2020年江苏省扬州市广陵区中考数学二模试卷及答案解析

合集下载

2020年江苏省扬州市广陵区中考数学二模试卷

2020年江苏省扬州市广陵区中考数学二模试卷

中考数学二模试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.-2的倒数是()A. -B.C. -2D. 22.函数y=中自变量x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠23.下列计算正确的是()A. 2a+3b=5abB. (a-b)2=a2-b2C. (2x2)3=6x6D. x8÷x3=x54.下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C. D.5.已知正多边形的一个内角是140°,则这个正多边形的边数是()A. 九B. 八C. 七D. 六6.平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A. 平均数B. 众数C. 中位数D. 方差7.在二次函数y=-x2x-3-2-112345y-14-7-22m n-7-14A. m>nB. m<nC. m=nD. 无法确定8.两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,其中AB=3,CD=6.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°),如图2所示.当BD与CD在同一直线上(如图3)时,tanα的值等于()A. B. C. D.二、填空题(本大题共10小题,共30.0分)9.我国最大的领海南海总面积有3500 000平方公里,将数3500 000用科学记数法表示应为______.10.若2x=3y,且x≠0,则的值为______.11.若关于x的方程x2-8x+m=0有两个相等的实数根,则m=______.12.如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为______.13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=______°.14.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是______.15.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=______.16.计算:40382-4×2018×2020=______.17.如图,在菱形OABC中,点A的坐标是(2,1),点B的横坐标是3,则点C的坐标是______ .18.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2-OB2=10,则k的值______.三、解答题(本大题共10小题,共96.0分)19.(1)计算:-3tan30°;(2)解不等式:.20.先化简再求值:,其中a是方程a2+a=0的一个根.21.为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.在不透明的袋子中有四张标着数字1,2,3,4 的卡片,这些卡片除数字外都相同.甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加.如图是他所画的树状图的一部分.(1)由如图分析,甲同学的游戏规则是:从袋子中随机抽出一张卡片后______(填“放回”或“不放回”),再随机抽出一张卡片;(2)帮甲同学完成树状图;(3)求甲同学两次抽到的数字之和为偶数的概率.23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)在图中找出一对相似三角形,并说明理由;(2)若AB=8,AD=,AF=,求AE的长.24.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.25.如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.(1)求证:AC是⊙O的切线;(2)若cos C=,AC=8,求BF的长.26.如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):①该屏幕的长=______寸,宽=______寸;②已知“屏幕浪费比=”,求该电视机屏幕的浪费比.(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:≈2.2,结果精确到0.1)27.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.28.如图,抛物线y=-x2+bx+c过点A(3,2),且与直线y=-x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:-2的倒数是-.故选:A.根据倒数的定义即可求解.主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】B【解析】解:由题意得,x-2≥0,解得x≥2.故选:B.根据被开方数大于等于0,列式计算即可得解.本题考查了函数自变量的范围,当函数表达式是二次根式时,被开方数为非负数.3.【答案】D【解析】解:A、2a+3b,无法计算,故此选项错误;B、(a-b)2=a2-2ab+b2,故此选项错误;C、(2x2)3=8x6,故此选项错误;D、x8÷x3=x5,故此选项正确;故选:D.直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算、完全平方公式等知识,正确掌握相关运算法则是解题关键.4.【答案】D【解析】【分析】本题考查了几何体的三视图的知识,主视图是从物体的正面看得到的视图.分别找到四个几何体从正面看所得到的图形,进行比较即可得出答案.【解答】解:A、主视图为长方形;B、主视图为长方形;C、主视图为长方形;D、主视图为三角形.则主视图与其它三个不相同的是D选项.故选D.5.【答案】A【解析】解:∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=9.即这个正多边形是九边形.故选:A.首先根据求出外角度数,再利用外角和定理求出边数.此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.6.【答案】C【解析】解:去掉一个最高分和一个最低分对中位数不发生变化;故选:C.根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.7.【答案】A【解析】解:把x=1,y=2和x=-1,y=-2都代入y=-x2+bx+c中,得解得,,∴二次函数的解析式为:y=-x2+2x+1,把x=2,y=m和x=3,y=n代入y=-x2+2x+1得,m=-4+4+1=1,n=-9+6+1=-2,∴m>n,故选:A.从表中任意选取两组已知数代入二次函数的解析式求得解析式,再分别代入x=2和x=3,求得m与n的值便可.本题考查了待定系数法求函数的解析式以及求函数的值,正确解方程组是解决本题的关键.8.【答案】C【解析】解:如图1,延长BD交OA于G,交AC于E.∵∠AOB=∠COD=90°,∴∠AOC=∠DOB,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD,∠CAO=∠DBO,∵∠DBO+∠OGB=90°,∵∠OGB=∠AGE,∴∠CAO+∠AGE=90°,∴∠AEG=90°,∴BD⊥AC,如图2中,设AC=x,∵BD、CD在同一直线上,BD⊥AC,∴△ABC是直角三角形,∴AC2+BC2=AB2,∴x2+(x+6)2=(3)2,解得x=3或x=-9(舍去),∴BC==9,∵∠ODC=∠α+∠DBO=45°,∠ABC+∠DBO=45°,∴∠α=∠ABC,∴tanα=tan∠ABC==.故选:C.延长BD交OA于G,交AC于E,只要证明△AOC≌△BOD即可解决问题.如图2中,设AC=x,在Rt△ABC中,利用勾股定理求出x,再根据三角函数的定义即可解决问题.本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题.9.【答案】3.5×106【解析】解:3500000=3.5×106,故答案为:3.5×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【答案】【解析】解:∵2x=3y,且x≠0,∴x=y,∴==.故答案为:.直接利用比例的性质得出x=y,进而代入求出答案.此题主要考查了比例的性质,正确得出x=y是解题关键.11.【答案】16【解析】解:△=(-8)2-4m=0,解得m=16.故答案为16.根据判别式的意义得到△=(-8)2-4m=0,然后解关于m的方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12.【答案】【解析】解:∵圆被等分成6份,其中红色部分占2份,∴落在阴影区域的概率==,故答案为.首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向红色区域的概率.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率;此题将概率的求解设置于几何图象或游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.13.【答案】57【解析】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°-30°-27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°-90°-33°=57°,故答案为:57°.先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.14.【答案】8π【解析】解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.圆锥的侧面积=底面周长×母线长÷2.本题利用了圆的周长公式和扇形面积公式求解.15.【答案】130°【解析】【分析】根据圆内接四边形的对角互补求得∠A的度数,再根据圆周角定理求解即可.此题主要考查了圆周角定理和圆内接四边形,关键是掌握圆内接四边形的对角互补.【解答】解:∵∠BOD=100°,∴∠A=50°,∠BCD=180°-∠A=130°.故答案为:130°.16.【答案】4【解析】解:40382-4×2018×2020=(2018+2020)2-4×2018×2020=(2018-2020)2=4,故答案为:4.根据有理数的混合计算解答即可.此题考查有理数的混合计算,关键是根据有理数的混合计算解答.17.【答案】(1,2)【解析】解:作AD⊥x轴于D,BF⊥x轴于F,AE⊥BF于E,BG⊥y轴于H,CG⊥BH于G,CM⊥Y轴于M,如图所示:则四边形BHOF是矩形,四边形ADFE是矩形,四边形GHMC是矩形,∠ADO=∠AEB=∠CGB=∠CMO=90°,∵点A的坐标是(2,1),点B的横坐标是3,∴OD=2,EF=AD=1,BH=3,∴AE=1,∴AE=AD,∵四边形OABC是菱形,∴OA=AB=BC=OC,在Rt△ABE和Rt△AOD中,,∴Rt△ABE≌Rt△AOD(HL),∴BE=OD=2,∴BF=3=BH,同理可证:△CBG≌△AOD,∴CG=AD=1,BG=OD=2,∴HM=1,OM=3-1=2,∴C(1,2);故答案为:(1,2).作AD⊥x轴于D,BF⊥x轴于F,AE⊥BF于E,BG⊥y轴于H,CG⊥BH于G,CM⊥Y轴于M,则四边形BHOF是矩形,四边形ADFE是矩形,四边形GHMC是矩形,证明Rt△ABE≌Rt△AOD,得出BE=OD=2,求出BF=3,同理可证:△CBG≌△AOD,得出CG=AD=1,BG=OD=2,得出HM=1,OM=2,即可得出结果.本题考查了菱形的性质、坐标与图形性质、全等三角形的判定与性质、矩形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.18.【答案】5【解析】解:直线y=x向下平移b个单位长度后得到直线l:y=x-b∴B(b,0)∵l与反比例函数y=(k>0,x>0)的图象相交于点A∴x-b=即:x2-bx-k=0∴x2=bx+k设A点坐标为(x,x-b)∵OA2-OB2=x2+(x-b)2-b2=2x2-2bx=2k∴2k=10k=5故答案为:5由平移的性质得直线l:y=x-b,所以B(b,0),联立一次函数与反比例函数关系式得:x-b=,设点A的坐标为(x,x-b),由OA2-OB2=10得2k=10,所以k=5本题主要涉及到一次函数和反比例函数的相关知识.掌握函数的平移规律及反比函数的相关性质即可解题.19.【答案】解:(1)原式==;(2)去分母得:3(1-2x)-6≥2(x+2),移项、合并同类项得:-8x≥7,化系数为1得:x≤-.【解析】(1)根据实数的运算解答即可;(2)根据一元一次不等式的解法解答即可.此题考查一元一次不等式的解法,关键是根据一元一次不等式的解法和实数的运算解答.20.【答案】解:===,由方程a2+a=0,得a1=0,a2=-1,∵当a=0时,原分式无意义,∴a=-1,当a=-1时,原式==-.【解析】根据分式的加法和除法可以化简题目中的式子,然后求出方程a2+a=0的解,然后将使得原分式有意义的a的值代入化简后的式子即可解答本题.本题考查分式的化简求值、解一元二次方程,解答本题的关键是明确分式化简求值的方法.21.【答案】解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.(2)如图所示:;(4)该校全体初二学生中应适当减少上网的时间的人数是:400×=80(名).答:该校全体初二学生中有80名同学应适当减少上网的时间.【解析】(1)根据抽样调查时,抽取的样本要有代表性,即可作出判断;(2)根据统计表即可直接补全直方图;(3)利用总人数400乘以对应的比例即可.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.【答案】(1)不放回;(2)补全树状图为:(3)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有4种,故P(两次抽到的数字之和为偶数)==.【解析】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴甲同学的实验是一个不放回实验,故答案为:不放回;(2)见答案;(3)见答案.(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据本实验是一个不放回试验作出树状图即可;(3)根据树状图利用概率公式求解即可.本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率.23.【答案】解:(1)△ADF∽△DEC,理由如下:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∵∠ADF=∠DEC,∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8,由(1)可知△ADF∽△DEC,∴=,即=,解得,DE=12,在Rt△ADE中,AE==6.【解析】(1)根据平行四边形的性质得到∠ADF=∠DEC,根据平行线的性质、等量代换得到∠AFD=∠C,根据相似三角形的判定定理证明结论;(2)根据相似三角形的性质求出DE,根据勾股定理计算,得到答案.本题考查的是平行四边形的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.24.【答案】问题:求甲、乙两公司的人数分别是多少?解:设乙公司人数为x,则甲公司的人数为(1+20%)x,根据题意得:-=40解得:x=250经检验x=250是原方程的根,故(1+20%)×250=300(人),答:甲公司为300人,乙公司250人.【解析】首先提出问题,例如,求甲、乙两公司的人数分别是多少?则本题的等量关系是:乙公司的人均捐款-甲公司的人均捐款=40,根据这个等量关系可得出方程求解.本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.【答案】(1)证明:如图①,连接AD.图①∵E是E是的中点,∴∴∴∠DAE=∠EAB.∵∠C=2∠EAB,∴∠C=∠BAD.∵AB是⊙O的直径,∴∠ADB=∠ADC=90°∴∠C+∠CAD=90°∴∠BAD+∠CAD=90°即BA⊥AC.∴AC是⊙O的切线.(2)解:如图②,过点F做FH⊥AB于点H.图②∵AD⊥BD,∠DAE=∠EAB,∴FH=FD,且FH∥AC.在Rt△ADC中,∵cos C=,AC=8,∴CD=6.同理,在Rt△BAC中,可求得BC=∴BD=设DF=x,则FH=x,BF=-x∵FH∥AC,∴∠BFH=∠C.∴cos∠BFH==即=解得x=2.∴BF=.【解析】(1)如图①,连接AD.根据直径所对的圆周角为直角及同圆中等弧所对的圆周角相等,及∠ACB=2∠EAB.求得∠BAD+∠CAD=90°,则BA⊥AC,根据切线的判定定理可得证;(2)如图②,过点F做FH⊥AB于点H,先在Rt△ADC和Rt△BAC中,分别求得CD、BC、BD.再在Rt△BFH中,由三角函数可求得FH及DF,则可用BD的值减去DF的值,求得BF.本题考查了圆的切线的判定定理及三角函数在线段求值中的应用,熟练掌握相关定理及相似或三角函数的计算技巧,是解题的关键.26.【答案】16 12【解析】解:(1)①∵电视机屏幕的长宽比为4:3,∴设长为4x,则宽为3x,∵电视机屏幕为20寸,∴(4x)2+(3x)2=202,解得x=4,∴4x=16,3x=12,∴该屏幕的长为16寸,宽为12寸;故答案为:16;12.②设在该屏幕上播放长宽比为2.4:1的视频时,视频的宽为a寸(长为16寸).∵=,解得a=.∴黑色带子的宽的和=12-=.∴屏幕浪费比==;(2)由题意:=,=,得:PQ=BC,FG=EF.∵S矩形EFGH=S矩形MNPQ,∴BC•BC=EF•EF.∴=,∴=≈1.8.答:这种屏幕的长宽比约为1.8.(1)①根据电视机屏幕的长宽比为4:3,设长为4x,则宽为3x,再由勾股定理求出x 的值,进而可得出结论;②设在该屏幕上播放长宽比为2.4:1的视频时,视频的宽为a寸(长为16寸),求出a的值,得出黑色带子的宽度,进而得出其比值;(2)根据题意得出=,=,得PQ=BC,FG=EF.再由S矩形EFGH=S矩形MNPQ即可得出=,进而可得出结论.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.27.【答案】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2-CB2=73,∴GE=.【解析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.28.【答案】解:(1)将点B的坐标为(4,m)代入y=-x+,m=-4+=-,∴B的坐标为(4,-),将A(3,2),B(4,-)代入y=-x2+bx+c,解得b=1,c=,∴抛物线的解析式y=;(2)设D(m,),则E(m,-m+),DE=()-(-m+)==-(m-2)2+2,∴当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A',连接A'D,与对称轴交于点P.PD+PA=PD+PA'=A'D,此时PD+PA最小,∵A(3,2),∴A'(-1,2),A'D==,即PD+PA的最小值为;(3)作AH⊥y轴于点H,连接AM、AQ、MQ、HA、HQ,∵抛物线的解析式y=,∴M(1,4),∵A(3,2),∴AH=MH=2,H(1,2)∵∠AQM=45°,∠AHM=90°,∴∠AQM=∠AHM,可知△AQM外接圆的圆心为H,∴QH=HA=HM=2设Q(0,t),则=2,t=2+或2-∴符合题意的点Q的坐标:Q1(0,2-)、Q2(0,2).【解析】(1)将点B的坐标为(4,m)代入y=-x+,m=-4+=-,B的坐标为(4,-),将A(3,2),B(4,-)代入y=-x2+bx+c,解得b=1,c=,因此抛物线的解析式y=;(2)设D(m,),则E(m,-m+),DE=()-(-m+)==-(m-2)2+2,当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A',连接A'D,与对称轴交于点P.PD+PA=PD+PA'=A'D,此时PD+PA 最小;(3)作AH⊥y轴于点H,连接AM、AQ、MQ、HA、HQ,由M(1,4),A(3,2),可得AH=MH=2,H(1,2)因为∠AQM=45°,∠AHM=90°,所以∠AQM=∠AHM,可知△AQM外接圆的圆心为H,于是QH=HA=HM=2设Q(0,t),则=2,t=2+或2-,求得符合题意的点Q的坐标:Q1(0,2-)、Q2(0,2).本题考查了二次函数,熟练运用二次函数的图象的性质与一次函数的性质以及圆周角定理是解题的关键.。

苏教版2020年中考数学二模试卷(含答案解析)

苏教版2020年中考数学二模试卷(含答案解析)

2020年中考数学二模试卷一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.(3分)下列四个实数中,最大的实数是()A.|﹣2|B.﹣1C.0D.2.(3分)下列四个图案中,不是中心对称图案的是()A.B.C.D.3.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9 4.(3分)关于x的一元二次方程x2﹣(m+2)x+m=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.(3分)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10B.15C.20D.246.(3分)如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A.40°B.50°C.60°D.70°7.(3分)若在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x<﹣1C.x≥﹣1D.x≥﹣1且x≠0 8.(3分)如图,四边形ABCD内接于⊙O,连接OA,OC.若OA∥BC,∠BCO=70°.则∠ABC的度数为()A.110°B.120°C.125°D.135°9.(3分)如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A.海里B.海里C.80海里D.海里10.(3分)小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分,其中正确的有()A.①④B.②③C.②③④D.②④二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应的位置上. 11.(3分)的倒数是.12.(3分)DNA分子的直径只有0.000 000 2cm,将0.000 000 2用科学记数法表示为.13.(3分)已知一组数据:5,x,3,6,4的众数是4,则该组数据的中位数是.14.(3分)因式分解:2x2﹣8=.15.(3分)已知点P(a,b)是一次函数y=x﹣1的图象与反比例函数的图象的一个交点,则a2+b2的值为.16.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为.17.(3分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上一点(点D不与点B,C重合),将△ACD沿AD翻折,点C的对应点是E,AE交BC于点F,若DE∥AB,则DF的长为.18.(3分)如图,四边形ABCD中,∠ABC=∠D=90°,AB=BC=3,CD=3,AC是对角线,以CD为边向四边形内部作正方形CDEF,连接BF,则BF的长为.三、解答题本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:.20.(5分)解不等式组:,并把它的解集在数轴上表示出来.21.(6分)先化简,再求值:,其中.22.(6分)如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.23.(8分)今年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求本次竞赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)已知甲、乙、丙、丁4位同学获得一等奖,学校将采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”知识竞赛,请求出抽到的2人恰好是甲和乙的概率(用画树状图或列表等方法求解).24.(8分)为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?25.(8分)如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB =8,BC=6.对角线AC,BD相交于点E,反比例函数(x>0)的图象经过点E,分别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF﹣BE=2,求△CEG的面积.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.27.(10分)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B,C重合),点F是线段BA延长线上一动点,连接DE,EF,DF,EF交AD于点G.设BE=x,AF=y,已知y与x之间的函数关系如图②所示.(1)求图②中y与x的函数表达式;(2)求证:DE⊥DF;(3)是否存在x的值,使得△DEG是等腰三角形?如果存在,求出x的值;如果不存在,说明理由.28.(10分)如图1,二次函数y=ax2﹣3ax﹣4a的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C(0,﹣3).(1)求二次函数的表达式及点A、点B的坐标;(2)若点D在二次函数图象上,且,求点D的横坐标;(3)将直线BC向下平移,与二次函数图象交于M,N两点(M在N左侧),如图2,过M作ME∥y轴,与直线BC交于点E,过N作NF∥y轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.答案与解析一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.(3分)下列四个实数中,最大的实数是()A.|﹣2|B.﹣1C.0D.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵|﹣2|>>0>﹣1,∴所给的四个实数中,最大的实数是|﹣2|.故选:A.2.(3分)下列四个图案中,不是中心对称图案的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、B、D是中心对称图形,C不是中心对称图形,故选:C.3.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.4.(3分)关于x的一元二次方程x2﹣(m+2)x+m=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】表示出根的判别式,判断判别式的正负即可确定出方程根的情况.【解答】解:由关于x的一元二次方程x2﹣(m+2)x+m=0,得到a=1,b=﹣(m+2),c=m,△=(m+2)2﹣4m=m2+4m+4﹣4m=m2+4>0,则方程有两个不相等的实数根,故选:A.5.(3分)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10B.15C.20D.24【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.25左右得到比例关系,列出方程求解即可.【解答】解:根据题意得=0.25,解得:a=24,经检验:a=24是分式方程的解,故选:D.6.(3分)如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A.40°B.50°C.60°D.70°【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选:D.7.(3分)若在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x<﹣1C.x≥﹣1D.x≥﹣1且x≠0【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:若在实数范围内有意义,则x+1>0,解得:x>﹣1.故选:A.8.(3分)如图,四边形ABCD内接于⊙O,连接OA,OC.若OA∥BC,∠BCO=70°.则∠ABC的度数为()A.110°B.120°C.125°D.135°【分析】根据平行线的性质求出∠AOC,根据圆周角定理求出∠D,根据圆内接四边形的性质计算即可.【解答】解:∵OA∥BC,∴∠AOC=180°﹣∠BCO=110°,由圆周角定理得,∠D=∠AOC=55°,∵四边形ABCD内接于⊙O,∴∠ABC=180°﹣∠D=125°,故选:C.9.(3分)如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A.海里B.海里C.80海里D.海里【分析】过A作AD⊥BC于D,解直角三角形即可得到结论.【解答】解:过A作AD⊥BC于D,在Rt△ABD中,∠ABD=30°,AB=40,∴AD=AB=20,BD=AB=20,在Rt△ACD中,∵∠C=45°,∴CD=AD=20,∴BC=BD+CD=(20+20)海里,故选:B.10.(3分)小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分,其中正确的有()A.①④B.②③C.②③④D.②④【分析】①根据题意和函数图象可以得到下坡路的长度;②利用路程除以时间求得上坡速度和下坡的速度;③根据“路程除以速度=时间”求解即可;④设上坡速度为x(米/分),根据题意列方程即可求解.【解答】解:①小明上学途中下坡路的长为1800﹣600=1200(米).②小明上学途中上坡速度为:600÷4=150(米/分),下坡速度为:1200÷6=200(米/分).③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,小明返回时经过这段路所用时间为:600÷200+1200÷150=11(分钟),所以小明返回时经过这段路比上学时多用1分钟;④设上坡速度为x(米/分),根据题意得,,解得x=160,经检验,x=160是原方程的解.所以返回时上坡速度是160米/分.综上所述,正确的有②③④.故选:C.二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应的位置上. 11.(3分)的倒数是.【分析】根据倒数的定义可知.【解答】解:的倒数是.12.(3分)DNA分子的直径只有0.000 000 2cm,将0.000 000 2用科学记数法表示为2×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0002=2×10﹣7.故答案为:2×10﹣7.13.(3分)已知一组数据:5,x,3,6,4的众数是4,则该组数据的中位数是4.【分析】先根据众数定义求出x,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】解:∵数据5,x,3,6,4的众数是4,∴x=4,则数据重新排列为3,4,4,5,6,所以中位数是4,故答案为:4.14.(3分)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).15.(3分)已知点P(a,b)是一次函数y=x﹣1的图象与反比例函数的图象的一个交点,则a2+b2的值为5.【分析】一次函数y=x﹣1与反比例函数y=联立,求出a和b的值,代入a2+b2,计算求值即可.【解答】解:根据题意得:,解得:或,即或,则a2+b2=(﹣1)2+(﹣2)2=5或a2+b2=22+12=5,即a2+b2的值为5,故答案为:5.16.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为120°.【分析】设该圆锥侧面展开图所对应扇形圆心角的度数为n°,圆锥的母线长为l,底面圆的半径为r,利用扇形面积公式得到•2πr•l=3•πr2,所以l=3r,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得2πr=,再解关于n的方程即可.【解答】解:设该圆锥侧面展开图所对应扇形圆心角的度数为n,圆锥的母线长为l,底面圆的半径为r,所以•2πr•l=3•πr2,则l=3r,因为2πr=,所以n=120°.故答案为120°.17.(3分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上一点(点D不与点B,C重合),将△ACD沿AD翻折,点C的对应点是E,AE交BC于点F,若DE∥AB,则DF的长为.【分析】由等腰三角形的性质和平行线的性质得出∠B=∠C,∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,得出∠B=∠BAF=∠E=∠EDF,证出AF=BF,EF=DF,得出BD=AB=AC=5,ED=CD=BC﹣BD=3,由平行线得出△EDF∽△ABF,得出比例式,即可得出结果.【解答】解:AB=AC=5,∴∠B=∠C,∵DE∥AB,∴∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,∴∠B=∠BAF=∠E=∠EDF,∴AF=BF,EF=DF,∴BD=AB=AC=5,∴ED=CD=BC﹣BD=3,∵DE∥AB,∴△EDF∽△ABF,∴=,即=,解得:DF=;故答案为:.18.(3分)如图,四边形ABCD中,∠ABC=∠D=90°,AB=BC=3,CD=3,AC是对角线,以CD为边向四边形内部作正方形CDEF,连接BF,则BF的长为3.【分析】连接CE,由等腰直角三角形的性质得出AC=BC=3,∠ACB=45°,由勾股定理得出AD==9,由正方形的性质得出DE=CD=3,∠DCF=90°,∠ECF=45°,CE=CF,求出AE=AD﹣DE=6,证明△BCF∽△ACE,得出==,即可得出结果.【解答】解:连接CE,如图所示:∵∠ABC=90°,AB=BC=3,∴AC=BC=3,∠ACB=45°,∵∠D=90°,CD=3,∴AD===9,∵四边形CDEF是正方形,∴DE=CD=3,∠DCF=90°,∠ECF=45°,CE=CF,∴AE=AD﹣DE=6,∴∠ACB=∠ECF,∴∠BCF=∠ACE,∵==,∴△BCF∽△ACE,∴==,∴BF===3;故答案为:3.三、解答题本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算:.【分析】直接利用特殊角的三角函数值和绝对值的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣3×+﹣=1﹣+﹣=.20.(5分)解不等式组:,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【解答】解:,解①得:x>﹣2,解②得:x≤3,故不等式组的解集是:﹣2<x≤3,表示在数轴上如下:21.(6分)先化简,再求值:,其中.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:====,当x=+1时,原式===.22.(6分)如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出∠ADB=∠CBD,证明△BOF≌△DOE,得出DE=BF,即可得出结论;(2)证出CF=BC,得出OC是△BDF的中位线,由三角形中位线定理即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵O是对角线BD的中点,∴OB=OD,在△BOF和△DOE中,,∴△BOF≌△DOE(ASA),∴DE=BF,∴DE=AD=BF﹣BC,∴AE=CF;(2)解:OC∥DF,且OC=DF,理由如下:∵AE=BC,AE=CF,∴CF=BC,∵OB=OD,∴OC是△BDF的中位线,∴OC∥DF,且OC=DF.23.(8分)今年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求本次竞赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)已知甲、乙、丙、丁4位同学获得一等奖,学校将采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”知识竞赛,请求出抽到的2人恰好是甲和乙的概率(用画树状图或列表等方法求解).【分析】(1)由一等奖人数及其所占百分比可得总人数,再求出二等奖人数即可补全图形;(2)用360°乘以对应的百分比即可得;(3)利用列举法即可求解即可.【解答】解:(1)本次竞赛获奖的总人数为4÷20%=20(人),补全图形如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数360°×=108°;(3)画树形图得:则P(抽取的两人恰好是甲和乙)=.24.(8分)为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?【分析】(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,根据“一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;购买6个甲种型号排球和5个乙种型号排球,一共需花费780元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种型号排球m个,则购买乙种型号排球(26﹣m)个,根据甲种型号排球的个数多于乙种型号排球且学校购买甲、乙两种型号排球的预算资金不超过1900元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出购买方案的个数.【解答】解:(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,依题意,得:,解得:.答:每个甲种型号排球的价格是80元,每个乙种型号排球的价格是60元.(2)设购买甲种型号排球m个,则购买乙种型号排球(26﹣m)个,依题意,得:,解得:13<m≤17.又∵m为整数,∴m的值为14,15,16,17.答:该学校共有4种购买方案.25.(8分)如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB =8,BC=6.对角线AC,BD相交于点E,反比例函数(x>0)的图象经过点E,分别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF﹣BE=2,求△CEG的面积.【分析】(1)先利用矩形的性质和线段中点坐标公式得到E(5,4),然后把E点坐标代入y=可求得k的值;(2)利用勾股定理计算出AC=10,则BE=EC=5,所以BF=7,设OB=t,则F(t,7),E(t+3,4),利用反比例函数图象上点的坐标得到7t=4(t+3),解得t=4,从而得到反比例函数解析式为y=,然后确定G点坐标,最后利用三角形面积公式计算△CEG的面积.【解答】解:(1)∵在矩形ABCD的顶点B,AB=8,BC=6,而OC=8,∴B(2,0),A(2,8),C(8,0),∵对角线AC,BD相交于点E,∴点E为AC的中点,∴E(5,4),把E(5,4)代入y=得k=5×4=20;(2)∵AC==10,∴BE=EC=5,∵BF﹣BE=2,∴BF=7,设OB=t,则F(t,7),E(t+3,4),∵反比例函数(x>0)的图象经过点E、F,∴7t=4(t+3),解得t=4,∴k=7t=28,∴反比例函数解析式为y=,当x=10时,y==,∴G(10,),∴△CEG的面积=×3×=.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA 的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH ⊥OD,DH是圆O的切线;(2)①根据等腰三角形的性质的∠EAF=∠EAF,设∠B=∠C=α,得到∠EAF=∠EF A =2α,根据三角形的内角和得到∠B=36°,求得∠AOD=72°,根据弧长公式即可得到结论;②连接AD,根据圆周角定理得到∠ADB=∠ADC=90°,解直角三角形得到AD=2,根据相似三角形的性质得到AH=3,于是得到结论.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EF A=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴的长==;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵,∴=,∴AD=2,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴=,∴=,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∴AE=2,∵OD∥AC,∴∠EAF=∠FOD,∠E=∠FDO,∴△AEF∽△ODF,∴=,∴=,∴AF=.27.(10分)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B,C重合),点F是线段BA延长线上一动点,连接DE,EF,DF,EF交AD于点G.设BE=x,AF=y,已知y与x之间的函数关系如图②所示.(1)求图②中y与x的函数表达式;(2)求证:DE⊥DF;(3)是否存在x的值,使得△DEG是等腰三角形?如果存在,求出x的值;如果不存在,说明理由.【分析】(1)利用待定系数法可得y与x的函数表达式;(2)方法一:证明△CDE∽△ADF,得∠ADF=∠CDE,可得结论;方法二:分别表示△DEF三边的长,计算三边的平方,根据勾股定理的逆定理得:△DEF 是直角三角形,从而得:DE⊥DF;(3)分三种情况:①若DE=DG,则∠DGE=∠DEG,②若DE=EG,如图①,作EH∥CD,交AD于H,③若DG=EG,则∠GDE=∠GED,分别列方程计算可得结论.【解答】解:(1)设y=kx+b,由图象得:当x=1时,y=2,当x=0时,y=4,代入得:,,∴y=﹣2x+4(0<x<2);(2)方法一:∵BE=x,BC=2∴CE=2﹣x,∴,,∴,∵四边形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE,∴∠ADF+∠EDG=∠CDE+∠EDG=90°,∴DE⊥DF;方法二:∵四边形ABCD是矩形,∴∠C=∠DAF=∠B=90°,∴根据勾股定理得:在Rt△CDE中,DE2=CD2+CE2=1+(2﹣x)2=x2﹣4x+5,在Rt△ADF中,DF2=AD2+AF2=4+(4﹣2x)2=4x2﹣16x+20,在Rt△BEF中,EF2=BE2+BF2=x2+(5﹣2x)2=5x2﹣20x+25,∴DE2+DF2=EF2,∴△DEF是直角三角形,且∠EDF=90°,∴DE⊥DF;(3)假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,∴在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=;②若DE=EG,如图①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△F AG,∴,∴,x1=,x2=(舍),③若DG=EG,则∠GDE=∠GED,方法一:∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴,∵△CDE∽△ADF,∴=,∴,∴2﹣x=,x=,方法二:∵∠EDF=90°,∴∠FDG+∠GDE=∠DFG+∠DEG=90°,∴∠FDG=∠DFG,∴FG=DG,∴FG=EG,∵AD∥BC,∴∠FGA=∠FEB,∠F AG=∠B,∴△F AG∽△FBE,∴,∴,x=,综上,x=或或.28.(10分)如图1,二次函数y=ax2﹣3ax﹣4a的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C(0,﹣3).(1)求二次函数的表达式及点A、点B的坐标;(2)若点D在二次函数图象上,且,求点D的横坐标;(3)将直线BC向下平移,与二次函数图象交于M,N两点(M在N左侧),如图2,过M作ME∥y轴,与直线BC交于点E,过N作NF∥y轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.【分析】(1)求出a,即可求解;(2)求出直线BC的解析式,过点D作DH∥y轴,与直线BC交于点H,根据三角形面积的关系求解;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),判断四边形MNFE是平行四边形,根据ME=NF,求出m+n=4,再确定ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,即可求M;【解答】解:(1)y=ax2﹣3ax﹣4a与y轴交于点C(0,﹣3),∴a=,∴y=,与x轴交点A(﹣1,0),B(4,0);(2)设直线BC的解析式为y=kx+b,∴,∴,∴y=x﹣3;过点D作DH∥y轴,与直线BC交于点H,设H(x,x﹣3),D(x,x2﹣x﹣3),∴DH=|x2﹣3x|,∵S△ABC=,∴S△DBC==6,∴S△DBC=2×|x2﹣3x|=6,∴x=2+2,x=2﹣2,x=2;∴D点的横坐标为2+2,2﹣2,2;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),则E(m,m﹣3),F(n,n﹣3),∴ME=﹣m2+3m,NF=﹣n2+3n,∵EF∥MN,ME∥NF,∴四边形MNFE是平行四边形,∴ME=NF,∴﹣m2+3m=﹣n2+3n,∴m+n=4,∴MG=n﹣m=4﹣2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=,∵B(4,0),C(0,﹣3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=(n﹣m)=(4﹣2m)=5﹣m,∴ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,∵﹣<0,∴当m=时,ME+MN有最大值,∴M(,﹣)。

扬州市广陵区中考数学二模试卷含答案解析

扬州市广陵区中考数学二模试卷含答案解析

江苏省扬州市广陵区中考数学二模试卷(解析版)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列四个数中,是无理数的是()A.B.C.D.()22.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查神舟号载人飞船的各零部件D.考察人们保护海洋的意识3.计算x2x3÷x的结果是()A.x4B.x5C.x6D.x74.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.125.如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为()A.B.C.D.6.在正方形网格中,∠BAC如图所示放置,则cos∠BAC等于()A.3 B.C.D.7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°8.如果四边形内的一个点到四条边的距离相等,那么这个四边形一定有()A.一组邻边相等 B.一组对边平行C.两组对边分别相等 D.两组对边的和相等二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.温家宝强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是.10.因式分解:a3﹣9a=.11.双曲线y=与直线y=2x无交点,则k的取值范围是.12.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.13.为了估计鱼塘青鱼的数量(鱼塘只有青鱼),将200条鲤鱼放进鱼塘,随机捕捞出一条鱼,记下品种后放回,稍后再随机捕捞出一条鱼记下品种,多次重复后发现鲤鱼出现的频率为0.2,那么可以估计鱼塘里青鱼的数量为条.14.如图,菱形ABCD中,对角线AC、BD相交于点O、H为AD边上的中点,若OH的长为2,则菱形ABCD的周长等于.15.如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD=°.16.用半径为6cm,圆心角为120°的扇形围成的圆锥的底面圆半径为cm.17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为6,则GE+FH的最大值为.18.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:()﹣2+﹣8cos60°﹣(π+)0;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.20.(1)解不等式:;(2)用配方法解方程:x2+4x﹣1=0.21.中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为.(1)该批产品有正品件;(2)如果从中任意取出2件,求取出2件都是正品的概率.23.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?24.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.25.已知:如图,在△ABC中,AB=BC,D是AC中点,点O是AB上一点,⊙O过点B 且与AC相切于点E,交BD于点G,交AB于点F.(1)求证:BE平分∠ABD;(2)当BD=2,sinC=时,求⊙O的半径.26.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此一次函数的解析式.27.已知点A(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图①,若△ABO是等腰三角形且AO=AB时,求点B的坐标;(2)如图②,若点C(x,0)且﹣1<x<3,BC⊥AC垂足为点C;①当x=0时,求tan∠BAC的值;②若AB与y轴正半轴的所夹锐角为α,当点C在什么位置时tanα的值最大?28.如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.①依题意补全图1;②试判断AE与BD的数量关系,并证明你的结论;(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.江苏省扬州市广陵区中考数学二模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列四个数中,是无理数的是()A.B.C.D.()2【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是无理数,,,()2是有理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查神舟号载人飞船的各零部件D.考察人们保护海洋的意识【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,具有破坏性,适合抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,因为普查工作量大,适合抽样调查,故本选项错误;C、检查神舟号载人飞船的各零部件,精确度要求高的调查,适于全面调查,故本选项正确;D、考察人们保护海洋的意识,因为普查工作量大,适合抽样调查,故本选项错误.故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.计算x2x3÷x的结果是()A.x4B.x5C.x6D.x7【分析】首先依据同底数幂的乘法法则进行计算,然后再依据同底数幂的除法法则计算即可.【解答】解:原式=x5÷x=x4.故选:A.【点评】本题主要考查的是同底数幂的除法和同底数幂的乘法,掌握运算顺序是解题的关键.4.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.12【分析】依据平方数越大对应的算术平方根越大可求得a、b的值,最后依据有理数的乘法法则求解即可.【解答】解:∵4<8<9,∴2<<3,即2<2<3.∴a=2,b=3.∴ab=6.故选:C.【点评】本题主要考查的是估算无理数的大小,掌握夹逼法估算无理数的大小是解题的关键.5.如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为()A.B.C.D.【分析】圆锥的主视图是从物体正面看,所得到的图形.【解答】解:如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体为圆锥,它的主视图为等腰三角形.故选C.【点评】本题考查了几何体的主视图,掌握定义是关键.6.在正方形网格中,∠BAC如图所示放置,则cos∠BAC等于()A.3 B.C.D.【分析】根据余弦=邻边:斜边进行计算即可.【解答】解:cos∠BAC==,故选D.【点评】此题主要考查了锐角三角函数的定义,关键是掌握余弦=邻边:斜边.7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.【点评】本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.8.如果四边形内的一个点到四条边的距离相等,那么这个四边形一定有()A.一组邻边相等 B.一组对边平行C.两组对边分别相等 D.两组对边的和相等【分析】由四边形内的一个点到四条边的距离相等,可得出该四边形为圆外切四边形,画出图形,根据切线的性质即可得出各组相等的线段,根据线段间的关系即可得出结论.【解答】解:依照题意,画出图形,如图所示.∵如果四边形内的一个点到四条边的距离相等,∴四边形ABCD为⊙O的外切四边形,∴AE=AN,DN=DM,CM=CF,BF=BE,∵AD=AN+DN,BC=BF+CF,AB=AE+BE,CD=CM+DM,∴AD+BC=AB+CD.故选D.【点评】本题考查了角平分线的性质以及切线的性质,解题的关键是得出该四边形为圆外切四边形.本题属于中档题,难度不大,解决该题型题目时,根据角平分线的性质确定该四边形为圆外切四边形是关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.温家宝强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是 3.6×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:36000000=3.6×107.故答案为:3.6×107.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.因式分解:a3﹣9a=a(a+3)(a﹣3).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.双曲线y=与直线y=2x无交点,则k的取值范围是k>2.【分析】由双曲线y=与直线y=2x无交点,于是得到2﹣k与2异号,解不等式即可得到结论.【解答】解:∵双曲线y=与直线y=2x无交点,∴2﹣k与2异号,∴2﹣k<0,∴k>2,故答案为:k>2.【点评】本题考查了反比例函数与一次函数的交点,反比例函数与正比例函数的图象特点.12.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8.【分析】由图形可看出:小矩形的2个长+一个宽=5.7,小矩形的2个宽+一个长=4.5,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.【点评】此题主要考查了二元一次方程组的应用,做题的关键是:弄懂题意,找出等量关系,列出方程组.13.为了估计鱼塘青鱼的数量(鱼塘只有青鱼),将200条鲤鱼放进鱼塘,随机捕捞出一条鱼,记下品种后放回,稍后再随机捕捞出一条鱼记下品种,多次重复后发现鲤鱼出现的频率为0.2,那么可以估计鱼塘里青鱼的数量为800条.【分析】根据放入鲤鱼后鲤鱼出现的频率可以估计出放入鲤鱼后鱼塘中鱼的总数量,从而可以得到原来鱼塘中青鱼的数量.【解答】解:由题意可得,鱼塘里的青鱼的数量为:200÷0.2﹣200=1000﹣200=800(条),故答案为:800.【点评】本题考查用样本估计总体,解题的关键是明确题意,由鲤鱼的数量和出现的频率可以计算出青鱼的数量.14.如图,菱形ABCD中,对角线AC、BD相交于点O、H为AD边上的中点,若OH的长为2,则菱形ABCD的周长等于16.【分析】先根据直角三角形的性质求出AD的长,进而可得出结论.【解答】解:∵菱形ABCD中,对角线AC、BD相交于点O,∵AC⊥BD.∵为AD边上的中点,OH=2,∴AD=2OH=4,∴菱形ABCD的周长=4×4=16.故答案为:16.【点评】本题考查的是菱形的性质,熟知菱形的对角线互相垂直平分是解答此题的关键.15.如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD=36°.【分析】在△ABC中可求得∠ACB=∠ABC=72°,在△BCD中可求得∠DBC=36°,可求出∠ABD.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,又∵BC=BD,∴∠BDC=∠BCD=72°,∴∠DBC=36°,∴∠ABD=∠ABC﹣∠DBC=72°﹣36°=36°,故答案为:36【点评】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.16.用半径为6cm,圆心角为120°的扇形围成的圆锥的底面圆半径为2cm.【分析】设圆锥的底面圆半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程即可.【解答】解:设圆锥的底面圆半径为r,根据题意得2πr=,解得r=2,即圆锥的底面圆半径为2cm.故答案为2.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为6,则GE+FH的最大值为9.【分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH 的最大值是多少即可.【解答】解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=AB=,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=9.故答案为:9.【点评】(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了等边三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:①等边三角形的内角都相等,且为60度;②等边三角形每条边上的中线、高线和所对角的平分线互相重合.③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高或所对角的平分线所在的直线.(3)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为32.【分析】将x轴下方的阴影部分沿对称轴分成两部分补到x轴上方,即可将不规则图形转换为规则的长方形,则可求出.【解答】解:∵抛物线y=﹣x2﹣2x+3与x轴交于点A、B,∴当y=0时,则﹣x2﹣2x+3=0,解得x=﹣3或x=1,则A,B的坐标分别为(﹣3,0),(1,0),AB的长度为4,从C1,C3两个部分顶点分别向下作垂线交x轴于E、F两点.根据中心对称的性质,x轴下方部分可以沿对称轴平均分成两部分补到C1与C2.如图所示,阴影部分转化为矩形.根据对称性,可得BE=CF=4÷2=2,则EF=8利用配方法可得y=﹣x2﹣2x+3=﹣(x+1)2+4则顶点坐标为(﹣1,4),即阴影部分的高为4,=8×4=32.S阴【点评】本题考查了中心对称的性质、配方法求抛物线的顶点坐标及求抛物线与x轴交点坐标,解题关键是将不规则图形通过对称转换为规则图形,求阴影面积经常要使用转化的数学思想.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:()﹣2+﹣8cos60°﹣(π+)0;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.【分析】(1)原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:(1)原式=4+2﹣8×﹣1=2﹣1;(2)原式=a2﹣4a+4+b2﹣2ab+4a﹣4=a2+b2﹣2ab=(a﹣b)2,∵a﹣b=,∴原式=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(1)解不等式:;(2)用配方法解方程:x2+4x﹣1=0.【分析】(1)利用①去分母;②去括号;③移项;④合并同类项;⑤化系数为1的步骤解出不等式;(2)根据完全平方公式和配方法解出方程即可.【解答】解:(1)去分母,得6﹣2(2x+1)≥3(1﹣x)去括号,得6﹣4x﹣2≥3﹣3x移项,得﹣4x+3x≥3﹣6+2合并同类项,得﹣x≥﹣1系数化为1,得,x≤1;(2)x2+4x﹣1=0,x2+4x+4=1+4,(x+2)2=5,x+2=±,x1=﹣2,x2=﹣2.【点评】本题考查的是一元一次不等式的解法、配方法解一元二次方程,掌握解一元一次不等式的一般步骤、配方法的一般步骤是解题的关键.21.中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=25%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是5个、5个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.【解答】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣20%=25%,设引体向上6个的学生有x人,由题意得=,解得x=50.条形统计图补充如下:(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5(3)×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.故答案为:25;5,5.【点评】本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.22.某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为.(1)该批产品有正品3件;(2)如果从中任意取出2件,求取出2件都是正品的概率.【分析】(1)由某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出2件都是正品的情况,再利用概率公式即可求得答案.【解答】解:(1)∵某种电子产品共4件,从中任意取出一件,取得的产品为次品的概率为;∴批产品有正品为:4﹣4×=3.故答案为:3;(2)画树状图得:∵结果共有12种情况,且各种情况都是等可能的,其中两次取出的都是正品共6种,∴P(两次取出的都是正品)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?【分析】(1)由平行线的性质得出∠BAC=∠DCA.证出AF=CE.由AAS证明△ABF≌△CDE即可;(2)先证明四边形ABCD是菱形,得出BD⊥AC,再证明四边形BFDE是平行四边形,即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在△ABF和△CDE中,,又∵∠ABF=∠CDE,∴△ABF≌△CDE(AAS);(2)解:当四边形ABCD满足AB=AD时,四边形BEDF是菱形.理由如下:连接BD交AC于点O,如图所示:由(1)得:△ABF≌△CDE,∴AB=CD,BF=DE,∠AFB=∠CED,∴BF∥DE.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.∴BD⊥AC.∵BF=DE,BF∥DE,∴四边形BEDF是平行四边形,∴四边形BEDF是菱形.【点评】本题考查了平行线的性质、平行四边形的判定、菱形的判定与性质、全等三角形的判定与性质;熟练掌握菱形的判定与性质,证明三角形全等是解决问题的关键.24.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【分析】首先提出问题,例如,求甲、乙两公司的人数分别是多少?则本题的等量关系是:乙公司的人均捐款﹣甲公司的人均捐款=40,根据这个等量关系可得出方程求解.【解答】问题:求甲、乙两公司的人数分别是多少?解:设乙公司人数为x,则甲公司的人数为(1+20%)x,根据题意得:﹣=40解得:x=250经检验x=250是原方程的根,故(1+20%)×250=300(人),答:甲公司为300人,乙公司250人.【点评】本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.已知:如图,在△ABC中,AB=BC,D是AC中点,点O是AB上一点,⊙O过点B 且与AC相切于点E,交BD于点G,交AB于点F.(1)求证:BE平分∠ABD;(2)当BD=2,sinC=时,求⊙O的半径.【分析】(1)连接OE,根据等腰三角形三线合一的性质和切线的性质得出OE⊥AC,BD ⊥AC,证得OE∥BD,根据平行线的性质和等腰三角形的性质即可证得结论;(2)根据sinC=求出AB=BC=4,设⊙O 的半径为r,则AO=4﹣r,得出sinA=sinC=,根据OE⊥AC,得出sinA===,即可求出半径.【解答】(1)证明:连接OE,∵AC与⊙O相切,∴OE⊥AC,∵AB=BC且D是BC中点,∴BD⊥AC,∴OE∥BD,∴∠OEB=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠ABE=∠DBE,∴BE平分∠ABD;(2)解∵BD=2,sinC=,BD⊥AC,∴BC=4,∴AB=4,设⊙O的半径为r,则AO=4﹣r∵AB=BC,∴∠C=∠A,∴sinA=sinC=,∵AC与⊙O相切于点E,∴OE⊥AC∴sinA===,∴r=.【点评】本题考查了切线的性质,等腰三角形三线合一的性质,平行线的性质和判定,等腰三角形的性质,解直角三角形等,解(1)小题的关键是求出OE∥BD,解(2)小题的关键是得出关于r的方程,题型较好,难度适中,用了方程思想.26.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此一次函数的解析式.【分析】(1)根据反比例函数y=的单调区间进行判断;(2)根据新定义运算法则列出关于系数k、b的方程组或,通过解该方程组即可求得系数k、b的值.【解答】解:(1)是;由函数的图象可知,当1≤x≤时,函数值y随着自变量x的增大而减少,而当x=1时,y=;x=时,y=1,故也有1≤y≤,所以,函数是闭区间[1,]上的“闭函数”.(2)因为一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,所以根据一次函数的图象与性质,必有:①当k>0时,,解之得k=1,b=0.∴一次函数的解析式为y=x.②当k<0时,,解之得k=﹣1,b=m+n.∴一次函数的解析式为y=﹣x+m+n.故一次函数的解析式为y=x或y=﹣x+m+n.【点评】本题考查了一次函数图象的性质以及反比例函数图象的性质.解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.27.已知点A(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图①,若△ABO是等腰三角形且AO=AB时,求点B的坐标;(2)如图②,若点C(x,0)且﹣1<x<3,BC⊥AC垂足为点C;。

2020年江苏中考数学一模二模考试试题分类(扬州专版)(4)——二次函数(含解析)

2020年江苏中考数学一模二模考试试题分类(扬州专版)(4)——二次函数(含解析)

2020年江苏中考数学一模二模考试试题分类(扬州专版)(4)——二次函数一.选择题(共8小题)1.(2020•仪征市模拟)如果二次函数y=x2+2x+t与一次函数y=x的图象两个交点的横坐标分别为m、n,且m<1<n,则t的取值范围是()A.t>﹣2 B.t<﹣2 C.t>D.t<2.(2020•宝应县二模)当x=1或﹣3时,代数式ax2+bx+c与mx+n的值相等,则函数y=ax2+(b﹣m)x+c ﹣n与x轴的交点为()A.(1,0)和(﹣3,0)B.(﹣1,0)C.(3,0)D.(﹣1,0)和(3,0)3.在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如表:x﹣3 ﹣2 ﹣1 1 2 3 4 5y﹣14 ﹣7 ﹣2 2 m n﹣7 ﹣14 则m、n的大小关系为()A.m>n B.m<n C.m=n D.无法确定4.(2020•江都区一模)若函数y=kx2﹣2x﹣1的图象与x轴有交点,则k的取值范围是()A.k≥﹣1 B.k>﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠05.(2020•宝应县一模)二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=1,下列结论不正确的是()A.a=2B.顶点的坐标为(1,﹣4)C.当﹣1<x<3时,y>0D.当x>3时,y随着x的增大而增大6.(2020•高邮市二模)在抛物线y=a(x﹣m﹣1)2+c(a≠0)和直线y=﹣x的图象上有三点(x1,m)、(x2,m)、(x3,m),则x1+x2+x3的结果是()A.B.0 C.1 D.27.(2020•江都区二模)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=﹣3 C.x1=1,x2=2 D.x1=1,x2=38.(2020•邗江区一模)抛物线y=x2向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为()A.y=(x+3)2+2 B.y=(x+3)2﹣2 C.y=(x+2)2+3 D.y=(x+2)2﹣3二.填空题(共8小题)9.(2020•邗江区二模)如图,平面直角坐标系中,点A(﹣3,﹣3),B(1,﹣1),若抛物线y=ax2+2x﹣1(a≠0)与线段AB(包含A、B两点)有两个不同交点,则a的取值范围是.10.(2020•高邮市二模)若二次函数y=ax2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x…﹣1 0 1 2 3 …y…10 0 6 8 6 …则它的图象与x轴的两个交点横坐标的和为.11.(2020•邗江区校级一模)某种商品每件进价为20元,调查表明:在某段时间内,若以每件x元(20≤x ≤40,且x为整数)出售,可卖出(40﹣x)件,若要使利润最大,则每件商品的售价应为元.12.(2020•邗江区校级一模)如图是二次函数y=ax2+bx+c的部分图象,由图象可知ax2+bx+c>0时x的取值范围是.13.(2020•广陵区校级二模)若点A(﹣3,n)、B(m,n)在二次函数y=a(x+2)2+h的图象上,则m的值为.14.(2020•广陵区校级三模)若二次函数y=ax2+bx+c的图象与x轴交于A和B两点,顶点为C,且b2﹣4ac=4,则∠ACB的度数为.15.(2020•江都区三模)已知二次函数f(x)=2x2+ax+b,若f(a)=f(b+1),其中a≠b+1,则f(1)+f (2)的值为.16.(2020•扬州一模)若﹣2≤a<2,则满足a(a+b)=b(a+1)+a的b的取值范围为.三.解答题(共18小题)17.(2020•江都区二模)如图,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)经过原点O和两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)a=,b=,c=;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M、N两点,M在N的左边.当△AMN为等腰三角形时,直接写出圆心P的横坐标.18.(2020•高邮市二模)已知在平面直角坐标系xOy中,二次函数y=x2﹣2ax+b(a、b为常数)的图象顶点的纵坐标为﹣4.(1)直接写出a、b满足的关系式是.(2)若点P(x1,m),Q(x2,m)(x1<x2)是次函数y=x2﹣2ax+b(a,b为常数)的图象上的两点.①当a=﹣3,m=b时,求PQ的长度.②当m=0时,求PQ的长度.③若存在实数c,使得x1≤3﹣2c,且x2≥15﹣2c成立,求m的取值范围.19.(2020•邗江区二模)如图,已知二次函数y=﹣+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0),对称轴是直线x=.(1)求该二次函数的表达式;(2)如图1,连接AC,若点P是该抛物线上一点,且∠P AB=∠ACO,求点P的坐标;(3)如图2,点P是该抛物线上一点,点Q为射线CB上一点,且P、Q两点均在第四象限内,线段AQ 与BP交于点M,当∠PBQ=∠AQB,且△ABM与△PQM的面积相等时,请问线段PQ的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.20.(2020•宝应县二模)2020年是脱贫攻坚决胜年.某地实施产业扶贫种植某种水果,其成本经过测算为20元kg,投放市场后,经过市场调研发现,这种水果在上市的一段时间内的销售单价p(元/kg)与时间t(天)之间的函数图象如图,且其日销售量y(kg)与时间t(天)的关系是:y=﹣2t+120,天数为整数.(1)试求销售单价p(元/kg)与时间t(天)之间的函数关系式;(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前20天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫“对象.现发现:在前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.21.(2020•邗江区二模)疫情期间,某销售商在网上销售A、B两种型号的电脑“手写板”,其进价、售价和每日销量如表所示:进价(元/个)售价(元/个)销量(个/日)A型400 600 200B型800 1200 400根据市场行情,该销售商对A型手写板降价销售,同时对B型手写板提高售价,此时发现A型手写板每降低5元就可多卖1个,B型手写板每提高5元就少卖1个.销售时保持每天销售总量不变,设其中A 型手写板每天多销售x个,每天获得的总利润为y元.(1)求y与x之间的函数关系式,并直接写出x的取值范围;(2)要使每天的利润不低于212000元,求出x的取值范围;(3)该销售商决定每销售一个B型手写板,就捐助a元(0<a≤100)给受“新冠疫情”影响的困难学生,若当30≤x≤40时,每天的最大利润为203400元,求a的值.22.(2020•仪征市一模)已知如图,抛物线y=x2+mx+n的顶点为(1,﹣),其图象与x轴交于A,B两点,与y轴交于点C.(1)m=,n=;(2)点P在抛物线的对称轴上,当∠APC=∠BAC时,求点P的坐标;(3)点M为线段AC的中点,点N是线段AB上的动点,在△ABC绕点C按逆时针方向旋转的过程中,点N的对应点是点N′,直接写出线段MN′长度的最大值和最小值.23.(2020•广陵区校级一模)如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B,C;(2)当P点运动到(﹣1,﹣2)时,判断PB与⊙C的位置关系,并说出理由;(3)是否存在点P,使得△PBC是以BC为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(4)连接PB,若E为PB的中点,连接OE,则OE的最大值=.24.(2020•邗江区校级一模)如图1,已知抛物线顶点C(1,4),且与y轴交于点D(0,3).(1)求该抛物线的解析式及其与x轴的交点A、B的坐标;(2)将直线AC绕点A顺时针旋转45°后得到直线AE,与抛物线的另一个交点为E,请求出点E的坐标;(3)如图2,点P是该抛物线上位于第一象限的点,线段AP交BD于点M、交y轴于点N,△BMP和△DMN的面积分别为S1,S2,求S1﹣S2的最大值.25.(2020•邗江区校级一模)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则称这个点为“美好点”,如图,过点P分别作x轴,y轴的垂线,与坐标轴围成的矩形OAPB的周长与面积相等,则P为“美好点”.(1)在点M(2,2),N(4,4),Q(﹣6,3)中,是“美好点”的有.(2)若“美好点”P(a,﹣3)在直线y=x+b(b为常数)上,求a和b的值;(3)若“美好点”P恰好在抛物线y=x2第一象限的图象上,在x轴上是否存在一点Q使得△POQ 为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.26.(2020•宝应县一模)某水果批发商以10元/千克的价格购进1300千克的某种水果投放市场,受疫情影响,该水果批发商的水果出现滞销,根据市场推测,每滞销一天销售,该水果价格将上涨1元/千克,且平均每天将有20千克的水果会等级下降,假设每天等级下降的水果都能以6元/千克的价格一次性抛售完,又知该水果最多只能滞销20天.(1)设滞销x天后,该水果批发商将新鲜的水果一次性出售完所得的利润为w元,试写出w与x的函数关系式:(2)若滞销期内,每滞销一天需支付各种费用320元,则该水果批发商最多可获利多少元?27.(2020•邗江区一模)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数表达式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数表达式;②未来两年内,当月销售量P为时,月毛利润为w达到最大.28.(2020•广陵区校级一模)如图,抛物线y=﹣x2+bx+c与两轴分别交于A、B、C三点,已知点A(﹣3,0),B(1,0).点P在第二象限内的抛物线上运动,作PD⊥x轴于点D,交直线AC于点E.(1)b=;c=;(2)求线段PE取最大值时点P的坐标,这个最大值是多少;(3)连接AP,并以AP为边作等腰直角△APQ,当顶点Q恰好落在抛物线的对称轴上时,直接写出对应的P点坐标.29.(2020•高邮市一模)某公司计划投资300万元引进一条汽车配件流水生产线,经过调研知道该流水生产线的年产量为1040件,每件总成本为0.6万元,每件出厂价0.65万元;流水生产线投产后,从第1年到第n年的维修、保养费用累计y (万元)如表:第n年 1 2 3 4 5 6 ……维修、保养费用累计y(万元)3 8 15 24 35 48 ……若表中第n年的维修、保养费用累计y(万元)与n的数量关系符合我们已经学过的一次函数、二次函数、反比例函数中某一个.(1)求出y关于n的函数解析式;(2)投产第几年该公司可收回300万元的投资?(3)投产多少年后,该流水线要报废(规定当年的盈利不大于维修、保养费用累计即报费)?30.(2020•宝应县模拟)如图1,矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m<0.(1)求点E、F的坐标(用含m的式子表示);(2)连接OA,若△OAF是等腰三角形,求m的值;(3)如图2,设抛物线y=a(x﹣m+6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.31.(2020•广陵区校级三模)某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品牌玩具上涨x元(0<x<60)元,销售利润为w元,请求出w关于x的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.32.(2020•仪征市二模)对于x轴上一点P和某一个函数图象上两点M,N,给出如下定义:如果函数图象上存在两个点M,N(M在N的左侧),使得∠MPN=60°,那么称△MPN为“点截距三角形”,点P 则被称为线段MN的“海安点”.(1)若一次函数图象上有两点M(0,6)、N(3,3),在点D(0,0),E(,0),F(2,0)中,线段MN的“海安点”有;(2)若直线y=kx+b分别与y轴、x轴分别交于点M、N,以P(﹣1,0)为“海安点”的点截距三角形恰好是一个直角三角形,求此直线的解析式.(3)若点M是抛物线y=x2﹣2mx+m2+m﹣1的顶点,MN=2,若存在海安点,请求出m的取值范围.33.(2020•江都区校级一模)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.34.(2020•仪征市二模)如图,抛物线y=ax2+bx+3过点A(1,0),B(3,0),与y轴相交于点C.(1)求抛物线的解析式;(2)若点E为抛物线对称轴上的一点,请探索抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,请求出所有点F的坐标;若不存在,请说明理由;(3)若点P为线段OC上的动点,连接BP,过点C作CN垂直于直线BP,垂足为N,当点P从点O 运动到点C时,求点N运动路径的长.2020年江苏中考数学一模二模考试试题分类(扬州专版)(4)——二次函数参考答案与试题解析一.选择题(共8小题)1.(2020•仪征市模拟)如果二次函数y=x2+2x+t与一次函数y=x的图象两个交点的横坐标分别为m、n,且m<1<n,则t的取值范围是()A.t>﹣2 B.t<﹣2 C.t>D.t<【答案】B【解答】解:由x2+2x+t=x整理得,x2+x+t=0,∵二次函数y=x2+2x+t与一次函数y=x的图象有两个交点,∴△=1﹣4t>0,∴t<,∵二次函数y=x2+2x+t,∴抛物线开口向上,对称轴为x=﹣1,与y轴的交点为(0,t),当交点的横坐标为1时,把x=1代入y=x,求得交点为(1,1),把(1,1)代入y=x2+2x+t,求得t=﹣2,∵m<1<n,∴t<﹣2,故选:B.2.(2020•宝应县二模)当x=1或﹣3时,代数式ax2+bx+c与mx+n的值相等,则函数y=ax2+(b﹣m)x+c ﹣n与x轴的交点为()A.(1,0)和(﹣3,0)B.(﹣1,0)C.(3,0)D.(﹣1,0)和(3,0)【答案】A【解答】解:代数式ax2+bx+c与mx+n的值相等,即ax2+bx+c=mx+n,则ax2+(b﹣m)x+c﹣n=0,则y=ax2+(b﹣m)x+c﹣n与x轴的交点为(1,0)和(﹣3,0),故选:A.3.在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如表:x﹣3 ﹣2 ﹣1 1 2 3 4 5y﹣14 ﹣7 ﹣2 2 m n﹣7 ﹣14 则m、n的大小关系为()A.m>n B.m<n C.m=n D.无法确定【答案】A【解答】解:把x=1,y=2和x=﹣1,y=﹣2都代入y=﹣x2+bx+c中,得解得,,∴二次函数的解析式为:y=﹣x2+2x+1,把x=2,y=m和x=3,y=n代入y=﹣x2+2x+1得,m=﹣4+4+1=1,n=﹣9+6+1=﹣2,∴m>n,故选:A.4.(2020•江都区一模)若函数y=kx2﹣2x﹣1的图象与x轴有交点,则k的取值范围是()A.k≥﹣1 B.k>﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0【答案】A【解答】解:当k=0时,函数为y=﹣2x﹣1,与x轴有一个交点(﹣,0),当k≠0时,若二次函数y=kx2﹣2x﹣1的图象与x轴有交点,则△=(﹣2)2+4k≥0,解得k≥﹣1且k≠0,综上k的取值范围是k≥﹣1.故选:A.5.(2020•宝应县一模)二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=1,下列结论不正确的是()A.a=2B.顶点的坐标为(1,﹣4)C.当﹣1<x<3时,y>0D.当x>3时,y随着x的增大而增大【答案】C【解答】解:∵二次函数y=x2﹣ax+b对称轴为直线x=1,∴﹣=1,得a=2,故选项A正确;∵该函数图象过点(﹣1,0),∴0=1﹣2×(﹣1)+b,得b=﹣3,∴y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线的顶点坐标为(1,﹣4),故选项B正确;∵二次函数y=x2﹣ax+b对称轴为直线x=1,过点(﹣1,0),∴该函数过点(3,0),∴当﹣1<x<3时,y<0,故选项C不正确;∴当x>1时,y随x的增大而增大,故选项D正确;故选:C.6.(2020•高邮市二模)在抛物线y=a(x﹣m﹣1)2+c(a≠0)和直线y=﹣x的图象上有三点(x1,m)、(x2,m)、(x3,m),则x1+x2+x3的结果是()A.B.0 C.1 D.2【答案】D【解答】解:如图,在抛物线y=a(x﹣m﹣1)2+c(a≠0)和直线y=﹣x的图象上有三点A(x1,m)、B(x2,m)、C(x3,m),∵y=a(x﹣m﹣1)2+c(a≠0)∴抛物线的对称轴为直线x=m+1,∴=m+1,∴x2+x3=2m+2,∵A(x1,m)在直线y=﹣上,∴m=﹣x1,∴x1=﹣2m,∴x1+x2+x3=﹣2m+2m+2=2,故选:D.7.(2020•江都区二模)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=﹣3 C.x1=1,x2=2 D.x1=1,x2=3【答案】C【解答】解:将点(1,0)代入y=x2﹣3x+m,解得m=2,∴y=x2﹣3x+2,∴x2﹣3x+2=0的两个根为x=1,x=2;故选:C.8.(2020•邗江区一模)抛物线y=x2向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为()A.y=(x+3)2+2 B.y=(x+3)2﹣2 C.y=(x+2)2+3 D.y=(x+2)2﹣3【答案】A【解答】解:将抛物线y=x2向上平移2个单位长度,再向左平移3个单位长度后,得到的抛物线的解析式为y=(x+3)2+2,故选:A.二.填空题(共8小题)9.(2020•邗江区二模)如图,平面直角坐标系中,点A(﹣3,﹣3),B(1,﹣1),若抛物线y=ax2+2x﹣1(a≠0)与线段AB(包含A、B两点)有两个不同交点,则a的取值范围是或a≤﹣2.【答案】≤a<或a≤﹣2.【解答】解:①a<0时,x=1时,y≤﹣1,x=﹣3时,y≤﹣3,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,x=1时,y≥﹣1,即a≥,点A、B的坐标得,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;故答案为≤a<或a≤﹣2.10.(2020•高邮市二模)若二次函数y=ax2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x…﹣1 0 1 2 3 …y…10 0 6 8 6 …则它的图象与x轴的两个交点横坐标的和为4.【答案】见试题解答内容【解答】解:从表格看,函数的对称轴为x=2,根据点的对称性,x=0,y=0,则x=4时,y=0,即图象和x轴的两个交点的横坐标为0、4,则图象与x轴的两个交点横坐标的和为0+4=4,故答案为4.11.(2020•邗江区校级一模)某种商品每件进价为20元,调查表明:在某段时间内,若以每件x元(20≤x ≤40,且x为整数)出售,可卖出(40﹣x)件,若要使利润最大,则每件商品的售价应为30元.【答案】见试题解答内容【解答】解:设商品所获利润为w元,由题意得:w=(x﹣20)(40﹣x)=﹣x2+60x﹣800=﹣(x﹣30)2+100,∵二次项系数﹣1<0,20≤x≤40,且x为整数,∴当x=30时,w取得最大值,最大值为100元.∴每件商品的售价应为30元.故答案为:30.12.(2020•邗江区校级一模)如图是二次函数y=ax2+bx+c的部分图象,由图象可知ax2+bx+c>0时x的取值范围是﹣1<x<5.【答案】见试题解答内容【解答】解:由图可知,二次函数图象为直线x=2,所以,函数图象与x轴的另一交点为(﹣1,0),所以,ax2+bx+c>0时x的取值范围是﹣1<x<5.故答案为:﹣1<x<5.13.(2020•广陵区校级二模)若点A(﹣3,n)、B(m,n)在二次函数y=a(x+2)2+h的图象上,则m的值为﹣1.【答案】见试题解答内容【解答】解:y=a(x+2)2+h的对称轴x=﹣2,∵A(﹣3,n)、B(m,n)的纵坐标相同,∴A与B关于x=﹣2对称,∴m=﹣1,故答案为﹣1.14.(2020•广陵区校级三模)若二次函数y=ax2+bx+c的图象与x轴交于A和B两点,顶点为C,且b2﹣4ac=4,则∠ACB的度数为90°.【答案】见试题解答内容【解答】解:当y=0,ax2+bx+c=0,∴x1=,x2=∴AB=||∵b2﹣4ac=4,∴C(﹣,﹣),∴AC=BC=||∴AC2+BC2=AB2,∴∠ACB=90°.故答案是:90°.15.(2020•江都区三模)已知二次函数f(x)=2x2+ax+b,若f(a)=f(b+1),其中a≠b+1,则f(1)+f (2)的值为8.【答案】见试题解答内容【解答】解:∵f(a)=f(b+1),二次函数f(x)=2x2+ax+b,a≠b+1,∴,化简,得3a+2b=﹣2,∴f(1)+f(2)=2+a+b+8+2a+b=10+(3a+2b)=10+(﹣2)=8,故答案为:8.16.(2020•扬州一模)若﹣2≤a<2,则满足a(a+b)=b(a+1)+a的b的取值范围为﹣≤b≤6.【答案】见试题解答内容【解答】解:由a(a+b)=b(a+1)+a,化简得:b=a2﹣a(﹣2≤a<2)将二次函数化为顶点式得:b=(﹣2≤a<2)则二次函数开口朝上,顶点为(,﹣),当a<时,b随a的增大而减小,当a>时,b随a的增大而增大.因此当a=﹣2时,b取得最大值6;当a=时,b取得最小值.故答案为:.三.解答题(共18小题)17.(2020•江都区二模)如图,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)经过原点O和两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)a=,b=0,c=0;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M、N两点,M在N的左边.当△AMN为等腰三角形时,直接写出圆心P的横坐标.【答案】(1),b=0,c=0.(2)证明过程见解答;(3)0或﹣2或2.【解答】解:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,∴a=,b=c=0;故答案为:a=,b=c=0;(2)设P(x,y),P的半径r=,又∵y=,则r=,化简得:r=,∴点P在运动过程中,P始终与x轴相交;(3)圆心P的横坐标为0或﹣2±2或2.∵点P在该抛物线上运动,设P(a,a2),∴P A=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2,当AN=MN时,=4,解得:a=﹣2±2,故圆心P的横坐标为0或﹣2±2或2±2.18.(2020•高邮市二模)已知在平面直角坐标系xOy中,二次函数y=x2﹣2ax+b(a、b为常数)的图象顶点的纵坐标为﹣4.(1)直接写出a、b满足的关系式是b=a2﹣4.(2)若点P(x1,m),Q(x2,m)(x1<x2)是次函数y=x2﹣2ax+b(a,b为常数)的图象上的两点.①当a=﹣3,m=b时,求PQ的长度.②当m=0时,求PQ的长度.③若存在实数c,使得x1≤3﹣2c,且x2≥15﹣2c成立,求m的取值范围.【答案】(1)b=a2﹣4;(2)①6;②4;③m≥32.【解答】解:(1)∵次函数y=x2﹣2ax+b(a、b为常数)的图象顶点的纵坐标为﹣4,∴=﹣4,∴b=a2﹣4,故答案为b=a2﹣4;(2)①当a=﹣3,m=b时,抛物线的对称轴为x=﹣=﹣3,Q(x2,m)在y轴上,∴PQ=6;②∵b=a2﹣4,∴二次函数为y=x2﹣2ax+a2﹣4,当m=0时,x2﹣2ax+a2﹣4=0,∴x1+x2=2a,x1x2=a2﹣4,∴PQ=|x1﹣x2|===4;③∵b=a2﹣4,∴x2﹣2 ax+a2﹣4=m,解得x1=a﹣,x2=a+,∴PQ=2,又x1≤3﹣2c,且x2≥15﹣2c,∴2≥(15﹣2c)﹣(3﹣2c),∴m≥32.19.(2020•邗江区二模)如图,已知二次函数y=﹣+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0),对称轴是直线x=.(1)求该二次函数的表达式;(2)如图1,连接AC,若点P是该抛物线上一点,且∠P AB=∠ACO,求点P的坐标;(3)如图2,点P是该抛物线上一点,点Q为射线CB上一点,且P、Q两点均在第四象限内,线段AQ 与BP交于点M,当∠PBQ=∠AQB,且△ABM与△PQM的面积相等时,请问线段PQ的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【答案】(1)抛物线的解析式为:;(2)P(3,2)或(5,);(3)线段PQ的长是定值,PQ=7.【解答】解:(1)由题意可得:,解得:,∴抛物线的解析式为:;(2)设P(x,),∵已知二次函数的图象与x轴交于A、B两点,与y轴交于点C,∴点B的坐标为(4,0),点C的坐标为(0,4),∴OC=4,∵点A的坐标为(﹣3,0),∴OA=3,∴AC===5,如图,在y轴上取点D,使CD=CA,连接AD,∴∠CAD=∠ADC,DO=9,∴∠ACO=∠CAD+∠ADC=2∠ADO,∵∠P AB=∠ACO,∴∠ADO=∠P AB,∴tan∠ADO=tan∠P AB,∴,∴x1=3,x2=5∴P(3,2)或(5,);(3)线段PQ的长是定值,PQ=7.如图2,过点A作AE⊥BC于E,过点P作PF⊥BC于F,∵点B的坐标为(4,0),点A的坐标为(﹣3,0),∴AB=7,∵△ABM与△PQM的面积相等,∴△ABQ与△PQB的面积相等,∴×BQ×AE=×BQ×PF,∴AE=PF,又∵∠PBQ=∠AQB,∠AEQ=∠PFB=90°,∴△AEQ≌△PFB(AAS),∴EQ=BF,∴BE=QF,∵AE=PF,∠AEB=∠PFQ=90°,BE=QF,∴△AEB≌△PFQ(SAS),∴AB=PQ=7.20.(2020•宝应县二模)2020年是脱贫攻坚决胜年.某地实施产业扶贫种植某种水果,其成本经过测算为20元kg,投放市场后,经过市场调研发现,这种水果在上市的一段时间内的销售单价p(元/kg)与时间t(天)之间的函数图象如图,且其日销售量y(kg)与时间t(天)的关系是:y=﹣2t+120,天数为整数.(1)试求销售单价p(元/kg)与时间t(天)之间的函数关系式;(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前20天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫“对象.现发现:在前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.【答案】见试题解答内容【解答】解:(1)当0≤t≤40时,设销售单价p(元/kg)与时间t(天)之间的函数关系式为p=kt+30,∴40=40t+30,∴t=,∴p=t+30,当t>40时,p=40,综上所述:p=;(2)设日销售利润为w元,当0≤t≤40时,w=(p﹣20)•y=(t+10)((﹣2t+120)=﹣(t﹣10)2+1250,∴当t=10时,w有最大值为1250元,当t>40时,w=(p﹣20)•y=20(﹣2t+120)=﹣40t+2400<800,∴第10天时,最大日销售利润为1250元;(3)∵w=(p﹣20﹣n)(﹣2t+120)=﹣t2+(2n+10)t+1200﹣120n,∴a=﹣,对称轴为x=2n+10,∵每天扣除捐赠后的日销售利润随时间t的增大而增大,∴∴5≤n<921.(2020•邗江区二模)疫情期间,某销售商在网上销售A、B两种型号的电脑“手写板”,其进价、售价和每日销量如表所示:进价(元/个)售价(元/个)销量(个/日)A型400 600 200B型800 1200 400根据市场行情,该销售商对A型手写板降价销售,同时对B型手写板提高售价,此时发现A型手写板每降低5元就可多卖1个,B型手写板每提高5元就少卖1个.销售时保持每天销售总量不变,设其中A 型手写板每天多销售x个,每天获得的总利润为y元.(1)求y与x之间的函数关系式,并直接写出x的取值范围;(2)要使每天的利润不低于212000元,求出x的取值范围;(3)该销售商决定每销售一个B型手写板,就捐助a元(0<a≤100)给受“新冠疫情”影响的困难学生,若当30≤x≤40时,每天的最大利润为203400元,求a的值.【答案】见试题解答内容【解答】解:(1)由题意得,y=(600﹣400﹣5x)(200+x)+(1200﹣800+5x)(400﹣x)=﹣10x2+800x+200000,(0≤x≤40且x为整数),即y与x之间的函数关系式是y=﹣10x2+800x+200000,(0≤x≤40且x为整数);(2)∵y=﹣10x2+800x+200000=﹣10(x﹣40)2+216000,∴当y=212000时,﹣10(x﹣40)2+216000=212000,解得:x1=20,x2=60,要使y≥212000,则20≤x≤60,∵0≤x≤40,∴20≤x≤40,即x的取值范围是:20≤x≤40;(3)设捐款后每天的利润为w元,则w=﹣10x2+800x+200000﹣(400﹣x)a=﹣10x2+(800+a)x+200000﹣400a,对称轴为,∵0<a≤100,∴,∵抛物线开口向下,当30≤x≤40时,w随x的增大而增大,∴当x=40时,w最大,∴﹣10×402+40(800+a)+200000﹣400a=203400,解得,a=35.22.(2020•仪征市一模)已知如图,抛物线y=x2+mx+n的顶点为(1,﹣),其图象与x轴交于A,B 两点,与y轴交于点C.(1)m=﹣,n=﹣2;(2)点P在抛物线的对称轴上,当∠APC=∠BAC时,求点P的坐标;(3)点M为线段AC的中点,点N是线段AB上的动点,在△ABC绕点C按逆时针方向旋转的过程中,点N的对应点是点N′,直接写出线段MN′长度的最大值和最小值.【答案】见试题解答内容【解答】解:(1)∵抛物线y=+mx+n的顶点为,∴x=﹣=1,∴m=﹣,∴,解得n=﹣2,故答案为:﹣,﹣2;(2)以O为圆心,OC为半径作圆O,⊙O与x轴交于点D,与抛物线的对称轴交于点P1,P2,∵抛物线的解析式为y=x﹣2,∴y=0时,x=﹣2或4,x=0时,y=﹣2,∴A(﹣2,0),B(4,0),C(0,﹣2),∴OA=OC=2,∴⊙O经过点A,∵OC⊥AB,∴∠BAC=∠ADC,∵∠AP1C=∠ADC,∴∠BAC=∠AP1C,∵抛物线y=x﹣2与y轴交于点C,对称轴为直线x=1,∴C(0,﹣2),∵OC=2,OE=1,∴OP1=2,∴P1E===,∴P1(1,).∵P1与P2关于x轴对称,∴P2(1,﹣).综合以上可得,满足条件的点P的坐标为(1,)或(1,﹣);(3)∵AO=OC=2,∴AC=2,∵M为AC的中点,∴CM=AC=,以C为圆心,OC为半径画圆交AC于点G,∴MN'的最小值为MG=GC﹣MC=2﹣,∵OC=2,OB=4,∴BC===2,以C为圆心,CB为半径画圆交AC的延长线于点H,∴MN'的最大值=MH=MC+CH=+2.即MN'的最小值为2﹣,最大值为+2.23.(2020•广陵区校级一模)如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B(3,0),C(0,﹣4);(2)当P点运动到(﹣1,﹣2)时,判断PB与⊙C的位置关系,并说出理由;(3)是否存在点P,使得△PBC是以BC为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(4)连接PB,若E为PB的中点,连接OE,则OE的最大值=.【答案】见试题解答内容【解答】解:(1)在y=x2﹣4中,令y=0,则x=±3,令x=0,则y=﹣4,∴B(3,0),C(0,﹣4);故答案为:(3,0),(0,﹣4);(2)如图(2),当P点运动到(﹣1,﹣2)时,即处于点P1位置,此时,P(P1)B与⊙C相切;∵P1(﹣1,﹣2),而点B、C的坐标分别为(3,0)、(0,﹣4),∴P1B2=20,P1C2=5,BC2=25,故P1B2+P1C2=BC2,∴CP1⊥P1B,∴P1B与⊙C相切;(3)存在点P,使得△PBC为直角三角形,当PB与⊙相切时,△PBC为直角三角形,如图(2),连接BC,∵OB=3.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,=,设OF=P2E=2x,FP2=OE=x,∴BE=3﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),由(2)知,P1符合条件,即P1(﹣1,﹣2);综上所述:点P的坐标为:(﹣1,﹣2)或(,﹣);(4)如图(3),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC的延长线上时,AP的值最大,最大值=5+,∴OE的最大值为故答案为:.24.(2020•邗江区校级一模)如图1,已知抛物线顶点C(1,4),且与y轴交于点D(0,3).(1)求该抛物线的解析式及其与x轴的交点A、B的坐标;(2)将直线AC绕点A顺时针旋转45°后得到直线AE,与抛物线的另一个交点为E,请求出点E的坐标;(3)如图2,点P是该抛物线上位于第一象限的点,线段AP交BD于点M、交y轴于点N,△BMP和△DMN的面积分别为S1,S2,求S1﹣S2的最大值.【答案】见试题解答内容【解答】解:(1)设抛物线的表达式为:y=a(x﹣h)2+k=a(x﹣1)2+4,将点D的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3①;令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0);(2)如图,设函数的对称轴交x轴于点G,交AE于点H,过点H作HN⊥AC于点N,在△AGC中,tan∠ACG====tan∠HCN,在Rt△CHN中,设HN=x,则CN=HN tan∠HCN=2x,在Rt△ANH中,∠NAH=45°,则AN=NH=x,故AC=AN+CN=3x==2,故x=,在Rt△CHN中,CH==x=,故点H(1,),由点A、H的坐标得,直线AH的表达式为:y=x+②,联立①②并解得:x=或﹣1(舍去﹣1),故点E(,);(3)设点P的坐标为(m,﹣m2+2m+3),由点P、A的坐标得,直线AP的表达式为:y=﹣(m﹣3)(x+1),当x=0时,y=3﹣m,即点N(0,3﹣m),即ON=3﹣m,则S1﹣S2=[S△ABP﹣S△AON﹣S四边形OBMN]﹣[S△BOD﹣S四边形OBMN]=S△ABP﹣S△BOD﹣S△AON,即S1﹣S2=×AB×y P﹣×OB×OD﹣×OA×ON=×4×(﹣m2+2m+3)×3×3﹣×1×(3﹣m)=﹣2m2+m,∵﹣2<0,故S1﹣S2有最大值,当m=时,其最大值为;故S1﹣S2的最大值为.25.(2020•邗江区校级一模)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则称这个点为“美好点”,如图,过点P分别作x轴,y轴的垂线,与坐标轴围成的矩形OAPB的周长与面积相等,则P为“美好点”.(1)在点M(2,2),N(4,4),Q(﹣6,3)中,是“美好点”的有N、Q.(2)若“美好点”P(a,﹣3)在直线y=x+b(b为常数)上,求a和b的值;(3)若“美好点”P恰好在抛物线y=x2第一象限的图象上,在x轴上是否存在一点Q使得△POQ 为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)对于M点,对应图形的周长为:2×(2+2)=8,面积为2×2=4≠8,故点M不是“美好点”;对于点N,对应图形的周长为:2×(4+4)=16,面积为4×4=16,故点N是“美好点”;对于点Q,对应图形的周长为:2×(6+3)=18,面积为6×3=18,故点Q是“美好点”;故答案为:N、Q;(2)对于P点,对应图形的周长为2×(|a|+3)=2|a|+6,面积为3|a|,∵点P是“美好点”,∴2|a|+6=3|a|,解得:a=±6,将点P的坐标代入直线的表达式得:﹣3=a+b,则b=﹣3﹣a,故b=﹣9或3,故s=6,b=﹣9或a=﹣6,b=3;(3)存在,理由:设点P的坐标为(m,n),n=m2(m>0,n>0),由题意得:2m+2n=mn,即m+m2=m3,解得:m=6或﹣4(舍去)或0(舍去),故点P的坐标为(6,3);设点Q的坐标为(x,0),则PQ2=(x﹣6)2+32=(x﹣6)2+9,PO2=36+9=45,OQ2=x2,当PQ=PO时,则(x﹣6)2+9=45,解得:x=0(舍去)或12;当PQ=OQ时,同理可得:x=;当PO=QO时,同理可得:x=±3;综上点Q的坐标为:(12,0)或(,0)或(3,0)或(﹣3,0).26.(2020•宝应县一模)某水果批发商以10元/千克的价格购进1300千克的某种水果投放市场,受疫情影响,该水果批发商的水果出现滞销,根据市场推测,每滞销一天销售,该水果价格将上涨1元/千克,且平均每天将有20千克的水果会等级下降,假设每天等级下降的水果都能以6元/千克的价格一次性抛售完,又知该水果最多只能滞销20天.(1)设滞销x天后,该水果批发商将新鲜的水果一次性出售完所得的利润为w元,试写出w与x的函数关系式:(2)若滞销期内,每滞销一天需支付各种费用320元,则该水果批发商最多可获利多少元?【答案】见试题解答内容【解答】解:(1)由题意可得,滞销x天后,水果价格(10+x)元/千克,品质下降的水果:20x千克,∴w=x(1300﹣20x)﹣(10﹣6)×20x=1300x﹣20x2﹣80x。

2024年江苏省扬州市广陵区九年级中考第二次模拟考试数学试题(含答案)

2024年江苏省扬州市广陵区九年级中考第二次模拟考试数学试题(含答案)

2024年江苏省扬州市广陵区九年级中考第二次模拟考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号.3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答,非选择题在指定位置用0.5毫米的黑色笔作答.在试卷或草稿纸上答题无效.4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.如果规定收入为正,那么支出负,收入3元记作+3元,支出5元记作A .-5元B .+5元C .-3元D .元2.下列计算正确的是A .B .C .D .3.古代名著《孙子算经》中有一题:今有三人共车(如果3人一辆车),二车空;二人共车,九人步.问人与车各几何?设有车辆,则根据题意,可列出方程是A .B .C .D .4.杆秤是中国最古老也是现今人们仍然使用的衡量工具,由秤杆、秤砣、秤盘三个部分组成.秤砣、秤杆分别叫做“权”和“衡”,指的是做任何事都要权衡轻重.如图是常见的一种秤砣,则它的主视图是A .B .C .D .5.如图,平行于主光轴MN 的光线AB 和CD 经过凹透镜的折射后,折射光线BE 、DF 的反向延长线交于MN 上一点.若,则的度数是3±235x x x+=236x x x= 32x x x÷=()32626x x =x 3(2)29x x +=-3(2)29x x -=+3(2)29x x +=+3(2)29x x -=-P 160,150ABE CDF ︒︒∠=∠=EPF ∠A .B .C .D .6.一个不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是A .3个球都是黑球B .3个球都是白球C .3个球中有黑球D .3个球中有白球7.已知点都在反比例函数的图像上.下列结论正确的是A .若,则B .若,则C .若,则D .若,则8.若从甲、乙、丙、丁、戊五位老师中任选两位一起帮图书馆整理书籍,所需的时间如下表:如果选一个人单独去整理,花时间最少的是合作方式甲、乙乙、丙丙、丁丁、戊戊、甲所需时间(h )13910128A .甲B .戊C .丁D .丙二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9有意义的条件是______.10.2024年3月31日,我市重大城建项目——大运河“十里外滩”综合整治提升项目正式开工建设,预计总投资约82.88亿元,数据82.88亿用科学记数法表示为______.11.将甲、乙两组各5个数据绘制成折线统计图(如图),两组数据的平均数都是13,设甲、乙两组数据的方差分别为,则______(填“>”“=”或“<”).20︒30︒50︒70︒()()1122,,,A x y B x y 6y x=-120x x +=12y y =120x x +=120y y +=12x x <12y y <12x x <12y y >22s s 甲乙、2s 甲2s 乙12.化简的结果是______.13.圆锥的底面半径为1,母线长为3,则它的侧面展开图的圆心角为______.14.《九章算术》中记载了一种测量井深的方法.如图,在井口处立一根垂直于井口的木杆BD ,从木杆的顶端观察井水水岸,视线DC 与井口的直径AB 交于点,如果测得米,米,米,那么AC 为______米.15.如图,在中,,则的度数为______.16.如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则的值为______.17.如图,中,D 、E 分别是BC 、AC 的中点,BF 平分,交DE 于点,若,则EF 的长是______.2222x xx x+--B D C E 1.8AB =1BD =0.5BE =O ,60OA BC AOB ︒⊥∠=ADC ∠sin ADC ∠ABC ABC ∠F 12,9AB BC ==18.如图,在菱形ABCD 中,,点为对角线AC 上一动点,于点,连接CF .在点运动的过程中,CF 长的最小值为______.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)计算或化简:(1);(2).20.(本题满分8分)解不等式组并在数轴上表示出不等式组的解集.21.(本题满分8分)甲,乙两个小区各有300户居民,为了解两个小区3月份用户使用燃气量情况,小明和小丽分别从中随机抽取30户进行调查,并对数据进行整理、描述和分析.下面给出了部分信息.①甲小区用气量频数分布直方图如右图(数据分成5组:)②甲小区用气量的数据在这一组的是:③甲,乙两小区用气量的平均数、中位数、众数如下:小区平均数中位数众数60,4B AD ︒∠==E DEF ∠=60,DF EF ︒⊥F E 11tan 45|2|2-︒⎛⎫++- ⎪⎝⎭(21)(21)4(1)a a a a +---542(1),31,32x x x x +-⎧⎪+⎨+<⎪⎩...510,1015,15x x <<......20,2025,2530x x x <<<.........1520x < (151516161616181818181819)甲17.218乙17.71915根据以上信息,回答下列问题:(1)表中的值为______;(2)在甲小区抽取的用户中,记3月份用气量高于它们的平均用气量的户数为.在乙小区抽取的用户中,记3月份用气量高于它们的平均用气量的户数为.比较,的大小,并说明理由;(3)估计甲小区中用气量超过15立方米的户数.22.(本题满分8分)某市开展“弘扬家风家教,创建文明家庭”系列活动,某校团委积极响应,为宣传活动招募学生宣传员,八年级(1)、(2)班共有六名学生报名,其中八(1)班两名男生、一名女生,八(2)班一名男生、两名女生.(1)现从六名学生中随机抽取一名学生作为宣传员,抽取女生的概率是______.(2)现从八年级(1)、(2)班各随机抽取一名学生作为宣传员,请用列表法或画树状图法求抽取的两名学生是一男一女的概率.23.(本题满分10分)某中学为了丰富学生的课外体育活动,购买了篮球和足球.已知篮球的单价是足球的单价的3倍,购买足球共花费750元,购买篮球共花费900元,购买足球的数量比购买篮球的数量多15个.求足球的单价.24.(本题满分10分)如图,已知,点在射线OA 上,点D ,E 在射线OB 上,其中,四边形CEDF 是平行四边形.(1)请只用无刻度的直尺画出菱形CODN ,并请明理由.(2)作出(1)中菱形CODN 后,若,求ON 的长.25.(本题满分10分)如图,AB 为的直径,C ,D 是上不同于A ,B 的两点,,连接CD .过点作,交DB 的延长线于点,延长CE ,交AB 的延长线于点.(1)求证:CF 是的切线.(2)当时,求EF 的长.26.(本题满分10分)阅读感悟:mm 1p 2p 1p 2p AOB ∠C OC OD =60OC AOB ︒=∠=O O ABD ∠2BAC =∠C CE DB ⊥E F O 36,sin 5BD F =∠=代数证明题是数学中常见的一种题型,它要求运用逻辑推理和代数知识来证明某个数学命题的正确性,如下例题:例:已知实数x 、y 满足,证明:.证明:因为且x ,y 均为正,所以______,______.(不等式的两边都乘以同一个正数,不等号的方向不变)所以.(不等式的传递性)解决问题:(1)请将上面的证明过程填写完整.(2)尝试证明:若,则.27.(本题满分12分)问题情境:数学活动课上,王老师给同学们每人发了一张矩形纸片探究折叠的性质在矩形ABCD 的CD 边上取一点,将沿BE 翻折,使点恰好落在AD 边上点处.实践探究:(1)如图1,若,则的值为______;(2)如图2,当时,求的值;问题解决:(3)如图3,延长EF ,与的角平分线交于点M ,BM 交AD 于点,当时,求的值.28.(本题满分12分)某公园要在小广场建造一个喷泉景观.在小广场中央处垂直于地面安装一个高为1.25米的花形柱子OA ,安置在柱子顶端处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上抛物线路径如图1所示,为使水流形状较为美观,设计成水流在距OA 的水平距离为1米时达到最大高度,此时离地面2.25米.0x y >>22x y >x y >2x >xy >22x y >a b <2a bb +<E BCE C F 15CBE ︒∠=ABBC 4,12CE AF FD == ABBCABF ∠N NF AN FD=+AB BC O A(1)以点为原点建立如图2所示的平面直角坐标系,水流到OA 水平距离为米,水流喷出的高度为米,求出在第一象限内的抛物线解析式(不要求写出自变量的取值范围);(2)张师傅正在喷泉景观内维修设备期间,喷水管意外喷水,但是身高1.76米的张师傅却没有被水淋到,此时他离花形柱子OA 的距离为米,求的取值范围;(3)为了美观,在离花形柱子4米处的地面B 、C 处安装射灯,射灯射出的光线与地面成角,如图3所示,光线交汇点在花形柱子OA 的正上方,且米,求光线与抛物线水流之间的最小垂直距离.2024年九年级第二次模拟考试数学参考答案及评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)题号12345678答案ACBACCBD二、填空题(本大题共有10小题,每小题3分,共30分)9.10.11.>12.13.14.2.615.1617.1.518.1三、解答题(本大题共有10小题,共96分)19.(本题满分8分)解:(1)原式……………………………………………………………………………………3分…………………………………………………………………………………………………………1分(2)原式……………………………………………………………………………3分………………………………………………………………………………………………………1分O x y d d 45︒P 4OP =2024x ≥98.28810⨯x 120︒30︒122=++5; =224144a a a =--+4 1.a =-解:由得:,……………………………………………………………………2分由得:,………………………………………………………………………………2分则不等式组的解集为,………………………………………………………………………………2分将解集表示在数轴上如下:21.(本题满分8分)(1)16;……………………………………………………………………………………………………2分(2),理由:甲小区,(户);乙小区中位数高于平均数,则至少为15户,;………………………………………………………………………………………………3分(3)由题意得:(户)答:甲小区中用气量超过15立方米约180户.……………………………………………………………3分22.(本题满分8分)解:(1);……………………………………………………………………………………………………2分(2)列表如下:男女女男(男,男)(男,女)(男,女)男(男,男)(男,女)(男,女)女(女,男)(女,女)(女,女)共有9种等可能的结果,其中抽取的两名学生是一男一女的结果有5种,…………………………………………………………4分抽取的两名学生是一男一女的概率为.………………………………………………………………2分23.(本题满分10分)解:设足球的单价是元,则篮球的单价是3x 元,………………………………………………………1分由题意得:,………………………………………………………………………………4分解得:,………………………………………………………………………………………………3分经检验,是原方程的解,且符合题意,……………………………………………………………1分答:足球的单价是30元.……………………………………………………………………………………1分542(1)x x +≥-2x ≥-3132x x ++<3x >-2x ≥-12p p <166214p =++=2p 12p p ∴<106230018030++⨯=12∴59x 750900153x x-=30x =30x =解:(1)如图,连接CD ,EF ,相交于点,连接OG 并延长,交CF 的延长线于点,连接DN ,则四边形CODN 是菱形,即菱形CODN 为所求.……………………………………………………………………………2分理由:四边形CEDF 是平行四边形,,,四边形CODN 是平行四边形.………………………………………………………………………………2分为等腰三角形,,即,四边形CODN 是菱形.………………………………………………………………………………………2分(2)四边形CODN 是菱形,.……………………………………………………………1分在Rt 中,,………………………………………………3分25.(本题满分10分)(1)证明:如图,连接OC .是的半径,是的切线;………………………………………………………………5分(2)解:连接AD,G N ,//,CG DG CF ED CNG DOG ∴=∴∠=∠,(AAS),OGD NGC CNG DOG OG NG ∠=∠∴≅∴= ∴,OC OD COD =∴ ,CG DG OG CD =∴⊥ CD ON ⊥∴ ,,CON BON CD ON OG NG ∴∠=∠⊥=60,30.AOB CON ︒︒∠=∴∠= COG30OC COG ︒=∠=cos303,2 6.OG OC ON OG ︒∴===∴== ,12,OA OC =∴∠=∠ 312,321,∠=∠+∠∴∠=∠ 2,3,//,ABD BAC ABD OC BD ∠=∠∴∠=∠∴ ,,CE DE OC CF ⊥∴⊥ OC O CF ∴O是的直径,,,,,,,解得,,在Rt 中,由勾股定理得:.………………………………………………5分26.(本题满分10分)(1)……………………………………………………………………………………………………4分(2),,…………………………………………………………………………………………………3分………………………………………………………………………………………………………3分27.(本题满分12分)解:(1);……………………………………………………………………………………………………2分(2)设,则,将沿BE 翻折,使点恰好落在AD 边上点处,,又矩形ABCD 中,,,,AB O 90ADB ︒∴∠=,//,DE CF CF AD BAD F ⊥∴∴∠=∠ 35sin sin ,1053BD BAD F AB BD AB ∴∠=∠==∴==152OC AB == 3,5,sin 5OC CF OC F ⊥=∠= 3sin 5OCOC F OF OC BF ∴∠===+103BF =33sin ,255BEF BE BF BF ∴∠==∴==BEF 83EF ==2xyy a b < 2a b b ∴+<2a b b +∴<12AB CD a ==4DE a =- BCE C F 90,BFE C CE EF ︒∴∠=∠== 90A D ︒∠=∠=90,90AFB DFE DEF DFE ︒︒∴∠+∠=∠+∠=,~,,AF ABAFB DEF FAB EDF AF DF AB DE DE DF∴∠=∠∴∴=∴=,解得或(舍去),,由折叠可得:,,,;………………………………………………………………………………………5分(3)过点作于点,,,,设,设,则,,解得,……………………………………………………………………………………5分28.(本题满分12分)12,(4)12AF DF AB DE a a =∴=-= 6a =2a =-C 642DE DC E ∴=-=-=4CE EF ==12DF AF ∴===∴=÷=BC AD AF DF ∴==+=+=AB BC ∴==N NG BF ⊥G 11,22NF AN FD NF AD BC =+∴== 1,2BC BF NF BF =∴= ,90NFG AFB NGF BAF ︒∠=∠∠=∠= 1,,2NG FG FN NFG BFA AB FA BF ∴∴=== ∽AN x = ,,,BN ABF AN AB NG BF ∠⊥⊥ 平分,2,AN NG x AB BG x ∴====FG y =2AF y =222,AB AF BF += 222(2)(2)(2)x y x y ∴+=+43y x =4102,33BF BG GF x x x ∴=+=+=23.1053AB AB x BC BF x ∴===解:(1)根据题意第一象限内的抛物线的顶点坐标为(1,2.25),A (0,1.25),设第一象限内的抛物线解析式为,将点代入物线解析式,,解得,第一象限内的抛物线解析式为;…………………………………………………3分(2)根据题意,令,即,解得,,抛物线开口向下,当时,,的取值范围为;……………………………………………………………………………4分(3)过抛物线上点作,垂足为点,过点作轴,交BP 于点,如图所示,由题意可知:为等腰直角三角形,.设,则,轴,即当时,有最小值,此时.米.……………………………………………………5分2(1) 2.25y a x =-+(0,1.25)A 21.25(01) 2.25a =-+1α=-∴2(1) 2.25y x =--+1.76y =2(1) 2.25 1.76x --+=120.3, 1.7x x ==10-< ∴0.3 1.7x << 1.76y >d ∴0.3 1.7d <<D DE BP ⊥E D //DF x F DEF DF =()2,2 1.25,(,4)D m m m F m n m n -+++--+DF n =//DF x 22 1.254m m m n ∴-++=--+2213 2.75( 1.5)2n m m m ∴=-+=-+1.5m =n 1211,22DF DE DF ====∴。

(江苏卷) 2020年中考数学第二次模拟考试(参考答案)

(江苏卷) 2020年中考数学第二次模拟考试(参考答案)
2020 年中考数学第二次模拟考试【江苏卷】
数学·参考答案
1
2
3
4
5
6
AABDAC
7.–1 8.1.1×103 9. x 1 10.1 11.﹣15
13.17
14. 8 15
15.60
17.【解析】
1
1 x
x2 1 x
16. 9 或 5 52
12. 2 5
= x 1 x2 1 xx x+1
= x2 1 x+1
x y 9000, 则 1.1x 0.9 y 9000,
x 4500,
解得
y
4500,
数学 第 3页(共 9页) 3
答:原计划拆建各 4500 平方米.
(2)计划资金 y1=4500×80+4500×800=3960000(元),
实用资金 y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+324000=3636000(元),
AD
在 Rt△ADB 中,tan∠ABD= ,
BD
∴BD=
AD tan ABD
x tan 180

AD
在 Rt△ACD 中,tan∠ACD= ,
CD
∴CD=
AD tan ACD
x tan 140

∵BC=CD﹣BD,
x
x
∴ tan140 ﹣ tan180 =6,
40
∴4x﹣ x=6.
13
解这个方程,得 x=6.5.
=
( x+1)( x-1)
1 = x 1 .
3(x 2) 2x 5①
18.【解析】

2020年江苏省扬州市广陵区中考数学试卷

2020年江苏省扬州市广陵区中考数学试卷
第 9 页,共 19 页
图② ∵AD⊥BD,∠DAE=∠EAB, ∴FH=FD,且 FH∥AC. 在 Rt△ADC 中,
∵cosC= ,AC=8,
∴CD=6.
同理,在 Rt△BAC 中,可求得 BC=
∴BD=
设 DF=x,则 FH=x,BF= -x
∵FH∥AC, ∴∠BFH=∠C.
∴cos∠BFH= =
2020 年江苏省扬州市广陵区中考数学二模试卷
答案和解析
【答案】
1. A
2. B3. D4. D5. A6. C
7. A
8. C
9. 3.5×106
10.
11. 16
12.
13. 57 14. 8π 15. 130° 16. 4 17. (1,2) 18. 5
19. 解:(1)原式=
=;
第 7 页,共 19 页
(3)连接 CG、BE,
第 10 页,共 19 页
∵∠CAG=∠BAE=90°, ∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
在△GAB 和△CAE 中,

∴△GAB≌△CAE(SAS), ∴∠ABG=∠AEC,又∠AEC+∠AME=90°, ∴∠ABG+∠AME=90°,即 CE⊥BG, ∴四边形 CGEB 是垂美四边形, 由(2)得,CG2+BE2=CB2+GE2, ∵AC=4,AB=5, ∴BC=3,CG=4 ,BE=5 , ∴GE2=CG2+BE2-CB2=73, ∴GE= .
25. (1)证明:如图①,连接 AD.
图① ∵E 是 E 是 的中点,
∴∴ ∴∠DAE=∠EAB. ∵∠C=2∠EAB, ∴∠C=∠BAD. ∵AB 是⊙O 的直径, ∴∠ADB=∠ADC=90° ∴∠C+∠CAD=90° ∴∠BAD+∠CAD=90° 即 BA⊥AC. ∴AC 是⊙O 的切线. (2)解:如图②,过点 F 做 FH⊥AB 于点 H.

2020年江苏省中考数学二模试卷附解析

2020年江苏省中考数学二模试卷附解析

2020年江苏省中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.主视图、左视图、俯视图都是圆的几何体是( )A . 圆锥B . 圆柱C . 球D .空心圆柱2.已钝角三角形三边长分别为 a 、b 、c (a>b> c ),外接圆半径和内切圆半径分别为 R 、r , 则能盖住这个三角形的圆形纸片的最小半径是( )A .RB .rC .2aD .2c 3.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( )A .12B .14C .16D .18 4.己如图,点 D .E 、F 分别是△ABC (AB>AC )各边的中点,下列说法中,错误的是( ) A . AD 平分∠BAC B .EF=12BCC . EF 与 AD 互相平分 D .△DFE 是△ABC 的位似图形5.已知 y 与x 成反比例,当 x 增加 20% 时,y 将 ( )A .约减少20%B .约增加20%C .约增加80%D .约减少 80% 6.已知Rt △ABC 斜边上的中线是2,则这个三角形两直角边的平方和是 ( ) A .2B .4C .8D .16 7.一组数据共40个,分成5组,第1~4组的频数分别是10,5,7,6,第5组的频率是( )A .0.15B .0.20C .0.25D .0.308.现有2008年奥运会福娃卡片20张,其中贝贝 6张、晶晶 5 张、欢欢4张、迎迎3张、妮妮2张,每张卡片大小、质地均匀相同,将有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到晶晶的概率( )A .110B .310C .14D .159.在3-,227,9-,π,2.121121112111122中,无理数有( ) A .1个 B .2个 C .3个 D .4个10.若a a ±=-时,a 是( ) A . 全体实数B . 正实数C .负实数D .零 二、填空题11.“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路.每一条公路的长度如下图所示(单位:km).梁先生任选..一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 .12.若a:2=b:3,则ba a += . 13.如图,△ABC 是⊙O 的内接三角形,∠B =55°,P 点在AC 上移动(点P 不与A 、C 两点重合),则α的变化范围是 .14.如图所示,⊙O 表示一个圆形工件,AB=15cm ,OM= 8cm ,并且MB :MA=1:4, 则工件半径的长为 cm .解答题15.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满 足函数关系y=-0.1x 2+2.6x +43(0≤x ≤30),且y 值越大,表示接受能力越强.则当x 满 足 ,学生的接受能力逐渐增强.16.若某数的一个平方根是54,则这个数的另一个平方根是 .17.有6个数.它们的平均数是l2,若再添一个数5,则这7个数的平均数是 .18.汽车以每小时60 km 的速度行驶5h ,中途停驶2h ,后又以每小时80 km 行驶3 h ,则汽车平均每小时行驶 km .19. Rt △ARC 中,∠C=90°,若CD 是AB 边的中线,且CD=4cm ,则AB= cm ,AD= BD= cm.20.如图,∠1 = 101°,当∠2 = 时,a ∥b .21.如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE =__________cm .22.下列图形中,轴对称图形有 个.23.已知ax=by+2008的一个解是⎩⎨⎧-==11y x ,则a+b= . 三、解答题24.某商店中的一盒什锦糖是由甲、乙、丙三种糖果混合成的,小明购得这种糖果 80 颗,通过多次摸糖试验后,发现摸到甲、乙、丙三种糖果的频率依次是 35、35和 30,试估计小明所购得的糖中甲、乙、丙三种糖果的数目.25.如图,MN ∥PQ ,同旁内角的平分线AB ,BC 和AD ,CD 相交于点B ,D .(1)猜想AC 和BD 之间的关系;(2)试证明你的猜想.26.某校为了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示).(1)这50名学生在这一天课外阅读所用时间的众数是多少?(2)这50名学生在这一天平均每人的课外阅读所用时间是多少?(3)请你根据以上调查,估计全校学生中在这一天课外阅读所用时间在1.0 h 以上(含1.0 h)的有多少人?27.光明中学的甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成进行统计后,绘制成如图所示的统计图. 已知甲队五场比赛成绩的平均分90x =分,方差241.2s =平方分. 甲、乙两球队比赛成绩折线统计图(1)请你计算乙队五场比赛成绩的平均分x 乙;(2)就这五场比赛,计算乙队成绩的方差;(3)如果从甲、乙两队中选派一支球队参加市篮球锦标赛,根据上述统计情况,试从平均分、 折线的走势、方差三个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成 绩?28.为了了解学生的身高情况,抽测了某校50名17岁男生的身高,并将其身高情况绘制成统计图如图所示.回答下面的问题:(1)观察图形,50名17岁男生身高的众数、中位数分别是多少?(2)用计算器计算出这50名学生的平均身高(精确到0.Ol m).29.某高校共有 5 个同规格的大餐厅和 2 个同规格的小餐厅,经过测试:同时开放 1 个大餐厅,2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅, 1 个小餐厅,可供2280 名学生就餐.(1)求 1 个大餐厅,1个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的5300 名学生就餐?请说明理由.30.某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全条形统计图.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.B4.A5.A6.D7.D8.C9.B10.D二、填空题11.61 12. 52 13. 0°<α<110°14.1015.0≤x ≤1316.5417. 1118.5419.8.420.79°21.2.422.323.2008三、解答题24.甲:80×35%=28(颗)乙:80×35%=28(颗)丙:80×3O =24(颗25.(1)互相平分且相等;(2)证矩形ABCD26.(1)1.0 h;(2)1.05 h;(3)1400人27.(1)90分 (2)111. 6平方分 (3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势,所以适合选甲队参赛;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩教稳定. 所以,选派甲队参赛更脂取得好成绩28.(1)众数:1.70m,中位数:1.70 m;(2)1.68m29.( 1) 1 个大餐厅可供 960 名学生就餐, 1 个小餐厅可供360 人就餐;(2)5300 人30.解 (1) 20÷20%=100 (人)(2)“娱乐”人数=100×40%=40(人)“其他”人数=100-30-20-40=10 (人)“其他”在扇形统计图中所占的圆心角=360°×10100=36°(3)略。

江苏省扬州市2019-2020学年中考第二次模拟数学试题含解析

江苏省扬州市2019-2020学年中考第二次模拟数学试题含解析

江苏省扬州市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4)D.1-4x2=(1+4x)(1-4x)2.tan30°的值为()A.B.C.D.3.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A.(1)19802x x-=B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19804.一元二次方程x2﹣3x+1=0的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上答案都不对5.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°6.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )A.2 B.3 C.4 D.57.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF8.下列计算正确的是()A.5﹣2=3B.4=±2C.a6÷a2=a3D.(﹣a2)3=﹣a69.1﹣2的相反数是()A.1﹣2B.2﹣1 C.2D.﹣110.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是()A.12B.13C.29D.1611.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.1512.一组数据8,3,8,6,7,8,7的众数和中位数分别是( ) A.8,6 B.7,6 C.7,8 D.8,7二、填空题:(本大题共6个小题,每小题4分,共24分.)13.双察下列等式:111242-=,112393-=,1134164-=,…则第n个等式为_____.(用含n的式子表示)14.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,则可列方程为__________.15.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.17.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.18.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.20.(6分)如图,直线y=2x+6与反比例函数y=kx(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?21.(6分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.22.(8分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______ ;扇形统计图中的圆心角α等于______ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.23.(8分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.24.(10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.25.(10分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?26.(12分)在平面直角坐标系中,已知点A(2,0),点B(0,3,点O(0,0).△AOB绕着O 顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).27.(12分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!2.D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.3.D【解析】【分析】根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1980,故选D.【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.4.B【解析】【分析】首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.【详解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0两个不相等的实数根;故选B.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.5.D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.考点:圆锥的计算.6.C【解析】【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AE CD CE =;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD ,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDE AEC BED ∠=∠⎧⎨∠=∠⎩ACE BDE ∴∆~∆AC CE BD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CE BD ∴= 同理可得:ABE CDE ∆~∆ AB AE CD CE ∴=,即8AB CD CE = AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅= 故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.7.C【解析】【分析】根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案.【详解】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,所以△ABC≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.8.D【解析】【分析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A. 不是同类二次根式,不能合并,故A选项错误;4,故B选项错误;C. a6÷a2=a4≠a3,故C选项错误;D. (−a2)3=−a6,故D选项正确.故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.9.B【解析】【分析】根据相反数的的定义解答即可.【详解】根据a的相反数为-a即可得,1﹣2的相反数是2﹣1.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.10.B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:13.故选B.点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.11.A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.12.D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7 考点:(1)众数;(2)中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13 【解析】 【分析】探究规律后,写出第n 个等式即可求解. 【详解】12===…则第n 1n =+1n =+ 【点睛】本题主要考查二次根式的应用,找到规律是解题的关键. 14.8374x x -=+ 【解析】 【分析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决 【详解】解:由题意可设有x 人, 列出方程:8374x x +﹣=, 故答案为8374x x +﹣=. 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程. 15.四丈五尺 【解析】 【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴x 15=1.50.5, 解得x=45(尺). 故答案为:四丈五尺. 【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键. 16.87【解析】分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论. 详解:∵平均数是12, ∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84−4×12=36, ∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,()()()()()()()222222221[1112121210121312131213121212],7S =-+-+-+-+-+-+-8.7= 故答案为8.7点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键. 17.300 【解析】 【分析】设成本为x 元,标价为y 元,根据已知条件可列二元一次方程组即可解出定价. 【详解】设成本为x 元,标价为y 元,依题意得0.75250.920y x y x +=⎧⎨-=⎩,解得250300x y =⎧⎨=⎩故定价为300元. 【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.18.6【解析】【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【详解】解:∵四边形ABCD为正方形,且边长为3,∴AC=32,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=32,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=32,∴EF=CF+CE=32+32=62三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)作图见解析;;(2)作图见解析.【解析】试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求.考点:1轴对称;2勾股定理.20.(1)m=8,反比例函数的表达式为y=8x;(2)当n=3时,△BMN的面积最大.【解析】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题. 【详解】解:(1)∵直线y=2x+6经过点A (1,m ), ∴m=2×1+6=8, ∴A (1,8),∵反比例函数经过点A (1,8), ∴8=1k, ∴k=8,∴反比例函数的解析式为y=8x. (2)由题意,点M ,N 的坐标为M (8n,n ),N (62n -,n ),∵0<n <6, ∴62n -<0, ∴S △BMN =12×(|62n -|+|8n |)×n=12×(﹣62n -+8n)×n=﹣14(n ﹣3)2+254,∴n=3时,△BMN 的面积最大. 21.(1)图形见解析,216件;(2)12【解析】 【分析】(1)由B 班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D 班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得. 【详解】(1)4个班作品总数为:1201236360÷=件,所以D 班级作品数量为:36-6-12-10=8; ∴估计全校共征集作品364×36=324件. 条形图如图所示,(2)男生有3名,分别记为A 1,A 2,A 3,女生记为B ,列表如下:A1A2A3 BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B (B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.所以选取的两名学生恰好是一男一女的概率为61 122.【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)30;;(2).【解析】试题分析:(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.考点:列表法与树状图法;扇形统计图;利用频率估计概率.23.(1) y=﹣x2+2x+3;(2)见解析.【解析】【分析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),∴,得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),∴抛物线的对称轴为直线x=1,∴点A的坐标为(﹣1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,当AC为斜边时,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t2﹣6t+10,解得,t=,∴点Q的坐标为(1,),当CQ时斜边时,t2﹣6t+10=4+t2+10,解得,t=,∴点Q的坐标为(1,﹣),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.24.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO , ∴∠ODB=∠OBD ,∵∠ABC 的平分线交⊙O 于点D , ∴∠EBD=∠DBO , ∴∠EBD=∠BDO , ∴DO ∥BE , ∵DE ⊥BC ,∴∠DEB=∠EDO=90°, ∴DE 与⊙O 相切;(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB , ∴DE=DF=3, ∵3∴223+33()=6, ∵sin ∠DBF=31=62, ∴∠DBA=30°, ∴∠DOF=60°, ∴sin60°=332DF DO DO ==, ∴3, 则3260(23)1333322ππ⨯=-. 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键. 25.(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程. 【解析】【分析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可. 【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天). 设乙队单独施工需要x 天完成该项工程,则301515190x++=, 去分母,得x+1=2x . 解得x=1.经检验x=1是原方程的解. 答:乙队单独施工需要1天完成. (2)设乙队施工y 天完成该项工程,则 1-363090y ≤ 解得y≥2.答:乙队至少施工l8天才能完成该项工程.26.(1)B'的坐标为(3,3);(1)见解析 ;(3)3﹣1. 【解析】 【分析】(1)设A'B'与x 轴交于点H ,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°, 由∠BOB'=α=30°推出BO ∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)证明∠BPA'=90︒即可;(3)作AB 的中点M (1,),连接MP ,由∠APB=90°,推出点P 的轨迹为以点M 为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM ⊥x 轴时,点P 3﹣1.【详解】(Ⅰ)如图1,设A'B'与x 轴交于点H ,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴点B'的坐标为(3,3);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM⊥x轴时,点P纵坐标的最小值为3﹣1.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.27.(1)详见解析;(2)2 tan.2C【解析】【分析】(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=22AE,CE=4AE,然后在Rt△BEC 中,即可求得tanC的值.【详解】(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C ,∴∠ODB=∠C ,∴OD ∥AC ,∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线;(2)连接BE ,∵AB 是直径,∴∠AEB=90°,∵AB=AC ,AC=3AE ,∴AB=3AE ,CE=4AE ,∴=,在RT △BEC 中,tanC=42BE CE AE ==.。

2020年江苏中考数学一模二模考试试题分类(扬州专版)(5)——三角形和四边形(含解析)

2020年江苏中考数学一模二模考试试题分类(扬州专版)(5)——三角形和四边形(含解析)

2020年江苏中考数学一模二模考试试题分类(扬州专版)(5)——三角形和四边形一.选择题(共13小题)1.(2020•仪征市模拟)将直角三角板按照如图方式摆放,直线a∥b,∠1=130°,则∠2的度数为()A.60°B.50°C.45°D.40°2.(2020•宝应县二模)一把直尺和一块含30°角的直角三角板ABC如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=35°,那么∠BAF的大小为()A.5°B.15°C.25°D.35°3.(2020•宝应县一模)如图,AB∥CD,∠EGF=26°,FG平分∠EFD,则∠AEF的度数等于()A.26°B.52°C.77°D.78°4.(2020•宝应县三模)一个三角板(含30°、60°角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且CD=CE,点F在直尺的另一边上,那么∠BAF的大小为()A.10°B.15°C.20°D.30°5.(2020•江都区二模)下列长度的三条线段能组成直角三角形的是()A.5,11,12 B.5,12,13 C.4,5,6 D.,2,6.(2020•邗江区校级三模)如图,△ABC的两条中线AM,BN相交于点O,已知△ABO的面积为4,△BOM 的面积为2,则四边形MCNO的面积为()A.4 B.3 C.4.5 D.3.57.(2020•邗江区校级一模)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC 的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则BF的长为()A.B.C.D.8.(2020•宝应县一模)如图,在Rt△ABC中,∠ACB=90°,∠A=70°,CD⊥AB,垂足为D,E是BC 的中点,连接ED,则∠CED的度数是()A.20°B.40°C.55°D.70°9.(2020•广陵区二模)已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九B.八C.七D.六10.(2020•广陵区校级三模)一个正多边形的外角与其相邻的内角之比为1:3,那么这个多边形的边数为()A.8 B.9 C.10 D.1211.(2020•邗江区校级一模)平行四边形的一边长为6cm,则它的两条对角线长可以是()A.4cm,6cm B.5cm,6cm C.4cm,8cm D.2cm,12cm12.(2020•高邮市一模)如图,已知菱形ABCD的顶点A的坐标为(1,0),顶点B的坐标为(4,4),若将菱形ABCD绕原点O逆时针旋转45°称为1次变换,则经过2020次变换后点C的坐标为()A.(9,4)B.(4,﹣9)C.(﹣9,﹣4)D.(﹣4,﹣9)13.(2020•仪征市模拟)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6 B.7 C.8 D.9二.填空题(共17小题)14.(2020•邗江区一模)如图,已知a∥b,∠l=78°,则∠2=°.15.(2020•邗江区二模)如图,直线l1∥l2,等边△ABC的顶点C在直线l2上,若边AB与直线l1的夹角∠1=40°,则边AC与直线l2的夹角∠2=°.16.(2020•宝应县二模)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,E、F分别为DB、BC的中点,若AB=4,则EF=.17.(2020•邗江区校级一模)如图,A、B两点的坐标分别为(﹣4,0),(0,4),C、F分别是直线x=6和x轴上的动点,CF=12,D是CF的中点,连接AD交y轴于点E,△ABE面积的最小值为cm2.18.(2020•广陵区校级一模)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为.19.(2020•江都区一模)在△ABC中,AB=AC,∠BAC=110°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(2020•广陵区校级一模)直角三角形两条直角边的长分别为5、12,则斜边为.21.(2020•仪征市模拟)如图,在矩形ABCD中,AD=2AB=4,点E是AD的中点,点M是BE上一动点,取CM的中点为N,则AN的最小值是.22.(2020•邗江区二模)若一个多边形的内角和比外角和大180°,则这个多边形的边数为.23.(2020•邗江区校级二模)四边形的内角和是a,五边形的外角和是b,则a与b的大小关系是:a b.24.(2020•宝应县一模)如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是°.25.(2020•邗江区一模)在平面直角坐标系中,▱OABC的三个顶点O(0,0)、A(3,0)、B(5,3),则其第四个顶点C的坐标是.26.(2020•江都区一模)如图,矩形ABCD的对角线相交于点O,若AB=AO,则∠ABD=°.27.(2020•仪征市一模)如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,若四边形AFED的面积为4,则四边形AFED的周长为.28.(2020•邗江区校级一模)如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.29.(2020•广陵区二模)如图,在菱形OABC中,点A的坐标是(2,1),点B的横坐标是3,则点C的坐标是.30.(2020•江都区二模)若一个多边形的内角和比外角和大360°,则这个多边形的边数为.三.解答题(共11小题)31.(2020•仪征市模拟)定义:在平面直角坐标系中,对于任意两点A(x1,y1),B(x2,y2),若点T (x,y)满足x=,y=,那么称点T是点A,B的k联点.例如:A(0,8),B(3,1),当点T(x,y)满足x==1,y==3时,则点T(1,3)是点A,B的3联点.(1)已知点C(x,y)是点A(﹣1,5),B(10,4)的2联点,求点C坐标;(2)已知点P(,)是点M(1,5)和点N(3,n)的k联点,求k和n的值;(3)如图,点D(3,0),若点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的3联点,直线ET交x轴于点H.①直接写出点H的坐标;②当△DTH为直角三角形时,求点E的坐标.32.(2020•仪征市模拟)如图,点P为等边三角形ABC的边BC上一动点(与点B、C不重合),点D在边AB上,且BD=BP,直线l⊥BC,垂足为点B,连接CD并延长交直线l于点E.(1)如图1,当BP=BC时,求的值;(2)如图2,当BP<BC时,设=m,求tan∠ADC的值(用含m的代数式表示);(3)如图3,线段PC的垂直平分线交CD于点O,若△OBE与△DPC的面积比为,求的值.33.(2020•宝应县一模)如图,在△ABC中,AB=AC,AD是角平分线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF:(2)当AE=1,CF=4,AD=3时,求BC的长.34.(2020•高邮市一模)对于平面直角坐标系中的任意一点P(a,b),我们定义:当k为常数,且k≠0时,点P′(a+,ka+b)为点P的“k对应点”.(1)点P(﹣2,1)的“3对应点”P′的坐标为;若点P的“﹣2对应点”P′的坐标为(﹣3,6),且点P的纵坐标为4,则点P的横坐标a=;(2)若点P的“k对应点”P′在第一、三象限的角平分线(原点除外)上,求k值;(3)若点P在x轴的负半轴上,点P的“k对应点”为P′点,且∠OP'P=30°,求k值.35.(2020•广陵区校级一模)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=50°,则∠BDE=°.36.(2020•宝应县模拟)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.37.(2020•宝应县模拟)数学课上,老师出示了如下框中的题目小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”)理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你接着继续完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线上AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=5,求CD的长(请你直接写出结果).38.(2020•广陵区二模)如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):①该屏幕的长=寸,宽=寸;②已知“屏幕浪费比=”,求该电视机屏幕的浪费比.(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:≈2.2,结果精确到0.1)39.(2020•江都区三模)阅读理解题.定义:如果四边形的某条对角线平分一组对角,那么把这条对角线叫做“美妙线”,该四边形叫做“美妙四边形”.如图,在四边形ABDC中,对角线BC平分∠ACD和∠ABD,那么对角线BC叫“美妙线”,四边形ABDC 就称为“美妙四边形”.问题:(1)下列四边形:平行四边形、矩形、菱形、正方形,其中是“美妙四边形”的有个;(2)四边形ABCD是“美妙四边形”,AB=3+,∠BAD=60°,∠ABC=90°,求四边形ABCD的面积.(画出图形并写出解答过程)40.(2020•仪征市模拟)如图1,一块边AD长为10cm,面积为90cm2的矩形纸片缺少一块面积2cm2的等腰直角三角形,在余下的五边形中画出一个面积较大的矩形.小华和小红两名同学进行了如下操作探究.操作探究:(1)小华首先尝试画出一个有一边为AD的面积最大矩形,请你在图1 中画出来,并计算其面积;(2)小红稍加思索,她认为可以画出有一边为AB的矩形面积比小华画出的那个面积大,你同意吗?请在图2中画出来,并说明理由;(3)你还能画出一个比图 2 中小红画的矩形面积更大的矩形吗?如果能,求出这个矩形面积,如果不能,请说明理由.41.(2020•仪征市模拟)如图,BD为▱ABCD的对角线,BD⊥AD,延长AD到点E,使得DE=AD,连接CE.(1)求证:四边形BCED是矩形;(2)若四边形BCED的周长是6,AB=5,求四边形BCED的面积.2020年江苏中考数学一模二模考试试题分类(扬州专版)(5)——三角形和四边形参考答案与试题解析一.选择题(共13小题)1.(2020•仪征市模拟)将直角三角板按照如图方式摆放,直线a∥b,∠1=130°,则∠2的度数为()A.60°B.50°C.45°D.40°【答案】D【解答】解:∵∠1=130°,∴∠3=180°﹣130°=50°,如图,作直线CD∥a,∴∠4=∠3=50°,∴∠5=90°﹣50°=40°,∵a∥b,∴b∥CD,∴∠2=∠5=40°.故选:D.2.(2020•宝应县二模)一把直尺和一块含30°角的直角三角板ABC如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=35°,那么∠BAF的大小为()A.5°B.15°C.25°D.35°【答案】C【解答】解:∵DE∥AF,∠CED=35°,∴∠CAF=∠CED=35°,∵∠BAC=60°,∴∠BAF=60°﹣35°=25°.故选:C.3.(2020•宝应县一模)如图,AB∥CD,∠EGF=26°,FG平分∠EFD,则∠AEF的度数等于()A.26°B.52°C.77°D.78°【答案】B【解答】解:∵AB∥CD,∠EGF=26°,∴∠GFD=26°,∵FG平分∠EFD,∴∠EFD=52°,∴∠AEF=52°.故选:B.4.(2020•宝应县三模)一个三角板(含30°、60°角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且CD=CE,点F在直尺的另一边上,那么∠BAF的大小为()A.10°B.15°C.20°D.30°【答案】B【解答】解:由图可得,CD=CE,∠C=90°,∴△CDE是等腰直角三角形,∴∠CED=45°,又∵DE∥AF,∴∠CAF=45°,∵∠BAC=60°,∴∠BAF=60°﹣45°=15°,故选:B.5.(2020•江都区二模)下列长度的三条线段能组成直角三角形的是()A.5,11,12 B.5,12,13 C.4,5,6 D.,2,【答案】B【解答】解:A、52+112≠122,不能组成直角三角形;B、52+122=132,能组成直角三角形;C、42+52≠62,不能组成直角三角形;D、()2+22≠()2,不能组成直角三角形.故选:B.6.(2020•邗江区校级三模)如图,△ABC的两条中线AM,BN相交于点O,已知△ABO的面积为4,△BOM 的面积为2,则四边形MCNO的面积为()A.4 B.3 C.4.5 D.3.5【答案】A【解答】解:连接MN,如图,∵AM和BN为△ABC的两条中线,∴点O为△ABC的重心,∴BO=2ON,∴S△AON=S△ABO=×4=2,S△MON=S△MBO=×2=1,∴S△AMN=3,∵AN=CN,∴S△MNC=S△NMA=3,∴四边形MCNO的面积=S△OMN+S△MNC=1+3=4.故选:A.7.(2020•邗江区校级一模)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC 的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则BF的长为()A.B.C.D.【答案】C【解答】解:如图,在Rt△BDC中,BC=4,∠DBC=30°,∴BD=2,∵∠BDC=90°,点E是BC中点,∴DE=BE=CE=BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴=,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=3,∴=,∴=,∴DF=BD=×2=,∴BF=DF=.故选:C.8.(2020•宝应县一模)如图,在Rt△ABC中,∠ACB=90°,∠A=70°,CD⊥AB,垂足为D,E是BC 的中点,连接ED,则∠CED的度数是()A.20°B.40°C.55°D.70°【答案】B【解答】解:∵∠ACB=90°,∠A=70°,∴∠B=20°,∵CD⊥AB,E是BC的中点,∴ED=BC=EB,∴∠EDB=∠B=20°,∴∠CED=∠EDB+∠B=40°,故选:B.9.(2020•广陵区二模)已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九B.八C.七D.六【答案】A【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.即这个正多边形是九边形.故选:A.10.(2020•广陵区校级三模)一个正多边形的外角与其相邻的内角之比为1:3,那么这个多边形的边数为()A.8 B.9 C.10 D.12【答案】A【解答】解:设每个内角与它相邻的外角的度数分别为3x、x,∴x+3x=180°,∴x=45°,故这个多边形的边数=.故选:A.11.(2020•邗江区校级一模)平行四边形的一边长为6cm,则它的两条对角线长可以是()A.4cm,6cm B.5cm,6cm C.4cm,8cm D.2cm,12cm【答案】D【解答】解:A、∵2+3<6,不能够成三角形,故此选项错误;B、2.5+3<6,不能够成三角形,故此选项错误;C、2+4=6,不能够成三角形,故此选项错误;D、1+6>6,能构成三角形,故此选项正确;故选:D.12.(2020•高邮市一模)如图,已知菱形ABCD的顶点A的坐标为(1,0),顶点B的坐标为(4,4),若将菱形ABCD绕原点O逆时针旋转45°称为1次变换,则经过2020次变换后点C的坐标为()A.(9,4)B.(4,﹣9)C.(﹣9,﹣4)D.(﹣4,﹣9)【答案】C【解答】解:∵360°÷45°=8,∴菱形ABCD绕原点O逆时针旋转8次变换为一次循环,∵2020÷8=252…4,∴4×45=180°,∴经过2020次变换后点C的坐标处于点C绕原点逆时针旋转180°的位置.∵顶点A的坐标为(1,0),顶点B的坐标为(4,4),∴AB==5,∵四边形ABCD是菱形,∴BC∥AD,BC=AB=5,∴C(9,4),∴经过2020次变换后点C的坐标为(﹣9,﹣4).故选:C.13.(2020•仪征市模拟)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6 B.7 C.8 D.9【答案】C【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:C.二.填空题(共17小题)14.(2020•邗江区一模)如图,已知a∥b,∠l=78°,则∠2=102°.【答案】见试题解答内容【解答】解:如图,∵∠1=78°,∴∠3=180°﹣∠1=180°﹣78°=102°,∵a∥b,∴∠2=∠3=102°.故答案为:102.15.(2020•邗江区二模)如图,直线l1∥l2,等边△ABC的顶点C在直线l2上,若边AB与直线l1的夹角∠1=40°,则边AC与直线l2的夹角∠2=100°.【答案】见试题解答内容【解答】解:如图,∵△ABC是等边三角形,∴∠A=60°,∵∠3=∠1=40°,∴∠4=60°+40°=100°,∵l1∥l2,∴∠2=∠4=100°.故答案为:100.16.(2020•宝应县二模)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,E、F分别为DB、BC的中点,若AB=4,则EF=1.【答案】见试题解答内容【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AB=2,∵E、F分别为MB、BC的中点,∴EF=CD=1,故答案为:1.17.(2020•邗江区校级一模)如图,A、B两点的坐标分别为(﹣4,0),(0,4),C、F分别是直线x=6和x轴上的动点,CF=12,D是CF的中点,连接AD交y轴于点E,△ABE面积的最小值为2cm2.【答案】见试题解答内容【解答】解:如图,设直线x=6交x轴于K.由题意KD=CF=6,∴点D的运动轨迹是以K为圆心,6为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=10,DK=6,∴AD=8,∵tan∠EAO==,=,∴OE=3,∴BE=4﹣3=1,∴S△ABE=×BE•OA==2.故答案为2.18.(2020•广陵区校级一模)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为2.【答案】见试题解答内容【解答】解:∵∠CHB=90°,BC是定值,∴H点是在以BC为直径的半圆上运动(不包括B点和C点),连接HO,则HO=BC=3.∵∠ACB=90°,AC=4,BC=6,∴AO===5,当A、H、O三点共线时,AH最短,此时AH=AO﹣HO=5﹣3=2.故答案为:2.19.(2020•江都区一模)在△ABC中,AB=AC,∠BAC=110°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为125°或90°.【答案】见试题解答内容【解答】解:∵在△ABC中,AB=AC,∠BAC=110°,∴∠B=∠C=35°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=55°,∴∠ADC=125°,当∠ADB=90°时,则∠ADC=90°,故答案为:125°或90°.20.(2020•广陵区校级一模)直角三角形两条直角边的长分别为5、12,则斜边为13.【答案】见试题解答内容【解答】解:根据勾股定理,得斜边==13.21.(2020•仪征市模拟)如图,在矩形ABCD中,AD=2AB=4,点E是AD的中点,点M是BE上一动点,取CM的中点为N,则AN的最小值是2.【答案】2.【解答】解:取BC的中点N′,连接AN′、DN′,∴BN′=CN′,∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠ABC=∠BCD=90°,∵AD=2AB=4,∴AB=BN′=CN′=CD=2,∴∠AN′B=∠DN′C=45°,AN′=,∴∠AN′D=90°,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵E是AD的中点,N′是BC的中点,∴DE=BN′,DE∥BN′,∴四边形BEDN′是平行四边形,∴BE∥DN′,∴DN′平分CM,即CM的中点N在DN′上,∴当N与N′重合时,AN⊥DN′,根据垂线段最短定理知,AN′的值就是AN的最小值为2故答案为:2.22.(2020•邗江区二模)若一个多边形的内角和比外角和大180°,则这个多边形的边数为五.【答案】见试题解答内容【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=180°,解得n=5,故答案为:五.23.(2020•邗江区校级二模)四边形的内角和是a,五边形的外角和是b,则a与b的大小关系是:a=b.【答案】见试题解答内容【解答】解:∵四边形的内角和等于a,∴a=(4﹣2)×180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故答案为:=.24.(2020•宝应县一模)如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是140°.【答案】见试题解答内容【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140.25.(2020•邗江区一模)在平面直角坐标系中,▱OABC的三个顶点O(0,0)、A(3,0)、B(5,3),则其第四个顶点C的坐标是(2,3).【答案】见试题解答内容【解答】解:∵O(0,0)、A(3,0),∴OA=3,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=3,∵B(5,3),∴点C的坐标为(5﹣3,3),即C(2,3);故答案为:(2,3).26.(2020•江都区一模)如图,矩形ABCD的对角线相交于点O,若AB=AO,则∠ABD=60°.【答案】见试题解答内容【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.故答案为60.27.(2020•仪征市一模)如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,若四边形AFED的面积为4,则四边形AFED的周长为4+2.【答案】见试题解答内容【解答】解:如图,连接BE,DF,过E作EN⊥BF于点N,∵四边形ABCD为正方形,∴CB=CD,∠BCE=∠DCE=45°,在△BEC和△DEC中,,∴△DCE≌△BCE(SAS),∴DE=BE,∠CDE=∠CBE,∴∠ADE=∠ABE,∵∠DAB=90°,∠DEF=90°,∴∠ADE+∠AFE=180°,∵∠AFE+∠EFB=180°,∴∠ADE=∠EFB,∴∠ABE=∠EFB,∴EF=BE,∴DE=EF,设AF=x,则BF=3﹣x,∴FN=BN=BF=,∴AN=AF+FN=,∵∠BAC=∠DAC=45°,∠ANF=90°,∴EN=AN=,∴DE=EF=,∵四边形AFED的面积为4,∴S△ADF+S△DEF=4,∴,解得,x=﹣7(舍去),或x=1,∴AF=1,DE=EF=,∴四边形AFED的周长为:3+1++=4+2.故答案为:4+2.28.(2020•邗江区校级一模)如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=105°.【答案】见试题解答内容【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°29.(2020•广陵区二模)如图,在菱形OABC中,点A的坐标是(2,1),点B的横坐标是3,则点C的坐标是(1,2).【答案】见试题解答内容【解答】解:作AD⊥x轴于D,BF⊥x轴于F,AE⊥BF于E,BG⊥y轴于H,CG⊥BH于G,CM⊥Y 轴于M,如图所示:则四边形BHOF是矩形,四边形ADFE是矩形,四边形GHMC是矩形,∠ADO=∠AEB=∠CGB=∠CMO=90°,∵点A的坐标是(2,1),点B的横坐标是3,∴OD=2,EF=AD=1,BH=3,∴AE=1,∴AE=AD,∵四边形OABC是菱形,∴OA=AB=BC=OC,在Rt△ABE和Rt△AOD中,,∴Rt△ABE≌Rt△AOD(HL),∴BE=OD=2,∴BF=3=BH,同理可证:△CBG≌△AOD,∴CG=AD=1,BG=OD=2,∴HM=1,OM=3﹣1=2,∴C(1,2);故答案为:(1,2).30.(2020•江都区二模)若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.【答案】见试题解答内容【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.三.解答题(共11小题)31.(2020•仪征市模拟)定义:在平面直角坐标系中,对于任意两点A(x1,y1),B(x2,y2),若点T (x,y)满足x=,y=,那么称点T是点A,B的k联点.例如:A(0,8),B(3,1),当点T(x,y)满足x==1,y==3时,则点T(1,3)是点A,B的3联点.(1)已知点C(x,y)是点A(﹣1,5),B(10,4)的2联点,求点C坐标;(2)已知点P(,)是点M(1,5)和点N(3,n)的k联点,求k和n的值;(3)如图,点D(3,0),若点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的3联点,直线ET交x轴于点H.①直接写出点H的坐标(,0);②当△DTH为直角三角形时,求点E的坐标.【答案】见试题解答内容【解答】解:(1)∵点C(x,y)是点A(﹣1,5),B(10,4)的2联点,∴x==,y==,∵点C坐标(,);(2)∵点P(,)是点M(1,5)和点N(3,n)的k联点,∴=,=,∴k=3,n=0;(3)①由题意得:x=(t+3)=t+1,y=(2t+3)=t+1,∴点T(t+1,t+1),设直线ET解析式为:y=kx+b,∴,解得:k=﹣b,∴直线ET解析式为:y=﹣bx+b,当y=0时,x=,∴点H(,0),故答案为:(,0),②当∠DHT=90°时,如图1所示,点E(t,2t+3),则T(t,2t﹣1),则点D(3,0),由点T是点D,E的3联点得:t=,2t﹣1=,解得:t=,即点E(,6);当∠TDH=90°时,如图2所示,则点T(3,5),由点T是点D,E的3联点得:点E(6,15);当∠HTD=90°时,如图3所示,过点T作x轴的平行线交过点D与y轴平行的直线于点M,交过点E与y轴的平行线于点N,则∠MDT=∠NTE,则tan∠MDT=tan∠NTE,D(3,0),点E(t,2t+3),则点T(,)则MT=3﹣=,MD=,NE=﹣2t﹣3=,NT=﹣t=,由tan∠MDT=tan∠NTE得:=,解得:方程无解,故∠HTD不可能为90°.故点E(,6)或(6,15).32.(2020•仪征市模拟)如图,点P为等边三角形ABC的边BC上一动点(与点B、C不重合),点D在边AB上,且BD=BP,直线l⊥BC,垂足为点B,连接CD并延长交直线l于点E.(1)如图1,当BP=BC时,求的值;(2)如图2,当BP<BC时,设=m,求tan∠ADC的值(用含m的代数式表示);(3)如图3,线段PC的垂直平分线交CD于点O,若△OBE与△DPC的面积比为,求的值.【答案】见试题解答内容【解答】解:(1)如图1中,设DE=a.∵△ABC是等边三角形,BP=PC,BP=BD,∴AB=BC=CA,BD=AD,∴CD⊥AB,∵EB⊥BC,∴∠EBC=∠CDB=90°,∵∠ABC=60°,∴∠EBD=30°=∠BCD,∴BD=DE,CD=BD,∴CD=3DE=3a,∴EC=4a,∴=.(2)如图2中,过点C作CT⊥BC交BA的延长线于T,过点C作CG⊥AB于G,设BD=BP=k,∵BE∥CT,∴==m,∴BT=,∵∠BCT=90°,∠T=30°,∴BC=BT=,∵△ABC是等边三角形,CG⊥AB,∴BG=AB=,CG=BG=.∴DG=BG﹣BD=﹣k,∴tan∠CDG===.(3)如图3中,过点C作CT⊥BC交BA的延长线于T.设BP=BD=a,PC=AD=b,则AB=AT=a+b,CT=(a+b).∵BE∥CT,∴=,∴=,∴BE=,∵OF垂直平分PC,∴PF=PC=b,∵△OBE与△DPC的面积比为,∴=,整理得:10a2+9ab﹣7b2=0,∴(2a﹣b)(5a+7b)=0,∴b=2a,∵BE∥CT,∴===.33.(2020•宝应县一模)如图,在△ABC中,AB=AC,AD是角平分线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF:(2)当AE=1,CF=4,AD=3时,求BC的长.【答案】见试题解答内容【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是角平分线,AB=AC,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=4,∴AB=AE+BE=1+4=5,∵AB=AC,AD是角平分线,AD⊥BC,BD=CD,∴BD===4,∴BC=2BD=8.34.(2020•高邮市一模)对于平面直角坐标系中的任意一点P(a,b),我们定义:当k为常数,且k≠0时,点P′(a+,ka+b)为点P的“k对应点”.(1)点P(﹣2,1)的“3对应点”P′的坐标为(﹣,﹣5);若点P的“﹣2对应点”P′的坐标为(﹣3,6),且点P的纵坐标为4,则点P的横坐标a=﹣1;(2)若点P的“k对应点”P′在第一、三象限的角平分线(原点除外)上,求k值;(3)若点P在x轴的负半轴上,点P的“k对应点”为P′点,且∠OP'P=30°,求k值.【答案】见试题解答内容【解答】解:(1)﹣2+=﹣,﹣2×3+1=﹣5,则点P(﹣2,1)的“3对应点”P′的坐标为(﹣,﹣5),∵点P的“﹣2对应点”P′的坐标为(﹣3,6),点P的纵坐标为4,∴﹣2a+4=6,解得,a=﹣1,即点P的横坐标a=﹣1,故答案为:﹣1;故答案为:(﹣,﹣5);﹣1;(2)∵点P′在第一、三象限的角平分线(原点除外)上,∴a+=ka+b,整理得,(ka+b)(1﹣k)=0,由题意得,ka+b≠0,∴1﹣k=0,解得,k=1;(3)∵点P在x轴的负半轴上,∴设点P的坐标为(a,0),则点P的“k对应点”为P′点的坐标为(a,ka),∴PP′⊥x轴,∵∠OP'P=30°,∴=tan30°,∴=,解得,k=±,则点P在x轴的负半轴上,点P的“k对应点”为P′点,∠OP'P=30°时,k=或﹣.35.(2020•广陵区校级一模)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=50°,则∠BDE=65°.【答案】见试题解答内容【解答】(1)证明:∵∠B=∠A,∠BOE=∠AOD,∴∠3=∠2,∵∠1=∠2,∴∠3=∠1,∴∠3+∠AED=∠1+∠AED,∴∠BED=∠AEC,在△AEC和△BED中∴△AEC≌△BED(ASA);(2)∵△AEC≌△BED,∴EC=ED,∴∠EDC=∠ECD,∵∠1=50°,∠1=∠2,∴∠EDC=∠ECD=65°,∠2=50°,∴∠BDE=180°﹣∠2﹣∠EDC=65°,故答案为:65.36.(2020•宝应县模拟)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【答案】见试题解答内容【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).37.(2020•宝应县模拟)数学课上,老师出示了如下框中的题目小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE=DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”)理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你接着继续完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线上AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=5,求CD的长(请你直接写出结果).【答案】见试题解答内容【解答】解:(1)答案为:=.(2)答案为:=.证明:在等边△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE=∠BAC=60°,∴AE=AF=EF,∴AB﹣AE=AC﹣AF,即BE=CF,∵∠ABC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,∵ED=EC,∴∠EDB=∠ECB,∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,∵ED=EC,∴∠EDB=∠ECB,∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,∴∠BED=∠FCE,在△DBE和△EFC中,∴△DBE≌△EFC(SAS),∴DB=EF,∴AE=BD,故答案为:=.(3)解:分为四种情况:第一种情况:如图1:∵AB=AC=3,AE=5,∴BD=AE=5,∴CD=3+5=8,第二种情况:如图2,过A作AN⊥BC于N,过E作EM⊥CD于M,∵等边三角形ABC,EC=ED,∴BN=CN=BC=,BM=BE=×(3+5)=4,CM=MD=4﹣3=1,AN∥EM,∴CD=2CM=2;第三种情况:如图3,∵∠ECD>∠EBC(∠EBC=120°),而∠ECD不能大于120°,否则△EDC不符合三角形内角和定理,∴此时不存在EC=ED;第四种情况:如图4,∵∠EDC<∠ABC,∠ECB>∠ACB,又∵∠ABC=∠ACB=60°,∴∠ECD>∠EDC,即此时ED≠EC,∴此时情况不存在,答:CD的长是8或2.38.(2020•广陵区二模)如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):①该屏幕的长=16寸,宽=12寸;②已知“屏幕浪费比=”,求该电视机屏幕的浪费比.(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:≈2.2,结果精确到0.1)【答案】见试题解答内容【解答】解:(1)①∵电视机屏幕的长宽比为4:3,∴设长为4x,则宽为3x,∵电视机屏幕为20寸,∴(4x)2+(3x)2=202,解得x=4,∴4x=16,3x=12,∴该屏幕的长为16寸,宽为12寸;故答案为:16;12.②设在该屏幕上播放长宽比为2.4:1的视频时,视频的宽为a寸(长为16寸).∵=,解得a=.∴黑色带子的宽的和=12﹣=.∴屏幕浪费比==;(2)由题意:=,=,得:PQ=BC,FG=EF.∵S矩形EFGH=S矩形MNPQ,∴BC•BC=EF•EF.∴=,∴=≈1.8.答:这种屏幕的长宽比约为1.8.39.(2020•江都区三模)阅读理解题.定义:如果四边形的某条对角线平分一组对角,那么把这条对角线叫做“美妙线”,该四边形叫做“美妙四边形”.如图,在四边形ABDC中,对角线BC平分∠ACD和∠ABD,那么对角线BC叫“美妙线”,四边形ABDC 就称为“美妙四边形”.问题:(1)下列四边形:平行四边形、矩形、菱形、正方形,其中是“美妙四边形”的有2个;(2)四边形ABCD是“美妙四边形”,AB=3+,∠BAD=60°,∠ABC=90°,求四边形ABCD的面积.(画出图形并写出解答过程)【答案】见试题解答内容【解答】解:(1)∵菱形和正方形的每一条对角线平分一组对角,∴菱形和正方形是“美妙四边形”,有2个,故答案为:2;(2)分两种情况:①当AC是美妙线时,如图1,∵AC平分∠BAD、∠BCD,在△ABC中,∠B=90°,∠BAC=∠BAD=30°,∵AB=3+,∴BC==+1,∵∠B=90°,∠BAC=30°,∴∠ACB=60°=∠ACD,∵∠CAD=∠BAC=30°,∴∠D=90°,∵AC=AC,∠B=∠D,∠CAB=∠CAD,∴△ABC≌△ADC(AAS),∴S四边形ABCD=2S△ABC=2×(3+)(+1)=6+4;②当BD是美妙线时,如图2,过D作DH⊥AB于H,∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°,∴△BDH是等腰直角三角形,∴DH=BH,设AH=a,则DH=a,BH=a,∴a+a=3+,∴a=,∴DH=3,同理得:△ABD≌△CBD(ASA),∴S四边形ABCD=2S△ABC=2×AB×DH=3(3+)=9+3;综上所述:四边形ABCD的面积为6+4或9+3.40.(2020•仪征市模拟)如图1,一块边AD长为10cm,面积为90cm2的矩形纸片缺少一块面积2cm2的等腰直角三角形,在余下的五边形中画出一个面积较大的矩形.小华和小红两名同学进行了如下操作探究.操作探究:(1)小华首先尝试画出一个有一边为AD的面积最大矩形,请你在图1 中画出来,并计算其面积;(2)小红稍加思索,她认为可以画出有一边为AB的矩形面积比小华画出的那个面积大,你同意吗?请在图2中画出来,并说明理由;(3)你还能画出一个比图 2 中小红画的矩形面积更大的矩形吗?如果能,求出这个矩形面积,如果不能,请说明理由.【答案】见试题解答内容【解答】解:(1)如答图1,∵一块边AD长为10cm,面积为90cm2的矩形纸片,∴CD=AB=90÷10=9(cm);∵△ECF是面积为2cm2的等腰直角三角形,∴CE=CF=2(cm),DF=CD﹣CF=7(cm),∴S矩形ADFG=AD•DF=70(cm2);(2)同意,理由:如答图2,同(1)的方法得,BE=10﹣2=8(cm),∴S矩形ABEH=8×9=72(cm2);(3)能,理由:如备用图,延长NM交BE于P,由(1)知,∠MEP=45°,∴∠EMP=∠MEP=45°,∴PE=PM,设PM=PE=x,则QM=(8+x),MN=(9﹣x),∴S矩形ANMQ=MN•QM=(8+x)(9﹣x)=﹣(x﹣)2+72.5,∴当x=时,S矩形ANMQ最大=72.25(cm2)41.(2020•仪征市模拟)如图,BD为▱ABCD的对角线,BD⊥AD,延长AD到点E,使得DE=AD,连接CE.(1)求证:四边形BCED是矩形;(2)若四边形BCED的周长是6,AB=5,求四边形BCED的面积.【答案】见试题解答内容【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD=AB,AD=BC,AD∥BC,∵DE=AD,∴DE=BC,∴四边形BCED是平行四边形,又∵BD⊥AD,∴∠BDE=90°,∴四边形BCED是矩形;(2)解:∵四边形BCED是矩形,四边形BCED的周长是6,∴∠DBC=90°,BC+BD=3,。

江苏省扬州市广陵区2020届中考数学模拟试卷(含解析)

江苏省扬州市广陵区2020届中考数学模拟试卷(含解析)

江苏省扬州市广陵区2020届中考模拟试卷数学一.选择题(共8小题)1.﹣的倒数是()A. B.﹣ C.﹣ D.2.给出一列数,在这列数中,第50个值等于1的项的序号是()A.4900 B.4901 C.5000 D.50013.(3分)若二次根式有意义,则a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a≠24.(3分)下列图形中,属于中心对称图形的是()A. B. C. D.5.(3分)如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°6.(3分)某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)10 15 20 50人数 1 5 4 2A.15,15 B.17.5,15 C.20,20 D.15,207.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2 B.(12+π)cm2 C.6πcm2 D.8πcm28.(3分)如图,有一住宅小区呈三角形ABC形状,且周长为2 000m,现规划沿小区周围铺上宽为3m的草坪,则草坪的面积(精确到1)是()A.6000m2 B.6016m2 C.6028m2 D.6036m2二.填空题(共10小题,满分30分,每小题3分)9.(3分)科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为.10.(3分)分解因式:a2﹣a+2= .11.(3分)反比例函数和一次函数y=k2x+b的图象交于点M(3,﹣)和点N(﹣1,2),则k1= ,k2= ,一次函数的图象交x轴于点.12.(3分)某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机多少部?每天有多少部新申请装机的电话?13.(3分)抛物线y=ax2+bx+c(a≠0)过点A(1,﹣3)、B(3,﹣3)、C(﹣1,5),顶点为M点.在抛物线上是找一点P使∠POM=90°,则P点的坐标.14.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.15.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度16.(3分)如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于.17.(3分)如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC= .18.(3分)如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是.三.解答题(共10小题,满分96分)19.(8分)(1)(﹣2)﹣1﹣|﹣|+(3.14﹣π)0+4cos45°(2)已知x2﹣2x﹣7=0,求(x﹣2)2+(x+3)(x﹣3)的值.20.(8分)当x满足条件时,求出方程x2﹣2x﹣4=0的根.21.(8分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.22.(8分)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)23.(10分)列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?24.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,延长BE到F,使BE=EF,连接AF、CF、DF.(1)求证:AF=BD;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.25.(10分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.26.(10分)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,OE:EA=1:2,PA=6,∠POC=∠PCE.(1)求证:PC是⊙O的切线;(2)求⊙O的半径;(3)求sin∠PCA的值.27.(12分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.28.(12分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2020年江苏省扬州市广陵区中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分18分)1.【解答】解:﹣的倒数是﹣,故选:B.2.【解答】解:第50个值等于1的项的分子分母的和为2×50=100,由于从分子分母的和为2到分子分母的和为99的分数的个数为:1+2+…+98=4851.第50个值等于1的项为.故4851+50=4901.故选:B.3.【解答】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选:A.4.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确,故选:D.5.【解答】解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.6.(15+20)【解答】解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:÷2=17.5(元);捐款金额的众数是15元.故选:B.7.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.8.【解答】解:∵如图:草坪是由长分别为AB、BC、AC,宽为3m的3个矩形与三个半径为3m 的扇形组成的,又∵AB+AC+BC=2000m,三个扇形正好组成一个圆,∴草坪的面积为:S=2000×3+9π=6000+9π=6028m2.故选:C.二.填空题(共10小题,满分30分,每小题3分)9.【解答】解:2540000用科学记数法表示为2.54×106.故答案为:2.54×106.10.【解答】解:a2﹣a+2=(a2﹣6a+9)=(a﹣3)2.故答案为:(a﹣3)2.11.【解答】解:∵M(3,﹣)和点N(﹣1,2)为两函数的交点,∴x=﹣1,y=2代入反比例函数y=中得:2=,即k1=﹣2;将两点坐标代入y=k2x+b得:,解得:k1=﹣,b=,∴一次函数解析式为y=﹣x+,令y=0,解得:x=2,∴一次函数与x轴交点为(2,0).故答案为:﹣2;﹣;(2,0)12.【解答】解:设每个电话装机小组每天装机x部,每天有y部新申请装机的电话,根据题意得:,解得:,答:每个装机小组每天装机10部,每天有20部新申请装机的电话.13.【解答】解:抛物线y=ax2+bx+c(a≠0)过点A(1,﹣3)、B(3,﹣3)、C(﹣1,5),所以,解得:,所以抛物线的解析式为:y=x2﹣4x=(x﹣2)2﹣4,顶点M坐标是(2,﹣4),因此直线OM的解析式为y=﹣2x,由于直线PO与直线OM垂直,因此直线PO的解析式为y=x,联立抛物线的解析式有:,解得,,因此P点坐标为(,).14.【解答】解:该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为,故答案为:1600015.【解答】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BE C.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BE C.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.16.【解答】解:将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,作AH⊥BP于H.∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∵AM=AP,∠MAP=60°,∴△AMP是等边三角形,∵∠MAP=∠BAC,∴∠MAB=∠PAC,∴△MAB≌△PAC,∴BM=PC=10,∵PM2+PB2=100,BM2=100,∴PM2+PB2=BM2,∴∠MPB=90°,∵∠APM=60°,∴∠APB=150°,∠APH=30°,∴AH=PA=3,PH=3,BH=8+3,∴AB2=AH2+BH2=100+48,∴菱形ABCD的面积=2•△ABC的面积=2××AB2=50+72,故答案为50+72.17.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴BC==12,∴tan∠ADC=tanB===,故答案为.18.【解答】解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),∴不等式mx>kx+b的解集是x>1,故答案为:x>1.三.解答题(共10小题,满分96分)19.【解答】解:(1)原式=﹣﹣2+1+2=;(2)原式=x2﹣4x+4+x2﹣9=2x2﹣4x﹣5=2(x2﹣2x)﹣5,∵x2﹣2x﹣7=0,即x2﹣2x=7,∴原式=14﹣5=9.20.【解答】解:解不等式x+1<3x﹣3,得:x>2,解不等式3(x﹣4)<2(x﹣4),得:x<4,则不等式组的解集为2<x<4,∵x2﹣2x=4,∴x2﹣2x+1=4+1,即(x﹣1)2=5,则x﹣1=±,∴x=1或x=1﹣,∵2<x<4,∴x=1.21.【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.22.【解答】解:(1)一共有四个开关按键,只有闭合开关按键K2,灯泡才会发光,所以P(灯泡发光)=(2)用树状图分析如下:一共有12种不同的情况,其中有6种情况下灯泡能发光,所以P(灯泡发光)=.23.【解答】解:设原计划每天铺设多长管道设原计划每天铺设x米管道,根据题意得.解得x=60,经检验x=60是原分式方程的解.答:原计划每天铺设60米长的管道.24.【解答】(1)证明:∵AE=ED,BE=EF,∴四边形ABDF是平行四边形,∴AF=B D.(2)结论:四边形ADCF是菱形.理由:∵AB⊥AC,∴∠CAB=90°,∵CD=DB,∴AD=BC=DC,∵四边形ABDF是平行四边形,∴AF∥CD,AF=BD,∴AF=CD,∴四边形AFCD是平行四边形,∵DA=DC,∴四边形AFCD是菱形.25.【解答】解:(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣2)设二次函数表达式为:y=a(x﹣3)2﹣2.∵该图象过A(1,0)∴0=a(1﹣3)2﹣2,解得a=.∴表达式为y=(x﹣3)2﹣2(2)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有2个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11.当直线过y=(x﹣3)2﹣2的图象顶点时,有2个交点,由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)2+2∴令(x﹣3)2+2=﹣2时,解得x=3+2或x=3﹣2(舍去)∴x3+x4+x5<9+2.综上所述11<x3+x4+x5<9+2.26.【解答】解:(1)证明:∵弦CD⊥AB于点E,∴在Rt△COE中∠COE+∠OCE=90°,∵∠POC=∠PCE,∴∠PCE+∠OCE=90°,即PC⊥OC,∴PC是⊙O的切线;(2)∵OE:EA=1:2,PA=6,∴可设OE=k,EA=2k,则半径r=3k,在Rt△COP中,∵CE⊥PO垂足为E,∴△COE∽△POC,∴CO2=OE•OP即(3k)2=k•(3k+6),解得k=0(舍去)或k=1,∴半径r=3;(3)过A作AH⊥PC,垂足为H,∵PC⊥OC∴AH∥OC,∴,即,解得AH=2,在Rt△COE中,由OC=3,OE=1,解得CE=,在Rt△ACE中,由CE=,AE=2,解得AC=,在Rt△ACH中,由AC=,AH=2,∴sin∠PCA===.27.【解答】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋转变换的性质可知,∠PAP′=60°,P′C=PB,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC+∠PCA==30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∴PA2+PC2=PB2,故答案为:150,PA2+PC2=PB2;(2)如图2,作将△ABP绕点A逆时针旋转120°得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=120°,P′C=PB,∴∠APP′=30°,∵∵∠PAC+∠PCA==60°,∴∠APC=120°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∵∠APP′=30°,∴PD=PA,∴PP′=PA,∴3PA2+PC2=PB2;(3)如图2,与(2)的方法类似,作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=α,P′C=PB,∴∠APP′=90°﹣,∵∵∠PAC+∠PCA=,∴∠APC=180°﹣,∴∠P′PC=(180°﹣)﹣(90°﹣)=90°,∴PP′2+PC2=P′C2,∵∠APP′=90°﹣,∴PD=PA•cos(90°﹣)=PA•sin,∴PP′=2PA•sin,∴4PA2sin2+PC2=PB2,故答案为:4PA2sin2+PC2=PB2.28.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).。

2020年江苏省扬州市广陵区中考数学二模试卷 (解析版)

2020年江苏省扬州市广陵区中考数学二模试卷 (解析版)

2020年扬州市广陵区中考数学二模试卷一、选择题(共8小题).1.﹣2的倒数是()A.﹣B.C.﹣2D.22.函数y=中自变量x的取值范围是()A.x>2B.x≥2C.x≤2D.x≠23.下列计算正确的是()A.2a+3b=5ab B.(a﹣b)2=a2﹣b2C.(2x2)3=6x6D.x8÷x3=x54.下列水平放置的四个几何体中,主视图与其它三个不相同的是()A.B.C.D.5.已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九B.八C.七D.六6.小明根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.众数C.中位数D.方差7.在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如表:x﹣3﹣2﹣112345y﹣14﹣7﹣22m n﹣7﹣14则m、n的大小关系为()A.m>n B.m<n C.m=n D.无法确定8.两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,其中AB=3,CD=6.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°),如图2所示.当BD与CD在同一直线上(如图3)时,tanα的值等于()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.我国最大的领海南海总面积有3500 000平方公里,将数3500 000用科学记数法表示应为.10.若2x=3y,且x≠0,则的值为.11.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=.12.如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为.13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.14.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.15.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=.16.计算:40382﹣4×2018×2020=.17.如图,在菱形OABC中,点A的坐标是(2,1),点B的横坐标是3,则点C的坐标是.18.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2=10,则k的值.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:﹣3tan30°;(2)解不等式:.20.先化简再求值:,其中a是方程a2+a=0的一个根.21.为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?22.在不透明的袋子中有四张标着数字1,2,3,4 的卡片,这些卡片除数字外都相同.甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加.如图是他所画的树状图的一部分.(1)由如图分析,甲同学的游戏规则是:从袋子中随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)帮甲同学完成树状图;(3)求甲同学两次抽到的数字之和为偶数的概率.23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)在图中找出一对相似三角形,并说明理由;(2)若AB=8,AD=,AF=,求AE的长.24.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.25.如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.(1)求证:AC是⊙O的切线;(2)若cos C=,AC=8,求BF的长.26.如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):①该屏幕的长=寸,宽=寸;②已知“屏幕浪费比=”,求该电视机屏幕的浪费比.(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:≈2.2,结果精确到0.1)27.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.28.如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣2的倒数是()A.﹣B.C.﹣2D.2【分析】根据倒数的定义即可求解.解:﹣2的倒数是﹣.故选:A.2.函数y=中自变量x的取值范围是()A.x>2B.x≥2C.x≤2D.x≠2【分析】根据被开方数大于等于0,列式计算即可得解.解:由题意得,x﹣2≥0,解得x≥2.故选:B.3.下列计算正确的是()A.2a+3b=5ab B.(a﹣b)2=a2﹣b2C.(2x2)3=6x6D.x8÷x3=x5【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.解:A、2a+3b,无法计算,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(2x2)3=8x6,故此选项错误;D、x8÷x3=x5,故此选项正确;故选:D.4.下列水平放置的四个几何体中,主视图与其它三个不相同的是()A.B.C.D.【分析】分别找到四个几何体从正面看所得到的图形比较即可.解:A、主视图为长方形;B、主视图为长方形;C、主视图为长方形;D、主视图为三角形.则主视图与其它三个不相同的是D.故选:D.5.已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九B.八C.七D.六【分析】首先根据求出外角度数,再利用外角和定理求出边数.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.即这个正多边形是九边形.故选:A.6.小明根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.众数C.中位数D.方差【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.解:去掉一个最高分和一个最低分对中位数不发生变化;故选:C.7.在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如表:x﹣3﹣2﹣112345y﹣14﹣7﹣22m n﹣7﹣14则m、n的大小关系为()A.m>n B.m<n C.m=n D.无法确定【分析】从表中任意选取两组已知数代入二次函数的解析式求得解析式,再分别代入x =2和x=3,求得m与n的值便可.解:把x=1,y=2和x=﹣1,y=﹣2都代入y=﹣x2+bx+c中,得解得,,∴二次函数的解析式为:y=﹣x2+2x+1,把x=2,y=m和x=3,y=n代入y=﹣x2+2x+1得,m=﹣4+4+1=1,n=﹣9+6+1=﹣2,∴m>n,故选:A.8.两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,其中AB=3,CD=6.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°),如图2所示.当BD与CD在同一直线上(如图3)时,tanα的值等于()A.B.C.D.【分析】延长BD交OA于G,交AC于E,只要证明△AOC≌△BOD即可解决问题.如图2中,设AC=x,在Rt△ABC中,利用勾股定理求出x,再根据三角函数的定义即可解决问题.解:如图1,延长BD交OA于G,交AC于E.∵∠AOB=∠COD=90°,∴∠AOC=∠DOB,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD,∠CAO=∠DBO,∵∠DBO+∠OGB=90°,∵∠OGB=∠AGE,∴∠CAO+∠AGE=90°,∴∠AEG=90°,∴BD⊥AC,如图2中,设AC=x,∵BD、CD在同一直线上,BD⊥AC,∴△ABC是直角三角形,∴AC2+BC2=AB2,∴x2+(x+6)2=(3)2,解得x=3或x=﹣9(舍去),∴BC==9,∵∠ODC=∠α+∠DBO=45°,∠ABC+∠DBO=45°,∴∠α=∠ABC,∴tanα=tan∠ABC==.故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.我国最大的领海南海总面积有3500 000平方公里,将数3500 000用科学记数法表示应为 3.5×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:3500 000=3.5×106,故答案为:3.5×106.10.若2x=3y,且x≠0,则的值为.【分析】直接利用比例的性质得出x=y,进而代入求出答案.解:∵2x=3y,且x≠0,∴x=y,∴==.故答案为:.11.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=16.【分析】根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.解:△=(﹣8)2﹣4m=0,解得m=16.故答案为16.12.如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为.【分析】首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向红色区域的概率.解:∵圆被等分成6份,其中红色部分占2份,∴落在阴影区域的概率==,故答案为.13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=57°.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.14.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是8π.【分析】圆锥的侧面积=底面周长×母线长÷2.解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.15.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=130°.【分析】根据圆内接四边形的对角互补求得∠A的度数,再根据圆周角定理求解即可.解:∵∠BOD=100°∴∠A=50°∠BCD=180°﹣∠A=130°故答案为:130°.16.计算:40382﹣4×2018×2020=4.【分析】根据有理数的混合计算解答即可.解:40382﹣4×2018×2020=(2018+2020)2﹣4×2018×2020=(2018﹣2020)2=4,故答案为:4.17.如图,在菱形OABC中,点A的坐标是(2,1),点B的横坐标是3,则点C的坐标是(1,2).【分析】作AD⊥x轴于D,BF⊥x轴于F,AE⊥BF于E,BG⊥y轴于H,CG⊥BH于G,CM⊥Y轴于M,则四边形BHOF是矩形,四边形ADFE是矩形,四边形GHMC是矩形,证明Rt△ABE≌Rt△AOD,得出BE=OD=2,求出BF=3,同理可证:△CBG ≌△AOD,得出CG=AD=1,BG=OD=2,得出HM=1,OM=2,即可得出结果.解:作AD⊥x轴于D,BF⊥x轴于F,AE⊥BF于E,BG⊥y轴于H,CG⊥BH于G,CM⊥Y轴于M,如图所示:则四边形BHOF是矩形,四边形ADFE是矩形,四边形GHMC是矩形,∠ADO=∠AEB=∠CGB=∠CMO=90°,∵点A的坐标是(2,1),点B的横坐标是3,∴OD=2,EF=AD=1,BH=3,∴AE=1,∴AE=AD,∵四边形OABC是菱形,∴OA=AB=BC=OC,在Rt△ABE和Rt△AOD中,,∴Rt△ABE≌Rt△AOD(HL),∴BE=OD=2,∴BF=3=BH,同理可证:△CBG≌△AOD,∴CG=AD=1,BG=OD=2,∴HM=1,OM=3﹣1=2,∴C(1,2);故答案为:(1,2).18.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2=10,则k的值5.【分析】由平移的性质得直线l:y=x﹣b,所以B(b,0),联立一次函数与反比例函数关系式得:x﹣b=,设点A的坐标为(x,x﹣b),由OA2﹣OB2=10得2k=10,所以k=5解:直线y=x向下平移b个单位长度后得到直线l:y=x﹣b∴B(b,0)∵l与反比例函数y=(k>0,x>0)的图象相交于点A∴x﹣b=即:x2﹣bx﹣k=0∴x2=bx+k设A点坐标为(x,x﹣b)∵OA2﹣OB2=x2+(x﹣b)2﹣b2=2x2﹣2bx=2k∴2k=10k=5故答案为:5三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:﹣3tan30°;(2)解不等式:.【分析】(1)根据实数的运算解答即可;(2)根据一元一次不等式的解法解答即可.解:(1)原式==;(2)去分母得:3(1﹣2x)﹣6≥2(x+2),移项、合并同类项得:﹣8x≥7,化系数为1得:x≤﹣.20.先化简再求值:,其中a是方程a2+a=0的一个根.【分析】根据分式的加法和除法可以化简题目中的式子,然后求出方程a2+a=0的解,然后将使得原分式有意义的a的值代入化简后的式子即可解答本题.解:===,由方程a2+a=0,得a1=0,a2=﹣1,∵当a=0时,原分式无意义,∴a=﹣1,当a=﹣1时,原式==﹣.21.为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)(1)你认为哪位同学抽取的样本不合理?请说明理由.(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?【分析】(1)根据抽样调查时,抽取的样本要有代表性,即可作出判断;(2)根据统计表即可直接补全直方图;(3)利用总人数400乘以对应的比例即可.解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.(2)如图所示:;(3)该校全体初二学生中应适当减少上网的时间的人数是:400×=80(名).答:该校全体初二学生中有80名同学应适当减少上网的时间.22.在不透明的袋子中有四张标着数字1,2,3,4 的卡片,这些卡片除数字外都相同.甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加.如图是他所画的树状图的一部分.(1)由如图分析,甲同学的游戏规则是:从袋子中随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)帮甲同学完成树状图;(3)求甲同学两次抽到的数字之和为偶数的概率.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据本实验是一个不放回试验作出树状图即可;(3)根据树状图利用概率公式求解即可.解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴甲同学的实验是一个不放回实验,故答案为:不放回;(2)补全树状图为:(3)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有4种,故P(两次抽到的数字之和为偶数)==.23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)在图中找出一对相似三角形,并说明理由;(2)若AB=8,AD=,AF=,求AE的长.【分析】(1)根据平行四边形的性质得到∠ADF=∠DEC,根据平行线的性质、等量代换得到∠AFD=∠C,根据相似三角形的判定定理证明结论;(2)根据相似三角形的性质求出DE,根据勾股定理计算,得到答案.解:(1)△ADF∽△DEC,理由如下:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∵∠ADF=∠DEC,∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8,由(1)可知△ADF∽△DEC,∴=,即=,解得,DE=12,在Rt△ADE中,AE==6.24.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【分析】首先提出问题,例如,求甲、乙两公司的人数分别是多少?则本题的等量关系是:乙公司的人均捐款﹣甲公司的人均捐款=40,根据这个等量关系可得出方程求解.【解答】问题:求甲、乙两公司的人数分别是多少?解:设乙公司人数为x,则甲公司的人数为(1+20%)x,根据题意得:﹣=40解得:x=250经检验x=250是原方程的根,故(1+20%)×250=300(人),答:甲公司为300人,乙公司250人.25.如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.(1)求证:AC是⊙O的切线;(2)若cos C=,AC=8,求BF的长.【分析】(1)如图①,连接AD.根据直径所对的圆周角为直角及同圆中等弧所对的圆周角相等,及∠ACB=2∠EAB.求得∠BAD+∠CAD=90°,则BA⊥AC,根据切线的判定定理可得证;(2)如图②,过点F做FH⊥AB于点H,先在Rt△ADC和Rt△BAC中,分别求得CD、BC、BD.再在Rt△BFH中,由三角函数可求得FH及DF,则可用BD的值减去DF的值,求得BF.【解答】(1)证明:如图①,连接AD.图①∵E是的中点,∴∴∠DAE=∠EAB.∵∠C=2∠EAB,∴∠C=∠BAD.∵AB是⊙O的直径,∴∠ADB=∠ADC=90°∴∠C+∠CAD=90°∴∠BAD+∠CAD=90°即BA⊥AC.∴AC是⊙O的切线.(2)解:如图②,过点F做FH⊥AB于点H.图②∵AD⊥BD,∠DAE=∠EAB,∴FH=FD,且FH∥AC.在Rt△ADC中,∵cos C=,AC=8,∴CD=6.同理,在Rt△BAC中,可求得BC=∴BD=设DF=x,则FH=x,BF=﹣x∵FH∥AC,∴∠BFH=∠C.∴cos∠BFH==即=解得x=2.∴BF=.26.如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):①该屏幕的长=16寸,宽=12寸;②已知“屏幕浪费比=”,求该电视机屏幕的浪费比.(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:≈2.2,结果精确到0.1)【分析】(1)①根据电视机屏幕的长宽比为4:3,设长为4x,则宽为3x,再由勾股定理求出x的值,进而可得出结论;②设在该屏幕上播放长宽比为2.4:1的视频时,视频的宽为a寸(长为16寸),求出a的值,得出黑色带子的宽度,进而得出其比值;(2)根据题意得出=,=,得PQ=BC,FG=EF.再由S矩形EFGH =S矩形MNPQ即可得出=,进而可得出结论.解:(1)①∵电视机屏幕的长宽比为4:3,∴设长为4x,则宽为3x,∵电视机屏幕为20寸,∴(4x)2+(3x)2=202,解得x=4,∴4x=16,3x=12,∴该屏幕的长为16寸,宽为12寸;故答案为:16;12.②设在该屏幕上播放长宽比为2.4:1的视频时,视频的宽为a寸(长为16寸).∵=,解得a=.∴黑色带子的宽的和=12﹣=.∴屏幕浪费比==;(2)由题意:=,=,得:PQ=BC,FG=EF.∵S矩形EFGH=S矩形MNPQ,∴BC•BC=EF•EF.∴=,∴=≈1.8.答:这种屏幕的长宽比约为1.8.27.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)如图2,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.28.如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.【分析】(1)将点B的坐标为(4,m)代入y=﹣x+,m=﹣4+=﹣,B的坐标为(4,﹣),将A(3,2),B(4,﹣)代入y=﹣x2+bx+c,解得b=1,c=,因此抛物线的解析式y=;(2)设D(m,),则E(m,﹣m+),DE=()﹣(﹣m+)==﹣(m﹣2)2+2,当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A',连接A'D,与对称轴交于点P.PD+PA=PD+PA'=A'D,此时PD+PA最小;(3)作AH⊥对称轴于点H,连接AM、AQ、MQ、HA、HQ,由M(1,4),A(3,2),可得AH=MH=2,H(1,2)因为∠AQM=45°,∠AHM=90°,所以∠AQM =∠AHM,可知△AQM外接圆的圆心为H,于是QH=HA=HM=2设Q(0,t),则=2,t=2+或2﹣,求得符合题意的点Q的坐标:Q1(0,2﹣)、Q2(0,2).解:(1)将点B的坐标为(4,m)代入y=﹣x+,m=﹣4+=﹣,∴B的坐标为(4,﹣),将A(3,2),B(4,﹣)代入y=﹣x2+bx+c,解得b=1,c=,∴抛物线的解析式y=;(2)设D(m,),则E(m,﹣m+),DE=()﹣(﹣m+)==﹣(m﹣2)2+2,∴当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A',连接A'D,与对称轴交于点P.PD+PA=PD+PA'=A'D,此时PD+PA最小,∵A(3,2),∴A'(﹣1,2),A'D==,即PD+PA的最小值为;(3)作AH⊥对称轴于点H,连接AM、AQ、MQ、HA、HQ,∵抛物线的解析式y=,∴M(1,4),∵A(3,2),∴AH=MH=2,H(1,2)∵∠AQM=45°,∠AHM=90°,∴∠AQM=∠AHM,可知△AQM外接圆的圆心为H,∴QH=HA=HM=2设Q(0,t),则=2,t=2+或2﹣∴符合题意的点Q的坐标:Q1(0,2﹣)、Q2(0,2).。

2020年江苏省扬州市中考数学模拟测试试卷附解析

2020年江苏省扬州市中考数学模拟测试试卷附解析

2020年江苏省扬州市中考数学模拟测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.王英同学从A地沿北偏西60方向走100m到B地,再从B地向正南方向走200m到C 地,这时王英同学离A地的距离是()A.150m B.503m C.100m D.1003m2.下列事件中,不可能事件是()A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,•向上一面的点数是“5”B.任意选择某个电视频道,正在播放动画片C.肥皂泡会破碎D.在平面内,度量一个三角形的内角度数,其和为360°3.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像 CD 的长()A.16cm B.13cm C.12cm D.1 cm4.下列语句中,不是命题的是()A.三角形的内角和等于l80°B.有两边和一角对应相等的两个三角形全等C.如果∠1+∠2=90°,∠1+∠3=90°,那么∠2=∠3D.画△ABC和△A′B′C′,使△ABC≌△A′B′C′5.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:金额(元)20303550100学生数(人)3751510A.30元B.35元C.50元D.100元6.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a,中位数为b,众数为c,则有()A .b >a >cB .c >a >bC .a >b >cD .b >c >a7.立方体的六个面标有数字:1,2,3,4,5,6,而且相对两个面的数之和相等,下列各图是它的展开图的是 ( )8.已知等腰三角形的周长为 12,一边长为 3、则它的腰长为( ) A . 3B . 4.5C .3或4.5D . 以上都不正确9.如图 ,在Rt △ABC 中,∠C = 90°,E 是BC 上的一点,DE ⊥AB ,点0为垂足,则∠A 与∠CED 的关系是( ) A . 相等B . 互余C . 互补D .以上都有可能10.已知方程组42ax by ax by -=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则2a-3b 的值为( )A .4B .6C .-6D .-411.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A .AD >1B .AD <5C .1<AD <5D .2<AD <1012.下列方程中属于一元一次方程的是( ) A .x-y=3B .-x+1=1C .11x x+=D .2210x x -+=二、填空题13.从两副拿掉大、小王的扑克牌中,各抽取一张牌,这两张牌都是红桃的概率是 . 14.已知函数5y x =-,令 x=12、1、32、2、52、3、72、4、92、5,可得函数图象上的十个点,在这十个点中随机取两个点 P(x 1,y 1)、Q(x 2,y 2),则 P 、Q 两点在同一个反比例函数图象上的概率是 .15.小明托人从商店购买铅笔和钢笔,他喜欢的是红色或绿色铅笔和白色钢笔,而小明没有向捎带的人说明要购买什么颜色的,商店有红、蓝、黄、绿四种颜色的铅笔和黑、白两种颜色的钢笔. 那么那个人带回的铅笔和钢笔正好都是小明喜欢的颜色的概率是 .16.圆上各点到圆心的距离都等于 ;到圆心的距离等于半径的点都在 上. 17.如图,在等腰三角形ABC 中,AB=AC ,BC=2cm ,∠A=120°,将△ABC 绕着点A 旋转,当点B 落在点C 的位置时,点C 落在点D 处,则BD 的长为 cm .18.把直线y=-2x 一2向上平移3个单位的直线是 . 19.当12x =-,1y =时,分式1x yxy --= . 20.写出一个解为32p q =⎧⎨=⎩的二元一次方程组: . 21.从A 村到B 村有三种不同的路径,再从 B 村到C 村又有两种不同的路径.因此若从A 村经B 村去C 村,则A 村到C 村有 种可能路径.22.两个数的积是-1,其中一个数是135-,则另一个数是 .三、解答题23.如图,P 为抛物线4123432+-=x x y 上对称轴上右侧的一点,且点P 在x 轴上方,过点P 作PA 垂直x 轴与点A ,PB 垂直y 轴于点B ,得到矩形PAOB .若AP =1,求矩形PAOB 的面积.24.如图,在矩形 ABCD 中,AB =6 cm ,BC=12 cm ,点P 从点A 出发,沿 AB 边向点 B 以1cm/s 的速度移动,同时点 Q 从点B 出发沿 BC 边向点C 以2cm/s 的速度移动,回答下列 问题:(1)设运动后开始第 t(s)时,五边形 APQCD 的面积为 S(m 2),写出 S 与t 的函数关系式,并指出自变量 t 的取值范围;(2)t 为何值时S 最小?求出 S 的最小值.25.已知一次函数y=3x-2k 的图象与反比例函y=k-3x 的图象相交,其中一个交点的纵坐标为6,求一次函数的图象与x 轴、y 轴的交点坐标. (-103,0),(0,10).26.如图所示,把边长为2的正方形剪成四个全等的直角三角形,•请你用这四个直角三角形拼成符合下列要求的图形各一个,并标上必要的记号: (1)不是正方形的菱形; (2)不是正方形的矩形; (3)梯形;(4)不是矩形和菱形的平行四边形; (5)不是梯形和平行四边形的凸四边形.27.解下列方程:(1)28)32(72=-x (2)039922=--y y(3)x x 52122=+; (4))1(332+=+x x28.如图,∠AOB=60°,AO=10,点P 在OB 上,根据以下条件,分别求出OP 的长(或范围).(1)△AOP是等边三角形;(2)△AOP是直角三角形;(3)△AOP是钝角三角形.29.取出一张长方形的纸,沿一条对角线折叠,如图所示,问:重叠部分是一个什么三角形?并说明理由.30.如图所示,已知△ABE≌△ACE,D是BC的中点,你能说明△BDE≌△CDE吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.D5.C6.A7.A8.B9.C10.B11.C12.B二、填空题 13. 11614. 44515. 0.2516.半径,圆17.218.y=-2x+119.120.不唯一,如55p q p q +=⎧⎨-=⎩21.622.516三、解答题 23.∵PA ⊥x 轴,AP =1,∴点P 的纵坐标为1.当y =1时,23311424x x -+=,即2210x x --=,解得11x =,21x =.∵抛物线的对称轴为1x =,点P 在对称轴的右侧,∴1x =∴矩形PAOB 的面积为(1+个平方单位.24.(1) PBQ ABCD S S S ∆=-矩形=1126(6)22t t ⨯--⋅=2672t t -+, t 的取值范围为 0≤t<6.(2) 2672s t t =-+2(3)63t =-+,∴当 t=3 时,63s =最大值cm 2.25.26. 略 .27.⑴21,2521==x x ;⑵19,2121-==x x ;⑶235,23521+=-=x x ; ⑷ 3,021==x x .28.(1)OP=10 (2)OP=5或20 (3)0<OP<5或 OP>2029.等腰三角形,说明∠ABD=∠C ′DB=∠BDC30.略。

江苏省扬州市2020~2021学年度中考数学模拟试卷(二)

江苏省扬州市2020~2021学年度中考数学模拟试卷(二)

扬州市2020~2021学年度中考模拟试卷(二)九年级数学一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2的相反数是( ).A .21-B .21 C .﹣2 D .2 2.下列运算正确的是( )A .()235a a =B .44a a -=C .()3236ab a b -=-D .622a a a ÷= 3.下列图形中,是轴对称图形的是( )A .B .C .D .4.若点P (a ,b )是第二象限内的点,则点Q (b ,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限5.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( )A .90万元B .450万元C .3万元D .15万元6.若一个多边形的每个外角都为36°,则这个多边形是( )A .六边形B .八边形C .十边形D .十二边形7.在Rt △ABC 中,∠C =90°,AB =2BC ,则cos A 的值是( )A B .2 C .12 D .28.二次函数y =ax 2+bx +c ,若ab <0,a ﹣b 2>0,点A (x 1,y 1),B (x 2,y 2)在该二次函数的图象上,其中x 1<x 2,x 1+x 2=0,则( )A .y 1=﹣y 2B .y 1>y 2C .y 1<y 2D .y 1、y 2的大小无法确定二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.太阳的温度很高,其中心的温度高达19200000C ︒,用科学记数法将19200000表示为________. 10.分解因式:29x y y -=_______.11x 3+在实数范围内有意义,则x 的取值范围是______. 12.方程2(x +1)2-8=0的解是____________________.13.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为_______. 14.事件A 发生的概率为120,大量重复试验后,事件A 平均每n 次发生的次数是10,那么n =__. 15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为 .16.如图,在Rt △ABC 中,∠C =90°,∠B =20°,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;③作射线AF .若AF 与PQ 的夹角为α,则α= °.17.如图,把边长为12的正三角形ABC 纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK ,则剪去的小正三角形的边长为__________________.18.如图,已知正方形ABCD 的边长为2,点E 是正方形内部一点,连接EA ,EB 满足EAB EBC ∠=∠,点P 是BC 边上一动点,连结PD ,PE .则PD PE +长度的最小值为________.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算或化简:(1)131|3|23tan 608-︒---++. (2)2421a a a -⎛⎫÷- ⎪⎝⎭20.解不等式组:()3242113x x x x ⎧-≥-⎪⎨+>-⎪⎩①②.21.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t (单位:小时).把调查结果分为四档,A 档:t <8;B 档:8≤t <9;C 档:9≤t <10;D 档:t ≥10.根据调查情况,给出了部分数据信息: ①A 档和D 档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B 档的人数;22.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.23.小明到一家批发兼零售的文具店给九年级学生购买考试用2B铅笔,请根据下列情景解决问题.(1)这个学校九年级学生总数在什么范围内?(2)若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?24.在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=2√3,AD=4,求EC的长;25.如图,已知△ABC中,以AB为直径的⊙O交AC于点D,∠CBD=∠A.(1)求证:BC为⊙O的切线;(2)若E为AB中点,BD=12,sin∠BED=35,求BE的长.26.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE 按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.27.定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.28.如图所示,△OAB的顶点A在反比例函数y=k x(k>0)的图象上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且AE=1.(1)若点E为线段OC的中点,求k的值;(2)若△OAB为等腰直角三角形,∠AOB=90°,其面积小于3.①求证:△OAE≌△BOF;②把|x1﹣x2|+|y1﹣y2|称为M(x1,y1),N(x2,y2)两点间的“ZJ距离”,记为d(M,N),求d(A,C)+d(A,B)的值.。

2020年江苏省扬州市中考数学二模试卷含答案

2020年江苏省扬州市中考数学二模试卷含答案

中考数学二模试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.下列实数中,是有理数的是( )A.π B. C. D.2.2019年扬州鉴真国际半程马拉松近有4.6万人参跑,请把4.6万用科学记数法表示( )A. 0.46×103B. 4.6×103C. 0.46×104D. 4.6×1043.下列运算正确的是( )A. (x+2y)2=x2+4y2B. (-2a3)2=4a6C. -6a2b5+ab2=-6ab3D. 2a2•3a3=6a64.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A. B. C. D.5.在下列图形中,由条件∠1+∠2=180°不能得到AB∥CD的是( )A. B.C. D.6.对于非零实数a、b,规定a⊗b=.若x⊗(2x-1)=1,则x的值为( )A. 1B.C. -1D.7.如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是( )A. B.C. D.8.如图,AB为半圆O的直径,AB=2,点C为半圆上动点,以BC为边向形外作正方形BCDE,连接OD,则OD的最大值为( )A.2 B. C. D.二、填空题(本大题共10小题,共30.0分)9.要使二次根式有意义,则x的取值范围是______.10.在△ABC中,∠C=90°,AC=4,BC=3,则tan B=______.11.分解因式:a3-25a=______.12.若关于x的一元二次方程(k-1)x2+2x-1=0有两个不相等的实数根,则k的取值范围是______.13.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币.如图所示,则该硬币边缘镌刻的正多边形的外角的度数为______.14.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为______.15.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为______m.16.如果点(-1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是______.17.如图所示,边长为3厘米与4厘米的两个正方形并排放在一起.在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧.则阴影部分的面积是______平方厘米.18.如图(a),在直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴,直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图(b)所示,那么AD的长为______.三、计算题(本大题共2小题,共18.0分)19.先化简,再求值:-(m+2-)÷,其中m是方程x2=6-2x的解.20.金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.四、解答题(本大题共8小题,共78.0分)21.(1)计算:+()-1-(π-3.14)0-tan60°.(2)解不等式组,并求出x的负整数解.22.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是______,并补全频数分布直方图;(2)C组学生的频率为______,在扇形统计图中D组的圆心角是______度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?23.动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为______.(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率.24.已知:如图,在矩形ABCD中,过AC的中点M作EF⊥AC,分别交AD、BC于点E、F.(1)求证:四边形AECF是菱形;(2)如果CD2=BF•BC,求∠BAF的度数.25.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.26.某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,若乙团队人数不超过40人,甲团队人数不超过80人,设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为y元.(1)直接写出y关于x的函数关系式,并写出自变量x的取值范围;(2)计算甲、乙两团队联合购票比分别购票最多可节约多少钱?(3)该景区每年11月、12月为淡季,景区决定在这两个月实行门票打五折的优惠(打折期间不售团体票),以吸引大量游客,提高景区收入;景区经过调研发现,随着接待游客数的增加,景区的运营成本也随之增加,景区运营成本Q(万元)与两个月游客总人数t(万人)之间满足函数关系式:Q=t2+800;两个月游客总人数t(万人)满足:150≤t≤200,且淡季每天游客数基本相同;为了获得最大利润,景区决定通过网络预约购票的方式控制淡季每天游客数,请问景区的决定是否正确?并说明理由.(利润=门票收入-景区运营成本)27.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P.像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)①如图1,当∠ABE=45°,c=2时,a=______,b=______;②如图2,当∠ABE=30°,c=4时,求a和b的值.归纳证明(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.(3)利用(2)中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图4所示,求MG2+MH2的值.28.如图,抛物线y=ax2+3x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=4.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD 交BC于点F,当S△COF:S△CDF=4:3时,求点D的坐标.(3)如图2,点E的坐标为(0,-2),点P是抛物线上的点,连接EB,PB,PE 形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:有理数是整数和分数的集合,故选:D.根据有理数的定义即可求出答案.本题考查有理数,解题的关键是熟练运用有理数的定义,本题属于基础题型.2.【答案】D【解析】解:把4.6万用科学记数法表示为:4.6×104.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、(x+2y)2=x2+4xy+4y2,故此选项错误;B、(-2a3)2=4a6,正确;C、-6a2b5+ab2,无法计算,故此选项错误,D、2a2•3a3=6a5,故此选项错误;故选:B.直接利用完全平方公式和单项式乘以单项式的性质、积的乘方运算法则,分别化简得出答案.此题主要考查了完全平方公式和单项式乘以单项式的性质、积的乘方运算,正确掌握运算法则是解题关键.4.【答案】C【解析】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.【答案】D【解析】解:A、∠1的对顶角与∠2的对顶角是同旁内角,它们互补,所以能判定AB∥CD ;B、∠1的对顶角与∠2是同旁内角,它们互补,所以能判定AB∥CD;C、∠1的邻补角∠BAD=∠2,所以能判定AB∥CD;D、由条件∠1+∠2=180°能得到AD∥BC,不能判定AB∥CD;故选:D.在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.本题考查了平行线的判定,解题的关键是注意平行判定的前提条件必须是三线八角.6.【答案】A【解析】解:根据题中的新定义化简得:-=1,去分母得:2x2-2x+1=2x2-x,解得:x=1,经检验x=1是分式方程的解,故选:A.利用题中的新定义化简已知等式,求出解即可.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.7.【答案】C【解析】解:∵点P在AC上,∴PA+PC=AC,而PB+PC=AC,∴PA=PB,∴点P在线段AB的垂直平分线上,所以作线段AB的垂直平分线交AC于点P.故选:C.利用PA+PC=AC,PB+PC=AC得到PA=PB,则根据线段垂直平分线的逆定理得到点P 在线段AB的垂直平分线上,于是可判断C正确.本题考查了作图-复杂作图:结合了几何图形的性质和基本作图方法解决问题.8.【答案】C【解析】解:通过旋转观察如图可当DO⊥AB时,DO最长,设DO与⊙O交于点M,连接CM,BD,OC.理由:∵△OBM,△BCD都是等腰直角三角形,∴∠OBM=∠CBD,∴∠OBC=∠MBD,∵==,∴△OBC∽△MBD,∴MD:OC=BD:BC=,∴MD=OC=,∴点D的运动轨迹是以M为圆心为半径的圆,∴当D,M,O共线,即DO⊥AB时,DO最长.∵∠MCB=∠MOB=×90°=45°,∴∠DCM=∠BCM=45°,∵四边形BCDE是正方形,∴C、M、E共线,∠DEM=∠BEM,在△EMD和△EMB中,,∴△MED≌△MEB(SAS),∴DM=BM===,∴OD的最大值=1+.故选:C.通过旋转观察如图可知当DO⊥AB时,DO最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MD=BM.再利用勾股定理计算即可.本题考查正方形的性质、全等三角形的判定与性质以及旋转的性质等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论,属于中考常考题型.9.【答案】x≥2【解析】解:由题意得,x-2≥0,解得x≥2.故答案为:x≥2.根据被开方数大于等于0列不等式求解即可.本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.10.【答案】【解析】【分析】根据锐角三角函数的定义解答即可.本题考查了锐角三角函数的定义,比较简单.【解答】解:△ABC中,∠C=90°,AC=4,BC=3,∴tan B==.11.【答案】a(a+5)(a-5)【解析】解:原式=a(a2-25)=a(a+5)(a-5).故答案为:a(a+5)(a-5).首先提取公因式a,再利用平方差进行分解即可.此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【答案】k>0且k≠1【解析】解:∵原方程是关于x得一元二次方程,∴k-1≠0解得:k≠1,又∵原方程有两个不相等的实数根,∴△=4+4(k-1)>0,解得:k>0,即k得取值范围是:k>0且k≠1,故答案为:k>0且k≠1.根据该方程是关于x得一元二次方程,得到关于k得一个不等式,根据该方程有两个不相等的实数根,结合根的判别式公式,得到一个关于k得不等式,分别解两个不等式,解之取公共部分即可得到答案.本题考查了根的判别式和一元二次方程的定义,正确掌握根的判别式公式和一元二次方程的定义是解题的关键.13.【答案】40°【解析】解:∵正多边形的外角和是360°,∴360°÷9=40°.故答案为:40°.正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以多边形的边数,就得到外角的度数.本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数和外角的度数是常用的一种方法,需要熟记.14.【答案】x<1【解析】解:k1x+b<k2x+c的解集即为函数y=k1x+b的值小于y=k2x+c的值时x的取值范围,右图可知x<1时,不等式k1x+b<k2x+c成立,故答案为x<1.由于k1x+b<k2x+c的解集即为函数y=k1x+b的值小于y=k2x+c的值时x的取值范围,据图即可做出解答.本题考查了一次函数与一元一次不等式的关系,找到函数图象的交点是解题的关键.15.【答案】【解析】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:m,∴扇形的弧长为:=πm,∴圆锥的底面半径为:π÷2π=m.利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.本题用到的知识点为:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长.16.【答案】y2>y3>y1【解析】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∵-1<0,∴A点在第三象限,∴y1<0,∵2>1>0,∴B、C两点在第一象限,∴y2>y3>0,∴y2>y3>y1.故答案是:y2>y3>y1.先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.【答案】4π【解析】解:如图,正方形ABCD的边长为3cm,正方形EFGC的边长为5cm,根据题意有,S阴影部分=S扇形CEG+S梯形ABCE-S△ABG,∵S扇形CEG==4π;S梯形ABCE=(3+4)×3=;S△ABG=×3×7=.∴S阴影部分=4π+-=4π(cm2).故答案为4π.如图,根据图形有S阴影部分=S扇形CEG+S梯形ABCE-S△ABG,然后根据扇形、梯形和三角形的面积公式进行计算即可.本题考查了扇形的面积公式,也考查了梯形和三角形的面积公式以及不规则几何图形面积的求法.18.【答案】【解析】解:设当直线y=-x平移到C时,与直线AB交于点E,过点C作CF⊥AE于F 由题意,直线y=-x从A平移到D时,平移距离为7-4=3则BE=3,设直线平移到D时交AB于M,此时直线被平行四边形所截线段最长DM=由平移可知CE=DM=∵∠CEF=45°∴CF=EF=2则BF=1∴AD=BC=故答案为:图象可知,直线y=-x由点A平移到点D平移距离为3,则由B平移到C时平移距离BE=3,在平移过程中直线被平行四边形截得的线段长度最大值为CE=2,由∠CEF=45°,可求EF,进而求BF及AD本题为动点问题的函数图象探究题,考查了平行四边形的性质、图形平移的性质以及一次函数的知识.解题关键是数形结合.19.【答案】解:-(m+2-)÷======,∵m是方程x2=6-2x的解,∴m2=6-2m,∴原式=.【解析】根据分式的减法和除法可以化简题目中的式子,然后根据m是方程x2=6-2x的解,即可求得所求式子的值.本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式化简求值的方法.20.【答案】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天.根据题意得:+30×(+)=1.解得:x=90.经检验:x=90是原方程的根.∴x=×90=60.答:甲、乙两队单独完成这项工程各需要60天和90天.(2)设甲、乙两队合作完成这项工程需要y天.可得:y(+)=1.解得:y=36.需要施工费用:36×(0.84+0.56)=50.4.∵50.4>50∴工程预算的施工费用不够用,需追加预算0.4万元.【解析】(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天,工程任务是1,工作效率分别是:;工作量=时间×工作效率,等量关系为:前10天甲的工作量+后30天甲乙合做工作量=1.据此可列方程求解.(2)在(1)的基础上,求得甲乙单独完成这项需要的天数,得到甲乙的工作效率,用(甲的工作效率+乙的工作效率)×合做天数=1得出合做天数,再进一步计算出每个队的费用,回答题目的问题.通过第一问可以得出甲、乙两队单独完成这项工程各需要天数,也就知道了甲乙的工作效率,在第二问中甲乙工作效率是没有变的,要充分运用这个结论.找到合适的等量关系是解决问题的关键.21.【答案】解:(1)原式=2+3-1-=+2;(2)解不等式①得x≥-1解不等式②得x<3∴原不等式组的解是-1≤x<3∴不等式组的负整数解是-1.【解析】(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值化简,即可得到结果;(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其负整数解即可.本题考查的是不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了;也考查了实数的运算.22.【答案】50 0.32 72【解析】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50-4-16-10-8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.23.【答案】【解析】解:(1)∵姐姐从4张卡片中随机抽取一张卡片,∴恰好抽到A佩奇的概率=,故答案为:;(2)画树状图为:共有12种等可能的结果数,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果数为1,所以姐姐抽到A佩奇,弟弟抽到B乔治的概率=.(1)直接利用求概率公式计算即可;(2)画树状图列出所有等可能结果,根据概率公式求解可得.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠1=∠2,∵点M为AC的中点,∴AM=CM.在△AME与△CMF中∴△AME≌△CMF(ASA),∴ME=MF.∴四边形AECF为平行四边形,又∵EF⊥AC,∴平行四边形AECF为菱形;(2)解:∵CD2=BF•BC,∴=,又∵四边形ABCD为矩形,∴AB=CD,∴=又∵∠ABF=∠CBA,∴△ABF∽△CBA,∴∠2=∠3,∵四边形AECF为菱形,∴∠1=∠4,即∠1=∠3=∠4,∵四边形ABCD为矩形,∴∠BAD=∠1+∠3+∠4=90°,∴即∠1=30°.【解析】(1)通过证明△AME≌△CMF得到ME=MF.则可判断四边形AECF为平行四边形,然后利用对角线互相垂直得到结论;(2)利用CD2=BF•BC和AB=CD得到=,根据相似三角形的判定方法得到△ABF∽△CBA,所以∠2=∠3,而根据菱形的性质得∠1=∠4,即∠1=∠3=∠4,从而可求出∠1的度数.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了菱形的判定与性质和矩形的性质.25.【答案】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠ADF=∠ABC,∠BAC=∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∵∠ADB=∠ACB,∠ADF=∠ABC,∴∠ACB=∠BAC=∠ABC,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°-60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,k>0,则BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF-CD=6.【解析】本题综合考查了角平分线,相似三角形的判定和性质,圆内接四边形的性质,圆周角定理,熟知圆内接四边形的对角互补是解答此题的关键.(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,k>0,则BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论.26.【答案】解:(1)由题意乙团队人数为(100-x)人,则100-x≤40,x≥60,当60≤x≤80时,y=130x+150(100-x)=-20x+15000;(2)由(1)甲团队人数不超过80人,∵k=-20<0,∴y随x增大而减小,∴当x=60时,y最大=13800,当两团队联合购票时购票费用为100×120=12000,甲、乙两团队联合购票比分别购票最多可节约13800-12000=1800元;(3)正确,设利润为W元,根据题意得,W=-t2-75t-800,∵a=-<0,∴抛物线的开口向下,W有最大值,∵t=-=150,∴150≤t≤200,W随t的增大而减小,∴利润随人数的增大而减小,故景区的决定是正确.【解析】(1)由乙团队人数不超过40人,讨论x的取值范围,得到分段函数;(2)由(1)在甲团队人数不超过80人时,讨论y的最大值与联合购票费用相减即可;(3)根据题意列函数关系式,根据二次函数的性质即可得到结论.本题考查了二次函数的应用,解决本题的关键是根据题意,列出函数解析式,利用二次函数的性质求得最大值.注意确定x的取值范围.27.【答案】2 2【解析】解:如图1、2、3、4,连接EF,则EF是△ABC的中位线,则EF=AB,EF∥AB,∴△EFP∽△BPA,∴…①,(1)在图1中,PB=AB sin45°=2=PA,由①得:PF=1,b=2BF=2=2=a;②同理可得:a=2,b=2;(2)关系为:a2+b2=5c2,证明:如图3,设:∠EAB=α,则:PB=AB cosα=c cosα,PA=c sinα,由①得:PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2=c2×5[(sinα)2+(cosα)2]=5c2;(3)∵AE=OE=EC,AG∥BC,∴AG=BC=AD,则EF=BC=AD,同理HG=AD,∴GH=AD,∴GH=EF,∵GH∥BC,EF∥BC,∴HG∥EF,∴MG=ME=MB,同理:MH=MC,则MG2+MH2=(MB2+MC2)=×5×BC2=5.(1)在图1中,PB=AB sin45°=2=PA,即可求解;同理可得:a=2,b=2;(2)PB=AB cosα=c cosα,PA=c sinα,PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2,即可求解;(3)证明:MG=ME=MB,MH=MC,则MG2+MH2=(MB2+MC2),即可求解.本题为四边形综合题,考查了三角形相似、中位线等知识,其中(3),直接利用(2)的结论是本题的新颖点和突破点.28.【答案】解:(1)∵OB=OC=4,∴B(4,0),C(0,4),把B(4,0),C(0,4)代入y=ax2+3x+c,得,解得∴抛物线的函数解析式为y=-x2+3x+4;(2)如图1,设直线BC解析式为y=kx+b,则,解得∴直线BC解析式为y=-x+4,令点D、F的横坐标分别为x D,x F,∵S△COF:S△CDF=4:3,∴S△COF=S△COD,即OC•x F=×OC•x D,∴x D=x F,设点D横坐标为7t,点F横坐标为4t,∵点F在直线BC上,∴F(4t,4-4t),设直线OF解析式为y=k′x,则4-4t=4tk′,∴k′==,∴直线OF解析式为y=x,∵点D在直线OF上,∴D(7t,7-7t),将D(7t,7-7t)代入y=-x2+3x+4中,得7-7t=-(7t)2+3×7t+4,解得:t1=,t2=,∴D的坐标为(1,6)或(3,4);(3)①当∠PEB=2∠OBE,且点P在x轴上方时,如图2,作BE 的垂直平分线交OB于F,连接EF,在∠BEO内部作射线EP交x轴于G,交抛物线于P,使∠PEB=∠EFO,过点G作GH⊥BE于H,则BF=EF,设BF=EF=m,∴OF=OB-BF=4-m在Rt△OEF中,∠EOF=90°,∵OE2+OF2=EF2∴22+(4-m)2=m2,解得:m=,∴BF=EF=,OF=4-=,∴tan∠OBE===,tan∠OFE===,∵BF=EF∴∠BEF=∠OBE∵∠OFE=∠BEF+∠OBE∴∠OFE=2∠OBE∵∠PEB=2∠OBE∴∠PEB=∠OFE∴tan∠PEB==tan∠OFE=,设GH=4a,则EH=3a,∴BE===2,BH=2-3a∵=tan∠∠OBE=,∴=,解得:a=,∴GH=,BH=∴BG==∴OG=OB-BG=4-=∴G(,0),设直线EG解析式为y=k″x+b″,则,解得∴直线EG解析式为y=x-2,联立方程组,解得:(舍去),,∴P(,),②当∠PEB=2∠OBE,且点P在x轴下方时,如图3,过点E作EF⊥y轴,作点B关于直线EF的对称点G,连接BG交EF于F,射线EG交抛物线于点P,∵E(0,-2),∴直线EF为:y=-2∵B(4,0),∴G(4,-4)∴直线EG解析式为y=-x-2,解方程组,得,(不符合题意,舍去),∴P(,);③当∠PBE=2∠OBE,且点P在x轴上方时,如图4,在y轴正半轴上截取OF=OE=2,作射线BF交抛物线于P,在△BOE和△BOF中,∴△BOE≌△BOF(SAS)∴∠PBO=∠OBE∴∠PBE=2∠OBE易求得直线PF 解析式为y =-x +2,联立方程组,解得(不符合题意,舍去),,∴P (-,);④当∠PBE =2∠OBE ,且点P 在x 轴下方时,如图5,过点E 作EF ⊥BE 交直线BP 于F ,过F 作FG ⊥y 轴于G ,由①知:tan ∠PBE ==,BE =2∴EF =∵∠EGF =∠BOE =∠BEF =90°∴∠BEO +∠FEG =∠BEO +OBE =90°∴∠FEG =∠OBE∴△EFG ∽△BEO∴==,即==∴FG =,EG =∴OG =OE +EG =2+=∴F (,-)易求得直线BF 解析式为y =x -22,联立方程组,解得(舍去),∴∴P (-,-);综上所述,符合条件的点P 的坐标为:(,)、(,)、(-,)、(-,-).【解析】(1)先根据OB =OC =4.可求得点B 、C 的坐标,代入y =ax 2+3x +c 即可求得抛物线解析式;(2)先运用待定系数法求直线BC 解析式,再根据S △COF :S △CDF =4:3,可求得点D 、F 的横坐标数量关系,根据点F 在直线BC 上即可表示点F 坐标,再运用待定系数法求得直线OF 解析式,根据点D 在直线OF 上即可表示出D 的坐标,代入抛物线解析式即可求得点D 的坐标;(3)分四种情况:①当∠PEB =2∠OBE ,且点P 在x 轴上方时,先要构造∠EFO =2∠OBE ,可得tan ∠OFE =,再利用解直角三角形知识和解方程组即可求得点P 坐标;②当∠PEB =2∠OBE ,且点P 在x 轴下方时,③当∠PBE =2∠OBE ,且点P 在x 轴上方时,④当∠PBE =2∠OBE ,且点P 在x 轴下方时;方法相似.本题考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,解直角三角形,相似三角形判定和性质等,是一道综合性很强,难度很大的中考压轴题,解题时要能够将所学数学知识串联起来.。

2020年江苏省扬州市中考数学第二次模拟考试试卷附解析

2020年江苏省扬州市中考数学第二次模拟考试试卷附解析

2020年江苏省扬州市中考数学第二次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°,现A、B两地要同时开工,若干天后公路准确对接,则B地所修公路的走向应该是()A.北偏西52°B.南偏东52°C.西偏北52°D.北偏西38°2.如图,正比例函数y=x与反比例函数y=1x的图象相交于A、C两点.AB⊥x轴于B,CD⊥y 轴于D(如图),则四边形ABCD的面积为()A.1 B.32C.2 D.523.已知 y与x 成反比例,当 x增加 20% 时,y将()A.约减少20% B.约增加20% C.约增加80% D.约减少 80%4.下列语句是命题的为()A.试判断下列语句是否是命题B.作∠A的平分线ABC.异号两数相加和为0D.请不要选择D5.一个矩形的长比宽多 4m,面积是100 m2.若设矩形的长为 x(m),根据题意列出下列方程,正确的是()A.241000x x+-=B.241000x x--=C.241000x x++=D.241000x x-+=6.如图,下列各点在阴影区域内的是()A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)7.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE8.钟表上的时针从l0点到ll点,所旋转的角度是()A.10°B.15°C.30°D.60°9.下列各图中,射线OA 表示北偏东42º方向的是 ( )A BC D 10.在实数2-, 0.31,3π,0.80108中,无理数的个数为 ( ) A .1个 B . 2个C .3个D .4个 二、填空题11.如果方程x 2+(k -1)x -3=0的一个根为2,那么k 的值为________.12.如图,在正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠FAB= .13.某同学从学校出发向南走了10米,接着又向东走了 5米到达文化书店,则学校与文化书店之间的距离是 米.14.在Rt △ABC 中,∠C=90°,∠A=41.3°,则∠B .15.“明天会下雨”是 事件.(填“必然”或“不可能”或“可能”)16.:y x -y -x x -y=__________. 17. 如图,把△ABC 向左平移,使平移的距离等于BC,则B 的对应点是 ,AB 的对应线段是 ,∠ABC 的对应角是 .18.如图,在△ABC 中,AD 是BC 边上的中线,若△ABC 的周长为20,BC=11,且△ABD 的周长比△ACD 的周长大3,则AB= ,AC= .6,3 19.已知关于 x ,y 的方程组610x y m x y m +=⎧⎨+=⎩的解也满足2x 311y -=,则m 的值等于 . 20.一件工作,甲独做要 3 h 完成,乙独做要5 h 完成,若两人合作完成这件工作的45,则需要 h 完成.三、解答题21.如图,在△ABC 中,∠1=∠2,AB=AC=10,BD=4,求△ABC 的周长.D AB22.⑴分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.⑵如图,由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.23.某农场有 300 名职工和 51 公顷土地,已知种植各种植物每公顷所需劳动力人数及投入的设备资金如下表:农作物品种每公顷需劳动力每公顷需投入资金水稻4人 1 万元棉花8入 1 万元蔬菜 5 人2万元已知该农场计划在设备上投入 67 万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的设备资金正好够用?24.某高校共有 5 个同规格的大餐厅和 2 个同规格的小餐厅,经过测试:同时开放 1 个大餐厅,2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅, 1 个小餐厅,可供2280 名学生就餐.(1)求 1 个大餐厅,1个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的5300 名学生就餐?请说明理由.25.如图所示,把△ACB沿着AB翻转,点C与点D重合,请用符号表示图中所有的全等三角形.26.如图所示,在△ABC中,∠ABC=60°,∠ACB=72°,BD,CE分别是AC,AB上的高,BD交CE于点0.求:(1)∠A的度数;(2)∠ACE的度数;(3)∠BOC的度数.27.画图.(1)已知线段a、b(a>b),画图:①a-b;②a+b.(2)已知∠α、∠β,画图:①∠α+∠β;②∠β-∠α28.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?29.先化简,再求值. 22222222(22)[(33)(33)]x y xy x y x y x y xy---++-,其中12x=-,2y=.30.小明阅读一本世界名著,第一天看了全书的13,第二天看了剩下部分的23,若全书共x页,现在小明还有多少页未看?29x【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.A4.C5.B6.A7.D8.C9.D10.B二、填空题112.222.5°13..48.7°15.可能16.-117.B,,A,B,,∠A,B,C,18.19.120.232三、解答题21.2822.略.23.种植水稻 15 公顷,棉花20 公顷,蔬菜 16 公顷24.( 1) 1 个大餐厅可供 960 名学生就餐, 1 个小餐厅可供360 人就餐;(2)5300 人25.△ACE≌△ADE,△BCE≌△BDE,△ACB≌△ADB26.(1)48°;(2)42°;(3)132°27.略解:设这个队胜了x场,依题意得:3(145)19x x+--=,解得:5x=.答:这个队胜了5场.29.22 x y xy -+ ,1 22 -30.29x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年江苏省扬州市广陵区中考数学二模试卷
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣2的倒数是()
A.−1
2B.
1
2
C.﹣2D.2
2.函数y=√x−2中自变量x的取值范围是()
A.x>2B.x≥2C.x≤2D.x≠2
3.下列计算正确的是()
A.2a+3b=5ab B.(a﹣b)2=a2﹣b2
C.(2x2)3=6x6D.x8÷x3=x5
4.下列水平放置的四个几何体中,主视图与其它三个不相同的是()A.B.
C.D.
5.已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九B.八C.七D.六
6.小明根据演讲比赛中九位评委所给的分数制作了如下表格:
平均数中位数众数方差
8.58.38.10.15
如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.众数C.中位数D.方差
7.在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如表:x﹣3﹣2﹣112345
y﹣14﹣7﹣22m n﹣7﹣14则m、n的大小关系为()
第1 页共26 页。

相关文档
最新文档