1.垂径定理复习
3.1.1垂径定理
利用折叠的方法即可解决上述问题.
新知探究
在直径AB上取一点E,过点E作直径AB的垂线,交⊙O于点C、D两点,
则线段CD是⊙O的一条
,将⊙O沿AB折叠,
请写出现有图形中的等量关系:
新知探究
除了用轴对称的方式得出CE=ED,你还能用什么 方法来证明CE=ED?
的两条弧。
复习回顾
1.什么是轴对称图形? 举例说明我们曾经学过哪些轴对称图形? 2.复习圆的相关概念: 弧、优弧、劣弧、半圆; 弦、直径;
3
圆的相关概念
• 圆上任意两点间的部分叫做圆弧,简称弧.
以A,B两点为端点的弧.记作 ⌒AB,读作“弧AB”.
A
小于半圆的弧叫做劣弧,如记作 ⌒AB(用两个字母). 大于半圆的弧叫做优弧,如记作 A⌒DB
变 式 3.如图,一条公路的转弯处是一段圆 弧,点O是这段弧的圆心,C是弧AB上一点 ,AB=300m,CD=50m,OC⊥AB,垂足为D , 则这段弯路的半径是_________ .
15
课堂小结与梳理
这节课你有哪些收获?
学习到了哪些知识? 哪些数学思想和方法?
课堂检测
一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽 AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽 CD等于多少?
3.1.1 圆的对称性 ——垂径定理
学习目标
1.学生能通过折叠的方法,明确圆是轴对称图形,95%的学生能准确 描述对称轴. 2.经历观察、猜想、证明的过程,90%学生能准确叙述垂径定理的内 容,并能结合图形准确书写几何语言. 3.通过例题建立并强化垂径定理的计算模型,体会垂径定理在实际生 活中的应用,增强应用数学知识解决实际问题的意识.
垂径定理及相关计算
垂径定理的相关计算导学案教学目标:1.进一步熟悉垂径定理及其推论。
2.通过练习,总结常用解题方法,渗透方程、构造直角三角形的数学思想。
3.学会与同学交流合作,培养团队精神,体验学习过程中成功的快乐,增强学习数学的信心与热情。
重点难点:垂径定理及其推论在计算中的应用。
教学过程 一、复习引入:【垂径定理】垂直于弦的直径平分这条弦,并且平分弦所对的弧.【推论】平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 算一算:如图CD 是⊙O 的直径。
(1) 若CD ⊥弦AB 于E ,若AB =8cm,CD =10cm ,则OE =___ (2) 若AE=BE ,若DE=1cm,CD=10cm,则AB=___(3)若CD ⊥弦AB 于E ,AB=8cm,ED=2cm, 则CD 的长=___ (4)若E 为弦AB 的中点,AB =4cm,CE =6 cm, 则OC 的长=___(5)若CD ⊥弦AB 于E ,连结AD ,AD=13cm,OA=5cm, 则AB 的长=___二、能力训练:1.如图,底面半径为5dm 的圆柱形油桶横放在水平地面上,向桶内加油后,量得长方形油面的宽度为8dm ,求油的深度(指油的最深处即油面到水平地面的距离)。
EBADCOEBADCOEBADCO5dm2.⊙O 的半径为13cm ,AB 、CD 为⊙O 的两条弦,AB ∥CD ,AB =24cm ,CD =10cm ,求 AB 和CD 之间的距离。
三.提高练习:3.已知: A 、B 、C 为⊙O 上的三点,且AB = AC ,圆心O 到BC 的距离为3cm,,半径A0= 7cm ,求AB 的长度.四.课后思考:4.如右图, 某地有一座圆弧形拱桥,桥下水面宽度AB 为7.2m ,拱高CD 为2.4m ,现有一艘长10m 、宽为3m 、船舱顶部为长方形并高出水面2m 的货船要经过这里,此货船能顺利通过拱桥吗?BA。
垂径定理1-3课时
BB24.1.2 垂直于弦的直径——垂径定理(第一课时)一、知识探究1、圆既是 图形,又是 图形。
对称轴是 ,对称中心是 。
2、按要求作图(1)作⊙O 的任意一条弦AB ;(2)过圆心O ,作垂直于弦AB 的直径CD ,交AB 于点E 。
观察并回答:问题1:通过观察,在该图中有没有相等的线段:问题2:通过观察,在该图中有没有相等的弧: 证明过程:已知:CD 是⊙O 的直径,且CD ⊥AB 。
求证:AE=BE结论:垂径定理: 的直径 ,并且 。
几何语言的写法:∵ ∴强调:(1) ;(2) ;(3) (4) ;(5) 二、例题解析例1:在⊙O 中,弦AB 长8cm ,圆心O 到AB 的距离为3cm ,则⊙O 半径为例2:⊙O 的半径为5,M 是⊙O 内一点,OM=3,则过M 点的最短弦的长为例3:如图:已知线段AB 交⊙O 于C 、D 两点,若AC=BD ,求证:OA=OB 。
三、课堂练习:1、在⊙O 中,弦AB 长8cm ,⊙O 半径为5cm ,圆心O 到AB 的距离为2、在⊙O 中,⊙O 半径为5cm ,圆心O 到弦AB 的距离3cm ,则弦AB 的长为3、在半径为R 的⊙O 中,有长为R 的弦AB ,那么O 到AB 的距离为4、如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆与C 、D 两点。
求证:AC=BD 。
5、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD=10cm ,AP ∶PB=1∶5 ,求的⊙O 半径。
24.1.2 垂直于弦的直径——垂径定理的推论(第二课时)一、知识回顾垂径定理: 的直径 ,并且 。
按要求作图(1)在⊙O (2)作弦(3)连接问题1:⊙O 的直径CD 与弦AB 有怎样的位置关系: 问题2:该图中有没有相等的弧 证明过程:已知:CD 是⊙O 的直径,并且平分弦AB ,求证:CD ⊥AB 。
结论:垂径定理的推论: 的直径 ,并且 三、例题解析例1:已知⊙O 的半径OA=10㎝,弦AB=16㎝,P 为弦AB 上的一个动点,则OP 的最短距离为典型练习:1、下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2、下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧3、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) (A )5OM 3≤≤ (B )5OM 4≤≤ (C )5OM 3<< (D )5OM 4<<4、如图所示,若⊙O 的半径为13cm ,点P 是弦AB 上一动点,且到圆心的最短距离5cm ,则弦AB 的长为______________ . 四、课堂练习1、已知:如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m ,OC=5m ,则DC 的长为(1) (2) (3)2、如图,在⊙O 中,直径AB 丄弦CD 于点M ,AM=18,BM=8,则CD 的长为__________ . 3、如图,∠PAC=30°,在射线AC 上顺次截取AD=3cm ,DB=10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,则线段EF 的长是_________ cm .4、已知圆的半径为5cm ,一弦长为8cm ,则弦的中点到弦所对弧的中点的距离为__ _____。
九年级数学上册专题24.3 垂径定理【十大题型】(举一反三)(人教版)(原卷版)
专题24.3 垂径定理【十大题型】【人教版】【题型1 利用垂径定理求线段长度】 (1)【题型2 利用垂径定理求角度】 (2)【题型3 利用垂径定理求最值】 (3)【题型4 利用垂径定理求取值范围】 (4)【题型5 利用垂径定理求整点】 (6)【题型6 利用垂径定理求面积】 (7)【题型7 垂径定理在格点中的运用】 (8)【题型9 垂径定理与分类讨论中的综合运用】 (10)【题型10 垂径定理的应用】 (11)【题型1 利用垂径定理求线段长度】【例1】(2022•雨花区校级开学)如图,⊙O的半径OD⊥弦AB交AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,EC=2√13,则CD的长为()A.1B.3C.2D.4【变式1-1】(2022•宁津县二模)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6√2C.8D.8√2【变式1-2】(2022•建华区二模)如图,⊙O的直径AB与弦CD相交于点E,若AE=5,EB=1,∠AEC =30°,则CD的长为()A.5B.2√3C.4√2D.2√2+√3+1【变式1-3】(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为.【题型2 利用垂径定理求角度】【例2】(2022•泰安模拟)如图,⊙O的半径OA,OB,且OA⊥OB,连接AB.现在⊙O上找一点C,使OA2+AB2=BC2,则∠OAC的度数为()A.15°或75°B.20°或70°C.20°D.30°̂上的【变式2-1】(2022秋•天心区期中)如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧AB一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于()A.60°B.90°C.120°D.135°【变式2-2】(2022秋•青田县期末)如图,在⊙O中,半径OC过弦AB的中点E,OC=2,OE=√2.(1)求弦AB的长;(2)求∠CAB的度数.【变式2-3】(2022秋•开州区期末)如图,在⊙O中,弦BC与半径OA垂直于点D,连接AB、AC.点E为AC的中点,连接DE.(1)若AB=6,求DE的长;(2)若∠BAC=100°,求∠CDE的度数.【题型3 利用垂径定理求最值】【例3】(2022•威海模拟)⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1C.32D.2【变式3-1】(2022•河北模拟)如图所示,在⊙O中,AB为弦,OC⊥AB交AB于点D.且OD=DC.P为⊙O上任意一点,连接P A,PB,若⊙O的半径为1,则S△P AB的最大值为()A.1B.2√33C.3√34D.3√32【变式3-2】(2022秋•龙凤区校级期末)如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD 边上的动点,PQ=16,以PQ为直径的⊙O与BD交于点M,N,则MN的最大值为.【变式3-3】(2022秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.910B.65C.85D.125【题型4 利用垂径定理求取值范围】【例4】(2022•包河区校级二模)如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4√5B.4√5<m≤10C.8<m≤10D.6<m<10【变式4-1】(2022•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.【变式4-2】(2022秋•盐都区校级月考)如图,点P是⊙O内一定点.(1)过点P作弦AB,使点P是AB的中点(不写作法,保留作图痕迹);(2)若⊙O的半径为13,OP=5,①求过点P的弦的长度m范围;②过点P的弦中,长度为整数的弦有条.【变式4-3】(2022秋•天河区校级期中)已知⊙O的半径为5,点O到弦AB的距离OH=3,点P是圆上一动点,设过点P且与AB平行的直线为l,记直线AB到直线l的距离为d.(1)求AB的长;(2)如果点P只有两个时,求d的取值范围;(3)如果点P有且只有三个时,求连接这三个点所得到的三角形的面积.【题型5 利用垂径定理求整点】【例5】(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有()A.1个B.3个C.6个D.7个【变式5-1】(2022秋•新昌县期末)如图,AB是⊙O的弦,OC⊥AB于点C,连接OB,点P是半径OB上任意一点,连接AP,若OB=5,OC=3,则AP的长不可能是()A.6B.7C.8D.9【变式5-2】(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是3,⊙C上的整数点有个.【变式5-3】(2022秋•肇东市期末)已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.4个B.3个C.2个D.1个【题型6 利用垂径定理求面积】【例6】(2022•武汉模拟)如图,在半径为1的⊙O中有三条弦,它们所对的圆心角分别为60°,90°,120°,那么以这三条弦长为边长的三角形的面积是()A.√2B.1C.√32D.√22【变式6-1】(2022秋•黄州区校级月考)如图,矩形MNGH的四个顶点都在⊙O上,顺次连接矩形各边的中点,得到菱形ABCD,若BD=12,DF=4,则菱形ABCD的面积为.【变式6-2】(2022秋•西城区校级期中)如图,AB为⊙O直径,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.【变式6-3】(2022•新洲区模拟)如图,点A,C,D均在⊙O上,点B在⊙O内,且AB⊥BC于点B,BC ⊥CD于点C,若AB=4,BC=8,CD=2,则⊙O的面积为()A.125π4B.275π4C.125π9D.275π9【题型7 垂径定理在格点中的运用】【例7】(2022秋•襄都区校级期末)如图所示,一圆弧过方格的格点AB,试在方格中建立平面直角坐标系,使点A的坐标为(0,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【变式7-1】(2022春•海门市期中)如图所示,⊙P过B、C两点,写出⊙P上的格点坐标.【变式7-2】(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C同时也在AB̂上,若点P是BĈ的一个动点,则△ABP面积的最大值是.【变式7-3】(2017秋•靖江市校级月考)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格作出该圆弧所在圆的圆心D点的位置,并写出D点的坐标为;(2)连接AD、CD,则⊙D的半径为,∠ADC的度数.【题型8 垂径定理在坐标系中的运用】【例8】(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B (0,4),与x轴交于C,D,则点D的坐标为()A.(4−2√6,0)B.(−4+2√6,0)C.(−4+√26,0)D.(4−√26,0)【变式8-1】(2022秋•西林县期末)如图,⊙P与y轴交于点M(0,﹣4),N(0,﹣10),圆心P的横坐标为﹣4.则⊙P的半径为()A.3B.4C.5D.6【变式8-2】(2022•印江县三模)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;…,按此作法进行下去,则点A2022的坐标为.【变式8-3】(2015•宜春模拟)如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),函数y =﹣2x+m图象过点P,则m=.【题型9 垂径定理与分类讨论中的综合运用】【例9】(2022秋•化德县校级期末)⊙O的半径为10cm,弦AB∥CD,且AB=12cm,CD=16cm,则AB 和CD的距离为()A.2cm B.14cm C.2cm或14cm D.10cm或20cm【变式9-1】(2022•包河区二模)已知圆O的半径为5,弦AB=8,D为弦AB上一点,且AD=1,过点D 作CD⊥AB,交圆O于C,则CD长为()A.1B.7C.8或1D.7或1【变式9-2】(2022秋•方正县期末)如图,⊙O的弦AB与半径OC垂直,点D为垂足,OD=DC,AB=2√3,点E在⊙O上,∠EOA=30°,则△EOC的面积为.【变式9-3】(2022秋•淮南月考)如图,已知⊙O的半径为2.弦AB的长度为2,点C是⊙O上一动点,若△ABC为等腰三角形,则BC2的长为.【题型10 垂径定理的应用】【例10】(2022秋•武昌区校级期末)某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为()A.16m B.20m C.24m D.28m【变式10-1】(2022•望城区模拟)《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸【变式10-2】(2022秋•西城区校级期中)京西某游乐园的摩天轮采用了国内首创的横梁结构,风格更加简约.如图,摩天轮直径88米,最高点A距离地面100米,匀速运行一圈的时间是18分钟.由于受到周边建筑物的影响,乘客与地面的距离超过34米时,可视为最佳观赏位置,在运行的一圈里最佳观赏时长为分钟.【变式10-3】(2022•浙江)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,̂,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通∠AOB=120°,从A到B只有路AB过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:√3≈1.732,π取3.142)。
(完整版)圆的垂径定理及推论知识点与练习
圆的垂径定理及其推论知识点与练习(1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。
若直径AB ⊥弦CD 于点E ,则CE=DE ,⌒AC =⌒ AD ;⌒ BC =⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
若CE=DE ,AB是直径,则⌒ AC =⌒ AD ;⌒ BC =⌒ BD②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC =⌒ AD ;⌒ BC =⌒ BD③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
若⌒ AC =⌒AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC =⌒ BD④圆的两条平行弦所夹的弧相等。
若CD ∥FG ,CD 、FG 为弦,则⌒ FC =⌒ GD特别提示:①垂径定理及其推论可概括为:过圆心垂直于弦直径 平分弦 知二推三平分弦所对的优弧平分弦所对的劣弧②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.(3)垂径定理及推论的应用:它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。
①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”;②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题;例:如图,在⊙O 中,弦AB 所对的劣弧为圆的31,圆的半径为2cm ,求AB 的长。
解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由题意得,∵⌒ AB = 31×360º=120º ∴∠AOB=120º,∴∠AOC=60º,在Rt △AOC 中,∵∠AOC=60º,OA=2,∴OC =21OA=1,∴AB=2AC=222OC AO =23 故AB 的长为23 练习一、选择题1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( )A 、CM=DMB 、∠ACB=∠ADBC 、AD=2BD D 、∠BCD=∠BDCGA A(1题图) (2题图) (3题)2、圆弧形蔬菜大棚的剖面如图所示,AB=8m ,∠CAD=30°,则大棚高度CD 约为( )A 、2.0mB 、2.3mC 、4.6mD 、6.9m3、如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为() A 、4cm B 、5cm C 、6cm D 、8cm4、半径为2cm 的圆中,有一条长为2cm 的弦,则圆心到这条弦的距离为( )A 、1cmB 、 cmC 、 cmD 、2cm5、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A 、∠COE=∠DOEB 、CE=DEC 、OE=BED 、⌒ BC =⌒BD(题5) (题6)6、如图所示,在⊙O 中,OD ⊥AB 于P ,AP=4cm ,PD=2cm ,则OP 的长等于( )A 、9cmB 、6cmC 、3cmD 、1cm 二、填空题有 条相等的弧。
第07讲 垂径定理
第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。
垂径定理及其推论
圆部份知识点总结垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,而且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,而且平分弦所对的两条弧。
(2)弦的垂直平分线通过圆心,而且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,而且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可归纳为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧弧、弦、弦心距、圆心角之间的关系定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
2:在同圆或等圆中,若是两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都别离相等。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:若是三角形一边上的中线等于这边的一半,那么那个三角形是直角三角形。
点和圆的位置关系设⊙O 的半径是r ,点P 到圆心O 的距离为d ,那么有: d<r ⇔点P 在⊙O 内;d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外。
过三点的圆一、不在同一直线上的三个点确信一个圆。
二、通过三角形的三个极点的圆叫做三角形的外接圆。
3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做那个三角形的外心。
直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。
若是⊙O 的半径为r ,圆心O 到直线L 的距离为d,那么:直线L 与⊙O 相交⇔d<r ;直线L 与⊙O 相切⇔d=r ; 直线L 与⊙O 相离⇔d>r ;圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
初中九年级数学垂径定理知识专讲
初中九年级数学垂径定理知识专讲【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA.【答案】D ;【解析】连OA ,由垂径定理知, 所以在Rt △AOD 中,(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。
举一反三:【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。
【答案】.2.(2015•巴中模拟)如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D ,若AC=8cm ,DE=2cm ,求OD 的长.【答案与解析】解:∵E 为弧AC 的中点,∵OE ∵AC ,∵AD=AC=4cm ,∵OD=OE ﹣DE=(OE ﹣2)cm ,OA=OE ,∵在Rt ∵OAD 中,OA 2=OD 2+AD 2即OA 2=(OE ﹣2)2+42,又知0A=OE ,解得:OE=5,∵OD=OE ﹣DE=3cm .【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形. 举一反三:【变式】已知:如图,割线AC 与圆O 交于点B 、C ,割线AD 过圆心O. 若圆O 的半径是5,且,AD=13. 求弦BC 的长.13cm 2AD AB ==2222435AO OD AD =+=+=1cm 30DAC ︒∠=【答案】6.类型二、垂径定理的综合应用3.如图1,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24m ,拱的半径为13m ,则拱高为( )A .5mB .8mC .7mD .m 【思路点拨】解决此题的关键是将这样的实际问题转化为数学问题,即能够把题目中的已知条件和要求的问题转化为数学问题中的已知条件和问题.【答案】B ;【解析】如图2,表示桥拱,弦AB 的长表示桥的跨度,C 为的中点,CD ⊥AB 于D ,CD 表示拱高,O 为的圆心,根据垂径定理的推论可知,C 、D 、O 三点共线,且OC 平分AB .在Rt △AOD 中,OA =13,AD =12,则OD 2=OA 2-AD 2=132-122=25.∴ OD =5,∴ CD =OC -OD =13-5=8,即拱高为8m .【点评】在解答有关弓形问题时,首先应找弓形的弧所在圆的圆心,然后构造直角三角形,运用垂径定理(推论)及勾股定理求解.4.(2015•蓬溪县校级模拟)如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∵AB ,且AB=26m ,OE ∵CD 于点E .水位正常时测得OE :CD=5:24(1)求CD 的长;(2)现汛期来临,水面要以每小时4m 的速度上升,则经过多长时间桥洞会刚刚被灌满?【答案与解析】解:(1)∵直径AB=26m ,53AB AB AB∵OD=,∵OE∵CD,∵,∵OE:CD=5:24,∵OE:ED=5:12,∵设OE=5x,ED=12x,∵在Rt∵ODE中(5x)2+(12x)2=132,解得x=1,∵CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∵EF=OF﹣OE=13﹣5=8m,∵,即经过2小时桥洞会刚刚被灌满.【点评】此题主要考查了垂径定理的应用以及勾股定理等知识,求阴影部分面积经常运用求出空白面积来解决.举一反三:【变式】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面距拱顶不超过3m时拱桥就有危险,现在水面宽MN=32m时是否需要采取紧急措施?请说明理由.【答案】不需要采取紧急措施设OA=R,在Rt△AOC中,AC=30,OC=OD-CD=R-18,R2=302+(R-18)2, R2=900+R2-36R+324,解得R=34(m).连接OM,设DE=x,在Rt△MOE中,ME=16,342=162+(34-x)2,x2-68x+256=0,解得x1=4,x2=64(不合题意,舍),∴DE=4m>3m,∴不需采取紧急措施.垂径定理—巩固练习【巩固练习】一、选择题1.下列结论正确的是( )A .经过圆心的直线是圆的对称轴B .直径是圆的对称轴C .与圆相交的直线是圆的对称轴D .与直径相交的直线是圆的对称轴2.下列命题中错误的有( ).(1)弦的垂直平分线经过圆心 (2)平分弦的直径垂直于弦(3)梯形的对角线互相平分 (4)圆的对称轴是直径A .1个B .2个C .3个D .4个3.如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD 于E ,则图中不大于半圆的相等弧有( ). A .l 对 B .2对 C .3对 D .4对第3题 第5题4.(2015•广元)如图,已知∵O 的直径AB ∵CD 于点E ,则下列结论一定错误的是( )A .CE=DEB . A E=OEC . =D .∵OCE ∵∵ODE5.如图所示,矩形ABCD 与⊙O 相交于M 、N 、F 、E ,若AM=2,DE=1,EF=8,•则MN 的长为()A .2B .4C .6D .86.已知⊙O 的直径AB=12cm ,P 为OB 中点,过P 作弦CD 与AB 相交成30°角,则弦CD 的长为( ).A .B .C .D .二、填空题7.垂直于弦的直径的性质定理是____________________________________________.315cm 310cm 35cm 33cm8.(2015•黔西南州)如图,AB是∵O的直径,CD为∵O的一条弦,CD∵AB于点E,已知CD=4,AE=1,则∵O的半径为.9.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.10.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.10题图 11题图 12题图11.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______°.12.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.三、解答题13.如图,有一座拱桥是圆弧形,它的跨度为60米,拱高18米,当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PN=4米时是否要采取紧急措施?14. 如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,求⊙O半径.15.(2015•绵阳模拟)如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF∵AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.【答案与解析】一、选择题1.【答案】A ;【解析】图形的对称轴是直线,圆的对称轴是过圆心的直线,或直径所在的直线.2.【答案】C ;【解析】(1)正确;(2)“平分弦(该弦不是直径)的直径垂直于弦”才是正确的,所以(2)不正确;(3)对角线互相平分就是平行四边形,而不是梯形了,所以(3)不正确;(4)圆的对称轴是直径所在的直线,所以(4)不正确.故选C.3.【答案】C ;【解析】;;.4.【答案】B ;【解析】∵⊙O 的直径AB⊥CD 于点E ,∴CE=DE,弧CB=弧BD ,在△OCE 和△ODE 中,,∴△OCE≌△ODE,故选B5.【答案】C ;【解析】过O 作OH ⊥CD 并延长,交AB 于P ,易得DH=5,而AM=2,∴MP=3,MN=2MP=2×3=6.6.【答案】A ;AB AB =AC AD =BC BD =【解析】作OH ⊥CD 于H ,连接OD,则OH=, OD=6,可求DH=,CD=2DH=. 二、填空题 7.【答案】垂直于弦的直径平分弦,并且平分弦所对的两条弧. 8.【答案】;【解析】连接OC ,如图所示:∵AB 是∵O 的直径,CD ∵AB ,∵CE=CD=2,∵OEC=90°,设OC=OA=x ,则OE=x ﹣1,根据勾股定理得:CE 2+OE 2=OC 2,即22+(x ﹣1)2=x 2,解得:x=;故答案为:.9.【答案】6;10.【答案】8;11.【答案】;12.【答案】, ;三、解答题13.【答案与解析】设圆弧所在圆的半径为R ,则R 2-(R-18)2=302, ∴R=34当拱顶高水面4米时,有,∴不用采取紧急措施.14.【答案与解析】连结OC .设AP =k ,PB =5k ,∵ AB 为⊙O 直径,∴ 半径.且OP =OA -PA =3k -k =2k .∵ AB ⊥CD 于P ,∴ CP ==5.在Rt △COP 中用勾股定理,有,323152315o 63,120a 22a 21111()(5)3222OC AB AP PB k k k ==+=+=12CD 222OC PC PO =+∴ .即,∴ (取正根),∴ 半径(cm).15.【答案与解析】(1)证明:连接AC ,如图∵直径AB 垂直于弦CD 于点E ,∵,∵AC=AD ,∵过圆心O 的线CF ∵AD ,∵AF=DF ,即CF 是AD 的中垂线,∵AC=CD ,∵AC=AD=CD .即:∵ACD 是等边三角形,∵∵FCD=30°,在Rt ∵COE 中,,∵,∵点E 为OB 的中点;(2)解:在Rt ∵OCE 中,AB=8,∵,又∵BE=OE ,∵OE=2,∵,∵.垂径定理—知识讲解【学习目标】1. 理解圆的对称性;2. 掌握垂径定理及其推论;3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.【要点梳理】知识点一、垂径定理1.垂径定理222(3)5(2)k k =+2525k =5k =335OC k ==垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1. 如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是.【答案】5.【解析】作OM ⊥AB 于M 、ON ⊥CD 于N ,连结OA ,∵AB=CD ,CE =1,ED =3, ∴OM=EN=1,AM=2,∴OA=.【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O 两弦AB 、CD 垂直相交于H ,AH =4,BH =6,CH =3,DH =8,求⊙O 半径.【答案】如图所示,过点O 分别作OM ⊥AB 于M ,ON ⊥CD 于N ,则四边形MONH 为矩形,连结OB ,∴ , , ∴ 在Rt △BOM 中,. 【变式2】(2015春•安岳县月考)如图,∵O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∵DEB=30°,求弦CD 长.【答案与解析】解:过O 作OF ⊥CD ,交CD 于点F ,连接OD , ∵F 为CD 的中点,即CF=DF , ∵AE=2,EB=6,∵AB=AE+EB=2+6=8, ∵OA=4,∵OE=OA ﹣AE=4﹣2=2, 在Rt ∵OEF 中,∵DEB=30°, 222+1=512MO HN CN CH CD CH ==-=-11()(38)3 2.522CH DH CH =+-=+-=111()(46)5222BM AB BH AH ==+=+=22552OB BM OM =+=∵OF=OE=1,在Rt∵ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.2. 已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O 处有一座喷泉,小明为测量湖的半径,在湖边选择A 、B 两个点,在A 处测得∵OAB=45°,在AB 延长线上的C 处测得∵OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O 作OD ∵AC 于点D ,则AD=BD , ∵∵OAB=45°, ∵AD=OD ,∵设AD=x ,则OD=x ,OA=x ,CD=x+BC=x+50.∵∵OCA=30°, ∵=33,即=33, 解得x=25325+, ∵OA=x=×(25325+)=(256252+)(米).答:人工湖的半径为(256252+)米.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l 于E ,BF ⊥l 于F . (1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA =OB 除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程); (3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB 、CD 延长线交于⊙O 外一点;在图②中AB 、CD 交于⊙O 内一点; 在图③中AB ∥CD .(2)在三个图形中均有结论:线段EC =DF .(3)证明:过O 作OG ⊥l 于G .由垂径定理知CG =GD . ∵ AE ⊥l 于E ,BF ⊥l 于F , ∴ AE ∥OG ∥BF . ∵ AB 为直径,∴ AO =OB ,∴ EG =GF ,∴ EC =EG -CG =GF -GD =DF .【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.垂径定理—巩固练习【巩固练习】 一、选择题1.如图所示,三角形ABC 的各顶点都在⊙O 上,AC=BC ,CD 平分∠ACB ,交圆O 于点D , 下列结论: ①CD 是⊙O 的直径;②CD 平分弦AB ;③;④;⑤CD ⊥AB . 其中正确的有( )A .2个B .3个C .4个D .5个 2.下面四个命题中正确的是( ).A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心3.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD=,,则AB的长为()A .2 B.3 C.4 D.5第3题 第5题 第6题AC BC =AD BD =COBDA4.⊙O 的半径OA =1,弦AB 、AC的长分别是、,则∠BAC 的度数为( ).A .15°B .45°C .75°D .15°或75°5.(2015•河东区一模)如图,在△ABC 中,∠C=90°,∠A=25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则的度数为( )A .25°B . 30°C . 50°D . 65°6.如图,EF 是⊙O 的直径,AB 是弦,EF=10cm ,AB=8cm ,则E 、F 两点到直线AB 的距离之和为( ).A .3cmB .4cmC .8cmD .6cm 二、填空题7.如图,⊙O 的弦AB 垂直于CD ,E 为垂足,AE =3,BE =7,则圆心O 到CD 的距离是______. 8.如图,P 为⊙O 的弦AB 上的点,P A =6,PB =2,⊙O 的半径为5,则OP =______.7题图 8题图 9题图9.如图,⊙O 的弦AB 垂直于AC ,AB =6cm ,AC =4cm ,则⊙O 的半径等于______cm . 10.(2015•徐州)如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为E ,连接AC .若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为 cm .11.在图11中,半圆的直径AB=4cm ,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,则弦CD 的长为 .(第12题)12.如图,点A 、B 是⊙O 上两点,AB=10,点P 是⊙O 上的动点(P 与A ,B 不重合)连结AP ,23AEOFBPPB ,过点O 分别作OE ⊥AP 于点E ,OF ⊥PB 于点F ,则EF= . 三、解答题13.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,CD=15,,求弦AB 和AC 的长.14.如图所示,C 为的中点,CD 为直径,弦AB 交CD 于P 点,PE ⊥BC 于E ,若BC=10cm ,且CE :BE=3:2,求弦AB 的长.15.如图所示,已知O 是∠MPN 的平分线上的一点,以O 为圆心的圆与角的两边分别交于点A 、B 和C 、D.⑴求证:PB=PD.⑵若角的顶点P 在圆上或圆内,⑴中的结论还成立吗?若不成立,请说明理由;若成立,请加以证明.16.(2015•杭州模拟)如图,⊙O 的两条弦AB 、CD 交于点E ,OE 平分∠BED. (1)求证:AB=CD ;(2)若∠BED=60°,EO=2,求DE ﹣AE 的值.【答案与解析】 一、选择题35OE OC ∶∶ACBD1.【答案】D .【解析】由圆的对称性、等腰三角形的三线合一的性质可得到5个结论都是正确的. 2.【答案】D .【解析】根据垂径定理及其推论来判断. 3.【答案】B . 【解析】由垂径定理得HD=,由勾股定理得HB=1,设圆O 的半径为R ,在Rt △ODH 中,则,由此得R=, 所以AB=3.故选 B. 4.【答案】D .【解析】分弦AB 、AC 在圆心的同侧和异侧讨论. 5.【答案】C ;【解析】连接CD ,∵在△ABC 中,∠C=90°,∠A=25°, ∴∠ABC=90°﹣25°=65°, ∵BC=CD,∴∠CDB=∠ABC=65°,∴∠BCD=180°﹣∠CDB﹣∠CBD=180°﹣65°﹣65°=50°,∴=50°.故选C .6.【答案】D .【解析】E 、F 两点到直线AB 的距离之和为圆心O 到AB 距离的2倍. 二、填空题 7.【答案】2. 8.【答案】 9.【答案】 10.【答案】42 .【解析】解:连接OC ,如图所示:∵AB 是⊙O 的直径,弦CD⊥AB,∴CE=DE=CD=4cm , ∵OA=OC,∴∠A=∠OCA=22.5°, ∵∠COE 为△AOC 的外角, ∴∠COE=45°,∴△COE 为等腰直角三角形, ∴OC=CE=4cm , 故答案为:411.【答案】. 2()()22221R R =+-32.13.1323cm【解析】连接OC,易求CF= CD=. 12.【答案】5.【解析】易证EF 是△APB 的中位线,EF=三、解答题13.【答案与解析】连结OA ,∵CD=15,, ∴OA=OC=7.5,OE=4.5,CE=3,∴14.【答案与解析】因为C 为的中点,CD 为直径,弦AB 交CD 于P 点,所以 CD ⊥AB. 由BC=10cm ,且CE :BE=3:2,得CE=6cm ,BE=4cm ,设则解得,. 15.【答案与解析】(1)证明:过O 作OE ⊥PB 于E ,OF ⊥PD 于F.∵ PO 平分∠MPN ∴ OE=OF ,PE=PF ∴ AB=CD ,BE=DF ∴ PE+BE=PF+DF ∴ PB=PD(2)上述结论仍成立.如下图所示.证明略.3.23cm 15.2AB =35OE OC =∶∶222222227.5 4.562126335AE OA OE AB AE AC AE CE =-=-====+=+=,ACB ,,BP a CP b ==22222221046a b a b ⎧+=⎪⎨-=-⎪⎩210a =2410AB a cm ==16.【答案与解析】 解:(1)过点O 作AB 、CD 的垂线,垂足为M 、N ,如图1,∵OE 平分∠BED,且OM⊥AB,ON⊥CD, ∴OM=ON, ∴AB=CD;(2)如图2所示,由(1)知,OM=ON ,AB=CD ,OM⊥AB,ON⊥CD, ∴DN=CN=AM=BM,在Rt△EON 与Rt△EOM 中, ∵,∴Rt△EON≌Rt△EOM(HL ), ∴NE=ME,∴CD﹣DN ﹣NE=AB ﹣BM ﹣ME , 即AE=CE ,∴DE﹣AE=DE ﹣CE=DN+NE ﹣CE=CN+NE ﹣CE=2NE , ∵∠BED=60°,OE 平分∠BED, ∴∠NEO=BED=30°,∴ON=OE=1,AA EEP O P O F FC C PA=PC PA=PC图1DBBD图2在Rt△EON中,由勾股定理得:NE==,∴DE﹣AE=2NE=2.。
圆中垂径定理[1]
DE
2 6 3
A
E
D
F
B
O
切线的判定及性质
1. 切线的判定方法: (1)定义:直线和圆只有一个公共点叫直线与圆相切,这条直 线是圆的切线。 (2)圆心到直线的距离等于半径,这样的直线叫做圆的切线。 (3)经过半径外端并且垂直于这条半径的直线是圆的切线。 2. 切线的性质: (1)到圆心的距离等于半径 (2)垂直于过切点的半径 3. 常见的证明切线的思路 (1)作垂直证半径 (2)连半径证垂直
③AM=BM,
可推得Βιβλιοθήκη ⌒ ⌒ ④AC=BC,推论:
⌒ ⑤AD=BD.
②CD⊥AB,
⌒
由 ① CD是直径 ③ AM=BM
可推得
⌒ ⌒ ④AC=BC, ⌒ ⑤AD=BD. ⌒
例1、如图,⊙O的半径为10cm,G是直径AB上一点,弦CD经过 点G,CD=16cm,AE⊥CD于E,BF⊥CD于F,求AE-BF的值。
)
1.如图,在⊙O中,弦AB的长为8cm,圆心O到AB 的距离为3cm,求⊙O的半径. 解: OE
AB
A
E
B
1 1 AE AB 8 4 2 2
在Rt △ AOE 中
O
·
AO OE AE
2 2
2
AO OE 2 AE 2 = 32 +42 =5cm
答:⊙O的半径为5cm.
[例1] 如图AB为⊙O直径C为⊙O上一点,AD和过C点的切线互 相垂直,垂足为D,求证:AC平分∠DAB。
证明:连结OC ∵ DC切⊙O于C ∴ OC⊥DC ∵ AD⊥CD ∴ AD//OC ∴ ∠1=∠3 ∵ OA=OC ∴ ∠2=∠3 ∴ ∠1=∠2 ∴ AC平分∠DAB
中考数学垂径定理
中考数学垂径定理
一、垂径定理基本形式
垂径定理是圆的基本性质之一,它指出:通过圆心且垂直于任意弦的直径将该弦平分。
用数学语言表示就是:如果一条直径通过圆心O,并且垂直于弦AB,那么它将弦AB平分于点C。
即 AC = CB。
二、圆心到弦的垂线性质
根据垂径定理,我们可以推导出圆心到弦的垂线性质。
如果一条弦通过圆心O,且圆心到弦的垂线交弦于点C,那么这条垂线将弦分为两段相等的部分。
即 AC = CB。
同时,这条垂线也是该弦所对的圆周角平分线。
三、圆心到切线的性质
圆心到切线的性质是指:通过圆心的直线与圆的切线垂直。
如果一条直线通过圆心O,且与圆相切于点P,那么这条直线与切线垂直。
即OP与AP垂直。
同时,切线与过切点的半径也垂直。
四、切线长定理
切线长定理是指:过圆上一点作圆的切线,则切线长相等。
具体来说,如果圆上有点A,且过点A分
别作圆的两条切线AB和AC,那么这两条切线的长度相等。
即 AB = AC。
这个定理可以用来证明一些与切线相关的几何问题。
《垂径定理》课件1
判断函数单调性
利用垂径定理确定函数图 像的对称轴,进而判断函 数在不同区间的单调性。
结合函数的导数,分析函 数在不同区间的增减性。
通过比较函数值或观察图 像,确定函数的单调区间。
分析函数图像特征
利用垂径定理确定函数图像的对称轴,分 析图像的对称性。
结合函数的奇偶性,分析图像关于原点的 对称性。
其他领域应用举例
航海和航空导航
在航海和航空导航中,垂径定理可以用于计算航向和距离。通过观察天体(如太阳、星星)的位置和角度,可以 利用垂径定理确定航行方向和距离,实现准确的导航。
地理测量
垂径定理在地理测量中也有应用。例如,在测量地球表面上两点之间的距离时,可以利用垂径定理计算出大圆距 离,这是一种更精确的距离测量方法。
建立平面直角坐标系
以圆心为原点,以过圆心的直线为x轴 建立平面直角坐标系。
设圆的方程和弦的方程
联立方程求解
将两个方程联立,消去y得到关于x的 二次方程,由根与系数的关系可得垂 线平分弦的结论。
设圆的方程为x^2 + y^2 = r^2,设 弦所在直线的方程为y = kx + b。
向量法证明
1 2
定义向量 设圆心为O,弦的两个端点分别为A和B,垂足为 C,则向量OC垂直于向量AB。
利用向量数量积的性质 由向量数量积的性质可知,OC·AB = 0,即 |OC|·|AB|·cos90° = 0,由此可推出垂线平分弦。
3
利用向量加法的性质 由向量加法的性质可知,向量OA + 向量OB = 2 向量OC,由此可推出垂线平分弦。
03
垂径定理在几何问题中应用
求解三角形问题
利用垂径定理求解直角三角形中的边长和角度
初三数学垂径定理知识精讲
初三数学垂径定理知识精讲知识考点:1、垂径定理及其推论是指:一条直线①过圆心;②垂直于一条弦;③平分这条弦;④平分弦所对的劣弧;⑤平分弦所对的优弧。
这五个条件只须知道两个,即可得出另三个(平分弦时,直径除外),要求理解掌握。
2、掌握垂径定理在圆的有关计算和证明中的广泛应用。
精典例题:【例1】如图,⊙O 的直径AB 和弦CD 相交于E ,若AE =2cm ,BE =6cm ,∠CEA =300,求: (1)CD 的长; (2)C 点到AB 的距离与D 点到AB 的距离之比。
分析:有关弦、半径、弦心距的问题常常利用它们构造的直角三角形来研究,所以连半径、作弦心距是圆中的一种常见辅助线添法。
解:(1)过点O 作OF ⊥CD 于F ,连结DO ∵AE =2cm ,BE =6cm ,∴AB =8cm∴⊙O 的半径为4 cm ∵∠CEA =300,∴OF =1 cm∴1522=-=OF OD DF cm 由垂径定理得:CD =2DF =152cm(2)过C 作CG ⊥AB 于G ,过D 作DH ⊥AB 于H ,易求EF =3cm ∴DE =)315(+cm ,CE =)315(-cm∴253315315-=+-==DE CE DH CG 【例2】如图,半径为2的圆内有两条互相垂直的弦AB 和CD ,它们的交点E 到圆心O 的距离等于1,则22CD AB +=( )A 、28B 、26C 、18D 、35分析:如图,连结OA 、OC ,过O 分别作AB 、CD 的垂线,垂足分别为M 、N ,则AM =MB ,CN =ND 。
∵OM ⊥MN ,ME ⊥EN ,CN =ND∴222OE ON OM =+从而22222OE CN OC AM OA =-+-即222221)2(2)2(2=-+-CD AB ∴2822=+CD AB 故选A 。
∙例1图H E F G O DCBA ∙例2图MN E O DCBA∙例2图MN E O DCBA【例3】如图,等腰△ABC 内接于半径为5cm 的⊙O ,AB =AC ,tanB =31。
垂径定理知识点
垂径定理知识点1. 垂径定理说啦,垂直于弦的直径平分弦!就好像你有一根绳子,我拿一根直直的杆子从中间穿过,那这根杆子是不是就把绳子给平均分成两半啦!比如说,一个圆形的蛋糕,直径把它分成相等的两半,这就是垂径定理在起作用呀,是不是很神奇?2. 嘿,垂径定理还提到,平分弦的直径垂直于弦呢!这不就像拔河比赛,中间的红绳被公平地分成两半,那和地面肯定是垂直的呀!就像一个圆形的大饼,用刀平分它,这刀肯定和饼是垂直的呀,是不是很有意思呢?3. 你想想看呀,垂径定理告诉我们,垂直于弦的直径平分弦且平分这条弦所对的两条弧!好比一把撑开的伞,伞骨垂直伞面,把伞面分成相等的部分,那同时也把下面的空间也给平分啦!比如一个圆形的池塘,中间有根柱子垂直立着,那柱子两边的水面区域就是相等的,超厉害的吧!4. 不得了哦,垂径定理里说平分弦所对的一条弧的直径,必垂直平分这条弦!就好像英雄总是和他的武器相得益彰,武器能发挥最大威力,英雄也能更厉害!像个钟的指针,钟的中心轴线平分了指针划过的弧,那必然也和指针是垂直的呀,多形象呀!5. 哇塞,垂径定理也包括平分弦所对的两条弧的直径,垂直平分弦呢!这就好像有个神奇的魔法棒,只要一挥,就能让东西变得整齐有序!比如一个摩天轮,中间的轴既能把那些车厢走过的弧平分,又能让连接车厢的杆子垂直,这就是垂径定理的魅力呀!6. 哎呀呀,垂径定理还有哦,弦的垂直平分线经过圆心!这简直就像是给圆心找到回家的路一样清楚明白呀!好比你放风筝,线的垂直平分线肯定是要经过风筝的中心呀!像个圆形的轮子,轮子上一根线的垂直平分线肯定会经过轮子中心,是不是很明了?7. 最后呢,平分弦的直径,不一定垂直于弦哦!这就好像不是所有的好人都一定是强壮的一样。
比如有根不太直的棍子平分了一根线,但它们不一定是垂直的呀。
垂径定理真的很有趣呢,我们一定要好好掌握呀!我的观点结论就是:垂径定理非常的神奇和有趣,在很多方面都有重要的应用,我们要多多去理解和运用它呀!。
椭圆中的垂径定理
椭圆中的垂径定理椭圆是一种具有特殊形状的几何图形,它在数学和几何学中具有重要的应用。
在研究椭圆性质时,垂径定理是一个重要的定理,它描述了椭圆中垂直于切线的直径之间的关系。
本文将详细介绍椭圆中的垂径定理。
一、椭圆的基本定义与性质1.1 椭圆的定义椭圆可以通过以下定义来描述:对于给定的两个焦点F1和F2以及一个常数d(表示焦点到直线l距离),椭圆是到焦点F1和F2距离之和等于常数d的所有点P构成的集合。
1.2 椭圆的基本性质椭圆具有以下基本性质:- 椭圆上任意一点P到两个焦点F1和F2的距离之和等于常数d。
- 椭圆上任意一点P到两个焦点F1和F2连线所在直线l的距离等于常数d。
- 椭圆上任意一条切线与过焦点F1和F2连线所在直线l垂直。
二、垂径定理2.1 定理表述垂径定理描述了椭圆中垂直于切线的直径之间的关系。
具体而言,如果从椭圆上任意一点P引出两条切线,并且这两条切线与通过两个焦点F1和F2的连线所在直线l垂直,则这两条切线所对应的直径之间成立以下关系:这两条直径的乘积等于焦距的平方。
2.2 定理证明为了证明垂径定理,我们需要利用椭圆的基本性质和一些几何推理。
设椭圆的焦距为2c,焦点F1和F2之间的距离为2a。
假设我们有一个任意点P(x, y)在椭圆上,并且通过该点引出两条切线。
设这两条切线分别与过F1和F2连线所在直线l相交于点A和B。
由于A、P、B三个点共线,根据几何学基本原理,我们可以得到以下结论:- 三角形AF1P与三角形BF2P相似。
- 三角形AF1P与三角形BF2P对应边长成比例。
进一步推导,我们可以得到以下结论:- AP / BP = AF1 / BF2 = AF1 + BF2 / AF1 - BF2 (根据椭圆性质) - AP / BP = (a + c) / (a - c)另根据椭圆的定义,我们知道焦点F1和F2到直线l的距离之和等于常数d,即:- AF1 + BF2 = d将上述结果代入,我们可以得到:- AP / BP = d / 2c由于AP和BP是切线所对应的直径,我们可以表示为:- AP = 2r1- BP = 2r2其中r1和r2分别表示直径AP和BP的长度。
垂径定理专题复习 Microsoft Word 文档
专题复习:垂径定理及其应用班级 姓名一、双基导学:1、 垂径定理: 的直径平分弦且平分弦所对的 。
垂径定理推论的规律:对于一个圆和一条直线来说,如果具备下列五个条件中的任何两个,那么也具有其它三个:①垂直于弦,②过圆心,③平分弦,④平分弦所对的优弧,⑤平分弦所对的劣弧。
(当以②、③为题设时,“弦”不能是直径。
) 2、运用垂径定理的注意事项:①牢记基本图形及变式图形(如右图)②半径r 、弦长a 和弦心距d 三者的关系是: 当不能用勾股定理直接计算时,要用勾股定理列方程求解。
③当弦是特殊的直径时,有的推论不成立。
④常用辅助线: 、 。
二、垂径定理的应用1、利用弦所对的弧等,进行角的计算与证明例1 如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°。
求∠DCF 的度数。
变式题:如图,AB 是⊙O 的直径,P 是 的中点,PD ⊥AB 于D ,交BC 于E 。
求证:PE= BE=EF2、利用平分弦,解有关线段问题例2 如图1,AB 为⊙O 的直径,CD 为弦,过C 、D 分别作CN ⊥CD 、DM •⊥CD ,•分别交AB 于N 、M ,请问图中的AN 与BM 是否相等,说明理由.图1变式题1:在图2和3中,AB 为⊙O 的直径,CD 为弦,过A 、B 分别作AN ⊥CD 、BM ⊥CD ,• 分别交CD 于N 、M ,CN 与DM 相等吗?请选择一种情况加以证明。
图2 图3d12a rDC OEBAB A CD ONM MNODCBA变式题2:如图,半径为2的圆内有两条互相垂直的弦AB 和CD ,它们的交点E 到圆心O 的距离等于1。
求22CD AB +的值。
3、利用垂径定理,构造直角三角形,利用勾股定理解题例3 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径.变式题:有一座圆弧形拱桥,桥下水面AB 宽24m ,拱顶高出水面8m.。
中考垂径定理专题知识点
圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.543、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF (C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。
由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。
因为ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等可知(D )一定正确。
4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm , cm B cm cm 或cm D cm 或cmOM==3cm ==4cm==2cm5、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cmBcmAB=4cmx=故半径为8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()2BE==6CE===212、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()4BAC=∠∴=17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.20、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.==cmAB=2AD=21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.=ADB=∠22、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC 的度数是48度.23、(2013•黄冈)如图,M 是CD 的中点,EM ⊥CD ,若CD=4,EM=8,则所在圆的半径为.CD=2x=所在圆的半径为:故答案为:.28、(2013陕西)如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点, 且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7, 则GE+FH 的最大值为 .解析:本题考查圆心角与圆周角的关系应用,中位线及最值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在Rt △AOE中,根据勾股定理有OA=5厘米 ∴⊙O的半径为5厘米
3.如图,一条公路的转弯处是一段圆弧,(即图中 CD,点O是CD的圆心),其中CD =600m,E为CD上一 点,且OE⊥CD,垂足为F,EF=90m。求这段弯路的 半径。 C E
O
.
F
D
设弯路的半径为Rm,则OF =(R-90)m 1 OE⊥CD, CF CD 300(m) 2 根据勾股定理得: 解得:R 545 所以,这段弯路的半径为545m.
已知:⊙O中弦AB∥CD. C A
M
.O
D B
N 证明:作直径MN⊥AB. ∵AB∥CD,∴MN⊥CD. 则AM=BM,CM=DM (垂直平分弦的直径平分弦所对的弦) AM-CM = BM -DM ∴AC=BD
⌒ ⌒
⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒
求证:AC=BD
⌒
⌒
圆的两条平行弦所夹的弧相等
O
A
C
N
B
①直线MN过圆心 ③ AC=BC
②MN⊥AB ④弧AM=弧BM ⑤弧AN=弧BN
推论1.
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧。
推论1. (1)平分弦(不是直径) 的直径垂直于弦,并且平分 弦所对的两条弧。 A
M
一个圆的任意两 C 条直径总是互相平分, 但是它们不一定互相 垂直。因此这里的弦 如果是直径,结论就 不一定成立。
九年级数学(下) 第三章 圆
垂径定理复习课
圆的轴对称性
M A D
圆是轴对称图形,
经过圆心的每一 条直线都是它的对称轴。
O
C
B
N
推论
在同圆或等圆中,如果两个圆心角,两条弧, 两条弦,两条弦的弦心距中,有一组量相等,那么它们所 对应的其余各组量都分别相等.
①两个圆心角; ③两条弦;
②两条弧; ④两条弦的弦心距。
●
O
A
C
B
2.在⊙O 中,半径 OC⊥AB 交AB于D,⊙O的半径为5 cm,DC=2㎝, 则弦AB的 长为 8 .
●
O
A
C
D
B
练习
如图,已知在⊙O中, 弦AB的长为8厘米,圆心 O到AB的距离为3厘米, 求⊙O的半径。
A E
. O
B
解:连结OA. 过O作OE⊥AB,垂足为E, 则OE=3厘米,AE=BE。 ∵AB=8厘米 ∴AE=4厘米
3.如图,一条公路的转弯处是一段圆弧,(即图中 CD,点O是CD的圆心),其中CD =600m,E为CD上一 点,且OE⊥CD,垂足为F,EF=90m。求这段弯路的 半径。 C 解:连接OC。 E
O
.
F
D
2 OC 2 =CF 2 OF 2,即R 2 =3002 +(R-90)
垂径定理的推论
M
(1)直径
结论
(2)垂直于弦
}
{
(3)平分弦 (4)平分弦所对的优弧
(5)平分弦所对的劣弧
垂径定理三种语言
定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧.
C
如图∵ CD是直径, CD⊥AB,
B O
A
M└
●
∴AM=BM,
⌒ =BC, ⌒ AC ⌒ ⌒ AD=BD.
D
跟踪练习
1.如图在⊙O中,弦AB长为8 厘米,O到AB距离为3厘米, 则⊙O的半径长为 5 。
C
M└
●
A
B
只要具备其中两个条件, 就可推出其余三个结论.
O
D
垂径定理及逆定理
① CD是直径 ② CD⊥AB, ③ AM=BM, ⌒ , ⌒ ⌒ ⌒ ⑤ AD=BD. ④AC=BC,
条件 ①② ①③ ①④ 结论 命 题
C
A
M└
●
B
O
③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. D ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧 . ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ②③④ 另一条弧. ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧. ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且 ①③④ 平分弦和所对的另一条弧. ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 ①②④ 弦,并且平分弦所对的另一条弧.
O
D
B
N
达标检测
1、判断: (1)垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.(N ) (2)弦垂直于直径,这条直径就被弦平分。 ( N ) (3)经过弦的中点的直径一定垂直于弦。(N )
2.(2010年毕节地区)如图,AB为⊙O的弦, ⊙O的半径为5,OC⊥AB于点D,交⊙O于点C, 且CD=l,则弦AB的长是 6 .
O
D
P130(18,21)
垂径定理
⌒ AmB
AB是⊙O的一条弦. 作直径CD,使CD⊥AB,垂足为M.
C
A
M└
●
B O
题设
D 由
结论
可推得
① CD是直径 ② CD⊥AB
③AM=BM,
⌒ ⌒ ④AC=BC,
⌒ ⑤AD=BD. ⌒
垂径定理
垂直于弦的直径平分这条弦,并 且平分弦所对的两条弧.
题设
P是⊙O外一点,从点P引出的两条射线分 别交⊙O于A、B和C、D,并且AB=CD,
求证:PO平分∠BPD
B O
A
C
P
D
P是⊙O外一点,从点P引出的两条射线分 别交⊙O于A、B和C、D,并且AB=CD,
求证:PO平分∠BPD
B
E
A
F
P C
解:过点O作OE AB,OF DC。 AB CD OE OF 在Rt△OEP和Rt△OFP中, OE OF OP OP Rt△OEP ≌ Rt△OFP BPO OPD
3.(2011年西宁)如图,在⊙O中,AB、AC是互相 E 垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E, 且AB=8cm,AC=6cm,那么的⊙O的半径OA长为5 。 A
C
●
O
D
B
垂径定理的逆定理
如图,在下列五个条件中: ① CD是直径, ② CD⊥AB, ③ AM=BM,
⌒ ⌒ ⌒ ⌒ ④AC = BC, ⑤ AD = BD.
①⑤
②③ ②④
②⑤
③④ ③⑤
④⑤
①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.垂径定理的推论2
如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?
1.两条弦在圆心的同侧
O
2.两条弦在圆心的两侧
A
●
A C
●
B D
O
B
D
C
M
M
垂径定理的推论 圆的两条平行弦所夹的弧相等.
讲解
如果圆的两条弦互相平 行,那么这两条弦所夹 的弧相等.