超声波探伤第1讲

合集下载

超声波检测—超声波探伤技术(无损检测课件)

超声波检测—超声波探伤技术(无损检测课件)

1.4 工件对定位精度的影响
工件温度
• 当检测的工件温度 发生变化时,工件 中的声速发生变化, 探头折射角也随之 发生变化。
温度对折射 角的影响
1.5 缺陷对定位精度的影响
• 工件内缺陷方向也会 影响缺陷定位精度。
• 缺陷倾斜时,扩散波 束入射至缺陷时回波 较高,而定位时就会 误认为缺陷在轴线上, 从而导致定位不准。
• 当工件尺寸较小, 缺陷位于3N以内 时,利用底波调 灵敏度并定量, 将会使定量误差 增加。
2.5 缺陷状态对定量精度的影响
① 缺陷形状的影响
• 缺陷的形状:圆片形、球形和圆柱形 • 缺陷距离一定,缺陷波高随缺陷直径的变化:圆片形缺陷最快,长圆
柱形缺陷最慢; • 缺陷直径一定,缺陷波高随距离的变化:圆片形和球形缺陷较快,长
2.2 仪器及探头性能对定量精度的影响
④ 探头K值的影响
• 不同K值的探头的灵敏度不同。 • 当K=0.7-1.5(=35°~55°)时,回波较高。 • 当K=1.5~2.0(=55°~63°)时,回波很低,容易引起漏检。
2.3 耦合与衰减对定量精度的影响
耦合的影响
• 耦合层厚度等于半波长的整数倍时,声强 透射率与耦合剂性质无关。
时,声波在有机玻璃内反射回到 晶片,也会引起一些杂波。 • 更换探头的方法来鉴别探头杂波。
3.1 纵波探头非缺陷回波的判别
② 工件轮廓回波
• 当超声波射达工件的
台阶、螺纹等轮廓时


在示波屏上将引起一

些轮廓回波。

3.1 纵波探头非缺陷回波的判别
③ 幻象波 • 当重复频率过高时,在示波屏上就会产生幻象波,
2.2 穿透法
优 不存在探测盲区,判定缺陷方法简单,适用于连续的自动化 点 探测较薄的工件。

超声波探伤(1)

超声波探伤(1)

+ + + +
_
+ +
_
+
_
+
+
_
+
_
+
_
+
+
3.2压电晶体产生压电效应的机理
逆压电效应与超声波的发射 由压电材料制成的压电晶片的两面施加高 频的交变电场,以致在压电晶片的厚度方向出 现相应的压缩和伸缩变形,这一现象称为逆压 电效应。 1
正压电效应与超声波的接收 沿厚度方向作超声振动的压电晶片的表面 随之产生交变电压的现象称为压电材料的正压 电效应 2
α1m =arcsin(CL1 SinγL/ CL2)
= arcsin(2730* Sin90/ 5900)
=27.6o
α2m=arcsin(CL1 SinγS/ CS2)
= arcsin(2730* Sin90/ 3230) =57.7o
α1m ,α2m物理意义:
① α <α1m ,Ⅱ中有纵、横波,不采用 ② α =α1m --α2m , Ⅱ中仅有横波,斜探头 设计原理。 ③ α >α2m , Ⅱ中无纵、横波,表面探头设 计原理。
钢中横波波长λ (mm)
2.58
1.29
0.65
二、超声波的发射与接收 利用压电材料的压电效应可实现电能与声能之间 的相互转换 压电材料:单晶体:天然SiO2(石英) 硫酸锂(LSH) 多晶体:人工烧结而成的称压电陶瓷 钛酸钡(BaTiO3) 锆钛酸铅(PZT)等
3.1压电效应示意图
_ _
+
+
_
pd
3.5 垂直入射超声波在界面两侧声压的分配
界面声压反射率:

《超声波探伤》课件

《超声波探伤》课件

确保被检测工件表面清洁、干 燥、无油污和锈蚀
检测过程中的操作步骤
准备超声波探伤仪和相关配件
启动超声波探伤仪进行检测
确定检测区域和检测参数
观察检测结果并记录
调整探头位置和角度
完成检测后清理现场和设备
检测后的数据处理和结果判定
数据处理:对采集到的数据进行处理和分析,包括滤波、降噪、增强等
结果判定:根据处理后的数据,判断是否存在缺陷,如裂纹、气孔等
特点:具有高精度、高分辨率、高灵敏度等优点
应用:广泛应用于无损检测、医学成像等领域 发展趋势:随着技术的不断进步,相控阵技术在超声波探伤领域的应用将 越来越广泛。
Part Five
超声波探伤操作流 程
检测前的准备工作
检查超声波探伤仪是否正常工 作
确保探头、电缆、电源线等配 件齐全
准备足够的耦合剂和试块
超声波探伤PPT课件大 纲
PPT,a click to unlimited possibilities
汇报人:PPT
目录
01 添 加 目 录 项 标 题 03 超 声 波 探 伤 设 备 05 超 声 波 探 伤 操 作 流 程 07 案 例 分 析
02 超 声 波 探 伤 概 述 04 超 声 波 探 伤 技 术 06 超 声 波 探 伤 的 质 量 控 制
接收器:接收反射回来的超声波信 号
添加标题
添加标题
探头:发射和接收超声波的装置
添加标题
添加标题
信号处理:对接收到的超声波信号 进行处理和分析,判断缺陷位置和 性质
超声波探伤的应用范围
工业领域:检 测金属、非金 属材料中的缺
陷和损伤
医疗领域:检 测人体组织中 的病变和损伤

超声波探伤第一节

超声波探伤第一节
Δ=20lgP2/P1=20lgH2/H1 我们所说的分贝是不是声强? (3-3)
15
一、超声波探伤的概述
【例1】 示波屏上一波高为80mm,另一波高为20mm,前者比后者 高多少dB?
解:Δ=20lgH2/H1=20lg80/20=12dB 答:前者比后者高12dB。
c. 声阻抗(Z) 超声场中任一点的声压与该处质点振动速度之比为声阻抗,常用Z表示, 单位为克/厘米2·秒(g/cm2·s)。
R


Z2 Z2

Z1 Z1
2

0.99 12


0.99 1

0
T 4Z1Z2 4 0.99 1
Z1 Z2 2 0.99 12
20
一、超声波探伤的概述
当界面尺寸很小时,超声波将绕过其边缘继续前进,即产生波的绕射, 如图3-7所示。
三、平板对接焊缝超声波探伤技术
1.焊缝中的常见缺陷 2.探伤方法 3.探伤条件的选择 4. 探伤仪的调节 5.扫查方式 6.缺陷位置的测定 7.缺陷大小的测定 8. 缺陷评定 9.焊缝质量的评定
4
(1)超声波的概念 频率高于20000Hz的机械波叫做超声波。
超声波是一种机械振动波。 听觉范围:声波频率在20Hz-2OkHz 次声波:频率小于20Hz的声波 超声波:频率超过2OkHz的声波 探伤常用的频率范围:1MHz~10MHz
16
一、超声波探伤的概述
(2) 超声波入射到界面时的反射和折射 ①垂直入射异质界面时的透射、反射和绕射 当超声波从一种介质垂直入射到第二种介质上时,将在第一种介 质中产生一个与入射波方向相反的反射波,在第二种介质中产生与入 射波方向相同的透射波,如图3-6所示。

超声波探伤培训教程

超声波探伤培训教程

超声波探伤培训教程超声波探伤技术是一种通过超声波在材料内部传播和反射的方式来检测材料中存在的缺陷或者异物的非破坏性检测技术。

在工业领域得到了广泛应用,尤其是在航空、航天、核能、石油等行业。

本教程将系统介绍超声波探伤的原理、设备以及操作技巧,帮助读者全面了解和掌握超声波探伤技术。

一、原理1. 超声波的生成和传播超声波是指频率超过20kHz的声波。

其生成通常是通过压电晶体的压电效应来实现,当施加电压时,压电晶体会振动并产生超声波。

超声波在材料中的传播是一种机械波的传播方式,它具有直线传播、可传递到深层、能量损失小等特点。

2. 超声波的反射和散射当超声波遇到材料中的缺陷或者界面时,会发生反射和散射。

根据反射和散射的信号,可以判断材料中的缺陷类型、位置、尺寸等信息。

常用的探伤方法包括脉冲回波法和相位数组法。

二、设备1. 超声波探伤仪超声波探伤仪是进行超声波探伤的核心设备,它包括发射装置、接收装置、信号处理系统等部分。

发射装置用于产生超声波信号,接收装置用于接收反射和散射的信号,信号处理系统则对接收到的信号进行处理和显示。

2. 探头探头是超声波探伤仪的重要部件,其质量和性能直接影响到探伤的效果。

常见的探头类型有直探头、斜探头、浸润式探头等。

不同类型的探头适用于不同的检测对象和环境。

三、操作技巧1. 检测准备在进行超声波探伤之前,需要对设备和探头进行校准和检查,确保其正常工作。

同时,还需要根据待检测材料的类型和要求选择合适的探头,并对材料表面进行清洁和处理。

2. 检测步骤(1)将探头与被检测材料紧密接触,确保超声波能够传播到材料内部。

(2)调节探测范围和增益,以保证检测到的信号具有足够的强度。

(3)进行扫描或者点检测,记录检测到的信号并分析。

(4)根据检测结果判断材料的质量,如果发现缺陷,需进一步分析和评估。

四、应用案例超声波探伤技术在各个行业都有广泛的应用。

以下是几个实际案例:1. 航空领域在航空器制造和维修过程中,通过超声波探伤可以检测飞机结构中的隐蔽缺陷,如裂纹、孔洞等。

无损检测超声探伤UT基础讲义 (1)

无损检测超声探伤UT基础讲义 (1)

培训教材之理论基础第一章无损检测概述无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。

主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其它制品。

射线检测适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制机械、器件等的焊缝及钢管对接环缝。

射线对人体不利,应尽量避免射线的直接照射和散射线的影响。

超声检测系指用A型脉冲反射超声波探伤仪检测缺陷,适用于金属制品原材料、零部件和焊缝的超声检测以及超声测厚。

磁粉检测适用于铁磁性材料制品及其零部件表面、近表面缺陷的检测,包括干磁粉、湿磁粉、荧光和非荧光磁粉检测方法。

渗透检测适用于金属制品及其零部件表面开口缺陷的检测,包括荧光和着色渗透检测。

涡流检测适用于管材检测,如圆形无缝钢管及焊接钢管、铝及铝合金拉薄壁管等。

磁粉、渗透和涡流统称为表面检测。

第二章超声波探伤的物理基础第一节基本知识超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。

物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。

振动的传播过程,称为波动。

波动分为机械波和电磁波两大类。

机械波是机械振动在弹性介质中的传播过程。

超声波就是一种机械波。

机械波主要参数有波长、频率和波速。

波长?:同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称为波速,常用单位为米/秒(m/s)。

由上述定义可得:C=? f ,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。

次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。

超声波探伤的通用方法和基础技术——(第一节超声波探伤方法分类及特点)

超声波探伤的通用方法和基础技术——(第一节超声波探伤方法分类及特点)

第三章 超声波探伤的通用方法和基础技术第一节 超声波探伤方法分类及特点超声波探伤的实质是:首先将工件被检部位处于一个超声场中,工件若无不连续分布(如无缺陷等),则超声场在连续介质中的分布是正常的。

若工件中存在不连续分布(如有缺陷等),则超声波在异质界面上产生反射、折射和透射,使超声场的正常分布受到干扰。

使用一定的方法测出这种异常分布相对于正常分布的变化,并找出它们之间变化规律,这就是超声波探伤的任务。

超声波探伤有许多方法,如将它们逐一分类,一般可用以下几种:下面仅以实际探伤中较为常用的方法和特点作一简介。

一、脉冲反射法和穿透法超声波在传播过程中遇到缺陷会产生反射、透射及缺陷后侧声影,按以上这些引起声场异常变化的不同原理,可将检测方法分为脉冲反射和穿透法(又称阴影法),前者以检测缺陷的反射声压(或声能)大小来确定缺陷量值,后者以测定缺陷对超声波的正常传播的遮挡所造成的声影大小来确定缺陷的量值。

图3–1和图3–2所示为这两者的工作原理图。

目前,超声波探伤中常用脉冲反射法,与穿透法相比,脉冲反射法有如下特点: 1. 灵敏度高对于穿透法,只有当超声声压变化大于20%以上时才有可能检测,它相当于声压只降低超声波探伤直接接触法 液浸法 按缺陷显示方式分按超声波传播方式分 按探伤工作原理分按探伤波型分按超声波耦合方式分按探头数量分穿透法脉冲反射法连续波法 脉冲波法A 型显示法B 型显示法单探头法双探头法纵波法横波法 表面波法2dB。

由于探头晶片尺寸有一定大小及缺陷本身的声衍射现象,要获得大于20%声压变化量,缺陷对声传播遮挡面积已相当大了。

对于脉冲反射法,缺陷反射波声压仅是入射声压的1%时,探伤仪就已经能够检出,此时,与缺陷反射声压相对应的反射面积是很小的。

2. 缺陷定位精度高脉冲反射法可利用缺陷反射波的传播时间,通过扫描速度(即时间轴比例)调节,对缺陷进行正确定位。

而穿透法只能以观察接收波形高低来确定缺陷面积,而波形所处位置不能表示缺陷声程,即处于不同部位的相同面积的缺陷,其接收波形高度相等,位置不变,见图3–3所示。

锻件与铸件超声波探伤详细教程(附实例解析)重点讲义资料

锻件与铸件超声波探伤详细教程(附实例解析)重点讲义资料

第六章锻件与铸件超声波探伤第六章锻件与铸件超声波探伤锻件和铸件是各种机械设备及锅炉压力容器的重要毛坯件。

它们在生产加工过程中常会产生一些缺陷,影响设备的安全使用。

一些标准规定对某些锻件和铸件必须进行超声波探伤。

由于铸件晶粒粗大、透声性差,信噪比低,探伤困难大,因此本章重点计论锻件探伤问题,对铸件探伤只做简单介绍。

第一节锻件超声波探伤一、锻件加工及常见缺陷锻件是由热态钢锭经锻压变形而成。

锻压过程包括加热、形变和冷却。

锻件的方式大致分为镦粗、拔长和滚压。

镦粗是锻压力施加于坯料的两端,形变发生在横截面上。

拔长是锻压力施加于坯料的外圆,形变发生在长度方向。

滚压是先镦粗坯料,然后冲孔再插入芯棒并在外圆施加锻压力。

滚压既有纵向形变,又有横向形变。

其中镦粗主要用于饼类锻件。

拔长主要用于轴类锻件,而简类锻件一般先镦粗,后冲孔,再镦压。

为了改善锻件的绍织性能,锻后还要进行正火、退火或调质等热处理。

锻件缺陷可分为铸造缺陷、锻造缺陷和热处理缺陷。

铸造缺陷主要有:缩孔残余、疏松、夹杂、裂纹等。

锻造缺陷主要有:折叠、白点、裂纹等。

热处理缺陷主要有:裂纹等。

缩孔残余是铸锭中的缩孔在锻造时切头量不足残留下来的,多见于锻件的端部。

疏松是钢锭在凝固收缩时形成的不致密和孔穴,锻造时因锻造比不足而末全焊合,主要存在于钢锭中心及头部。

夹杂有内在夹杂、外来菲金属夹杂栩金属夹杂。

内在夹杂主要集中于钢锭中心及头部。

裂纹有铸造裂纹、锻造裂纹和热处理裂纹等。

奥氏体钢轴心晶间裂纹就是铸造引起的裂纹。

锻造和热处理不当,会在锻件表面或心部形成裂纹。

白点是锻件含氢最较高,锻后冷却过快,钢中溶解的氢来不及逸出,造成应力过大引起的开裂,白点主要集中于锻件大截面中心。

合金总量超过3.5~4.0%和Cr、Ni、Mn的合金钢大型锻件容易产生白点。

白点在钢中总是成群出现。

二、探伤方法概述按探伤时间分类,锻件探伤可分为原材料探伤和制造过程中的探伤,产品检验及在役检验。

《超声波探伤》理论要点汇总

《超声波探伤》理论要点汇总

第一章 超声波探伤的物理基础
超声场的特征值 声阻抗的物理意义 声阻抗随温度变化的关系 声强与频率、声压的函数关系 界面两侧的声波必须符合的两个条件 由Z1、Z2相对大小的4种情况计算出反射率和透射率,得出4个结论 Z1=Z3≠Z2时异质薄层厚度对反射率和透射率的影响(半波透声层) 超声波频率f对异质薄层的声压反射率和透射率的影响 Z1≠Z2≠Z3时薄层厚度对反射率和透射率的影响(直探头保护膜)
仪 器
定量要求高----垂直线性好、衰减器精度高
的 大型工件----灵敏度余量大、信噪比高、功率强
选 为发现近表面缺陷和区分相邻缺陷----盲区小、分辨力好 择
现场探伤----重量轻、荧光亮度高、抗干扰能力强
第四章 超声波探伤方法和通用技术
第二节 仪器与探头的选择
探头型式的选择----根据缺陷可能出现的位置及方向
双探头法—原理、计算方法、局限性
端部回波峰值法—原理、计算方法、影响测量精度的因素、局限性
横波端角反射法—原理、衡量方法 、局限性
第八节 超声波倾斜入射到界面时的反射和折射 纵波倾斜入射到钢/空气界面的反射率 横波倾斜入射到钢/空气界面的反射率 纵波倾斜入射水/钢界面时的声压往复透射率(及实际意义) 纵波倾斜有机玻璃/钢界面时的声压往复透射率(及实际意义) 纵波入射时的端角反射率 横波入射时的端角反射率(最高最低时的αS、K值)
第一章 超声波探伤的物理基础
谐振动的特点(3点) 阻尼振动的特点(3点) 受迫振动的特点(4点) 阻尼振动、受迫振动、共振在超声波探伤中的应用 产生机械波必须具备的两个条件 机械波的本质 波长与波源和质点振动的关系 波动频率与振动频率的关系
第一章 超声波探伤的物理基础
超声波探伤所用频率范围 金属检验所用频率范围 超声波用于检测的重要特性(优点) 纵波的受力、形变、质点运动特点、传播介质 横波的受力、形变、质点运动特点、传播介质 表面波的受力、质点运动特点、传播介质、能量传播特点 板波质点运动特点、传播介质 波线与波阵面、波前的空间关系(各向同性介质中) 平面波的形成(3要素) 柱面波的形成(3要素) 球面波的形成(3要素)

超声波探伤课件1

超声波探伤课件1
• 目前超声波检测中广泛采用的就是脉冲波。
§3 超声波的声速
超声波在介质中的传播速度(声速)是表征介质声 学特性的重要参数。
超声波的传播速度与下列因素有关: 1)介质:弹性模量、密度、弹性变形形式、尺寸大小、 均匀性等 2)超声波的波型:如纵波、横波与表面波等 3)温度: 一般固体中的声速随介质温度升高而降低 4)应力:一般固体的应力增加,声速缓慢增加
y A cos(t x )
x
c
• (3)球面波
• 波阵面为同心圆的波称为球面波。球面波的波源为 一点 。
• 尺寸远小于波长的点波源在各向同性的介质中辐射 的波可视为球面波。球面波波束向四面八方扩散, 球面波各质点的振幅与距离成反比。
• 实际应用的超声波探头中的波源近似活塞振动,在 各向同性的介质中辐射的波称为活塞波。当距离源 的距离足够大时,活塞波类似于球面波。
y A cos(t x )
x
c
• 3、按振动的持续时间分类 • 根据波源振动的持续时间长短,将波动分为连续
波和脉冲波。
• (1) 连续波 • 波源持续不断地振动所辐射的波称为连续波。 • 超声波穿透法检测常采用连续波。
• (2) 脉冲波
• 波源振动持续时间很短(通常是微秒数量级), 间歇辐射的波称为脉冲波。
和概念。 几何声学:反射定律、折射定律、波形转换。 物理声学:波的叠加、干涉、衍射等
§1 振动与波动
• §1-1振动
物体(或物体一部分)在某一中心位置两侧所做的往复周期 性的运动,称为机械振动,常常简称为震动。 振动产生的必要条件: 一是,物体一旦离开平衡位置,就会受到回复力的作用;二是阻 力足够小。
机械波:是机械振动在弹性介质中的传播过程. 机械波必须具备以下两个条件: 1)要有作机械振动的波源; 2)能传播机械振动的弹性介质。

超声波探伤教学课件

超声波探伤教学课件

国家标准
国家标准定义
国家标准是由国家权威机构(如国家质量监督检验检疫总局)发布, 对全国范围内通用的技术要求和规范。
主要内容
涉及超声波探伤的原理、设备要求、操作流程、结果解读等方面, 是制定其他标准的基础。
重要性
为行业提供统一的技术指导,确保探伤结果的准确性和可靠性。
行业标准
行业标准定义
行业标准是由相关行业协会或组织制定,适用于特定 行业的标准。
案例二:复合材料超声波探伤
01
总结词
复合材料超声波探伤是近年来 发展迅速的领域之一,主要检 测复合材料内部的缺陷和损伤 。
02
详细描述
复合材料超声波探伤通常采用 脉冲反射法和透射法,通过发 射超声波到复合材料中,当遇 到缺陷或损伤时,超声波会反 射回来或透射出去,从而检测 出缺陷或损伤的位置和大小。
耦合剂
耦合剂是用于在探头和被检测物 体之间传递超声波信号的介质, 其作用是减少声能损失和提高回
波信号的清晰度。
耦合剂的种类和特性应根据被检 测物体的材质、表面状态以及探
头的类型等因素进行选择。
在使用耦合剂时,应注意其清洁 度和保存方式,避免对探伤结果
产生不良影响。
03
超声波探伤技术
纵波探伤
总结词
利用超声波在介质中传播时遇到界面或缺陷 会发生反射和散射的原理,通过接收和分析 这些反射和散射信号来判断材料内部的缺陷 和异常。
超声波探伤应用
广泛应用于各种材料的检测,如金属、陶瓷 、玻璃、复合材料等,尤其在工业生产和质 量控制中具有重要的应用价值。
超声波探伤的原理
超声波的传播速度
01
在同一种介质中,超声波的传播速度是恒定的,不同介质中声

超声波探伤

超声波探伤
剂、增塑剂、橡胶液和 钨粉等浇铸在“-”极上。作用是吸收杂波,并使晶 片在激励电脉冲结束后将声能很快损耗掉而停止振动, 以便接收反射声波。它又称阻尼块。
(3) 保护膜 可使压电晶片免于和工件直接接触受磨损, 其中软膜(耐磨橡胶、塑料等)用于粗糙表面的工件; 硬膜(不锈钢片、刚玉片、环氧树脂等)声能量损失小, 比软膜应用广。
10
2.能在弹性介质中传播,不能在真空中传播
超声波通过介质时,以介质质点的振动方向与波的传播方向 间相互关系的不同,可分为纵波、横波、表面波和板波等。各类 型波的传播介质和具有的特点见表4-l、表4-2。
11
2.能在弹性介质中传播,不能在真空中传播
12
2.能在弹性介质中传播,不能在真空中传播 注意:
9
(2)束射性
4)未扩散区(图4-2a中,b≈1.64N)内, 波阵面近似平面,声场可看成是平面波 声场,平均声压基本不变;扩散区其主 波束可视为底面直径为D的截头圆锥体, 当x≥3N时,波束按球面波规律扩散。 实际焊缝探伤所用金属介质中的脉冲波 横波声场(简称实际声场),这要比以上 分析的理想声场复杂的多,但二者有其 基本相似之处。
(1) 垂直入射异质界面时的透射、反射和绕射
当超声波从一种介质垂直入射到第二种介质上时,其能量一部 分反射而形成与入射波方向相反的反射波,其余能量则透过界面 产生与入射波方向相同的透射波(图4-3)。 超声波反射能量W反与超声波入射能量W入 之比称之为超声波能量反射系数,即 K=W反/W入。
14
超声波能量反射系数K值:
1. 有良好的指向性 (1)直线性 超声波的波长很短(毫米级),它在弹性 介质中能象光波一样沿直线传播,符合几何光学规律。 声速对固定介质是常数,根据传播时间就能求得其传 播距离,这为探伤中缺陷定位提供依据。

超声波探伤培训

超声波探伤培训

声学法
声冲击法 声振动法 涡流声振动法 声发射法 超声脉冲反射法 超声透射法 超声共振法 超声表面波法 超声临界角法 电磁超声法
Sonic-Ultrasonic
Acoustic-Impact Sonic Vibration Eddy Sonic Vibration Acoustic Emission Pulse-Echo Ultrasonic Transmission Ultrasonics Resonance Ultrasonics Surface-Wave Ultrasonics Critical-Angle Ultrasonics Electromagneto-Acoustic
29
.
外壳 吸收块
电气适配器
晶片
T,2
横波
延迟块 纵波
探头线
插头 阻尼块
斜探头
(UT Einfü hrung WD Juni02, Seite 30)
30
.
20°
27,6°
塑料
塑料
47,6°
钢材
钢材
90°
24°
33,4°
两种波型
第一临界角
36,5°
塑料 钢材 45° 工作范围
57,3°
塑料 钢材 90°
(UT Einfü hrung WD Juni02, Seite 4)
4
.
射线透照方法
Penetrating Radiation 热力学方法
Thermal
X射线照相法
X-Radiography
接触测温法
Contact Thermometry
γ射线照相法
Gamma Radiography
热电势法

超声波探伤ppt课件

超声波探伤ppt课件
26
三、探头种类 和结构
直探头 斜探头 表面波探头 双晶探头 聚焦探头 高温探头 、电磁探头……
27
探头种类 和结构
直探头用于发射和接收纵波,主 要用于探测与探测面平行的缺陷, 如板材、锻件探伤等。
28
探头种类 和结构
斜探头可分为纵波斜探头、横波斜探头和表面波斜探头,常用的是横 波斜探头。
仪器与探头的分辨力是指在屏幕上区分相邻两缺陷的能力。能区分 的相邻两缺陷的距离愈小,分辨力就愈高。
A、B、C不能分开时 F=(91-85)a/(a-b)=6a/(a-b)
A、B、C能分开时 F=(91-85)c/a=6c/a
51
仪器和探头的综合性能及其测试 4. 信噪比
信噪比是指屏幕上有用的最小缺陷信号幅度与无用的噪 声杂波幅度之比。信噪比高,杂波少,对探伤有利。信 噪比太低,容易引起漏检或误判,严重时甚至无法进行 探伤。
CSK-ⅡA、 CSK-ⅢA、CSK-ⅣA
37
38
39
40
41
对比试块
对比试块是用于检测校准的试块; 对比试块的外形尺寸应能代表被检工
件的特征,试块厚度应与被检工件的 厚度相对应。如果涉及到两种或两种 以上不同厚度部件焊接接头进行检测 时,试块的厚度由其最大厚度来确定。
42
第五节 仪器和探头的性能及其测试
84测长法测长法相对灵敏度测长法相对灵敏度测长法绝对灵敏度测长法绝对灵敏度测长法85影响缺陷定位的主要因素影响缺陷定位的主要因素仪器仪器水平线性水平线性水平刻度精度水平刻度精度探头探头声束偏离声束偏离探头双峰探头双峰斜楔磨损斜楔磨损探头指向性探头指向性86影响缺陷定位的主要因素影响缺陷定位的主要因素工件工件工件表面粗糙度工件表面粗糙度耦合耦合工件材质工件材质与试块声速不同工件内有与试块声速不同工件内有较大应力较大应力工件表面形状工件表面形状探测曲面工件探测曲面工件工件边界工件边界侧壁反射波产生干扰侧壁反射波产生干扰工件温度工件温度影响声速度影响声速度工件内缺陷方向工件内缺陷方向87kk88kk89影响缺陷定量的因素影响缺陷定量的因素耦合与衰减耦合与衰减耦合剂声阻抗和耦合层厚度耦合剂声阻抗和耦合层厚度工件介质衰减工件介质衰减工件几何形状和尺寸工件几何形状和尺寸凹面与凸面工件凹面与凸面工件工件底面与探测面的平行度及底面光洁度工件底面与探测面的平行度及底面光洁度侧壁干扰侧壁干扰工件尺寸小时工件尺寸小时3n3n内缺陷内缺陷90影响缺陷定量的因素影响缺陷定量的因素缺陷的影响缺陷的影响缺陷形状缺陷形状缺陷方向缺陷方向缺陷波的指向性缺陷波的指向性缺陷表面粗糙度缺陷表面粗糙度缺陷性质缺陷性质缺陷位置缺陷位置3n3n内内91迟到波迟到波x076dx076d93616100反射反射94三角反射三角反射x113dx113dx2167dx2167d95其他非缺陷回波其他非缺陷回波探头杂波探头杂波工件轮廓回波工件轮廓回波耦合剂反射波耦合剂反射波幻象波幻象波草状回波草状回波其他变型波其他变型波9641141197常见缺陷常见缺陷气孔缩孔夹杂裂纹气孔缩孔夹杂裂纹98声耦合查声耦合查干扰杂波多干扰杂波多99探头探头探测表面与耦合剂探测表面与耦合剂透声性测试透声性测试铸钢件内外层划分铸钢件内外层划分100灵敏度灵敏度质量级别的评定质量级别的评定101102103104105

超声波探伤原理.pptx

超声波探伤原理.pptx

谢谢您的观看!
第32页/共32页
第27页/共32页
爬波探头
探头的外观
第28页/共32页
探头标牌 探头的信息标注于标牌上,包括型号(如PR50)、
类型 (如爬波探头)、探头序列号。例如:
第29页/共32页
探头型号列表
型号 适用瓷件 接触面弧度直径(mm)
PR50

PR60

PR70
PR80

Φ100mm以下 Φ101--120mm Φ121—140mm Φ141--160mm
通过这条曲线,可以判定被检测到的缺陷相 对于这条曲线的当量。
第16页/共32页
1.2 陶瓷绝缘子的超声波探伤
第17页/共32页
1.2.1 适用对象
材料:瓷质 产品:支柱绝缘子、瓷套
第18页/共32页
1.2.2 支柱绝缘子断裂事故分布特点
1)2000年、2001年偏多,有逐年上升趋势 2)北方多于南方,东北(寒冷地区)偏多 3)运行年限分布均匀,不足2年的占6.4%,不足
第13页/共32页
1.1.12 相同位置、不同大小的缺陷
缺陷位置相同的情况下,面积大的反射的回 波幅度高
第14页/共32页
1.1.13 相同大小、不同位置的缺陷
缺陷大小相同,位置不同的情况下,反射回 波的幅度构成DAC曲线
第15页/共32页
1.1.14 DAC曲线
DAC曲线:
距离波幅曲线,表示某一大小的缺陷在不同 的声程位置上波幅的变化曲线(在试块上 制作)。
钢纵波5900m/s、瓷的 纵波声速5300~ 6900m/s)
第11页/共32页
1.1.10 缺陷的位置(斜声束)
C:声速 (需要知道波型:横波、纵波、表面波等) 钢 : 纵 波 5 9 0 0 m / s第12横页/共波323页2 3 0 m / s

超声波探伤原理详解PPT讲稿

超声波探伤原理详解PPT讲稿
直探头 园晶片直径20mm 钛酸钡陶瓷 频率2.5MHz
5 P 6×6 K 3 K值为3
K表示折射角 矩形晶片6×6mm 钛酸铅陶瓷 频率5MHz
❖ (资料来源:安赛斯(中国)有限公司,获取更多资料,请登录安赛斯官网)
零件
显示器
超声波探头
一、超声波探头功用
电信号→探头→超声波→零件--超声波发射; 零件内超声波→探头→电信号--超声波接收;
探头 电信号
超声波
❖ 探头功用:是一种可逆的声电转换元件。在探伤中起发射和接收 高频脉冲弹性波作用。(资料来源:安赛斯(中国)有限公司,获取更多资
料,请登录安赛斯官网)
二、压电效应
四、探头种类
超声波探头
双晶探头特点: •双晶片声场重叠区域灵敏度最高,一般用于定向定位检测;
❖ •探测深度较小;•检测灵敏度高较。(资料来源:安赛斯(中国)有限公司,
获取更多资料,请登录安赛斯官网)
四、探头种类
可变角探头特点: 晶片产生超声波 的入射方向可以 改变。一个探头 可进行多个方向 上探测,是一种 多功能探头。
例如:石英又称 SiO2 ,它是一种 单晶三角晶体。具 有 3 个 极 化 轴 ( X1, X2,X3) 和 1 个 光 轴。
超声波探头
二、压电效应
超声波探头
二、压电效应
压电效 应机理
应力
正压电效应 逆压电效应
超声波探头
电场
正压电效和逆 压电效应统称 压电效应。
超声波探头
三、探头结构组成
探头组成: 压电晶片、阻尼块、 外壳、电极、保护膜 (斜锲)、调谐线圈
赛斯(中国)有限公司,获取更多资料,请登录安赛斯官网)
四、探头种类
超声波探头
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章超声波探伤的物理基础超声波探伤是目前应用最广泛的无损探伤方法之一。

超声波是一种机械波,机械振动与波动是超声披探伤的物理基础。

超声波探伤中,主要涉及到几何声学和物理声学中的一些基本定律和概念。

如几何声学中的反射、折射定律及波型转换,物理声学中波的叠加、干涉、绕射及惠更斯原理等。

深入理解几何声-学和物理声学中的有关概念,掌握其中的基本定律,对于灵活运用超声波理论去解决实际探伤中的各种问题无疑是十分有益的。

§1.1超声波的一般概念一、机械振动与机械波宇宙间的一切物质,大至宏观天体,小至微观粒子都处于一定的运动状态,振动和波动是物质运动的基本形式之一。

1.机械振动物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。

日常生活中到处可以见到振动现象。

如弹簧振子的运动,钟摆的运动和汽缸中活塞运动等都是可以直接觉察到的振动现象。

另外,如团体分子的热运动,一切发声物体的运动以及超声波波源的运动等则是人们难以觉察到的振动现象。

物体(或质点)受到一定力的作用,将离开平衡位置,产生一个位移,该力消失后,由于弹性作用,它将回到其平衡位置,并且还要越过平衡位置移动到相反方向的最大位移位置,然后再返回平衡位置。

这样一个完整运动过程称为一个“循环“或叫一次“全振动“。

振动是往复、周期性的运动,振动的快慢常用振动周期和振动频率两个物理量来描述。

周期T——振动物体完成一次全振动所需要的时间,称为振动周期,用T表示。

常用单位为秒(s)。

频率f——振东物体在单位时间内完成全振动的次数,称为振动频率,用f表示。

常用单位为赫兹(Hz),1赫兹表示1秒钟内完成1次全振动,即1Hz=1次/秒。

此外还有千赫(kHz),兆赫(MHz)。

1kHz=310Hz,1MHz=610Hz。

由周期和频率的定义可知,二者互为倒数:1Tf如某人说话的频率为f=1000Hz,表示其声带振动为1000次/秒,则声带振动周期110.0011000T f ===秒。

最简单最基本的直线振动称为谐振动。

任何复杂的振动都可视为多个谐振动的合成。

如图1.1所示,质点M 作匀速圆周运动时,其水平投影就是一种水平方向的谐振动。

质点M 的水平位移y 和时间t 的关系可用谐振方程来描述。

Y =Acos (ωt + ϕ) (1.2) 式中: A ——振幅,即最大水平位移;ω——圆频率,即如1秒钟内变化的弧度数ω=22f T ππ=;ϕ——初相位,即t=0时质点M的相位;ωt十ϕ——质点M在t时刻的相位。

振动方程描述了振动物体在任一时刻的位移情况。

2.机械波振动的传播过程,称为波动。

波动分为机械波和电磁波两大类。

机械波——机械振动在弹性介质中的传播过程,称为机械波。

如水波、声波、超声波等都是机械波。

电磁波——交变电磁场在空间的传播过程,称为电磁波。

如无线电波、红外线、可见光、紫外线、X 射线、Y射线等。

由于这里研究的超声波是机械波,因此下面只讨论机械波。

弹性介质传播机械波的机理可由图 1.2加以说明。

弹性物体是由许许多多很小的微粒(称为质点)所组成,微粒间由弹性力联系着。

因此弹性物体可视为弹性介质模型,质点间恰似由小弹簧联系在一起。

当外力F作用于质点A时,A就会离开平衡位置,这时A 周围的质点将对A产生弹性力使A回到平衡位置。

当A回到平衡位置时,具有一定的速度,由于惯性A不会停在平衡位置,而会继续向前运动,并在相反方向离开平衡位置,这时A又会受到反向弹性力,使A又回到平衡位置,产生振动。

与此同时,A周围的质点也会受到大小相等方向相反的弹性力的作用,使它们离开平衡位置,并在各自的平衡位置附近振动。

这样弹性介质中一个质点的振动就会引起邻近质点的振动,邻近质点的振动又会引起较远质点的振动,于是振动就以一定的速度由近及远地向各个方向传播开来,从而就形成了机械波。

自此可见,产生机械波必须具备以下两个条件:(1)要有作机械振动的波源。

(2)要有能传播机械振动的弹性介质。

由上可见,振动与波动是互相关联的,振动是产生波动的根源,波动是振动状态的传播。

波动中介质各质点并不随波前进,只是以交变的振动速度在各自的平衡位置附近往复运动。

波动过程是振动状态的传播过程,也是振动能量的传播过程。

但这种能量的传播,不是靠物质的迁移来实现的,也不是靠相邻质点的弹性碰撞来完成的,而是由各质点的位移连续变化来逐渐传递出去的,犹如人们传递砖块一样。

平面余弦波在理想无吸收的均匀介质中传播时的波动方程为:cos ()cos()x y A t A t kx cωω=-=- (1.3) 式中:C ——波速;X ——波的传播距离;K ——波数, 2k c ωπλ==波动方程描述了波线上任意一点在任意时刻的位移情况。

3.波长、频率和波速(1)波长λ同一波线上相邻两振动相位相同的质点间的距离,称为波长,用λ表示。

波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离。

波长的常用单位为毫米(mm),米(m)。

(2)频率f波动过程中,任一给定点在1秒钟内所通过的完整波的个数,称为波动频率。

波动频率在数值上同振动频率,用f 表示,单位为Hz 。

(3)波速C波动在弹性介质中,单位时间内所传播的距离称为波速,用C 表示,常用单位为米/秒(m/s )或千米/秒(km/s )。

由波速,波长和频率的定义可得:c f λ=或c f λ= (1.4)由(1.4)式可知,波长与波速成正比,与频率成反比。

当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。

4.次声波、声波和超声波次声波、声波和超声波都是在弹性介质中传播的机械波,它们的区别主要在于频率不同。

人们日常所听到的各种声音,是由于各种声源的振动通过空气等弹性介质传播到耳膜引起的耳膜振动,牵动听觉神经,产生听觉,但并不是任何频率的机械振动都能引起听觉,只有当频率在一定的范围内的振动才能引起听觉,人们把能引起听觉的机械波称为声波,频率在20—20000Hz之间,频率低于20Hz的机械波称为次声波,频率高于20000Hz的机械被称为超声波。

次声波、超声被不可闻。

超声探伤所用的频率在0.5—10MHz之间,对钢等金属材料的检验,常用的频率为1—5Hz。

超声波波长很短,由此决定了超声波具有一些重要特性,使其能广泛用于无损探伤。

(1)超声波方向性好超声波是频率很离、波长很短的机械波,在无损探伤中使用的波长为毫米数量级。

超声波像光波一样具有良好的方向性,可以定向发射,犹如一束手电筒灯光可以在黑暗中寻找到所需物品一样在被检材料中发现缺陷。

(2)超声波能量高超声波探伤频率远离于声波,而能量(声强)与频率平方成正比。

因此超声波的能量远大于声波的能量。

如1MHz的超声波的能量相当于1000Hz的声波的100万倍。

(3)能在界面上产生反射,折射和波型转换在超声波探伤中,特别是超声波脉冲反射法探伤中,利用了超声波具有几何声学的一些特点,如在介质中直线传播,遇界面产生反射、折射和波型转换等。

(4)超声波穿透能力强超声波在大多数介质中传播时,传播能量损失小,传播距离大,穿透能力强,在一些金属材料中其穿透能力可达数米,这是其他探伤手段所无法比拟的。

二、超声波的类型超声波的分类方法很多,下面简单介绍几种常见的分类方法。

1.据质点的振动方向分类根据波动传播时介质质点的振动方向与波的传播方向不同,可将超声波分为纵波、横波、表面波和板波等。

(1)纵波L介质中质点的振动方向与波的传播方向相同的波,称为纵波,用L表示。

如图1.3所示。

当介质质点受到交变拉压应力作用时,质点之间产生相应的伸缩形变,从而形成纵波。

这时介质质点疏密相间,故纵波又称为压缩波或疏密波。

凡能承受拉伸或压缩应力的介质都能传播纵波。

固体介质能承受拉伸或压缩应力,因此固体介质可以传播纵波。

液体和气体虽然不能承受拉伸应力,但能承受压应力产生容积变化,因此液体和气体介质也可以传播纵波。

(2)横波S(T)介质中质点的振动方向与波的传播方向互相垂直的波称为横波,用S或T表示。

如图1.4所示。

当介质质点受到交变的剪切应力作用时:,产生切变形变,从而形成横波。

故横波又称为切变波。

只有固体介质才能承受剪切应力,液体和气体介质不能承受剪切应力,因此横波只能在固体介质中传播,不能在液体和气体介质中传播。

(3)表面波R当介质表面受到交变应力作用时,产生沿介质表面传播的波,称为表面波,常用R表示,如图1.5所示。

表面波是瑞利1887年首先提出来的,因此表面波又称为瑞利波。

表面波在介质表面传播时,介质表面质点作椭圆运动,椭圆长轴垂直于波的传播方向,短轴平行于波的传播方向。

椭圆运动可视为纵向振动与横向振动合成,即纵波与横波的合成,因此表面波同横波一样只能在固体介质中传播,不能再液体或气体介质中传播。

表面波只能在固体表面传播。

表面波的能量随传播深度增加而迅速减弱。

当传播深度超过两倍波长时,质点的振幅就已经很小了。

因此,一般认为,表面波探伤只能发现距工件表面两倍波长深度内的缺陷。

(4)板波在板厚与波长相当的弹性薄板中传播的波,称为板波。

根据质点的振动方向不同可将板波分为SH波和兰姆波。

a.SH波如图 1.6所示,SH波是水平偏振的横波在薄板中的传播。

薄板中各质点的振动方向平行于板面而垂直于波的传播方向。

相当于固体介质表面的横波。

b.兰姆波兰姆波又分为对称型(S型)和非对称型(A型),如图1.7所示。

对称型(S波)兰姆波的特点是薄板中心质点作纵向振动,上下表面质点作椭圆运动,振动相位相反并对称于中心,如图1.7(α)所示。

非对称称(A型)兰姆波特点是薄板中心质点作横向振动,上下表面质点作椭圆运动,相位相同,不对称。

如图1.7(b)所示。

各种类型波的比较归纳在表1.1中。

2.按波的形状分类波的形状(波形)是根据波阵面的形状来区分的。

波阵面:同一时刻,介质中振动相位相同的所有质点所联成的面称为波阵面。

波前:某一时刻,波动所到达的空间各点所联成的面称为波前。

波线:波的传播方向称为波线。

由以上定义可知,波前是最前面的波阵面,是波阵面的特例。

任意时刻,波前只有一个,而波阵面却有很多。

在各向同性的介质中,波线恒垂直于波阵面或波前。

据波阵面形状不同,可以把不同波源发出的波分为平面波、柱面波和球面波。

(1)平面波波阵面为互相平行的平面的波称为平面波。

平面波的波源为一平面,如图1.8所示。

尺寸远大于波长的刚性平面波源在各向同性的均匀介质中辐射的泼可视为平面波。

平面波波束不扩散。

平面波各质点振幅是一个常数,不随距离而变化。

平面波的波动方程为:cos ()x y A t cω=- (1.5)(2)柱面波波阵面为同轴圆柱面的波称为柱面波。

柱面波的波源为一条线,如图1.9所示。

长度远大于波长的线状波源在各肉同性的介质中幅射的波可视为柱面波。

相关文档
最新文档