联接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦脉宽调制(SPWM)控制2010-09-18 ylw527+关注献花(4)为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。
应用最早而且作为pwm控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。
图3-1与正弦波等效的等宽不等幅矩形脉冲波序列3.1正弦脉宽调制原理一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式spwm。
图3-2spwm波形图3-3是spwm变压变频器主电路的原理图,图中vt1~vt6是逆变器的六个全控型功率开关器件,它们各有一个续流二极管(vd1~vd6)和它反并联接。
整个逆变器由三相不可控整流器供电,所提供的直流恒值电压为ud。
图3-3spwm变压变频器主电路原理图某一相的单极式spwm波形是由逆变器该相上(或下)桥臂中一个功率开关器件反复导通和关断形成的。
在正弦脉宽调制方法中,利用正弦波作调制波(modulation wave),受它调制的信号称为载波(carrier wave),常用等腰三角波作载波。
当调制波与载波相交时(见图3-4a),其交点决定了逆变器开关器件的通断时刻。
例如:当a相的调制波电压ura高于载波电压ut时,使开关器件vt1导通,输出正的脉冲电压(见图3-4b);当ura低于ut时,使vt1关断,输出电压下降为零。
在ura的负半周中,可用类似的方法控制下桥臂的vt4,输出负的脉冲电压序列。
若改变调制波的频率,输出电压基波的频率也随之改变;降低调制波的幅值时,如图中的,各段脉冲宽度变窄,输出电压的基波幅值也相应减小。
a)正弦调制波与三角载波b)输出的spwm波图3-4单极式脉宽调制波的形成上述单极式spwm波形在半周内的脉冲电压只在“正”(或“负”)和“零”之间变化,主电路每相只有一个开关器件反复通断。
如果让同一桥臂上、下两个开关器件互补地导通与关断,则输出脉冲在“正”和“负”之间变化,就得到双极式的spwm波形。
图3-5绘出了三相双极式正弦脉宽调制波形,其调制方法和单极式相似,只是输出脉冲电压的极性不同。
当a相调制波ura>ut时,vt1导通,vt4关断,节点a与直流电源中点o`间的相电压为ua0’=+ud/2(图3-5b);当ura<ut时,vt1关断而vt4导通,则ua0’=-ud/2。
所以a相电压ua0’=f(t)是以+ud/2和-ud/2为幅值作正、负跳变的脉冲波形。
同理,图3-5c的ub0’=f(t)是由vt3和vt6交替导通得到的,图3-5d的uc0’=f(t)是由vt5和vt2交替导通得到的。
由ua0’和ub0’相减,可得逆变器输出的线电压uab=f(t)(图3-5e),也就是负载上的线电压,其脉冲幅值为+ud和-ud。
可见,线电压的spwm波是由±ud和0三种电平构成的。
图3-5三相桥式pwm逆变器的双极性spwm波形图5-20中的uao`、ubo`与uco`是逆变器输出端a、b、c分别与直流电源中点o`之间的电压,o`点与负载的零点o并不一定是等电位的,uao`等并不代表负载上的相电压。
令负载零点o与直流电源中点o`之间的电压为uoo`,则负载各相的相电压分别为(3-1)将式(3-1)中各式相加并整理后得一般负载三相对称,则uao+ubo+uco=0,故有(3-2)由此可求得a相负载电压为(3-3)在图3-5f中绘出了相应的负载a相电压波形,ubo和uco波形与此相似。
3.2spwm波的基波电压对电动机来说,有用的是电压的基波,希望spwm波形中基波的成分越大越好。
为了找出基波电压,须将spwm脉冲序列波u(t)展开成傅氏级数,由于各相电压正、负半波及其左、右均对称,它是一个奇次正弦周期函数,其一般表达式为式中(3-4)要把包含n个矩形脉冲的u(t)代入上式,必须先求得每个脉冲的起始相位和终了相位。
在图3-5中,由于在原点处三角波是从负的顶点开始出现的,所以第i个脉冲中心点的相位应为(3-5)于是,第i个脉冲的起始相位为终了相位为其中δi是第i个脉冲的宽度。
把各脉冲起始和终了相位代入式(3-4)中,可得(3-6)故(3-7)以k=1代入式(3-7),可得输出电压的基波幅值。
当半个周期内的脉冲数n不太少时,各脉冲的宽度δi都不大,可以近似地认为sinδi/2≈δi/2,因此(3-8)可见输出基波电压幅值u1m与各段脉宽δi有着直接的关系,它说明调节参考信号的幅值从而改变各个脉冲的宽度时,就可实现对逆变器输出电压基波幅值的平滑调节。
根据脉冲与相关段正弦波面积相等的等效原则可以导出(3-9)将式(3-5)、式(3-9)代入式(3-8),得(3-10)可以证明,除n=1以外,有限项三角级数而n=1是没有意义的,因此由式(3-10)可得u1m=um也就是说,spwm逆变器输出脉冲波序列的基波电压正是调制时所要求的正弦波幅值电压。
当然,这个结论是在作出前述的近似条件下得到的,即n不太少,sinπ/2n≈π/2n,且sinδi/2≈δi/2。
当这些条件成立时,spwm变压变频器能很好地满足异步电动机变压变频调速的要求。
要注意到,spwm逆变器输出相电压的基波和常规六拍阶梯波的交-直-交变压变频器相比要小一些,据有关资料介绍,仅为其86%~90%,这样就影响了电机额定电压的充分利用。
为了弥补这个不足,在spwm逆变器的直流回路中常并联相当大的滤波电容,以抬高逆变器的直流电源电压ud。
3.3脉宽调制的制约条件根据脉宽调制的特点,逆变器主电路的功率开关器件在其输出电压半周内要开关n次。
如果把期望的正弦波分段越多,则n越大,脉冲波序列的脉宽δi 越小,上述分析结论的准确性越高,spwm波的基波就更接近期望的正弦波。
但是,功率开关器件本身的开关能力是有限的,因此,在应用脉宽调制技术时必然要受到一定条件的制约,这主要表现在以下两个方面。
3.3.1功率开关器件的开关频率各种电力电子器件的开关频率受到其固有的开关时间和开关损耗的限制,全控型器件常用的开关频率如下:双极型电力晶体管(bjt)开关频率可达1~5khz,可关断晶闸管(gto)开关频率为1~2khz,功率场效应管(p-mosfet)开关频率可达50khz,而目前最常用的绝缘栅双极晶体管(igbt)开关频率为5~20khz。
定义载波频率ft与参考调制波频率fr之比为载波比n(carrier ratio),即(3-11)相对于前述spwm波形半个周期内的脉冲数n来说,应有n=2n。
为了使逆变器的输出尽量接近正弦波,应尽可能增大载波比,但若从功率开关器件本身的允许开关频率来看,载波比又不能太大。
n值应受到下列条件的制约:(3-12)式(3-12)中的分母实际上就是spwm变频器的最高输出频率。
3.3.2最小间歇时间与调制度为保证主电路开关器件的安全工作,必须使调制的脉冲波有个最小脉宽与最小间歇的限制,以保证最小脉冲宽度大于开关器件的导通时间ton,而最小脉冲间歇大于器件的关断时间toff。
在脉宽调制时,若n为偶数,调制信号的幅值urm与三角载波相交的两点恰好是一个脉冲的间歇。
为了保证最小间歇时间大于toff,必须使urm低于三角载波的峰值utm。
为此,定义urm与utm之比为调制度m,即(3-13)在理想情况下,m值可在0~1之间变化,以调节逆变器输出电压的大小。
实际上,m总是小于1的,在n较大时,一般取最高的m=0.8~0.9。
3.4同步调制与异步调制在实行spwm时,视载波比n的变化与否,有同步调制与异步调制之分。
3.4.1同步调制在同步调制方式中,n=常数,变频时三角载波的频率与正弦调制波的频率同步改变,因而输出电压半波内的矩形脉冲数是固定不变的。
如果取n等于3的倍数,则同步调制能保证输出波形的正、负半波始终对称,并能严格保证三相输出波形间具有互差120°的对称关系。
但是,当输出频率很低时,由于相邻两脉冲间的间距增大,谐波会显著增加,使负载电动机产生较大脉动转矩和较强的噪声,这是同步调制方式的主要缺点。
3.4.2异步调制为了消除同步调制的缺点,可以采用异步调制方式。
顾名思义,异步调制时,在变压变频器的整个变频范围内,载波比n不等于常数。
一般在改变调制波频率fr时保持三角载波频率ft不变,因而提高了低频时的载波比。
这样输出电压半波内的矩形脉冲数可随输出频率的降低而增加,从而减少负载电动机的转矩脉动与噪声,改善了系统的低频工作性能。
有一利必有一弊,异步调制方式在改善低频工作性能的同时,又失去了同步调制的优点。
当载波比n随着输出频率的降低而连续变化时,它不可能总是3的倍数,势必使输出电压波形及其相位都发生变化,难以保持三相输出的对称性,可能引起电动机工作的不平稳。
3.4.3分段同步调制为了扬长避短,可将同步调制和异步调制结合起来,成为分段同步调制方式,实用的spwm变压变频器多采用这种方式。
在一定频率范围内采用同步调制,可保持输出波形对称的优点,但频率降低较多时,如果仍保持载波比n不变,输出电压谐波将会增大。
为了避免这个缺点,可以采纳异步调制的长处,使载波比分段有级地加大,这就是分段同步调制方式。
具体地说,把整个变频范围划分成若干频段,在每个频段内都维持载波比n恒定,而对不同的频段取不同的n值,频率低时,n值取大些,一般大致按等比级数安排。