正弦脉宽调制(SPWM)变频器
正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制2010-09-18 ylw527+关注献花(4)为了使变压变频器输出交流电压得波形近似为正弦波,使电动机得输出转矩平稳,从而获得优秀得工作性能,现代通用变压变频器中得逆变器都就是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制得,只有在全控器件尚未能及得特大容量时才采用晶闸管变频器。
应用最早而且作为pwm控制基础得就是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。
图3-1与正弦波等效得等宽不等幅矩形脉冲波序列3、1正弦脉宽调制原理一个连续函数就是可以用无限多个离散函数逼近或替代得,因而可以设想用多个不同幅值得矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅得波形(假设分出得波形数目n=12),如果每一个矩形波得面积都与相应时间段内正弦波得面积相等,则这一系列矩形波得合成面积就等于正弦波得面积,也即有等效得作用。
为了提高等效得精度,矩形波得个数越多越好,显然,矩形波得数目受到开关器件允许开关频率得限制。
在通用变频器采用得交-直-交变频装置中,前级整流器就是不可控得,给逆变器供电得就是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅得矩形波用一系列等幅不等宽得矩形脉冲波来替代(见图3-2),只要每个脉冲波得面积都相等,也应该能实现与正弦波等效得功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分得正弦曲线与横轴所包围得面积都用一个与此面积相等得矩形脉冲来代替,矩形脉冲得幅值不变,各脉冲得中点与正弦波每一等分得中点相重合,这样就形成spwm波形。
同样,正弦波得负半周也可用相同得方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效得spwm 波形称作单极式spwm。
脉宽调制(SPWM)变频调速系统分析
s WM 系统 由 主 网路 和控 制 回路 两 部 输 入 端 :C , C ,C P F TV TR T和 O T H F 72芯 列 和相 应 正 弦部 分 面 积 f 量 ) 等 , 町得 C 。 E 45 冲 相 就
分 组 成 。 变频 的 主 电路 用 交 — — 直— — 交 片输 六 路 正 弦 脉 宽 调 制 脉 冲信 号 ,脉 冲 到 如 图 1 下 半 部 分 ) 示 的 脉 冲序 列 。 这 ( 所
MOV T i L, A
为 1 . 此 , 1为 1 3因 L 3个 机 器 周 期 。C U虽 P 在 执 行 第 一 条 指 令 C R T i 停 止 定 时 器 I R 后 计 数 , 在 T iT i 分 别 保 存 了 但 L 、H 中 的低
MO 0 O H R V R , O ;0清 零 #
S B # I H( 0 + 3;2 6的高 8 U B A. G 1 0 1) 1 H 0 位 减 去 ( +1的 高 8位 送 A L L) 0 L+2的高 8 送 T i 1L 1 位 H
S WM装置具有较全面 的电气保 护性 的 。 于 正 弦 波 的负 半 周 , 可 以用 同样 的 P 对 也
电路 。 流器 采 用 二 极 管 整 流 , 高 了 交 流 能 , 有 故 障 检 测 电路 , 整 提 设 能对 过 流 、 压 、 过 短 方法 得到 P WM 波形 。像 这种 脉冲 的宽度
电 网 的功 率 冈 数 , 善 了 电 网 波形 畸变 。 改 逆 路 等 故 障 进 行 检测 并 显 示 处 理 , 于 使 用 、 便 变 器 采用 晶体 管 桥 式 电 路 由 脉 宽 调 制 波 来 维 修 。 控 制 晶体 管 的 导 通 与关 断 ,供 给 电 机 可 变 1 S W M 变 频 调 速 基 本原 理 . 2 P 频 率 和可 变 电压 的 交 流 电 .使 电 动 机 电 流
变频器的SPWM控制技术
变频器的SPWM控制技术随着现代电子技术的飞速发展,无论是家庭电器还是工业机器,对电力质量和效率的要求越来越高。
而交流电源并不能满足工业设备对电量和电流大小的需求,为此出现了变频器的SPWM控制技术。
一、SPWM控制技术简介SPWM一般指的是正弦波脉宽调制技术,其过程是通过对交流电源进行采样和比较,以最接近正弦波的方式改变直流电压的形状,达到减少谐波并输出接近正弦波的交流电的目的。
对于高精度变频器而言,采用SPWM控制技术进行调制的方式较为常见。
二、SPWM控制技术的优点1.精度高:SPWM控制技术能够实现精确的无级调节,可以根据生产需求更加精准地控制变频器输出电流的大小和频率。
2.输出电流波形好:由于控制电路与滤波电路有效配合,SPWM控制技术可以输出干净、稳定的正弦波电流,减少谐波,降低过电磁干扰和噪声污染。
3.节电节能:SPWM控制技术可以有效地提高能源的利用率,使得设备在工作过程中节能、降噪、减少能源的浪费。
三、SPWM控制技术的应用领域SPWM控制技术被广泛应用于变频器、UPS、空调、锅炉、电机、电源等领域。
特别是在高精度变频器控制中,SPWM控制技术发挥了重要的作用。
四、SPWM控制技术的发展趋势当前,随着技术的不断提升,SPWM控制技术将更加智能化、高效化和自动化。
比如,通过采用FPGA技术实现SPWM控制,可以大量减少功耗和运算时间,提高SPWM的控制精度,同时SPWM控制技术也将更加人性化,减少对技术工人的依赖。
五、总结变频器的SPWM控制技术对于提高工业设备的效率和降低能源的浪费具有重要的作用,其优点主要是精度高、输出波形好、节电节能等。
SPWM控制技术的应用领域十分广泛,并且随着技术的不断提升,SPWM控制技术将更加人性化、智能化和高效化,为现代工业的快速发展提供强有力的支撑。
SPWM控制技术
2-3
SPWU
0
ωt
0
ωt
变频器根据调制方式分类:
脉幅调制(PAM):Plus Amplitude Modulation 脉宽调制(PWM):Plus Width Modulation
一、SPWM原理
SPWM:正弦脉宽调制
正弦PWM的信号波为正弦波,就是正 弦波等效成一系列等幅不等宽的矩形脉冲 波形(与我们课件上画的一致),这个由 n个等幅不等宽的矩形脉冲所组成的波形 就与正弦波的半周波形等效,称为SPWM 波形。
课外知识:
正弦波波形产生的方法有很多种,但较典型的
主要有:对称规则采样法、不对称规则采样法和 平均对称规则采样法三种。 第一种方法由于生成的PWM脉宽偏小,所以变 频器的输出电压达不到直流侧电压的倍;第二种 方法在一个载波周期里要采样两次正弦波,显 然输出电压高于前者,但对于微处理器来说, 增加了数据处理量当载波频率较高时,对微机 的要求较高;第三种方法应用最为广泛的,它兼 顾了前两种方法的优点。
uda电压:
1. ura> ut 2. ura< ut
uda为“正”电平 uda为“零”电平
单极性脉宽调制波的形成
U
ut
ura
ωt U uda
ωt
注意:载波的最大值大于调制波的最大值
注意:SPWM脉冲系列中,脉冲的宽度以
及相互间的间隔是由正弦波(基准波或调 制波)和等腰三角波(载波)的焦点来决 定的。
三、双极性SPWM技术
1、调制波和载波 ut是载波,采用了双极性等腰三角波,周期决定
了载波频率,振幅不便,和电动机的电压为额 定电压的调制波的振幅相同; ura是正弦调制波,其周期决定了所需电压波形 的频率,其振幅决定所需电压波形的振幅; uAO电压: 1. ura> ut V1通,V2断 uAO=+Us/2 2. ura< ut V1断,V2通 uAO=-Us/2
SPWM使变压变频器输出交流电压地波形近似为正弦波
了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。
应用最早而且作为pwm控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。
图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列3.1 正弦脉宽调制原理一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式spwm。
图3-2 spwm波形图3-3是spwm变压变频器主电路的原理图,图中vt1~vt6是逆变器的六个全控型功率开关器件,它们各有一个续流二极管(vd1~vd6)和它反并联接。
正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制正弦脉宽调制(SPWM)控制2010-09-18ylw527+关注献花(4)为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从⽽获得优秀的⼯作性能,现代通⽤变压变频器中的逆变器都是由全控型电⼒电⼦开关器件构成,采⽤脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特⼤容量时才采⽤晶闸管变频器。
应⽤最早⽽且作为pwm控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。
图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列3.1 正弦脉宽调制原理⼀个连续函数是可以⽤⽆限多个离散函数逼近或替代的,因⽽可以设想⽤多个不同幅值的矩形脉冲波来替代正弦波,如图3-1所⽰。
图中,在⼀个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数⽬n=12),如果每⼀个矩形波的⾯积都与相应时间段内正弦波的⾯积相等,则这⼀系列矩形波的合成⾯积就等于正弦波的⾯积,也即有等效的作⽤。
为了提⾼等效的精度,矩形波的个数越多越好,显然,矩形波的数⽬受到开关器件允许开关频率的限制。
在通⽤变频器采⽤的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述⼀系列等宽不等幅的矩形波⽤⼀系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的⾯积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每⼀等分的正弦曲线与横轴所包围的⾯积都⽤⼀个与此⾯积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每⼀等分的中点相重合,这样就形成spwm波形。
同样,正弦波的负半周也可⽤相同的⽅法与⼀系列负脉冲波等效。
这种正弦波正、负半周分别⽤正、负脉冲等效的spwm波形称作单极式spwm。
spwm原理
spwm原理
脉宽调制(SPWM)是一种用于控制交流电源输出的方法。
其原理是通过调整脉冲宽度来控制电源输出的平均值。
脉宽调制通常被用于变频器、电机控制和逆变器等应用中。
脉宽调制的原理是将一个固定频率的正弦波信号与一个可调节脉冲宽度的方波信号进行比较。
比较的结果可以用来调整输出的脉冲宽度,从而实现对电源输出电压或电流的控制。
在SPWM中,首先需要确定一个基准正弦波信号,其频率通
常与所需要的输出电源频率相同。
然后,通过一个比较器来将基准正弦波信号与方波信号进行比较。
比较器的输出结果可以用来控制开关电路的开关状态。
当基准正弦波信号的幅值大于方波信号的幅值时,开关电路闭合;当基准正弦波信号的幅值小于方波信号的幅值时,开关电路断开。
通过调整方波信号的脉冲宽度和占空比,可以控制开关电路开关的时间比例。
因此,通过调整方波信号的脉冲宽度,就可以实现对输出电压或电流的控制。
脉宽调制技术具有高效、精确和可靠的特点。
它可以通过调整脉冲宽度来实现对输出功率的精确控制,从而充分利用电源的能量。
此外,脉宽调制技术还可以有效减小电源的谐波失真,提高电源的功率因数,以及降低电源的噪声和干扰。
总之,脉宽调制技术是一种有效的电源控制方法,通过调整脉冲宽度来实现对输出电压或电流的精确控制。
它在各种应用中
都有广泛的应用,为电力系统的稳定运行和节能减排提供了重要的支持。
试说明spwm控制的工作原理
试说明spwm控制的工作原理SPWM全称为Sinusoidal Pulse Width Modulation,即正弦脉宽调制。
它是一种常用于交流电机调速和逆变器控制的技术。
SPWM通过控制脉冲宽度使其与正弦波形进行调制,从而实现对输出电压或电流的精确控制。
下面将详细介绍SPWM控制的工作原理。
SPWM控制的基本原理是改变电源开关器件的导通和截止时间,以控制输出电压或电流的有效值和相位角。
在SPWM控制中,有两个主要的时序信号:参考正弦信号和比较信号。
参考正弦信号是一个预先确定的正弦波形,用于建立期望的输出信号;比较信号是将参考正弦信号与三角波形进行比较,决定开关器件的导通和截止时间。
根据比较信号的情况,控制开关器件的导通和截止时间来控制输出信号的波形和参数。
SPWM控制的关键是生成一个比较信号,该信号决定了开关器件的导通和截止时间。
实现这一点的一种常用方法是使用三角载波发生器。
三角载波发生器是一个周期为Tp的三角波形信号发生器,它的频率形成了SPWM波形的基础频率。
比较信号是将参考正弦信号与三角波形进行比较,这样就可以得到一个PWM信号,用于控制开关器件的导通和截止时间。
SPWM控制的具体步骤如下:1. 参考正弦信号生成:首先需要生成一个参考正弦信号,其频率和幅值由控制系统确定。
常用的方法是使用数字正弦波表格,根据需要的频率和幅值,在每个采样周期内逐步读取表格中的数值,如此可生成一个与所需正弦波形接近的参考正弦信号。
2. 三角波形生成:采用三角载波发生器产生一个周期为Tp的三角波形信号。
该三角波形信号的频率通常大于参考正弦信号的频率,以保证调制后的PWM 信号具有足够的细腻度。
3. 参考正弦信号与三角波形比较:将上述生成的参考正弦信号与三角波形信号进行比较。
比较的方法是通过比较器将两者相减,结果分为三种情况:正输入、零输入和负输入。
4. 正输入:当参考正弦信号的幅值大于三角波形信号的幅值时,比较器的输出为高电平,开关器件导通;当参考正弦信号的幅值小于三角波形信号的幅值时,比较器的输出为低电平,开关器件截止。
变频器的控制方式及合理选用
变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。
其控制方式经历以下四代。
(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。
其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。
他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。
以内切多边形逼近圆的方式而进行控制的。
经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。
但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。
(3)第三代以矢量控制(磁场定向法)又称VC控制。
其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。
通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。
(4)第四代以直接转矩控制,又称DTC控制。
其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。
具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。
正弦脉宽调制(SPWM)变频器
引言随着电力电子技术的飞速发展,正弦脉宽调制(SPWM)变频器也得到了大力的发展,在各个领域内得到了广泛的应用。
SPWM 变频器主要应用于中小容量,高性能的交流调速系统中,这种新型的变频器具有如下的优点:(1) 输出电压的幅值和频率均在逆变器内控制和调节,可以方便的实现压频比恒定控制或低频时幅值电压的补偿等功能,系统的动态性能较好;(2) 功率变化只在逆变器内完成,逆变器可由二极管整流供电,电网的功率因数较高;(3)由SPWM逆变器供电的异步电机的电流波形接近正弦波,谐波分量较少,矩阵脉动小,改善了电动机的运行性能。
鉴于正弦脉宽(SPWM)变频器的上述优点,以及在实际电气传动系统中,不同设备对电源的不同需求。
本文采用了新型功率器件IGBT和8031AH单片机控制系统,设计了一种新型的单相桥式SPWM变频电源。
该变频电源采用恒压频比控制,即U/F为常数,能使主频率在0 ~ 100Hz内可调,且将软件设计和硬件设计结合起来,减少了硬件电路的不必要的成本,又使软件编程不至于繁锁。
本设计由我和张建忠同学合作完成,我主要作硬件原理设计参数计算与软件编程、调试等工作,具体内容在本论文中有详述。
而有关硬件绘图、电路仿真及电路介绍等内容可参阅张建忠同学的毕业论文。
由于设计者的能力有限,在设计过程中得到了常宝林老师的悉心教导和大力协助,才将本设计顺利的完成。
在此,向指导老师并支持过我们的各位老师表示衷心的感谢。
目录第一章脉宽调制(PWM)逆变器一、脉宽调制技术(PWM)及其分类……………………..二、正弦脉宽调制技术………………………………………三、同步调制和异步调制……………………………………四、SPWM波形的软件生成………………………………第二章单相桥式正弦脉宽调制(SPWM)变频电源硬件设计……一、设计方案及总体框图…………………………………..二、电路原理与参数计算…………………………………..§1.主电路……………………………………………………§2.驱动电路…………………………………………………§3. 吸收电路…………………………………………………..§4.保护电路………………………………………………….§5. 控制及接口电路………………………………………….第三章软件设计……………………………………………….一.对称规则采样法………………………………………….二.地址分配………………………………………………….三.程序设计…………………………………………………..四.程序调试与仿真…………………………………………五.程序清单……………………………………………………结束语……………………………………………………………….参考文献……………………………………………………………外文翻译……………………………………………………………第一章脉宽调制逆变器一、脉宽调制(PWM)技术及其分类在电气传动系统中,广泛的应用的PWM控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲的宽度或周期以达到变压目的,或者控制电压脉冲宽度和脉冲序列的周期以达到变压变频的目的的一种控制技术。
1-7 变频变压的实现方法SPWM)
冲量相等形状不同的三种窄脉冲
根据上述理论,正弦波可用一系列等幅不等宽的 脉冲来代替。如图所示。
3.PWM逆变电路的控制方式 3.PWM逆变电路的控制方式
(1)单极性方式 单极性控制方式 波形见图,载波uc 在调制信号波ur的 正半周为正极性的 三角波,在负半周 为负极性的三角波
单极性控制方式波形
2.SPWM控制的基本原理 SPWM控制的基本原理
采样控制理论:冲量相等而形状不同的窄脉冲加在具有惯性的环 节上时,其效果基本相同。冲量即指窄脉冲的面积,效果基本相同是 指环节的输出响应波形基本相同。如图所示的三种窄脉冲形状不同, 但面积相同(假如都等于1)。当它们分别加在同一个惯性环节上时 ,其输出响应基本相同。且脉冲越窄,其输出差异越小。
作业
(1)SPWM控制的基本原理是什么? (2)SPWM控制的单极性和双极性有什么不同?
(2)双极性控制方式 双极性控制方式 波形见图,在ur的半 个周期内,三角波载 波是在正负两个方向 变化的,所得到的PWM 波形也是在两个方向 变化的。
双极性控制方式波形
SPWM波形成的方法 4. SPWM波形成的方法 (1)自然采样法
自然采样法即计算正弦信号波和 三角载波的交点,从而求出相应的 脉宽和间歇时间,生成SPWM波形。 图中截取一段正弦与三角波相交的 实时状况。检测出交点A是发出脉冲 的初始时刻,B点是脉冲结束时刻。 TC为三角波的周期;t2为AB之间的脉 宽时间,t1和t3为间歇时间。显然, TC= t1+ t2+ t3。
自然采样法
(2)数字控制法
数字控制法,是由微机存储预先计算好的SPWM数据表格,控制时根 据指令调出,由微机的输出接口输出。
(3)采用SPWM专用集成芯片
脉冲宽度调制(PWM)和正弦波脉宽调制(SPWM)变频技术简介
变频技术之PWM调制技术与SPWM调制技术详解变频技术通过改变电力信号的频率来调节电动机、压缩机和其他电气设备的运行速度。
在实际应用中,变频器是变频技术的核心装置,而脉冲宽度调制(PWM)技术和正弦波脉宽调制(SPWM)技术是实现变频器控制的重要手段。
什么是PWM调制技术PWM调制技术通过控制脉冲信号的宽度,实现对输出电压的调节。
在变频技术中,PWM被广泛应用于变频器中,以控制电动机的速度和转矩输出。
通过改变脉冲信号的占空比(脉冲宽度与周期之比),可以实现对电动机的精确控制。
当需要增大输出电压时,增加脉冲信号的宽度;当需要减小输出电压时,减小脉冲信号的宽度。
这种方式使得电动机可以在不同负载条件下保持稳定的转速和扭矩输出。
同时,PWM调制技术还具有响应快、控制精度高、效率高等优点,被广泛应用于各种电力控制系统中。
PWM调制波形如图1所示:图1PWM调制波形PWM技术具有以下优点:高效性:由于PWM技术可以通过调整脉冲宽度来控制电机的输出电压和频率,因此可以实现电机在不同负载条件下的高效运行。
通过减小电机额定电压,PWM技术可以降低电机的功耗,提高整体效率。
精确控制:PWM技术具有响应速度快、控制精度高的特点。
通过微调脉冲宽度和周期,可以实现对电机转速和扭矩的精确调节,满足不同应用的需求。
减少机械冲击:PWM技术可以实现电机的软启动和软停止,减少了机械系统的冲击和磨损,延长了设备的使用寿命。
尽管PWM技术具有许多优点,但也存在一些局限性:谐波问题:PWM技术在产生脉冲信号时会引入谐波成分,可能对电力网络和其他设备造成干扰。
为了减少谐波,需要采取滤波和抑制措施,增加了系统的复杂性和成本。
开关损耗:PWM技术使用高频开关装置,开关的频繁操作会产生开关损耗。
这些损耗会转化为热能,需要适当的散热系统来冷却电路。
EMI干扰:由于高频开关操作,PWM技术可能会产生电磁干扰(EMI),对周围的电子设备和无线通信系统造成干扰。
spwm文档
SPWM什么是SPWMSPWM(Sine wave pulse width modulation)即正弦波脉宽调制,是一种用于产生接近正弦波形的信号的调制技术。
在电力电子和电力调制中,SPWM广泛应用于交流调制、逆变器和变频器等领域。
SPWM技术通过调节脉冲的宽度来控制相位和幅度,从而产生与正弦波形类似的输出波形。
这种调制技术不仅能够提供高质量的输出波形,还具有高效率和较低的谐波失真。
SPWM的原理SPWM通过比较一个参考信号(通常为正弦波形)和一个三角波信号,来控制开关器件的通断。
当参考信号大于三角波信号时,开关器件导通;反之,开关器件关闭。
通过不断改变参考信号的幅值和频率,可以控制输出波形的幅值和频率。
通过改变参考信号和三角波信号之间的相位差,可以控制输出波形的相位。
最终通过这种方法,可以产生接近正弦波的输出信号。
SPWM的优点1.高质量输出波形:SPWM技术可以产生非常接近于正弦波形的输出信号,因此在很多需要高质量输出的应用中非常受欢迎。
2.高效率:相比其他调制技术,SPWM技术的效率较高。
这是因为SPWM技术能够更好地利用开关器件的导通和关断过程,减少功率损耗。
3.低谐波失真:SPWM技术通过调节比较频率和振幅,来有效地控制波形的谐波分量,从而减少谐波失真。
4.灵活性:SPWM技术可以根据需要调整输出波形的频率和相位,以满足不同的应用需求。
SPWM的应用1.逆变器和变频器:SPWM技术广泛应用于逆变器和变频器中,用于将直流电转换为交流电,并改变交流电的频率和相位。
2.交流调制:SPWM技术在交流调制领域中也有重要应用。
通过使用SPWM技术,可以有效地调整交流电的幅值和相位。
3.音频放大器:SPWM技术在音频放大器中被用于产生高质量的音频信号。
4.动力电子设备:SPWM技术还被广泛应用于各种动力电子设备中,如电源调节器、电机驱动器等。
结论SPWM技术作为一种有效的调制技术,具有高质量的输出波形、高效率和低谐波失真的优点。
svpwm变频调速原理 详解svpwm与SPWM区别
svpwm变频调速原理详解svpwm与SPWM区别本文主要是关于svpwm变频调速的相关介绍,并着重对svpwm与SPWM进行了详尽的区分介绍。
SVPWMSVPWM的主要思想是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。
传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。
原理普通的三相全桥是由六个开关器件构成的三个半桥。
这六个开关器件组合起来(同一个桥臂的上下半桥的信号相反)共有8种安全的开关状态。
其中000、111(这里是表示三个上桥臂的开关状态)这两种开关状态在电机驱动中都不会产生有效的电流。
因此称其为零矢量。
另外6种开关状态分别是六个有效矢量。
它们将360度的电压空间分为60度一个扇区,共六个扇区,利用这六个基本有效矢量和两个零量,可以合成360度内的任何矢量。
当要合成某一矢量时先将这一矢量分解到离它最近的两个基本矢量,而后用这两个基本矢量去表示,而每个基本矢量的作用大小就利用作用时间长短去代表。
用电压矢量按照不同的时间比例去合成所需要的电压矢量。
从而保证生成电压波形近似于正弦波。
在变频电机驱动时,矢量方向是连续变化的,因此我们需要不断的计算矢量作用时间。
为了计算机处理的方便,在合成时一般是定时器计算(如每0.1ms计算一次)。
这样我们只要算出在0.1ms内两个基本矢量作用的时间就可以了。
由于计算出的两个时间的总和可能并不是0.1ms(比这小),而那剩下的时间就按情况插入合适零矢量。
由于在这样处理时,合成的驱动波形和PWM很类似。
因此我们还叫它PWM,又因这种PWM是基于电压空间矢量去合成的,所以就叫它SVPWM了。
svpwm变频调速原理SVPWM原理电压空间矢量PWM(SVPWM)的出发点与SPWM不同,SPWM调制是从三相交流电源。
正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制2010-09-18 ylw527 + 关注献花 (4)为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。
应用最早而且作为pwm 控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称 spwm)。
图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列3.1正弦脉宽调制原理一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1 所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n 等分(在图 3-2 中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm 波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm 波形称作单极式 spwm。
脉冲宽度调制(PWM)技术原理
一、PWM技术原理由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。
PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。
采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。
由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。
又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。
此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。
把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。
二、正弦波脉宽调制(sPwM)1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。
各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。
度正比于该曲线函数值的矩形脉冲。
若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。
在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。
电气化自动技术 实验三十四 spwm变频原理实验
第六章 变频原理实验本章节主要完成的实验为三相SPWM 、SVPWM 、及马鞍波变频原理实验及在各种变频模式下V/F 曲线的测定等。
异步电机转速基本公式为:n=)1(60s pf其中n 为电机转速,f 为电源频率,p 为电机极对数,s 为电机的转差率。
当转差率固定在最佳值时,改变f 即可改变转速n 。
为使电机在不同转速下运行在额定磁通,改变频率的同时必须成比例地改变输出电压的基波幅值。
这就是所谓的VVVF (变压变频)控制。
工频50Hz 的交流电源经整流后可以得到一个直流电压源。
对直流电压进行PWM 逆变控制,使变频器输出PWM 波形中的基波为预先设定的电压/频率比曲线所规定的电压频率数值。
因此,这个PWM 的调制方法是其中的关键技术。
目前常用的变频器调制方法有SPWM ,马鞍波PWM ,和空间电压矢量PWM 等方式。
一、SPWM 变频调速方式:正弦波脉宽调制法(SPWM )是最常用的一种调制方法,SPWM 信号是通过用三角载波信号和正弦信号相比较的方法产生,当改变正弦参考信号的幅值时,脉宽随之改变,从而改变了主回路输出电压的大小。
当改变正弦参考信号的频率时,输出电压的频率即随之改变。
在变频器中,输出电压的调整和输出频率的改变是同步协调完成的,这称为VVVF (变压变频)控制。
SPWM 调制方式的特点是半个周期内脉冲中心线等距、脉冲等幅,调节脉冲的宽度,使各脉冲面积之和与正弦波下的面积成正比例,因此,其调制波形接近于正弦波。
在实际运用中对于三相逆变器,是由一个三相正弦波发生器产生三相参考信号,与一个公用的三角载波信号相比较,而产生三相调制波。
如图6-1所示。
二、马鞍波PWM变频调速方式前面已经说过,SPWM信号是由正弦波与三角载波信号相比较而产生的,正弦波幅值与三角波幅值之比为m,称为调制比。
正弦波脉宽调制的主要优点是:逆变器输出线电压与调制比m成线性关系,有利于精确控制,谐波含量小。
但是在一般情况下,要求调制比m<1。
变频器矢量控制
U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
因此人们又研究出矢量控制变频调速。
矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。
其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。
通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
矢量控制方法的提出具有划时代的意义。
然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
V/F控制与矢量都是恒转矩控制。
U/F相对转矩可能变化大一些。
而矢量是根据需要的转矩来调节的,相对不好控制一些。
对普通用途。
两者一样1、矢量控制方式——矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。
矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。
实验四单相正弦波脉宽调制SPWM变频调速系统实验
单相正弦波脉宽调制SPWM 变频调速系统实验一、实验目的(1)掌握异步电动机变频调速的原理。
(2)了解异步电动机变频调速运行的基本参数,V/f 曲线。
二、实验所需挂件及附件 序号 型 号备 注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK11 单相异步电机SPWM 变频调速 或DJK14单相交直交变频原理3 DJ21-1单相电阻启动异步电动机4 双踪示波器 自备 5万用表自备三、实验线路及原理单相异步电动机的调速除了其起动需要另加附加绕组及相关电路之外,其变频调速原理与三相异步电动机相同,下面仍然以三相异步电动机的调速原理来说明,由电机学可知,电机的转速表达式为: 其中f 1为定子供电频率;p 为电机的磁极对数;s 为转差率,由上式可知改变定子供电频率f 1可以改变电机的同步转速,从而实现了在转差率s 保持不变情况下的转速调节,为了保持电机的最大转矩不变,希望维持电机气隙磁通恒定,因而要求定子供电电压也随频率作相应调整。
即在忽略定子阻抗压降的情况下,E 1≈U 1为使气隙磁通恒定,在改变定子频率的同时必须同时改变电压U 1,即保证常数f U φ11==。
单相正弦波脉宽调制逆变电路的输出电压与频率就是根据上述要求而设计的,因此由该逆变器供电的单相电动机可以实现速度调节的要求,其原理框图如图7-3所示。
单相异步电机采用电阻分相启动式,启动绕组串接PTC 保护器,当启动完毕时在离心开关的作用下自动切除启动支路。
在微处理器的控制下,利用键盘可以改变电路输出的V/f 比值,用键控方式改变输出频率以达到调频调速的目的。
关于逆变电路的原理请参考相关书籍、其输出电压波形为脉冲宽度按正弦规律变化的调制波,其中含有基波分量和各种高次谐波,以基波分量为主,谐波分量较小,当基波频率与幅值按某种恒压/频的规律变化时,电机转速随之改变。
四、实验内容(1)V/f 曲线测定。
(2)观察低频补偿对于提高启动力矩的效果。
SPWM使变压变频器输出交流电压的波形近似为正弦波
了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采用脉宽调制(pulsewidthmodulation,简称pwm)控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。
应用最早而且作为pwm控制基础的是正弦脉宽调制(s i n u s o i d a l p u l s e w i d t h m o d u l a t i o n,简称s p w m)。
图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列正弦脉宽调制原理一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式spwm。
图3-2 spwm波形图3-3是spwm变压变频器主电路的原理图,图中vt1~vt6是逆变器的六个全控型功率开关器件,它们各有一个续流二极管(vd1~vd6)和它反并联接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言随着电力电子技术的飞速发展,正弦脉宽调制(SPWM)变频器也得到了大力的发展,在各个领域内得到了广泛的应用。
SPWM 变频器主要应用于中小容量,高性能的交流调速系统中,这种新型的变频器具有如下的优点:(1)输出电压的幅值和频率均在逆变器内控制和调节,可以方便的实现压频比恒定控制或低频时幅值电压的补偿等功能,系统的动态性能较好;(2)功率变化只在逆变器内完成,逆变器可由二极管整流供电,电网的功率因数较高;(3)由SPWM逆变器供电的异步电机的电流波形接近正弦波,谐波分量较少,矩阵脉动小,改善了电动机的运行性能。
鉴于正弦脉宽(SPWM)变频器的上述优点,以及在实际电气传动系统中,不同设备对电源的不同需求。
本文采用了新型功率器件IGBT和8031AH单片机控制系统,设计了一种新型的单相桥式SPWM变频电源。
该变频电源采用恒压频比控制,即U/F为常数,能使主频率在0 ~ 100Hz内可调,且将软件设计和硬件设计结合起来,减少了硬件电路的不必要的成本,又使软件编程不至于繁锁。
本设计由我和张建忠同学合作完成,我主要作硬件原理设计参数计算与软件编程、调试等工作,具体内容在本论文中有详述。
而有关硬件绘图、电路仿真及电路介绍等内容可参阅张建忠同学的毕业论文。
由于设计者的能力有限,在设计过程中得到了常宝林老师的悉心教导和大力协助,才将本设计顺利的完成。
在此,向指导老师并支持过我们的各位老师表示衷心的感谢。
目录第一章脉宽调制(PWM)逆变器一、脉宽调制技术(PWM)及其分类……………………..二、正弦脉宽调制技术………………………………………三、同步调制和异步调制……………………………………四、SPWM波形的软件生成………………………………第二章单相桥式正弦脉宽调制(SPWM)变频电源硬件设计……一、设计方案及总体框图…………………………………..二、电路原理与参数计算…………………………………..§1.主电路……………………………………………………§2.驱动电路…………………………………………………§3. 吸收电路…………………………………………………..§4.保护电路………………………………………………….§5. 控制及接口电路………………………………………….第三章软件设计……………………………………………….一.对称规则采样法………………………………………….二.地址分配………………………………………………….三.程序设计…………………………………………………..四.程序调试与仿真…………………………………………五.程序清单……………………………………………………结束语……………………………………………………………….参考文献……………………………………………………………外文翻译……………………………………………………………第一章脉宽调制逆变器一、脉宽调制(PWM)技术及其分类在电气传动系统中,广泛的应用的PWM控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲的宽度或周期以达到变压目的,或者控制电压脉冲宽度和脉冲序列的周期以达到变压变频的目的的一种控制技术。
PWM控制技术可分为多种,而且还在不断的发展。
从控制思想上可分为四种:等脉宽PWM法,正弦脉宽PWM(SPWM)法,磁链追踪PWM法和电流追踪PWM法。
二.正弦脉宽(SPWM)技术SPWM法是为克服直流脉宽调制(PWM)的缺点(其输出电压中含较大的谐波分量)而发展起来的。
它从电动机的供电电源的角度出发,着眼于如何产生一个可调频、调压的三相正弦波电源,具体方法如图所示:上图(a)所示的正弦波,如将每半周期划分为N等分(图中N=6),每一等分的正弦电压与横轴所包围的面积都用一个与此面积相等的等高矩形脉冲所代替,且使矩形脉冲的中点与相应的正弦等分的中点重合,则各脉冲的宽度将是按正弦规律变化的。
按照采样控制理论中冲量相等而形状不同的窄脉冲加在具有惯性环节上,其效果基本相同的结论,图(b)所示,由N个等幅而不等宽的矩形脉冲所组成的波形便与正弦波等效。
在用模拟电路产生等幅不等宽脉冲的方法中,通常采用期望的正弦波(称调制波)与三角波(称载波)相交的办法来确定各段矩形脉冲的宽度。
因为等腰三角波是上下宽度与高度成线性关系且对称,当它与一个光滑的曲线相交时,即可得到一组等幅而脉冲宽度正比与该曲线函数值的矩形脉冲。
如下图所示,用正弦波和三角波相交(图b)得到一组矩形脉冲(图a),其宽度按正弦规律变化。
再用这组矩形脉冲作为逆变器各开关器件的控制信号,则在逆变器输出端就可得到一组类似图(a)的矩形脉冲,其幅值为逆变器直流侧电压,其脉冲宽度是它在周期中所在相位的正弦函数。
该矩形脉冲可用正弦波等效【图(b)中虚线所示】。
不难看出:(1)逆变器输出频率与正弦调制波频率相同,当逆变器输出端需要变频时,只要改变调制波的频率【图(e)】。
(2)三角波与正弦调制波的交点即确定了逆变器输出脉冲的宽度和相位。
通常采用恒幅的三角波,而来改变调制波的幅值的方法,以得到逆变器输出波形的不用宽度,从而得到不同的逆变器输出电压【图(c)和图(d)】。
像这样由载波调制正弦波而获得脉冲宽度按正弦规律变化又和正弦波等效的脉宽调制(PWM)波形称为正弦脉宽调制(SPWM)。
一般将正弦调制波的幅值A与三角载波的峰值Ap之比定义为调制度M[也称调制比或调制系数(Moudulation Index)],即 M=A/Ap 改变SPWM输出电压和频率的波形。
除了将正弦波与单极弦性三角波脉宽调制外,还有正弦波与双极性三角波的调制波的调制方法,如图5.51所示时三角波和PWM波形有正负极性变化,但正半周期内,正脉冲同负半周期相反。
半周期内,正脉冲较负半周期则反之。
对单相桥式逆变器电路采用单极性调制时,在正弦波的半个周期内每臂只有一个开关器件导通或关断,而双极性调制时,逆变器两对角及同一臂上下两个开关元件交替通断,处于互补的工作方式。
在三相桥式逆变器双极性调制的情况中,PWM逆变器一般都用电压型,电压型逆变器由于用电容滤波,直流电源为低内阻的电压源,直流电压幅值和极性不能改变,能将电动机端电压限制在直流电源电压水平上,浪涌过电压较低,适于稳频稳压电源、不可逆拖动、快速性要求不高的场合以及多电机供电压和稳速工作。
在三相SPWM逆变器中,通常公用一个三角载波信号,用三个相位互差120度的正弦波作调制信号,以获得三相对称输出;基波电压的大小和频率也是通过改变正弦调制信号的幅值和频率来改变的。
由以上的分析可以看出,不管从调频、调压的方便和为了减少谐波,PWM逆变器都有着明显的优点:(1)即可分别调频、调压,也可调频调压,都由逆变器统一完成,仅有一个可控功率级,从而简化了主电路和控制电路的结构,使装置的体积小、重量轻、照价低,可靠性高。
(2)直流电压可由二极管整流获得,交流电网的输入功率因数与逆变器输出电压的大小无关,有数台装置可由同一台不可控整流供电。
(3)输出频率和电压都在逆变器内控制和调节,其响应速度取决于电子控制回路,而与直流回路的滤波参数无关,所以调节速度快,且可使调节过程中频率和电压相配合,以获得好的动态性能。
(4)输出电压或电流波形接近正弦,从而减少谐波分量,降低负载电机的发热和转矩脉动,改善了电机运行性能。
PWM逆变器要求有高的载波频率。
开关器件工作频率高,开关损耗和换流损耗会随之增加。
三、同步调制和异步调制在SPWM逆变器中,定义载波频率ff与调制频率F之比为载波比N。
根据调制波与载波频率之比是否固定抑或变化,SPWM的控制方式可以分为同步调制和异步调制:(1)同步调制:这时N=常数,变频时三角载波的频率与正弦调制波的频率同步变化。
(2)异步调制:在逆变器的整个变频范围内,载波比N不等于常数,载波信号与调制信号不保持同步关系。
同步调制随着输出频率的降低,其相邻两脉冲间的间距增大,谐波会显著增加,对电动机负载将产生转矩脉动和噪音等恶劣影响。
在异步调制方式中,其整个变频范围内三角波频率恒定,因此,低频时逆变器输出电压半波内三角波频率恒定,因此,低频时逆变器输出电压半波内的矩形脉冲数增加,提高了低频时的载波比,这可减少负载电机的转矩脉冲与噪声,改善低频工作特性;但是由于载波比是变化的,势必使逆变器输出电压波形中正负半周期脉冲数及其相位都发生变化,很难保持三相输出间的对称关系,因而引起电机工作的不平稳。
为了克服上述两种控制方式的不足,可以扬长避短,将同步和异步两种调制方式结合起来,采用分段同步调制,保持输出波形对称的优点;当频率降低较多时,使载波比分段有级的增加,采纳异步调制的长处。
具体的说,就是把逆变器整个频率范围划分成若干频段,在每个频段内都维持载波比N恒定;对不同频段,则取不同的N值。
频率低时,取N值大些,例如可按等比级数安排。
各频段载波频率的变化范围基本一致,以满足功率开关器件对开关频率率的限制。
对三相SPWM逆变器电路采用同步调制时,为了使三相输出波形严格对称,应取载波N为3的倍数,同时,为了使一相的波形正负半周期对称,N应取奇数。
四、SPWM波的软件生成PWM波形可以由模拟和数字电路用调制的方法产生,而由于微机控制技术的发展,用软件生成SPWM波形的方法就变得比较容易。
目前SPWM波形的生成方法有多种:表格法(又称ROM法)、随时计算法(又称RAM法),实时计算法等。
其中的实施计算法是通过数学模型,而建立数学模型的方法又有多种,如谐波滤去法、等面积法、采样型SPWM法以及其它配生方法。
而采样型SPWM法又分为:自然采样法、规则采样法。
在本设计中,采用对称规则采样法,具体内容见软件设计部分。
第二章单相桥式正弦脉宽调制(SPWM)变频电源硬件设计一、方案与总体框图1、方案选择在交流调速系统中,用于交流电气传动中的变频器实际上是变压(Variable Voltage 简称VV)变频(Variable Frequency 简称VF)器,即VVVF, 通常称为VVVF装置。
而这种VVVF控制技术又分为两种,第一种是VV与VF方式,即把交流电整流成直流电的同时进行相应控制而逆变为可调频率的交流电,这种VVVF控制技术称为脉冲幅值调制(PAM)方式。
第二种是将VV与VF集中于逆变器一起完成的,即前面为不可控整流器,中间直流电压恒定,而后由逆变器既完成变压又完成变频,这种控制方式脉冲宽度调制方式,即PWM方式。
本设计选用第二种方式进行设计,因为这种方式的整流器无需控制,简化了硬件电路的结构,而且由于以全波整流代替相控整流,提高了输入端的功率因数,减少了高次谐波对电网的影响。
此外,由于输出电压波形又方波改进为PWM 波,减少了低次谐波,从而解决了电动机在低频区的转矩脉动问题,也降低了电动机的谐波损耗和噪声。