第11章单元练习

合集下载

第11章 三角形单元练习(含答案)

第11章 三角形单元练习(含答案)

第十一章《三角形》单元练习题号一1 二2 三3四4 五5 六6 七7 八8得分任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

年级:__________ 座号:________ 姓名:___________________一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是______三角形.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE 的度数为_____ .3.三角形中最大的内角不能小于_____,两个外角的和必大于_____ .4.三角形ABC中,∠A=40°,顶点C处的外角为110°,那么∠B=_____ .5.锐角三角形任意两锐角的和必大于_____.6.三角形的三个外角都大于和它相邻的内角,则这个三角形为 _____ 三角形.7.在三角形ABC中,已知∠A=80°,∠B=50°,那么∠C的度数是.8.已知∠A=12∠B=3∠C,则∠A= .9.已知,如图7-1,∠ACD=130°,∠A=∠B,那么∠A的度数是.10.如图7-2,根据图形填空:(1)AD是△ABC中∠BAC的角平分线,则∠=∠=∠.(2)AE是△ABC中线,则==.(3)AF是△ABC的高,则∠=∠=90°.11.如图7-3所示,图中有个三角形,个直角三角形.图7-1 图7-2 图7-312.在四边形的四个外角中,最多有个钝角,最多有个锐角,最多有个直角.13.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C=.14.一个多边形的每个外角都为30°,则这个多边形的边数为;一个多边形的每个内角都为135°,则这个多边形的边数为.15.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.16.若一个n边形的边数增加一倍,则内角和将.17.在一个顶点处,若此正n边形的内角和为,则此正多边形可以铺满地面.18.如图7-4,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .19.如图7-5,由平面上五个点A、B、C、D、E连结而成,则∠A+∠B+∠C+∠D+∠E= .20.以长度为5cm、7cm、9cm、13cm的线段中的三条为边,能够组成三角形的情况有种,分别是.二、选择题21.已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形().A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形22.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为().A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:5 23.三角形中至少有一个内角大于或等于().A.45°B.55°C.60°D.65°24.如图7-6,下列说法中错误的是().图7-4 图7-5A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B25.如图7-7,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为().A.50°B.60°C.70°D.80°26.下列叙述中错误的一项是().A.三角形的中线、角平分线、高都是线段.B.三角形的三条高线中至少存在一条在三角形内部.图7-7 C.只有一条高在三角形内部的三角形一定是钝角三角形.D.三角形的三条角平分线都在三角形内部.27.下列长度的三条线段中,能组成三角形的是().A.1,5,7 B.3,4,7 C.7,4,1 D.5,5,528.如果三角形的两边长为3和5,那么第三边长可以是下面的().A.1 B.9 C.3 D.1029.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形().A.1个B.3个C.5个D.无数个30.四边形的四个内角可以都是().A.锐角 B.直角C.钝角 D.以上答案都不对31.下列判断中正确的是().A.四边形的外角和大于内角和B.若多边形边数从3增加到n(n为大于3的自然数),它们外角和的度数不变C.一个多边形的内角中,锐角的个数可以任意多D.一个多边形的内角和为1880°32.一个五边形有三个角是直角,另两个角都等于n,则n的值为().A.108°B.125°C.135°D.150°33.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有().A.7条B.8条C.9条D.10条34.如图7-9,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为().A.高B.角平分线C.中线D.不能确定图7-9 图7-1035.如图7-10,已知∠1=∠2,则AH必为三角形ABC的().A.角平分线B.中线C.一角的平分线D.角平分线所在射线36.现有长度分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为().A.1B.2 C.3 D.4三、解答题37.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD =140°,你能求出∠EDF的度数吗?38.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?39.如图,在三角形ABC中,AD⊥BC,BE⊥AC,CF⊥AB,BC=16,AD=3,BE=4,CF=6,你能求出三角形ABC的周长吗?40.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?41.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;42.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?参考答案一、填空题1.直角2.15°3.60°,180° 4.70°5.90°6.锐角7.∠C=180°-80°-50°=50°.8.54°9.65°10.(1)BAD,CAD,BAC;(2)BE,CE,BC;(3)AFB,AFC.11.解:有5个三角形,分别是△ABD,△ADE,△CDE,△ADC,△ABC;有4个直角三角形,分别是△ABD,△ADE,△CDE,△ADC.12.3,2,4 13.120°14.12,815.正三角形和正四边形(或正三角形和正六边形或正四边形和正八边形)16.增加(n-4)×180°17.360°或720°或180°18.解:∵∠BED=∠A+∠D=47°∴∠B=180°-90°-47°=43°∴∠BCD=27°+43°=70°∴∠ACB=180°-70°=110°19.解:连结BC,如图,则∠DBC+∠ECB=∠D+∠E.所以∠A+∠B+∠C+∠D+∠E=∠A+∠B+∠C+∠DBC+∠ECB=180°.20.解:有3种.分别以长为5cm,7cm,9cm;7cm,9cm13cm;5cm,9cm,13cm的线段为边能组成三角形.二、选择题21-25:A C C D C26-30:C D C C B31-36:B C C C D A三、解答题37.解:∵∠AFD是三角形DCF的一个外角.∴∠AFD=∠C+∠FDC.即140°=∠C+90°.解得∠C=50°.∴∠B=∠C=50°.∴∠EDB=180°-90°-50°=40°.∴∠FDE=180°-90°-40°=50°.38.解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.如图:∵丁岛在丙岛的正北方,∴CD⊥AB.∵甲岛在丁岛的南偏西52°方向,∴∠ACD=52°.∴∠CAD=180°-90°-52°=38°.∴丁岛在甲岛的东偏北38°方向.∵乙岛在丁岛的南偏东40°方向,∴∠BCD=40°.∴∠CBD=180°-90°-40°=50°.∴丁岛在乙岛的西偏北50°方向.39.解:由三角形面积公式可得S△ABC=BC×AD=AC×BE,即16×3=4×AC,所以AC=12.由三角形面积公式可得S△ABC=BC×AD=AB×CF,即16×3=6×AB.所以AB=8.所以三角形ABC的周长为16+12+8=36.40.解:∵三角形ABD的周长比三角形ACD的周长小5,即AC-AB+CD-BD=5,又∵AD是BC边上的中线,∴BD=CD.∴AC-AB=5.∴AC-AB=5.41、解:(1)如果腰长为4cm,则底边长为16-4-4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.这样的三边不能围成三角形。

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷 附答案

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷 附答案

苏科版七年级数学下册第11章《一元一次不等式》单元测试卷(满分120分)班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥03.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<05.下列不等式组是一元一次不等式组的是()A.B.C.D.6.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d7.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3008.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本9.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x (mg)范围为mg.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.14.有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数;乙:其中一个不等式的解集为x≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向.请试着写出符合上述条件的一个不等式组.15.若关于x的不等式组有2个整数解,则a的取值范围是.16.如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)解不等式方程组:.18.(9分)已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.19.(9分)已知关于x的不等式组(1)若a=2,求这个不等式组的解集;(2)若这个不等式组的整数解有3个,求a的取值范围.20.(8分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.21.(10分)某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)22.(10分)定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.3.解:不等式组的解集在数轴上表示为:,故选:D.4.解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.5.解:A、不是一元一次不等式组,故本选项不符合题意;B、是一元一次不等式组,故本选项符合题意;C、不是一元一次不等式组,故本选项不符合题意;D、不是一元一次不等式组,故本选项不符合题意;故选:B.6.解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.7.解:依题意有100+5x≥300.故选:D.8.解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.9.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.10.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg≤x≤30.12.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.14.解:∵一元一次不等式组的解集为非负数,∴其中一个不等式的解集必为x≥0,∵一个不等式在解的过程中需要改变不等号的方向,∴其中一个不等式中x的系数为负数,∴符合条件的一元一次不等式组可以为:(答案不唯一).故答案为:(答案不唯一).15.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.16.解:根据题意得:,解得:1≤x<7.故答案为1≤x<7.三.解答题(共7小题,满分66分)17.解:由①得2x+x<3+6,3x<9x<3;由②得14x﹣5x≤﹣89x≤﹣8x≤﹣.由以上可得x≤﹣.18.解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.19.解:(1)解不等式①,得x≤6﹣a,解不等式②,得x>﹣2,当a=2时,不等式组的解集是﹣2<x≤4.(2)因为该不等式组的整数解有3个,所以这三个整数解应是﹣1,0,1,所以1≤6﹣a<2,所以a的取值范围是4<a≤5.20.解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.21.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.22.解:(1)[﹣]=﹣4,故答案为:﹣4;(2)如果[a]=3,那么a的取值范围是3≤x<4,故答案为:3≤x<4;(3)由题意得﹣3≤<﹣2,解得:﹣3≤x<﹣,∴满足条件的所有整数x的值为﹣3、﹣2.23.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m 当m=80时,w始终等于8000,取值与a无关.1、读书破万卷,下笔如有神。

人教版八年级数学第十一章《三角形》单元测试题(含答案)

人教版八年级数学第十一章《三角形》单元测试题(含答案)

人教版八年级数学第十一章《三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在四边形ABCD中,AB>AD,对角线AC平分∠BAD,下列结论正确的是()A.AB﹣AD>|CB﹣CD|B.AB﹣AD=|CB﹣CD|C.AB﹣AD<|CB﹣CD|D.AB﹣AD与|CB﹣CD|的大小关系不确定2.(3分)有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.(3分)如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=11米那么A,B间的距离不可能是()A.5米B.8.7米C.27米D.18米4.(3分)一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是()A.11B.12C.13D.145.(3分)如图,在△ABC中,AF平分∠BAC交BC于点F、BE平分∠ABC交AC于点E,AF与BE相交于点O,AD是BC边上的高,若∠C=50°,BE⊥AC,则∠DAF的度数为()A.10°B.12°C.15°D.20°6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC,②∠ACB=∠ADB,③∠ADC+∠ABD=90°,④∠ADB=45°﹣∠CDB,其中正确的结论有()A.1个B.2个C.3个D.4个7.(3分)如图,在三角形ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF;②∠ABF=∠EFB;③AC∥BE;④∠E=∠ABE.其中正确的结论有()A.4个B.3个C.2个D.1个8.(3分)如图,四边形ABCD为一长方形纸带,AD∥BC,将四边形ABCD沿EF折叠,C、D两点分别与C′、D′对应,若∠1=2∠2,则∠3的度数为()A.50°B.54°C.58°D.62°9.(3分)若n边形的内角和与外角和相加为1800°,则n的值为()A.7B.8.C.9D.1010.(3分)如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.12.(3分)如图,在△ABC中,∠B=80°,∠C=42°,AD⊥BC于点D,AE平分∠BAC,则∠DAE=.13.(3分)如图,在△ABC中,∠A=65°,则∠1+∠2=°.14.(3分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=10,则它的周长等于.15.(3分)如图,在△ABC中,AD是中线,DE⊥AB于E,DF⊥AC于F,若AB=6cm,AC=4cm,则.三、解答题(共10小题,满分75分)16.(7分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.17.(7分)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.18.(7分)已知a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.19.(7分)如图所示,在△ABC中,CD⊥AB于点D,EF⊥CD于点G,∠ADE=∠EFC.(1)证明AB∥EF.(2)请说明∠AED=∠ACB的理由.(3)若∠BDE=2∠B+36°,求∠DEF的度数.20.(7分)已知:在△ABC中,AE平分∠BAC,BF平分∠ABC,AE、BF交于点G.(1)如图1:若∠C=60°,求∠AGB的度数;(2)如图2:点D是AE延长线上一点,连接BD、CD,∠ADC=∠ABG+∠BAG,求证:CD∥BF;(3)如图3:在(2)的条件下,过点G作GK∥AB,交BD于点K,点M在线段DC 的延长线上,连接KM,若∠ACB=∠BDA,∠ABC+∠BAE=2∠DKM,∠M=16°,求∠BAC的度数.21.(7分)如图所示,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD 于点E.(1)若∠C=60°,∠BAC=80°,求∠ADB的度数;(2)若∠BED=60°,求∠C的度数.22.(7分)如图,在三角形ABC中,点D是BC上一点,点F是AC上一点,连接AD、DF,点E是AD上一点,连接EF,且∠1+∠2=180°,∠B=∠3.(1)求证:AB∥DF;(2)若FD平分∠CFE,∠BAD=50°,∠3=70°,求∠CAD的度数.23.(8分)如图,四边形ABCD中,∠A=75°,∠C=105°,BE平分∠ABC,DF平分∠ADC.求:(1)∠ABC+∠ADC的值;(2)∠BED+∠BFD的值.24.(9分)已知如图1,线段AB,CD相交于O点,连接AD,CB,我们把如图1的图形称之为“8字形”.那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)在图1中,请写出∠A,∠B,∠C,∠D之间的数量关系,并说明理由;(2)如图2,计算∠A+∠B+∠C+∠D+∠E+∠F的度数.25.(9分)△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.参考答案一、选择题(共10小题,满分30分,每小题3分)1.A;2.C;3.C;4.C;5.C;6.B;7.B;8.B;9.D;10.B;二、填空题(共5小题,满分15分,每小题3分)11.4;12.19°;13.245;14.10+10或610;15.;三、解答题(共10小题,满分75分)16.解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC BC•AD,∴AD 4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC AB•AC6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴BE•AD EC•AD,即S△ABE=S△AEC,∴S△ABE S△ABC=12(cm2).∴△ABE的面积是12cm2.方法二:因为BE BC=5,由(1)知AD=4.8,所以S△ABE BE•AD5×4.8=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.17.证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.18.解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:1<c<6.故c的取值范围为1<c<6;(2)∵△ABC的周长为12,a+b=3c﹣2,∴a+b+c=4c﹣2=12,解得c=3.5.故c的值是3.5.19.解:(1)证明:∵CD⊥AB于点D,EF⊥CD于点G,∴∠BDC=∠FGC,=90°,∴AB∥EF(同位角相等,两直线平行).(2)证明:由(1)得AB∥EF,∴∠B=∠EFC(两直线平行,同位角相等),又∵∠ADE=∠EFC.∴∠B=∠ADE;(3)由(2)得∠B=∠ADE,∴DE∥BC,由(1)得AB∥EF,∴四边形BDEF是平行四边形(两组对边平行的四边形是平行四边形),∴∠DEF=∠B(平行四边形对角相等),∵∠B=∠ADE,∠BDE=2∠B+36°,∴180°﹣∠B=2∠B+36°,∴∠B=48°,∴∠DEF=48°.20.(1)证明:如图1,∵AE、BF分别平分∠BAC与∠ABC,∴,,在△ABC中,∠ABC+∠ACB+∠C=180°,∠C=60°,∴∠ABC+∠BAC=180°﹣60°=120°,∴∠ABF+∠BAE∠ABC∠BAC(∠ABC+∠BAC)120°=60°,∴∠AGB=180°﹣60°=120°;(2)证明:如图2,∵∠BGD是△ABG得一个外角,∴∠BGD=∠BAG+∠ABG,∵∠ADC=∠BAG+∠ABG,∴∠BGD=∠ADC,∴CD∥BF;(3)解:如图3,∵∠BED=∠AEC,∠ACB=∠BDA,∴∠CAE=∠DBE,∵AE平分∠BAC,BF平分∠ABC,设∠ABF=∠CBF=α,∠BAD=∠CAD=∠DBC=β,∴∠AEC=2α+β,∵∠ABC+∠BAE=2∠DKM,∴,∵GK∥AB,∴∠BGK=∠ABG=α,∴∠GKD=∠GBK+∠BGK=2α+β,∴,∵GB∥DM,∠M=16°,∴∠GBK+∠MDK=180°,∵∠GBK+∠GKB+∠BGK+∠MKD+∠KDM+∠M=360°,∠BKG+∠MKD=180°﹣∠GKM,∴180°+180°﹣∠GKM+∠BGK+∠M=360°,∴∠GKM=∠BGK+∠M,∴,∴β=32°,∴∠BAC=2×32°=64°.21.解:(1)∵AD平分∠BAC,∠BAC=80°,∴∠DAC∠BAC=40°,∵∠ADB是△ADC的外角,∠C=60°,∴∠ADB=∠C+∠DAC=100°;(2)∵∠BED是△ABE的外角,∠BED=60°,∴∠BAD+∠ABE=∠BED=60°,∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE,∴∠BAC+∠ABC=2(∠BAD+∠ABE)=120°,∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=60°.22.(1)证明:∵∠1+∠2=180°,∠1+∠DEF=180°,∴∠DEF=∠2.∴EF∥BC.∴∠3=∠FDC.∵∠B=∠3,∴∠B=∠FDC.∴AB∥DF.(2)解:∵AB∥DF,∴∠BAD=∠EDF=50°.∵FD平分∠CFE,∴∠EFC=2∠3=140°.∴∠AFE=180°﹣∠EFC=40°,∠1=∠3+∠EDF=70°+50°=120°.∴∠CAD=180°﹣∠1﹣∠AFE=20°.23.解:(1)∵四边形ABCD中,∠A=75°,∠C=105°,∴∠ABC+∠ADC=360°﹣75°﹣105°=180°;(2)如图,∵BE平分∠ABC,DF平分∠ADC,∴∠1∠ABC,∠2∠ADC,∴∠1+∠2(∠ABC+∠ADC)=90°,由三角形外角的性质可得,∠BED=∠1+∠A,∠BFD=∠2+∠A,∴∠BED+∠BFD=∠1+∠A+∠2+∠A=∠1+∠2+2∠A=90°+150°=240°.24.解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)如图3,连接AD,则∠BAD+∠B+∠C+∠ADC=360°,根据“8字形”数量关系,∠E+∠F=∠EDA+∠F AD,所以,∠A+∠B+∠C+∠D+∠E+∠F=360°.25.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE∠BAC﹣(90°﹣∠C)(180°﹣∠B﹣∠C)﹣90°+∠C∠C∠B,即∠DAE∠C∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN(∠ACB﹣∠ABC)(∠BCD﹣∠CBD)(∠ACD﹣∠ABD).。

2023年北师大版九年级物理全册第十一章《简单电路》单元试题卷附答案解析

2023年北师大版九年级物理全册第十一章《简单电路》单元试题卷附答案解析

2023年九年级物理全册第十一章《简单电路》单元试题卷(满分100分)一、选择题(每小题3分,共30分)1.楠楠同学在中考备考中,准备有:①透明塑料笔袋②金属刀片③塑料三角板④铅笔芯⑤橡皮擦等物品。

上述五种物品属于绝缘体的有()A.①③⑤ B.②④⑤C.③④⑤ D.①②④2.在“探究并联电路电流的特点”实验中,实验电路如图甲所示,闭合开关S 后,电流表A 1、A 2示数分别如图乙、丙所示,则通过灯泡L 1、L 2电流大小的判断正确的是()A.L 1的电流大于L 2的电流B.L 1的电流等于L 2的电流C.L 1的电流小于L 2的电流D.无法比较L 1、L 2的电流大小3.对如图所示电路的分析,错误的是()A.当断开S 1、S 2,闭合S 3时,R 1与R 2为串联B.当断开S 3,闭合S 1、S 2时,R 1与R 2为并联C.当断开S 1,闭合S 2、S 3时,R 1与R 2为串联D.只要同时闭合S 1、S 3,就会出现短路现象4.下图是实验室伏安法测电阻的电路图,其中a、b 电表应分别为()A.a 为电流表,b 为电流表B.a 为电压表,b 为电压表C.a 为电流表,b 为电压表D.a 为电压表,b 为电流表5.关于滑动变阻器的构造,下列说法正确的是()A.瓷筒可以用胶木筒代替B.接线柱应有两个,有四个接线柱的不能起到变阻器的作用C.线圈可以用裸导线绕制,也可以用带绝缘漆的铜线绕制D.滑动变阻器的滑片与线圈接触的地方,绝缘皮不必刮去,以保证线圈导线间的绝缘6.如图所示,电源电压一定。

关于电路的工作情况,下列说法正确的是()A.只闭合S 1时,两只灯泡是串联的B.若先闭合S 1,再闭合S 2,电压表读数不变、电流表读数变大C.若电压表和电流表位置对调,闭合S 1、S 2后,则两表都被烧坏D.若灯L 1被短路,闭合S 1、S 2后,则灯L 1不亮,灯L 2亮,电流表损坏7.在图中的四个电路图中,与实物图对应的是()]8.在“探究电路的电流规律”实验时用了图中的某个电路,已知R 1=R 2<R 3,电流表的读数分别是A1为0.3A、A2为0.15A、A3为0.45A。

第11章 三角形单元测试(含答案)

第11章 三角形单元测试(含答案)

第十一章三角形单元测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

姓名:时间:90分钟满分:100分评分:一、选择题(本大题共10小题,每小题3分,共30分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.133.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°5.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.86.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.能构成如图所示的基本图形是()(A) (B) (C) (D)9.已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(• )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)(1) (2) (3)二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.12.四条线段的长分别为5cm、6cm、8cm、13cm,•以其中任意三条线段为边可以构成________个三角形.13.如下图2:∠A+∠B+∠C+∠D+∠E+∠F等于________.14.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.15.n边形的每个外角都等于45°,则n=________.16.乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要安排______种不同的车票.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形,•它的内角和(按一层计算)是_______度.18.如图3,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是_____.三、解答题(本大题共6小题,共46分,解答应写出文字说明,•证明过程或演算步骤)19.(6分)如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.20.(8分)如图:(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.(2)若∠A=∠B,请完成下面的证明:已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.求证:CE∥AB.21.(8分)(1)如图4,有一块直角三角形XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.(4) (5)(2)如图5,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ•仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.22.(8分)引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的4根火柴,使之留下5个正方形,•且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.23.(8分)在平面内,分别用3根、5根、6根……火柴首尾..依次相接,•能搭成什么形状的三角形呢?通过尝试,列表如下所示:问:(1)4根火柴能拾成三角形吗?(2)8根、12根火柴能搭成几种不同形状的三角形?并画出它们的示意图.24.(8分)如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各内角的度数.参考答案1.B2.B点拨:由题意知,三角形的三边长可能为4,4,9或4,9,9.但4+4<9,说明以4,4,9为边长构不成三角形.所以,这个等腰三角形的周长为22.故选B.3.B点拨:设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理,•得x+•2x+3x=180.解得x=30.∴3x=3×30=90.故选B.4.D点拨:分顶角为75°和底角为75°两种情况讨论.5.C点拨:据题意,得(n-2)·180=2×360+180.解得n=7.故选C.6.B7.B点拨:若三角形中三个内角都小于60°,则三个内角的和小于180°,•与内角和定理矛盾.所以,三角形中至少有一个内角不小于60°.8.B9.A点拨:∵BC=8cm,│AC-BC│=2cm,∴AC=10cm或6cm.•经检验以10cm,•10cm,8cm,或6cm,6cm,8cm为边长均能构成三角形.故选A.10.B点拨:可根据三角形、四边形内角和定理推证.11.1<x<6 点拨:8-5<1+2x<8+5,解得1<x<6.12.2 点拨:以5cm、6cm、8cm或6cm、8cm、13cm为边长均可构成三角形.13.360°点拨:∵图中正好有两个三角形:△AEC,△BDF,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.14.七15.8 点拨:n=36045︒︒=8.16.10 17.四;36018.100°点拨:连接AO并延长,易知∠BOC=∠BAC+∠1+∠2=55°+20°+25•°=100°.19.解:在△ABD中,∵∠A=90°,∠1=60°,∴∠ABD=90°-∠1=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=30°.在△BDC中,∠C=180°-(∠BDC+∠CBD)=180°-(80°+30°)=70°.20.(1)如答图(2)证明:∵∠A=∠B,∠BCD是△ABC的外角,∴∠BCD=∠A+•∠B=2∠B,∵CE是外角∠BCD的平分线,∴∠BCE=12∠BCD=12×2∠B=∠B,∴CE∥AB(•内错角相等,两直线平行)点拨:如答图所示,要证明两直线平行,只需证内错角∠B=∠BCE即可.21.(1)150°;90°(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠X=•90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+•∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.22.如答图.23.解:(1)4根火柴不能搭成三角形;(2)8根火柴能搭成一种三角形(3,3,2);12根火柴能搭成三种不同的三角形(4,4,4;5,5,2;3,4,5).图略.24.解:(1)CO是△BCD的高.理由:在△BDC中,∵∠BCD=90°,∠1=∠2,∴∠1=∠2=90°÷2=45°.又∵∠1=∠3,∴∠3=45°.∴∠DOC=180°-(∠1+∠3)=180°-2×45°=90°,∴CO⊥DB.∴CO是△BCD的高.(2)∠5=90°-∠4=90°-60°=30°.(3)∠CDA=∠1+∠4=45°+60°=105°,∠DCB=90°,∠DAB=∠5+∠6=30°+30°=60°,∠ABC=105°.可以编辑的试卷(可以删除)。

(完整版)第十一章《三角形》单元测试题及答案

(完整版)第十一章《三角形》单元测试题及答案

精品word完整版-行业资料分享2017—2018学年度上学期八年级数学学科试卷(检测内容:第十一章三角形)一、选择题(每小题3分,共30分)1.如图,图中三角形的个数为( )A.3个 B.4个 C.5个 D.6个第1题图) ,第5题图) ,第10题图)2.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形3.一个多边形的内角和是720°,则这个多边形的边数是( )A.4条 B.5条 C.6条 D.7条4.已知三角形的三边长分别为4,5,x,则x不可能是( )A.3 B.5 C.7 D.95.如图,在△ABC中,下列有关说法错误的是( )A.∠ADB=∠1+∠2+∠3 B.∠ADE>∠BC.∠AED=∠1+∠2 D.∠AEC<∠B6.下列长方形中,能使图形不易变形的是( )7.不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A.45° B.135° C.45°或67.5° D.45°或135°9.一个六边形共有n条对角线,则n的值为( )A.7 B.8 C.9 D.1010.如图,在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以点A,B,C为顶点的三角形面积为1,则点C的个数有( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共24分)11.等腰三角形的边长分别为6和8,则周长为___________________.12.已知在四边形ABCD中,∠A+∠C=180°,∠B∶∠C∶∠D=1∶2∶3,则∠C=__________________.13.如图,∠1+∠2+∠3+∠4=________________.14.一个三角形的两边长为8和10,则它的最短边a的取值范围是________,它的最长边b 的取值范围是________.15.下列命题:①顺次连接四条线段所得的图形叫做四边形;②三角形的三个内角可以都是锐角;③四边形的四个内角可以都是锐角;④三角形的角平分线都是射线;⑤四边形中有一组对角是直角,则另一组对角必互补,其中正确的有________.(填序号)16.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE的度数为__________________.第13题图第16题图第17题图第18题图17.如图,小亮从A点出发前进10 m,向右转15°,再前进10 m,又右转15°……这样一直走下去,他第一次回到出发点A时,一共走了________________m.18.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,与BD 交于点D,若∠D=∠α,试用∠α表示∠A,∠A=________________.三、解答题(共66分)19.(8分)如图,一个宽度相等的纸条,如图折叠,则∠1的度数是多少?20.(8分)一块三角形的实验田,平均分成四份,由甲、乙、丙、丁四人种植,你有几种方法?(至少要用三种方法)21.(8分)如图,五个半径为2的圆,圆心分别是点A,B,C,D,E,则图中阴影部分的面积和是多少?(S扇形=nπR2 360°)22.(8分)如图,在六边形ABCDEF中,AF∥CD,AB∥DE,BC∥EF,且∠A=120°,∠B=80°,求∠C及∠D的度数.精品word完整版-行业资料分享23.(8分)如图,已知△ABC中,∠B>∠C,AD为∠BAC的平分线,AE⊥BC,垂足为E,试说明∠DAE=12(∠B-∠C).24.(8分)有两个各内角相等的多边形,它们的边数之比为1∶2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.25.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.26.(10分)(1)如图①,△ABC是锐角三角形,高BD,CE相交于点H.找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD,CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?参考答案1.C ;2.B ;3.C ;4.D ;5.D ;6.B ;7.C ;8.D ;9.C ;10.D ;11.20或22;12.60;13.360;14.1810,82 b a ≤≤;15.②⑤;16.70;17.240;18.α2; 19.40; 20.21.π6; 22. 分析:连接AC ,根据平行线的性质以及三角形的内角和定理,可以求得∠BCD 的度数;连接BD ,根据平行线的性质和三角形的内角和定理可以求得∠CDE 的度数.解答:解:连接AC .∵AF ∥CD ,∴∠ACD=180°-∠CAF ,又∠ACB=180°-∠B-∠BAC ,∴∠BCD=∠ACD+∠ACB=180°-∠CAF+180°-∠B-∠BAC=360°-120°-80°=160°. 连接BD .∵AB ∥DE ,∴∠BDE=180°-∠ABD .又∵∠BDC=180°-∠BCD-∠CBD ,∴∠CDE=∠BDC+∠BDE=180°-∠ABD+180°-∠BCD-∠CBD=360°-80°-160°=120°. 23解:∵AD 为∠BAC 的平分线∴∠DAC=21∠BAC又∵∠BAC=180°-(∠B+∠C )∴∠DAC=90°-21(∠B+∠C )又∵AE ⊥BC∴∠DAE+∠ADE=90°精品word 完整版-行业资料分享又∵∠ADE=∠DAC+∠C24. 设一个多边形的边数是n ,则另一个多边形的边数是2n ,因而这两个多边形的外角是n360和n 2360 , 第二个多边形的内角比第一个多边形的内角大15°,即是第一个多边形的外角比第二个多边形的外角大15°,就得到方程:n 360-n2360=15°, 解得n=12, 故这两个多边形的边数分别为12,24. 25. 能判断BE ∥DF因为BE ,DF 平分∠ABC 和∠ADC ,又因为∠A=∠C=90°,所以∠ABC+∠ADC=180°所以∠ABE+∠AEB=90°所以∠AEB=∠ADF 所以BE//DF 。

人教版八年级上册第十一章《三角形》单元测试(附答案)(5)

人教版八年级上册第十一章《三角形》单元测试(附答案)(5)

87654321DCBA八年级数学人教上第11章·三角形单元检测第Ⅰ卷(选择题 共24分)一、选择题:(每小题3分,共24分) 1、下列各组线段,能组成三角形的是( )A 、2 cm ,3 cm ,5 cmB 、5 cm ,6 cm ,10 cmC 、1 cm ,1 cm ,3 cmD 、3 cm ,4 cm ,8 cm2、在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( ) A 、150° B 、135° C 、120° D 、100°3、如图4,△ABC 中,AD 为△ABC 的角平分线,BE 为 △ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( ) A 、59° B 、60° C 、56° D 、22° 4、在下列条件中:①∠A+∠B=∠C;②∠A:∠B ∠:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C,能确定△ABC 是直角三角形的条件有( )个.A.1B.2C.3D.45、.坐标平面内下列个点中,在坐标轴上的是( ) A.(3,3) B.(-3,0) C.(-1,2) D.(-2,-3)6.将某图中的横坐标都减去2,纵坐标不变,则该图形( ) A. 向上平移2个单位 B. 向下平移2个单位 C. 向右平移2个单位 D. 向左平移2个单位7.点P (x,y )在第三象限,且点P 到x 轴、y 轴的距离分别为5,3,则P 点的坐标为( ) A.(-5,3) B.(3,-5) C.(-3,-5) D.(5,-3)8、如图6,如果AB ∥CD ,那么下面说法错误的是( ) A .∠3=∠7; B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠8第Ⅱ卷(非选择题 共76分)二、填空题:(每小题4分,共32分)9、如图1,△ABC 中,AD ⊥BC ,AE 平分∠BAC , ∠B=70°,∠C=34°,则∠DAE= 度。

(最新)生物七年级下册《第11章 人体代谢废物的排出 单元测试题》(含答案解析)

(最新)生物七年级下册《第11章 人体代谢废物的排出 单元测试题》(含答案解析)

第11章人体代谢废物的排出一、选择题1.健康人每天形成的原尿约为150升,而每天排出的尿液却只有1.5升,其原因是()。

A.大部分水以水蒸气形势通过呼吸排出体外B.大部分水通过汗液排出体外C.大部分水随粪便排出体外D.大部分水通过肾小管的重吸收作用而回血液2.下列各项生理活动中,不属于排泄的是()A.排出汗液B.排出尿液C.排出粪便D.呼出二氧化碳3.如图曲线表示某人肾单位内的葡萄糖含量变化,A,B,C表示组成肾单位的结构,那么B内的液体和C的结构名称分别是()A.血液、肾小球B.原尿、肾小球C.原尿、肾小管D.尿液、肾小管4.泌尿系统中,从尿液形成到尿液排出的器官依次是()A.肾脏→输尿管→膀胱→尿道→体外B.输尿管→膀胱→尿道→体外C.肾脏→膀胱→输尿管→尿道→体外D.输尿管→尿道→膀胱→体外5.右图是正常人肾小管内某种物质的含量变化曲线示意图,该物质是()。

A.尿素B.无机盐C.葡萄糖D.水6.医生在检验某病人的尿液时发现了较多的红细胞,可能是肾的哪部分出现病症A.肾小囊B.肾小管C.肾小球D.肾小体7.下表是一个正常人的血浆、原尿和尿液的检验结果(“√”表示含有,“×”表示不含有),请判断O、P、Q分别代表的物质是()A.大分子蛋白质、葡萄糖、尿素B.尿素、大分子蛋白质、葡萄糖C.大分子蛋白质、尿素、葡萄糖D.葡萄糖、大分子蛋白质、尿素8.一般情况下,健康人的尿液中不含哪种成分()A.水分B.无机盐C.尿素D.血细胞9.下列不属于排泄的是()A.食物残渣由消化系统排出体外B.尿液通过泌尿系统排出体外C.二氧化碳由呼吸系统排出体外D.汗液由皮肤经汗腺排出体外10.如图为肾单位中尿液形成的示意图。

某人尿检后发现尿液中有葡萄糖,发生病变的部位可能是()A.1B.2C.3D.411.剧烈运动时,运动员表现为满脸通红,大汗淋漓,这体现了皮肤的功能是()A.排泄和调节体温B.保护和排泄C.排泄和感受外界刺激D.保护和感受外界刺激12.某病人尿液检查发现红细胞,如果是肾有疾病,可能是哪个部位()A.肾小管B.输尿管C.肾小球 D.膀胱13.下列关于原尿和尿液的叙述中,正确的是()A.尿液中尿素的含量最高B.尿液中不含无机盐C.原尿和尿液的成分基本相同D.正常人的尿液中不含葡萄糖14.人体的每个肾脏是由约100万个肾单位组成的,如图为一个肾单位的结构示意图。

第十一章--三角形单元测试卷

第十一章--三角形单元测试卷

第十一章三角形单元测试卷班级学号姓名成绩一、选择题(此题共8 小题,每题 3 分,共 24 分)1.如图 1 中三角形的个数是().A.7 B.8C.9D.102.以下各组线段为边,能构成三角形的是().A . 2cm,4cm, 6cm B.8cm,6cm,4cmC. 14cm,6cm, 7cm D.2cm,3cm,6cm3.假如三角形的一个内角是其他两个内角的和,则这个三角形是().A.锐角三角形B.直角三角形C.等边三角形D.钝角三角形4.如图,∠ CBD,∠ ADE为△ ABD的两个位角,∠ CBD=70°,∠ ADE=149°,则∠ A 的度数为()A. 28° B.31° C.39° D.42°5.若一个等腰三角形的两边长分别为6CM, 4CM,则它的周长是()A. 16CM B.14CM C. 16CM或14CM D.10CM6.已知一个多边形的内角和为540°,则这个多边形为().A.三角形B.四边形C.五边形D.六边形7.以下正多边形的组合中,可以铺满地面(即平面镶嵌)的是().A.正四边形和正五边形B.正六边形和正八边形C.正五边形和正六边形D.正五边形和正十边形①三条线段构成的图形叫三角形②三角形的一个外角等于这个三角形的两个内角之和③三角形的角均分线是射线④任何一个三角形都有三条高、三条中线、三条角均分线⑤三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑥三角形的三条角均分线交于一点,且这点在三角形内.正确的命题有 ( ).A.1个B. 2 个C.3个D.4 个二、填空题(此题共6 小题,每题 3 分,共 18 分)9 .如图 3 ,为了使一扇旧木门不变形,木匠师傅在木门的反面加钉了一根木条这样做的道理是______________ .AE2D1C B图 3图 410.如图 4,D是△ABC内一点,延伸BD交AC于E,用“>”表示∠1、∠ 2、∠A的关系 ______________ .11.一个等腰三角形的一边为3cm,另一边为 6cm,则这个三角形的周长为.12.如图 5,在中,是上的中线,是中边上的中线,若的面积是24 cm2,ABC AD BC BEABD AD ABC则的面积是.ABED CAE AB DC O B图 5图 613.如图 6,将一副直角三角板叠在一同,使直角极点重合于点O,则∠ AOB+∠ DOC=.14. 正 n 边形的一个外教的度数为60°,则 n 的值是.三、解答题(此题共58 分)(1)试求这个多边形的边数;(2)求这个多边形内角和的度数.16.如图 7,在△ABC中,∠A=70°,∠B=50°,CD均分∠ACB.求∠ACD,∠BDC的度数.ADB C图 717.如图 8,∠BED=80°,∠ 1=25°,∠ 2=55°,试判断AB与 CD平行吗?并说明原因.A B1E2C D图 818.如图 9,在ABC中,∠ ABC、∠ ACB的均分线订交于点O.( 2)若∠ABC+∠ ACB=116°,则∠ BOC=;( 3)若∠A= 76°,则∠ BOC=;( 4)若∠=120 °,则∠A =;BOC( 5)你能找出∠A与∠ BOC之间的数目关系吗?请说明原因.AF EOB C图 919.如图 10 所示,BE、CD交于A点,∠BCD和∠BED的均分线订交于F.(1)试求:∠F与∠B,∠D有何等量关系?(2)当∠B﹕∠D﹕∠F=2﹕ 4﹕x时,x为多少?DF EABC图 10第十一章三角形单元测试卷答案1.C2.B3.B 4.C 5.C6.C7.D8.B 9.三角形拥有稳固性.10.∠ 1>∠2>∠A.11. 15cm.12. 6 cm 2.13. 180°.14.六15.( 1)多边形每一个内角为: 180°- 45°=135°.设这个多边形的边数为n,则( n-2 )× 180°=135°× n,解得 n=8 .因此这个多边形的边数为8.( 2)这个多边形内角和的度数为(n-2 )× 180°=( 8-2 )× 180°=1080°.16.在△ABC中,∠A+∠B+∠ACB=180°,∵∠ A=70°,∠ B=50°,∴∠ ACB=60°.∵CD均分∠ ACB,∴∠ ACD=1∠ACB=30°2∠BDC=∠ A+∠ ACD=70°+30°=100°17.AB与CD平行,原因以下:∵∠ BED=80°,∠1=25°,∴∠ ABE=∠ BED-∠1=55°,∵∠ 2=55°,∴∠ ABE=∠2,∴AB∥ CD18.( 1) 135°;( 2) 122°;(3) 128°;( 4) 60°;(5)∠BOC= 90 ° + 1∠A,21原因以下:∵ BE均分∠ ABC,∴∠ OBC=∠ABC,∵CF均分∠ ACB,∴∠ OCB=1∠ACB, 2在 OBC中,∠ BOC=180°-(∠ OBC+∠OCB)=180°-1 (∠ABC+∠ACB); 2∵∠ ABC+∠ACB=180°-∠ A,∴∠ BOC=180°-1( ∠ABC+∠ACB)=180 ° -1(180 ° - ∠A)= 90°+1∠ A.22219.如图 2 所示,(1)∵∠ 1+∠D=∠ 5,∠ 3+∠F=∠ 5,∵∠ 2+∠F=∠ 6,∠ 4+∠B=∠ 6,∴∠ 2+∠F=∠ 4+∠B,即∠ 2- ∠ 4=∠B- ∠F∵EF均分∠ BED,∴∠ 1=∠ 2,∵CF均分∠ BCD,∴∠ 3=∠ 4,∴∠ F-∠D=∠ B-∠F∴2∠F=∠B+∠D(2)设∠B=2k,则∠D=4k,∠F=x k,∵ 2∠F=∠B+∠D∴2x k=2k+4k ,∴x=3DF512EA634BC图 2。

人教版八年级数学上册 第11章 三角形 单元练习

人教版八年级数学上册 第11章 三角形  单元练习

第11章三角形一.选择题1.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.2.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性3.如图,为了估计一池塘岸边两点A,B之间的距离,小颖同学在池塘一侧选取了一点P,测得P A=100m,PB=90m,那么点A与点B之间的距离不可能是()A.90m B.100m C.150m D.190m4.将一个直角三角形纸片ABC(∠ACB=90°),沿线段CD折叠,使点B落在B'处,若B'D∥CB,∠ACB'=3∠ADB',则下列结论正确的是()A.∠ADB'=∠ACD B.∠ACB'+∠ADB'>90°C.∠B=22.5°D.∠B'DC=67.5°5.如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()A.5°B.8°C.10°D.15°6.若△ABC中,∠A=90°,且∠B﹣∠C=30°,那么∠C的度数为()A.30°B.40°C.50°D.60°7.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形8.已知小敏家距学校5km,小飞家距小敏家3km.若小飞家距学校距离为xkm,则x满足()A.x=2B.2≤x≤8C.2≤x≤5D.2<x<89.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.50°10.如图,六边形ABCDEF内部有一点G,连结BG、DG.若∠1+∠2+∠3+∠4+∠5=440°,则∠BGD的大小为()A.60°B.70°C.80°D.90°二.填空题11.等腰三角形的一边等于3,一边等于6,则它的周长等于.12.△ABC的三边分别是a,b,c,试化简|a﹣b﹣c|+|b﹣c+a|﹣|c﹣b﹣a|=;13.如图,△ABC中,∠ABC=50°,∠ACB=70°,AD平分线∠BAC.过点D作DE⊥AB于点E,则∠ADE=.14.如图,将△ABC纸片沿DE折叠,使点A落在点A′处,若∠A=33°,则∠1+∠2的度数是.15.在各个内角都相等的多边形中,如果一个外角等于一个内角的20%,那么这个多边形是边形.16.如图,在△ABC中,∠ACB=60°,∠ABC=α(20°<α<120°),AE平分△ABC的外角∠BAD,CF将∠ACB分成1:2两部分.若AE、CF交于点G,则∠AGC的度数为(用含α的代数式表示).三.解答题17.已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?18.如图,在△ABC中,AD是高线,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=70°.(1)求∠ABC的度数.(2)求∠EAD的度数.(3)求∠AOB的度数.19.如图,五边形ABCDE中,AE∥CD,∠A=100°,∠B=120°.(1)求∠C的度数;(2)直接写出五边形ABCDE的外角和.20.如图1,已知线段AB、CD相交于点O,连接AC、BD.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,∠CAB与∠BDC的平分线AP、DP相交于点P,求证:∠B+∠C=2∠P.21.现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使点A落在CE上,则∠1与∠A的数量关系是.研究(2):如果折成图②的形状,猜想∠1+∠2与∠A的数量关系是;研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.参考答案一.选择题1.C.2.D.3.D.4.C.5.C.6.A.7.A.8.B.9.D.10.C.二.填空题11.15.12.﹣a+b+c.13.60°.14.66°.15.十二.16.+10°或﹣10°.三.解答题17.解:(1)∵,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴.(2)不能,理由如下:∵,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成三角形ABC,则不能求出DC的长.18.解:(1)∵∠ABC+∠BAC+∠C=180°,∴∠ABC=180°﹣∠BAC﹣∠C=180°﹣60°﹣70°=50°;(2)∵AD⊥BC,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠BAD=90°﹣∠ABD=90°﹣50°=40°,∵AE平分∠BAC,∴,∴∠EAD=∠BAD﹣∠BAE=40°﹣30°=10°;(3)∵BF平分∠ABC,∴,∵∠AOB+∠ABF+∠BAE=180°,∴∠AOB=180°﹣∠ABF﹣∠BAE=180°﹣25°﹣30°=125°.19.解:(1)∵AE∥CD,∴∠D+∠E=180°,∵五边形ABCDE中,∠A=100°,∠B=120°,∴∠C=540°﹣180°﹣100°﹣120°=140°.(2)五边形ABCDE的外角和是360°.20.证明:(1)在△AOC中,∠A+∠C=180°﹣∠AOC,在△BOD中,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)在AP、CD相交线中,有∠CAP+∠C=∠P+∠CDP,在AB、DP相交线中,有∠B+∠BDP=∠P+∠BAP,∴∠B+∠C+∠CAP+∠BDP=2∠P+∠CDP+∠BAP,∵AP、DP分别平分∠CAB、∠BDC,∴∠CAP=∠BAP,∠BDP=∠CDP,∴∠B+∠C=2∠P.21.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠DAE,理由是:∵∠2=∠AFE+∠DAE,∠AFE=∠A′+∠1,∴∠2=∠A′+∠DAE+∠1,∵∠DAE=∠A′,∴∠2=2∠DAE+∠1,∴∠2﹣∠1=2∠DAE.故答案为:(1)∠1=2∠A;(2)∠1+∠2=2∠A.。

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》练习一.选择题(共19小题)1.(2020春•开福区校级期末)如图,在三角形ABC中,∠A=45°,三角形ABC的高线BD,CE交于点O,则∠BOC的度数()A.120°B.125°C.135°D.145°2.(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容.图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°3.(2020春•雨花区校级期末)以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm4.(2020春•雨花区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°5.(2020春•雨花区期末)如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°6.(2020春•天心区期末)如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,AB ∥CD,∠ACB=∠EDF=90°,则∠CAF=()A.10°B.15°C.20°D.25°7.(2019秋•赫山区期末)已知三角形三边长3,4,x,则x的取值范围是()A.x>1B.x<7C.1<x<7D.﹣1<x<78.(2019秋•永定区期末)长度分别为3,7,x的三条线段能组成一个三角形,x的值可以是()A.2B.3C.4D.59.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形10.(2020春•天心区期末)已知三角形三边长为2,3,x,则x的取值范围是()A.x>1B.x<5C.1<x<5D.﹣1<x<511.(2020春•岳麓区校级期末)如图,点C在线段AB的延长线上,∠DAC=15°,∠DBC=110°,则∠D的度数是()A.95°B.85°C.100°D.125°12.(2019秋•浏阳市期末)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm13.(2020春•衡阳期末)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形14.(2019秋•永定区期末)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.915.(2020春•赫山区期末)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1316.(2020春•长沙期末)△ABC中BC边上的高作法正确的是()A.B.C.D.17.(2019春•永州期末)在Rt△ABC中,若∠A=40°,∠C=90°,则∠B的度数是()A.20°B.30°C.40°D.50°18.(2019春•靖州县期末)下列度数不可能是多边形内角和的是()A.360°B.560°C.720°D.1440°19.(2018秋•江华县期末)以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4B.5a2,6a2,10a2C.3a,4a,a D.a﹣1,a﹣2,3a﹣3二.填空题(共9小题)20.(2020春•涟源市期末)如图,在Rt△ABC中,∠B=90°,∠ACD=130°,则∠A=°.21.(2020春•长沙期末)如图,四边形ABCD中,且∠1,∠2分别是∠BCD和∠BAD的邻补角,若∠1+∠2=150°.则∠B+∠ADC=.22.(2020春•开福区校级期末)已知三条线段长度分别为1、2、4,能否组成三角形?.(填“能”或“不能”).23.(2020春•雨花区期末)如图,若∠A=30°,∠ACD=105°,则∠EBC=°.24.(2020春•衡阳期末)如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是.25.(2019秋•涟源市期末)如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.26.(2020春•岳麓区校级期末)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.27.(2020春•常德期末)如图,两直线AB与CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=°.28.(2019春•开福区校级期末)三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.三.解答题(共7小题)29.(2020春•永州期末)如图所示,在四边形ABCD中,∠A=110°,∠ABC=70°,BD⊥CD于点D,EF⊥CD于点F,试说明∠1=∠2.30.(2019秋•双清区期末)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.31.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.32.(2018秋•靖州县期末)已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若∠BAC是直角,请猜想:△AFE的形状,并写出证明.33.(2019春•雨花区校级期末)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH ⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.34.(2018秋•安仁县期末)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.35.(2019春•天心区校级期末)一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形.参考答案与试题解析一.选择题(共19小题)1.【解答】解:∵∠A+∠ABC+∠ACB=180°,∠A=45°,∴∠ABC+∠ACB=135°,∵BD⊥AC,CE⊥AB,∴∠ABC+∠BCE=∠ACB+∠CBD=90°,∴∠ABC+∠BCE+∠ACB+∠CBD=180°,∴∠BCE+∠CBD=45°,∵∠BOC+∠BCE+∠DBC=180°,∴∠BOC=135°.故选:C.2.【解答】解:由多边形的外角和等于360度,可得∠1+∠2+∠3+∠4+∠5=360度.故选:C.3.【解答】解:根据三角形的三边关系,A、3+6=9>8,能组成三角形;B、2+3=5<6,不能够组成三角形;C、5+6=11,不能组成三角形;D、4+2=6<7,不能组成三角形.故选:A.4.【解答】解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.5.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.6.【解答】解:∵AB∥CD,∴∠BAC=∠ACD=30°,∵∠AFD=∠CAF+∠ACF=45°,∴∠CAF=45°﹣30°=15°,故选:B.7.【解答】解:由题意得:4﹣3<x<4+3,即:1<x<7,故选:C.8.【解答】解:7﹣3<x<7+3,4<x<10,只有选项D符合题意.故选:D.9.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.10.【解答】解:由三角形三边关系可知,3﹣2<x<3+2,∴1<x<5,故选:C.11.【解答】解:∵∠DBC是△ABD的外角,∴∠DBC=∠D+∠A,则∠D=∠DBC﹣∠A=110°﹣15°=95°,故选:A.12.【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.13.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.14.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.15.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.16.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.17.【解答】解:∵∠A=40°,∠C=90°,∴∠B=90°﹣40°=50°,故选:D.18.【解答】解:360°、720°、1440°都是180°的倍数,它们是多边形内角和;560°不是180°的倍数,所以它不可能是多边形内角和;故选:B.19.【解答】解:当a>3时,根据三角形的三边关系,得A、a+3+a+4=2a+7,不能组成三角形;B、5a2+6a2>10a2,能组成三角形;C、a+3a=4a,不能够组成三角形;D、a﹣1+a﹣2=2a﹣3,3a﹣3﹣2a+3=a>3,2a﹣3<3a﹣3,不能组成三角形.故选:B.二.填空题(共9小题)20.【解答】解:∵∠ACD的△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣90°=40°,故答案为:40.21.【解答】解:∵∠1+∠2=150°,∴∠DAB+∠DCB=360°﹣150°=210°,∵∠B+∠D+∠DAB+∠DCB=360°,∴∠B+∠ADC=360°﹣(∠DAB+∠DCB)=150°,故答案为150°.22.【解答】解:根据三角形的三边关系,1+2=3<4,不能组成三角形;故答案为:不能.23.【解答】解:∵∠ACD=∠A+∠ABC,∴105°=30°+∠ABC,∴∠ABC=75°,∴∠EBC=180°﹣∠ABC=105°,故答案为105.24.【解答】解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.25.【解答】解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.26.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.27.【解答】解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB 利用内错角和同旁内角,把这六个角转化一下,可得,有5个180°的角,∴180×5=900°.故答案为:900.28.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.三.解答题(共7小题)29.【解答】解:∵∠A=110°,∠ABC=70°,∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换).30.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.31.【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,∴∠A+∠ADE=180°,∠B+∠DEB=180°,则∠A+∠B+∠C+∠ADC=∠A+∠B+∠C+∠EDC+∠ADE=∠A+∠B+∠DEB+∠ADE=360°.32.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=12∠ABC=20°,∴∠BFD=90°﹣20°=70°∴∠AFE=∠BFD=70°(2)结论:△AEF是等腰三角形.理由:∵∠BAE=∠ADF=90°,∴∠AEF+∠ABE=90°,∠BFD+∠FBD=90°,∵∠ABE=∠DBF,∴∠AEF=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠AEF,∴AE=AF,∴△AEF是等腰三角形.33.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.34.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=12∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.35.【解答】解:设它是n边形,依题意得:(n﹣2)180°+360°=1440°.解得:n=8.答:它是八边形.。

2023-2024学年数学人教版八年级上册第11章三角形 单元测试题(含解析)

2023-2024学年数学人教版八年级上册第11章三角形 单元测试题(含解析)

第11章 三角形 单元测试题一、单选题1.根据下列已知条件,能确定的形状和大小的是( )A .,,B .,,C .,,D .,,2.如图,一只手握住了一个三角形的一部分,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .以上都有可能3.如图,为估计池塘两岸,间的距离,小明在池塘一侧选取了一点,测得,,那么间的距离不可能是( )A .B .C .D .4.如图,人字梯中间一般会设计一“拉杆”,这样做的道理是( )A .三角形具有稳定性B .垂线段最短C .两点之间,线段最短D .两直线平行,内错角相等5.在中,,若,则等于( )A .B .C .D .6.如图,AE ,AD 分别是的高和角平分线,,,则的度数为( )ABC 30A ∠=︒=60B ∠︒90C ∠=︒40A ∠=︒50B ∠=︒5cm AB =5cm AB =4cm AC =30B ∠=︒6cm AB =4cm BC =30A ∠=︒A B P 14m PA =10m PB =AB 4m 15m 20m 22m Rt ABC 90C ∠=︒50A ∠=︒B ∠55︒50︒45︒40︒ABC 30B ∠=︒70C ∠=︒DAE ∠A .40°B .20°C .10°D .30°7.四边形具有不稳定性,如图,挤压矩形ABCD ,会产生变形,得到四边形EBCF ,则在这个变化过程中,关于矩形ABCD 的周长和面积,下列说法正确的是( )A.周长和面积都不变B.周长不变,面积变小C .周长变小,面积不变D .周长变小,面积变小8.一个多边形每个外角都等于,则从这个多边形的某个顶点画对角线,最多可以画出几条( )A .7条B .8条C .9条D .10条9.正五边形的每个内角度数为( )A .B .C .D .10.一个正多边形的外角等于36°,则这个正多边形的内角和是( )A .1440°B .1080°C .900°D .720°11.一个多边形截去一个角后,形成另一个多边形的内角和为,那么原多边形的边数为( )A .5B .5或6C .6或7D .5或6或712.小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A 出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转θ……如此下去,当他第一次回到A 点时,发现自己走了60米,θ的度数为( )A .28°B .30°C .33°D .36°二、填空题36︒72︒100︒108︒120︒720︒14.如图,在中, .15.如图,在中,上,且,则16.大桥钢架、索道支架、人字梁等为了坚固,学校门口的电动推拉门是利用四边形的17.如图,两条平行线l 1、那么∠2= .ABC A ∠=ABC ∆∠DE BC ∥EDC ∠三、解答题(1)写出图中所有相等的角和相等的线段;(2)当BF=8cm ,AD=7 cm 时,求△ABC 22.已知:在中,,分别是(1)若,.求(2)试求与有何关系?23.如图,在中,(1) ;(2)若是两条外角平分线的交点,则ABC AD AE 30B ∠=︒50C ∠=︒DAE ∠DAE ∠C B ∠-∠ABC 50BAC ∠=︒BIC ∠=︒D(3)在(2)的条件下,若是内角和外角的平分线的交点,试探索与的数量关系,并说明理由.E ABC ∠ACG ∠BEC ∠BAC ∠参考答案:1.B解:A 、∠A =30°,∠B =60°,∠C =90°,△ABC 的形状和大小不能确定,故不符合题意;B 、∠A =40°,∠B =50°,AB =5cm ,则利用“ASA”可判断△ABC 是唯一的,故符合题意;C 、AB =5cm ,AC =4cm ,∠B =30°,△ABC 的形状和大小不能确定,故不符合题意;D 、AB =6cm ,BC =4cm ,∠A =30°,△ABC 的形状和大小不能确定,故不符合题意. 2.D解:A 、当另外两角为44°和100°时,该三角形为钝角三角形,B 、当另外两角为90°和54°时,该三角形为直角三角形,C 、当另外两角为80°和64°时,该三角形为锐角三角形,∴钝角三角形,直角三角形,锐角三角形都有可能,3.A解:,,,即,间的距离不可能是:.4.A解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性.5.D解:在中,,,,,6.B解:∵,,AE ⊥BC ,∴∠BAC=80°,∠AEB=90°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=40°,在△AEB 中,∠AEB+∠B+∠BAE=180°,∴∠BAE=60°,14m PA = 10m PB =PA PB AB PA PB ∴-<<+4m 24m AB <<AB ∴4m Rt ABC =90C ∠︒ =50A ∠︒=90A B ∴∠+∠︒=9050=40B ∴∠︒-︒︒30B ∠=︒70C ∠=︒∴∠EAD=∠BAE-∠BAD=60°-40°=20°;7.B解:因为把长方形拉成平行四边形后,每个边的长度不变,所以它的周长就不变;但是平行四边形的高比长方形的宽变小了,所以平行四边形的面积就变小了.8.A解:根据题意可知多边形为正多边形,设边数为则由多边形外角和的性质可得,解得则从一个顶点最多可以画10-3=7条对角线9.C解:,∴正五边形的每个内角度数为 10.A解:∵一个正多边形的外角等于36°,∴这个正多边形是正十边形,∴内角和为(10﹣2)×180°=1440°,11.D解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为的多边形的边数是n ,∴,解得:.则原多边形的边数为5或6或7.12.Bn36360n ︒⨯=︒10n =()180525=108︒⨯-÷︒108︒720︒()2180720n -⋅︒=︒6n =。

人教版八年级数学上册第十一章《三角形》单元练习题

人教版八年级数学上册第十一章《三角形》单元练习题

第十一章《三角形》单元练习题一.选择题1.下来三条线段中,能构成三角形的是()A.3,4,8 B.5,6,11 C.5,5,10 D.5,6,72.一个三角形的两边长分别是3和7,则第三边长可能是()A.2 B.3 C.9 D.103.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.64.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°5.△ABC的三个内角∠A,∠B,∠C满足∠A:∠B:∠C=1:2:3,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形6.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变7.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°8.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.9.如图,在△ABC中,点D在AB边上,点E在AC边上DE∥BC,点B、C、F在一条直线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.75°B.50°C.35°D.30°10.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远11.如图,为估计池塘岸边两点A、B的距离,小方在池塘的一侧选取一点O,测得OA=6cm,OB=4cm,则点A、B间的距离不可能是()A.10 cm B.8cm C.6cm D.4cm12.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°二.填空题13.如图,在△ABC中,AB=2018,AC=2015,AD为中线,则△ABD与△ACD的周长之差=.14.如图,在△ABC中,D为AB延长线上一点,DE⊥AC于E,∠C=40°,∠D=20°,则∠ABC的度数为.15.一个三角形的两边长分别是2和6,第三边长为偶数,则第三边长为.16.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有个.三.解答题17.如图,在△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.18.如图,△ABC中,点D、E在边AB上,点F在边BC上,点G在边AC上,EF、CD 与BG交于M、N两点,∠ADG=50°,∠ACB=60°.(1)若∠BMF+∠GNC=180°,CD与EF平行吗?为什么?(2)在(1)的基础上,若∠GDC=∠EFB,试求∠A的度数.19.在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?20.如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=34°,且∠ACD=47°,求∠3的度数.22.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB 于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.23.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系;3(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.参考答案一.选择题1.解:根据三角形任意两边的和大于第三边,得A,3+4=7<8,不能组成三角形;B,5+6=11=11,不能组成三角形;C,5=5=10,不能够组成三角形;D,5+6=11>7,能组成三角形.故选:D.2.解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.3.解:设多边形的边数为n,由题意得,(n﹣2)•180°=900°,解得n=7,所以,从一点引对角线的条数=7﹣3=4.故选:B.4.解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ABC=40°,∠ACD=76°,∴∠ACD﹣∠ABC=36°,∵BE平分∠ABC,CE平分∠ACD,∴∠ECD=∠ACD,∠EBC=∠ABC,∵∠ECD是△BCE的一个外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC=18°.故选:D.5.解:∵∠A:∠B:∠C=1:2:3,∴设∠A、∠B、∠C分别为k、2k、3k,由题意得,k+2k+3k=180°,解得k=30°,∠C=3×30°=90°,∴这个三角形是直角三角形.故选:C.6.解:∵多边形的外角和等于360°,与边数无关,∴凸多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选:D.7.解:在△ABC中,∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=130°﹣90°=40°;故选:C.8.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.9.解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:C.10.解:∵∠C=100°,∴AB>AC,如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系,AC+BC>AB,∴AB<AD,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选:C.11.解:∵6﹣4<AB<6+4,∴2<AB<10.∴所以不可能是10cm.故选:A.12.解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.二.填空题(共4小题)13.解:∵AD是△ABC的中线,∴BD=CD,∵△ABD周长=AB+AD+BD,△ACD周长=AC+CD+AD,∴△ABD周长﹣△ACD周长=(AB+BD+AD)﹣(AC+CD+AD)=AB﹣AC=2018﹣2015=3,即△ACD和△BCD的周长之差是3,故答案为:3.14.解:∵DE⊥AC,∠D=20°,∴∠A=70°,∵∠A+∠C+∠ABC=180°,∴∠ABC=180°﹣40°﹣70°=70°,故答案为70°.15.解:根据三角形的三边关系,得6﹣2<x<6+2,即4<x<8.又∵第三边长是偶数,则x=6,故答案为:616.解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°﹣∠ABD,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°﹣∠ABC,∴∠ADB不等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴⑤正确;即正确的有4个,故答案为:4.三.解答题(共7小题)17.解:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,∴∠BAC=60°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC=×60°=30°,∵AD是BC上的高,∴∠B+∠BAD=90°,∴∠BAD=90°﹣∠B=90°﹣75°=15°,∴∠DAE=∠BAE﹣∠BAD=30°﹣15°=15°,在△AEC中,∠AEC=180°﹣∠C﹣∠CAE=180°﹣45°﹣30°=105°;18.解:(1)∵∠BMF+∠GNC=180°∠BMF+∠NMF=180°,∴∠GNC=∠NMF,∴CD∥EF;(2)∵CD∥EF,∴∠DCB=∠EFB,∵∠GDC=∠EFB,∴∠DCB=∠GDC,∴DG∥BC,∴∠ADG=∠ABC=50°,∠AGD=∠ACB=60°..∴∠A=180°﹣50°﹣60°=70°.19.解:(1)设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20)+α=180°,解得α=40°.即多边形的每个外角为40°.又∵多边形的外角和为360°,∴多边形的外角个数==9.∴多边形的边数=9,答:这个多边形的边数是9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,当截线为经过对角2个顶点的直线时,多边形的边数减少了1条边,内角和=(9﹣2﹣1)×180°=1080°;当截线为经过多边形一组对边的直线时,多边形的边数不变,内角和=(9﹣2)×180°=1260°;当截线为只经过正方形一组邻边的一条直线时,多边形的边数增加一条边,内角和=(9﹣2+1)×180°=1440°.答:将这个多边形剪去一个角,剩下多边形的内角和是1080°或1260°或1440°.20.解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.21.解:(1)DG∥BC.理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)∵CD⊥AB,∴∠BDC=90°.∵∠B=34°,∴∠BCD=90°﹣34°=56°.∵∠ACD=47°,∴∠ACB=∠ACD+∠BCD=47°+56°=103°.∵由(1)知DG∥BC,∴∠3=∠ACB=103°.22.解:(1)作PH∥AB,又AB∥CD,则PH∥CD,∴∠PFD=∠MPH,∠AEM=∠HPM,∵∠MPN=90°,∴∠PFD+∠AEM=90°;(2)∵AB∥CD,∴∠PFD=∠PHB,∵∠PHB﹣∠PEB=90°,∠PEB=∠AEM,∴∠PFD﹣∠AEM=90°;(3)由(2)得,∠PFD=90°+∠PEH=120°,∴∠N=180°﹣∠DON﹣∠PFD=45°.23.解:(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A,∴∠ACD﹣∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,即∠A n=∠A,故答案为:∠A n=∠A.(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∴∠ABC+(180°﹣∠DCE)=360°﹣(∠A+∠D)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(α+β)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,(1分)∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.。

第11章《三角形》单元测试卷(含答案)

第11章《三角形》单元测试卷(含答案)

第11章《三角形》单元测试卷姓名:成绩:一.选择题(共10小题,满分40分,每小题4分)1.以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm2.如图所示在△ABC中,AB边上的高线画法正确的是()A.B.C.D.3.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°4.如图所示,以BC为边的三角形共有()A.1个B.2个C.3个D.4个5.如图,为了估计一池塘岸边两点A,B之间的距离,小颖同学在池塘一侧选取了一点P,测得P A =100m,PB=90m,那么点A与点B之间的距离不可能是()A.90m B.100m C.150m D.190m6.如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°7.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.48.若正多边形的一个外角是60°,则这个正多边形的边数是()A.4B.5C.6D.79.如上图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°10.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16二.填空题(满分32分,每小题4分)11.如图,自行车的车架做成三角形的形状,该设计是利用三角形的.12.如上图,△ABC为直角三角形,∠ACB=90°,CD⊥AB于点D,与∠1相等的角是.13.一个多边形的每一个内角都等于150°,这个多边形共有条边.14.如上图,若∠A=30°,∠ACD=105°,则∠EBC=°.15.在△ABC中,如果∠A:∠B:∠C=1:2:3,根据三角形按角进行分类,这个三角形是三角形.∠A=度.16.如图,已知∠1=20°,∠2=25°,∠A=50°,求∠BDC的度数.17.如上图,△ABC中,∠C=50°,AD是∠CAB的平分线,BD是△ABC的外角平分线,AD与BD交于点D,那么∠D=.18.一个三角形的两边长为8和10,则它的最短边a的取值范围是_ ;它的最长边b的取值范围是__ __.三.解答题(共8小题,满78分)19.(9分)如图,△ABC的三条高AD、BE、CF相交于点O.(1)在△BOC中,OB边上的高是,OC边上的高是,BC边上的高是.(2)在△AOC中,OA边上的高是,OC边上的高是,AC边上的高是.(3)在△AOB中,OA边上的高是,OB边上的高是,AB边上的高是.20.(16分)求图形中x的值:21.(10分)如图,四边形ABCD中,已知∠B、∠C的角平分线相交于点O,∠A+∠D=200°,求∠BOC的度数.22.(12分)如图,在△ABC中,∠B=40°,∠C=80°.(1)求∠BAC的度数;(2)AE平分∠BAC交BC于E,AD⊥BC于D,求∠EAD的度数.23.(12分)如图,已知六边形ABCDEF的每个内角都相等,连接AD.(1)若∠1=48°,求∠2的度数;(2)求证:AB∥DE.24.(7分)已经等腰三角形的周长为16cm,若其中一边长为4cm,求另外两边长。

人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)

人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)

人教版八年级上册数学第11章《三角形》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2cm,5 cm,8cm B.3 cm,3 cm,6 cmC.3 cm,4 cm,5 cm D.1 cm,2cm,3 cm2.在△ABC中,∠A=80°,∠B=50°,则∠C的余角是()A.130°B.50°C.40°D.20°3.如第3题图,∠C=25°,∠AED=150°,则∠CDE为()第3题图A.100°B.115°C.125°D.155°4.如第4题图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()第4题图A.25°B.50°C.65°D.70°5.如第5 题图,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这样做的根据是()第5题图A.三角形具有稳定性B.两点确定一条直线C.两点之间线段最短D.三角形内角和180°6.如果将一副三角板按如第6题图方式叠放,那么∠1=()第6题图A.90°B.100°C.105°D.135°7.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个8.一个正多边形的一个内角是它相邻外角的5倍,则这个正多边形的边数是()A.12 B.10 C.8 D.69.如第9题图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()第9题图A.40°B.41°C.42°D.43°10.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如第10题图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如第10题图2.照此下去,至多能进行()步.第10题图1 第10题图2A.3 B.4 C.5 D.6二、填空题(每小题4分,共24分)11.如果三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形最小内角的度数是.12.如第12题图,∠A+∠B+∠C+∠D+∠E+∠F=度.第12题图13.下列第13题图1、图2、图3中,具有稳定性的是图.图1 图2 图3第13题图14.如第14题图是由射线AB、BC、CD、DE、EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.。

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)
∴∠C=60°,
∵BD平分∠ABC,
∴∠DBC=35° ,
∴∠BDC=180°﹣60°﹣35°=85°.
故答案为85°.
17.若n边形的内角和是它的外角和的2倍,则n=.
【答案】6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2),外角和=360º
所以,由题意可得180(n-2)=2×360º
16.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.
【答案】85°.
【解析】
【分析】
根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.
【详解】∵在△ABC中,∠A=50°,∠ABC=70°,
【答案】2cm2
【解析】
【分析】
由点E为AD的中点,可得△ABC与△BCE的面积之比,同理可得,△BCE和△EFC的面积之比,即可解答出.
【解析】
解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB.∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.故答案为540.
点睛:本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.

(人教版)第十一章 《功和机械能》单元测试题及答案(一)

(人教版)第十一章 《功和机械能》单元测试题及答案(一)

《功和机械能》单元测试及答案(一)泰安一中吕学文一、选择题(每题2分,共38分)1.下列选项中,一定具有动能的是()A.汽车 B.飞机 C.巨浪 D.小鸟2.2003年12月30日,我国成功地将“探测一号”卫星送人了绕地球的椭圆轨道。

卫星在轨道上运行的过程中()A.只有动能转化成势能 B.只有势能转化成动能C.动能和势能不断地相互转化 D.动能和势能各自保持不变3.2003年10月15日,“神舟”5号载人飞船在震天的轰鸣声中腾空而起,飞向太空。

完成任务后于次日凌晨准确降落在内蒙古中部预定地区。

返回舱进入大气层一段时间后,由于受空气阻力做匀速运动。

返回舱匀速下降过程中()A.重力势能减少,动能增加 B.机械能减少,动能不变C.重力势能减少,动能增加 D.机械能不变,动能不变4.某同学不小心扭伤了脚,你背他去医务室检查,在下列过程中你对他做了功的过程是 ( )A.把他由地上背到你身上时 B.背着他站着不动时C.背着他在水平路面上行走时 D.背到医务室门前拐弯时5.甲、乙两机器,甲的机械效率是75%,乙的机械效率是60%,则下列说法中正确的是 ( )A.甲机器的功率大 B.使用甲机器较省力C.甲机器的额外功占总功的百分比较小D.在相同时间内,甲机器做功较多6.李明同学快速地由一楼跑到三楼的过程中,他的功率与下列哪个值最接近 ( )A.5 W B.50 W C.500 W D.5 000 W7.林雨将掉在地上的物理课本捡回桌面,所做的功最接近于()A.0.02J B.O.2J C.2J D.20J8.起重机匀速提升重为2×104牛顿的工件,提升了100米,又沿水平方向移动了5米,起重机在这个过程中钢丝绳的拉力所做的功是:()A.3×105焦耳B.105焦耳C.2×106焦耳D.0焦耳9.某人骑着一辆普通自行车,在平直公路上以某一速度匀速行驶。

若人和车所受的阻力为20N,则通常情况下,骑车人消耗的功率最接近()A.5WB.10WC.60WD.1000W10.一台机器的功率是150瓦,它表示的含义是:()A.这台机器所做的功只能是150焦耳B.这台机器每分钟内做功150焦耳C.这台机器每秒钟所做的功是150焦耳D.这台机器在每秒钟内所做的功是150瓦特11.下列有关功率的说法正确的是( )A.功率越大的机械效率越高B.功率越大的机械越省力C.功率越小的机械做功越少D.功率越小的机械做功越慢12.上紧发条的玩具车在水平桌面上开始跑动时( )A.弹性势能减小,动能增大B.弹性势能增大,动能减小C.弹性势能不变,动能减小D.弹性势能减小,动能不变13.从静止在高空的直升机上释放一个物体,不计空气阻力,释放时物体的机械能为500J,那么( )A.释放时物体重力势能小于500JB.下落过程中物体机械能减小C.物体落地时动能是500J D.物体落地时的机械能大于500J14.两台机器正常工作时,功率大的机器一定比功率小的机器( )A.做功多 B.做功少 C.做功快 D.做功慢15.如图所示是甲、乙两物体做功与时间的关系图象,由图可知,甲、乙两物体做功的功率大小关系是( )A.P甲>P乙B.P甲<P乙C.P甲=P乙D.无法判断16.如图所示,小冯分别用甲、乙两滑轮把同一桶沙从一楼地面提到二楼地面,用甲滑轮所做的总功为W1,机械效率为η1;用乙滑轮所做的总功为W2,机械效率为η2,若不计绳重与摩擦,则( )A.W1=W2,η1=η2B.W1=W2,η1<η2C.W1<W2,η1>η2D.W1>W2,η1<η217.小明同学用一个距离手3m高处的定滑轮拉住重100 N的物体,从滑轮正下方沿水平方向移动4m,如图所示,若不计绳重和摩擦,他至少做功 ( )A.200JB.300JC.400JD.500J18.“跳远”是一项常见的体育运动。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《简单机械和功》单元测试一、 选择题:2×12=241.下列简单机械中,属于省力杠杆的是( )A .筷子B .理发剪C .羊角锤D .钓鱼竿2.在如图所示的四种情境中,人对物体做功的是 ( )3.家用的手摇晾衣架如图所示,它实际是由定滑轮和动滑轮组成的滑轮组。

假设衣服和晾衣架的总重为100N ,则静止时绳子自由端的拉力为(不计动滑轮重及摩擦) ( )A .100NB .50NC .25ND .20N第8题第9题 第10题 4.关于功率和机械效率,下列说法正确的是A .功率大的机械,机械效率一定高;B .做功多的机械,机械效率一定高C .做相同的有用功,额外功少的机械,机械效率一定高D .省力的机械,机械效率一定高5.一个足球运动员用100N 的力踢一个重为5N 的足球,球离脚后在水平草地上向前滚了20m ,在球滚动过程中,运动员对足球做的功为( )A .100JB .2000JC .2100JD .0J6.一个人先后用同样大小的力F 将不同质量的物体分别在光滑水平面、粗糙水平面和粗糙斜面上沿力的方向移动相同的距离S (如图所示),该力在这三个过程中所做功分别为W 1、W 2、W 3,关于它们之间的大小关系说法正确的是( )A .W 1<W 2<W 3B .W 1<W 2=W 3C .W 1=W 2=W 3D .W 1=W 2<W 37.如图甲,是小球从某高度处由静止下落h 过程的路程与时间关系图,图乙中,描述重力对该球做功大小与时间关系正确的图线是( )13题图8.如图所示,拉力F =80N ,物体重力G =120N ,不计摩擦和绳重。

若将物体匀速提高1m ,以下说法不正确的是( )A .拉力做的有用功为80JB .动滑轮的重力为40NC .拉力做的总功为160JD .该滑轮组的机械效率为75%9.用相同的滑轮和绳子分别组成如图所示的甲、乙两个滑轮组,把相同的重物匀速提升相同的高度.若不计绳重及摩擦,下列说法正确的是( )A .绳子受的拉力F 1和F 2大小相等,滑轮组的机械效率相同B .绳子受的拉力F 1和F 2大小不相等,滑轮组的机械效率不同C .绳子自由端移动的距离不相等,拉力对滑轮组所做的功相等D .绳子自由端移动的距离不相等,拉力对滑轮组所做的功不相等10.如图所示,图甲中小强用弹簧测力计拉木块,使它沿水平木板匀速滑动;图乙是他两次拉动同一木块得到的路程随时间变化的图像。

下列说法正确的是( )A .木块第二次受到的拉力较大B .第一次木块的速度大C .木块两次受到的拉力和摩擦力均相等D .第一次拉力对木块做功的功率大 11.如图所示。

OAB 是杠杆,OA 与BA 垂直,在OA 的中点挂一个10N 的重物,加在B 点的动力使OA 在水平位置保持静止(杠杆重力及摩擦均不计),则( )A .该杠杆一定是省力杠杆B .该杠杆一定是费力杠杆C .作用在B 点的最小动力等于5ND .作用在B 点的最小动力小于5N 12. 某人骑着一辆普通自行车,在平直公路上以某一速度匀速行驶。

若人和车所受的阻力为20N ,则通常情况下,骑车人消耗的功率最接近 ( ) A.5W B.10W C.100W D.1000W13.甲乙两个滑轮组如图所示,其中的每一个滑轮都相同,用它们分别将重物G1、G2提高相同的高度,不计滑轮组的摩擦,下列说法中正确的是( )A .若G1=G2,拉力做的额外功相同B .若G1=G2,拉力做的总功相同C .若G1=G2,甲的机械效率大于乙的机械效率D .用甲乙其中的任何一个滑轮组提起不同的重物,机械效率不变二、填空题:1×361.花匠手握如图所示的修枝剪刀把手的末端,便可以轻松地剪断树枝。

这时修枝剪刀属于_____杠杆,它的支点在___点.使用时,若在轴上加润滑油,则可以提高杠杆的_____.2.如图10所示,用固定在墙上的三角支架ABC 放置空调室外机.如果A 处螺钉松脱,则支架会绕________点倾翻.已知AB 长40cm,AC 长30cm ,室外机的重力为300N,正好处在AB 中点处,则A 处螺钉的水平拉力为______N (支架重力不计).为了安全,室外机应尽量______(填“靠近”或“远离”)墙壁.3.如图所示,独轮车车身及车上物品总重力G 为300N ,作用线如图,O 点为车轴。

将车把抬起时,作用在车把竖直向上的力至少为________N 。

独轮车属于__________(选填“省力”、“费力”)杠杆。

第1题图 第2题图 第3题图 第7题图 第9题图4.小明沿水平方向用力推静止在水平地面上的桌子,但没有推动,此时他对桌子的推力 桌子所受到的阻力(填“大于”、“小于”或“等于”),此过程中小明 (填“有”或“没有”)做功。

5.小明将放在水平桌面上重为3N 的物理课本,水平匀速拉动50cm 。

所用的水平拉力为1N ,则课本重力做功_________J ,水平拉力做功_________J 。

图10第3题图AF6.甲乙两同学进行爬杆比赛,爬到杆顶(杆长相同)时,甲用10s ,乙用9S ,若甲乙两人的体重之比为5∶6,则甲乙两人爬到杆顶做功之比是 ,甲乙两人平均功率之比是。

7.如图所示,质量分布均匀的长方体砖,平放在水平地面上,第一次用竖直向上的力F 1只作用于ab 的中点,第二次用竖直向上的力F2作用于bc 的中点,都使它们在竖直方向上慢慢向上移动h (h <ab <bc ),则在上述过程中F 1____F 2(选填“大于”、“小于”或“等于”);F 1所做的功F 1____F 2所做的功(选填“大于”、“小于”或“等于”);第一次克服重力所做的功____第二次克服重力所做的功(选镇“大于”、“小于”或“等于”)。

8.我国自行研制的歼-10战斗机在国庆阅兵中的展示,起飞时的质量为1.5×104kg ,发动机用1.2×105N 的推力使飞机在10s 内前进5000m ,则飞机受到的重力为___________N ,这段时间内飞机的平均速度为_______m/s ,推力的功率为___________W 。

9.如图所示,用20N 的拉力F 匀速提起物体A ,不计绳重和摩擦,A 的重力为___N 。

若物体A 在10s 内上升4m ,此过程中拉力F 做的功为____J ,功率为___W 。

10.如图甲所示,一块质量为0.2kg 的铁块被吸附在竖直放置且足够长的磁性平板上,在竖直向上拉力F =3N 的作用下向上运动,铁块运动的速度v 与时间t 的关系图像如图乙所示。

则铁块受到的摩擦力为 N 。

0~6s 内拉力F 做的功是 J 。

第10题图 第11题图 第12题图11.如图所示,用竖直向上的力匀速拉动较长的杠杆,使重为18N 的物体缓慢升高0.1m ,拉力大小F =8N ,拉力移动的距离为0.25m 。

拉力所做的功为 J ,有用功为 J ,杠杆的机械效率为 %。

12.如图所示,斜面长5m ,高1m ,工人用沿斜面方向400N 的力把重1600N 的木箱匀速推到车上,推力对木箱做的功是__________J ,斜面的机械效率是__________。

13.建筑工人用如图所示的装置把重400N 的物体匀速提升3m ,所用的手拉力为300N 。

则该工人所做的有用功为 J ,总功为 J ,该滑轮组的机械效率是 。

若用该装置提升500N 的重物,此时滑轮组的机械教率将 (填“变大”、“变小”或“不变”)14.如图所示,轻质杠杆OA 中点悬挂重为60N 的物体,在A 端施加一竖直向上的力F ,杠杆在水平位置平衡,则力F 的大小是 ,保持F 的方向不变,将杠杆从A 位置匀速提升到B 位置的过程中,力F 填“变大”、“变小”、或“不变”)。

三、解答题1.如图所示,为了让杠杆静止在图中位置,请画出在A 点所施加的最小动力F 及其力臂L 。

2.请在图中画出动力F l 的力臂以及作用于B 点的阻力F 2的示意图3.如图,站在地面上的小华借助滑轮组匀速提升重物,请画出最省力的绕线方法.4.在探究杠杆平衡条件的实验中:(1)小明发现杠杆右端低左端高,要使它在水平位置平衡,应将杠杆右端的平衡螺母向 调节。

小明调节杠杆在水平位置平衡的主要目的是 。

(2)如图甲所示,在杠杆左边A 处挂四个相同钩码,要使杠杆在水平位置平衡,应在杠杆右边B 处挂同样钩码 个。

(3)如图乙所示,用弹簧测力计在C 处竖直向上拉,当弹簧测力计逐渐向右倾斜时,使杠杆仍然在水平位置平衡,则弹簧测力计的示数将 (变大/变小/不变),其原因是 。

5.用如图所示实验装置测量动滑轮的机械效率。

(1)实验时,应竖直向上 拉动弹簧测力计,使挂在动滑轮下的物体A 缓慢上升。

(2)将滑轮拉至图中虚线位置的过程中,测力计的示数F 为 N ,物体A 重G 为3.6N ,物体A 上升高度h 为0.1m ,测力计移动距离s 为0.2m ,则动滑轮的机械效率为 _。

6.如图所示,此图为“测量滑轮组机械效率”的实验装置,钩码总质量为0.6kg ,小明用2.4N 的拉力竖直向上匀速拉动细线(绳重和摩擦忽略不计)。

(l )若钩码2s 内上升0.1m ,则钩码上升的速度为多少?(2)小明拉力做功的功率是多少?该滑轮组的机械效率是多少?(结果保留一位小数)7.如图甲所示.不计绳重和摩擦,物体重G 从400N 开始逐渐增加,直到绳子被拉断.每次均匀速拉动绳子将物体提升同样高度.图乙记录了滑轮组的机械效率随物体重力增加而变化的图像. (1)当机械效率为40%时,绳子拉力为多大? (2)2个动滑轮总重多少?(3)绳子能承受最大拉力是多少?(4)当机械效率为80%时,物体重多少?。

相关文档
最新文档