江苏省扬州市2020年中考数学试题(含解析)

合集下载

2023年江苏省扬州市中考数学试卷(含答案)064614

2023年江苏省扬州市中考数学试卷(含答案)064614

2023年江苏省扬州市中考数学试卷试卷考试总分:144 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1. 绝对值为的实数共有( )A.个B.个C.个D.个2. 计算的结果是( )A.B.C.D.3. 某班有人,其中三好学生人,优秀学生干部人,在统计图上表示,能清楚地看出各部分与总数之间的百分比关系的是( )A.条形统计图B.扇形统计图C.折线统计图D.以上均可以4. 下列各图是正方体展开图的是( ) A. B. C.101243⋅(−)a 3a 23a 5−3a 53a 6−3a 650105D.5. 在,,,这四个数中,最小的数是( )A.B.C.D.6. 若,则函数与在同一直角坐标系中的图象可能是A.B.C.D.7. 已知三角形的两边长分别为和,且第三边长为整数,则第三边长为( )A.B.C.D.8. 若抛物线的顶点在第一象限,则的取值范围为A.B.C.D.二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )−2012–√−212–√ab >0y =ax+b y =bx ()143456y =(x−m +(m+1))2m ()m>1m>0m>−1−1<m<09. 年全国普通高考参加考试人数为人,将用科学记数法表示为________.10. 分解因式:=________.11. 如图,,,,是五边形的外角,且====,则=________.12. 如图,这是一幅长为,宽为的长方形世界杯宣传画.为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数附近,由此可估计宣传画上世界杯图案的面积约为________.13. 若一元二次方程有两个不相同的实数根,则实数m 的取值范围是________.14. 如图,点为正六边形的中心,点为中点,以点为圆心,以的长为半径画弧得到扇形,点在上;以点为圆心,以的长为半径画弧得到扇形.把扇形的两条半径,重合,围成圆锥,将此圆锥的底面半径记为;将扇形以同样方法围成的圆锥的底面半径记为,则________.15. 某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强是气球体积的反比例函数,且当时,,当气球内的气压大于时,气球将爆炸,为确保气球不爆炸,气球的体积最小应为________.16. 年月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形 的面积是,小正方形的面积是,直角三角形的短直角边为,较长直角边为,下列说法:①;②;③;④.其中正确结论序号是________.17. 如图,在中,,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交,于点,;②分别以点,为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为________.20201071000010710000−4+4m m 3m 2∠1∠2∠3∠4ABCDE ∠1∠2∠3∠470∘∠CDE 3m 2m 0.4m 2−2x+m=0x 2O ABCDEF M AF O OM MON N BC E DE DEF MON OM ON r 1DEF r 2:=r 1r 2P(Pa)V()m 3V =1.5m 3P =16000Pa 40000Pa m 320028131a b +=13a 2b 2=1b 2−=12a 2b 2ab =6△ABC ∠C =90∘∠CAB =50∘A AC AB AC E F E F EF 12G AG BC D ∠ADC18. 如图,抛物线的顶点在轴的负半轴上,正方形的两个顶点A ,在该抛物线上,则的值是________.三、 解答题 (本题共计 10 小题 ,每题 9 分 ,共计90分 )19.用配方法解方程:.计算:.20. 解不等式组: 并把不等式组的解集在数轴上表示出来. 21. 为了参加“中小学生诗词大会”,某校八年级的两班学生进行了预选,其中班上前名学生的成绩(百分制)分别为:八班:,八班:,通过数据分析,列表如下:班级平均分中位数众数方差八班八班求表中,,,的值;根据以上数据分析,你认为哪个班前名同学的成绩较好?请说明理由.22. 第一盒中有个白球、个黄球,第二盒中有个白球、个黄球,这些球除颜色外无其他差别.若从第一盒中随机取出个球,则取出的球是白球的概率是________.若分别从每个盒中随机取出个球,请用列表或画树状图的方法求取出的两个球中恰好个白球、个黄球的概率.23. 甲、乙两个工程队承担了今年的老旧小区改造工作中的一个项目,若乙队单独工作天后,再由两队合作天就可以完成这个项目,已知乙队单独完成这个项目所需天数是甲队单独完成这个项目所需天数的倍.求甲,乙两个工程队单独完成这个项目各需多少天;甲工程队一天的费用是万元,乙工程队一天的费用是万元,若甲乙合作天后剩余工作由乙队单独完成,求这个项目总共要支出的工程费用.(单位:万元)24. 如图,在平行四边形中,、分别在、边上,且=.求证:四边形是平行四边形.y =+c 12x 2B y OABC C c (1)2−4x =1x 2(2)4sin ⋅tan −660∘30∘cos 245∘ 2x+5≤3(x+2),①2x−<1,②3x+125(1)85,86,82,91,86(2)80,85,85,92,88(1)86b 86d (2)a 85c 15.6(1)a b c d (2)52111(1)1(2)111372(1)(2)735ABCD E F AD BC AE CF BFDE25. 如图,已知,以为直径的交于点,连接,的平分线交于点,交于点,且.判断所在直线与的位置关系,并说明理由;若,,求的半径. 26. 有,两个发电厂,每焚烧一吨垃圾,发电厂比发电厂多发度电,焚烧吨垃圾比焚烧吨垃圾少度电.求焚烧吨垃圾,和各发电多少度?,两个发电厂共焚烧吨的垃圾,焚烧的垃圾不多于焚烧的垃圾两倍,求厂和厂总发电量的最大值. 27. 如图①,在中, ,点从点 出发沿射线方向,在射线上运动.在点运动的过程中,连接,并以为边在射线上方作等边,连接(1)当________ 时,;(2)请添加一个条件:________,使得为等边三角形,并解决以下问题:①如图①,当点在线段上时,求证:;②如图②,当点运动到线段的延长线上时,①中结论是否仍成立?请说明理由. 28. 如图,在平面直角坐标系中,抛物线,经过点、,过点作轴的平行线交抛物线于另一点.(1)求抛物线的表达式及其顶点坐标;(2)如图,点是第一象限中上方抛物线上的一个动点,过点作于点,作轴于点,交于点,在点运动的过程中,的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图,连接,在轴上取一点,使和相似,请求出符合要求的点坐标.△ABC AB ⊙O AC D BD ∠CBD ⊙O E AC F AF =AB (1)BC ⊙O (2)tan ∠FBC =13DF =2⊙O A B A B 40A 20B 301800(1)1A B (2)A B 90A B A B △ABC ∠B =60∘M B BC BC M AM AM BC △AMN CN.∠BAM =∘AB =2BM △ABC M BC BM =CN M BC BM =CN y =−+bx+c 12x 2A(1,3)B(0,1)A x C 1M BC MH ⊥BC H ME ⊥x E BC F M △MFH 2AB y P △ABP △ABC P参考答案与试题解析2023年江苏省扬州市中考数学试卷试卷一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1.【答案】C【考点】绝对值实数的性质【解析】本题主要考查了实数的性质以及绝对值.【解答】解:绝对值为的实数共有:,,共个,故选.2.【答案】B【考点】单项式乘单项式【解析】根据单项式乘以单项式,即可解答.【解答】.3.【答案】B【考点】统计图的选择【解析】根据题意的要求,结合统计图的特点,易得答案.【解答】解:根据题意,要求能清楚地看出各部分与总数之间的百分比关系,结合统计图的特点,易得应选用扇形统计图,故选.4.11−12C 3⋅(−)=−3a 3a 2a 5B【答案】B【考点】几何体的展开图【解析】正方体的展开图有型,型、型三种类型,其中可以左右移动.注意“一”、“”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:,“田”字型,不是正方体的展开图,故选项错误;,是正方体的展开图,故选项正确;,不是正方体的展开图,故选项错误;,不是正方体的展开图,故选项错误.故选.5.【答案】A【考点】实数大小比较算术平方根【解析】根据正数大于,大于负数,可得答案.【解答】,6.【答案】A【考点】反比例函数的图象【解析】此题暂无解析【解答】解:因为,所以分两种情况:① 当,时,一次函数数的图象过第一、二、三象限,反比例函数图象在第一、三象限,选项符合;②当时,一次函数的图象过第二、三、四象限,反比例函数图象在第二、四象限,无符合选项.故选.7.【答案】1+4+12+3+13+317A B C D B 00−2<1<0<<2–√ab >0a >0b >0y =ax+b A a <0,b <0AB【考点】三角形三边关系【解析】根据三角形的三边关系“任意两边之和第三边,任意两边之差第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.【解答】根据三角形的三边关系,得第三边长,即第三边长,又第三条边长为整数,则第三边长为.8.【答案】B【考点】二次函数的性质【解析】由抛物线解析式可求得其顶点坐标,由顶点坐标所在的象限可得到关于的不等式组,可求得的取值范围.【解答】解:∵,∴抛物线顶点坐标为,∵顶点坐标在第一象限,∴解得.故选.二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )9.【答案】【考点】科学记数法--表示较大的数【解析】科学记数法的一般形式为:,在本题中应为,的指数为.【解答】解:科学记数法的一般形式为:,故.故答案为:.10.【答案】><4−1<<4+13<<54m m y =(x−m +(m+1))2(m,m+1){m>0,m+1>0,m>0B 1.071×107a ×10n a 1.071108−1=7a ×10n 10710000=1.071×1071.071×107m(m−2)2【考点】提公因式法与公式法的综合运用【解析】先提取公因式,再对余下的多项式利用完全平方公式继续分解.【解答】解:.故答案为:.11.【答案】【考点】多边形内角与外角【解析】根据多边形的外角和定理即可求得与相邻的外角,从而求解.【解答】根据多边形外角和定理得到:=,∴==,∴===.12.【答案】【考点】利用频率估计概率【解析】本题考查的是利用频率估计概率.【解答】解:长方形的面积,∵骰子落在世界杯图案中的频率稳定在常数附近,∴世界杯图案占长方形世界杯宣传画的,∴世界杯图案的面积约为:,故答案为:.13.【答案】【考点】根的判别式m −4+4m m 3m 2=m(−4m+4)m 2=m(m−2)2m(m−2)2100∘∠CDE ∠1+∠2+∠3+∠4+∠5360∘∠5−4×360∘70∘80∘∠CDE −∠5180∘−180∘80∘100∘2.4=3×2=6()m 20.440%6×40%=2.4()m 22.4m<1根据判别式的意义得到,然后解不等式即可.【解答】解:根据题意得,解得.故答案为:.14.【答案】【考点】展开图折叠成几何体圆锥的计算【解析】根据题意正六边形中心角为且其内角为.求出两个扇形圆心角,表示出扇形半径即可.【解答】解:连由已知,为中点,则∵六边形为正六边形∴设∴,∵正六边形中心角为∴∴扇形的弧长为:则同理:扇形的弧长为:则,故答案为.15.【答案】【考点】反比例函数的应用【解析】设函数解析式为,把代入求,再根据题意可得,解不等式可得.△=−4m>022Δ=−4m>022m<1m<1:23–√120∘120∘OAM AF OM ⊥AFABCDEF ∠AOM =30∘AM =aAB =AO =2a OM =a3–√60∘∠MON =120∘MON =πa120∗π∗a 3–√18023–√3=a r 13–√3DEF =πa 120∗π∗2a 18043=a r 223:=:2r 1r 23–√:23–√0.6P =k v y =1.5,p =16000k 24000【解答】解:设函数解析式为,当时, ,,.气球内的气压大于时,气球将爆炸,∴,解得:.即气球的体积应不小于.故答案为:.16.【答案】①④【考点】勾股定理的证明【解析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积,即四个直角三角形的面积和,从而判断.【解答】解:直角三角形的斜边长是,则,大正方形的面积是,即,①正确;∵小正方形的面积是,∴,则,即,∴,故④正确;根据图形可以得到,,而不一定成立,故②错误,进而得到③错误.故答案是:①④17.【答案】【考点】作图—基本作图角平分线的性质【解析】此题暂无解析【解答】解:根据作图方法可得,是的角平分线,∵,∴,∵,∴.P =k V ∵V =1.5m 3P =16000Pa ∴k =VP =24000∴P =24000V ∵40000Pa ≤4000024000V V ≥0.60.6m 30.6132ab c =+c 2a 2b 213=+=13c 2a 2b 21b −a =1(b −a =1)2+−2ab =1a 2b 2ab =6+=13a 2b 2b −a =1b =165∘AG ∠CAB ∠CAB =50∘∠CAD =∠CAB =1225∘∠C =90∘∠ADC =−=90∘25∘65∘18.【答案】【考点】正方形的性质二次函数图象上点的坐标特征【解析】连接交于点,根据正方形的性质得出点坐标为,代入解析式即可求得的值.【解答】解:如图,连接交于点,则,,,,则点的坐标为,代入抛物线得:,解得:(舍)或.故答案为:.三、 解答题 (本题共计 10 小题 ,每题 9 分 ,共计90分 )19.【答案】解:方程两边同除以得,配方得,即,开方得,解得,.原式.【考点】解一元二次方程-配方法特殊角的三角函数值实数的运算【解析】无−4AC OB D A (,)c 2c 2c AC OB D B(0,c)∠ADO =90∘OD =AD D(0,)c 2A (,)c 2c 2y=+c 12x 2+c =c 28c 2c =0c =−4−4(1)2−2x =x 212−2x+1=+1x 212=(x−1)232x−1=±6–√2=1+x 16–√2=1−x 26–√2(2)=4××−6×3–√23–√3()2–√22=2−3=−1解:方程两边同除以得,配方得,即,开方得,解得,.原式.20.【答案】解:由①得,由②得,∴不等式组的解集为 ,在数轴上表示为:【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】此题暂无解析【解答】解:由①得,由②得,∴不等式组的解集为 ,在数轴上表示为:21.【答案】解:八班的平均分.将八班的前名学生的成绩按从小到大的顺序排列为:,,,,,则中位数.八班的前名学生的成绩中,出现了次,次数最多,所以众数.八班的方差:.八班中位数分高于八班中位数分,说明八班成绩更好;八班众数分高于八班众数分,说明八班成绩更好;八班方差分低于八班方差分,说明八班成绩更稳定;两个班平均分都是分,成绩一样.综上得知,八班前名同学成绩较好.【考点】方差算术平均数中位数(1)2−2x =x 212−2x+1=+1x 212=(x−1)232x−1=±6–√2=1+x 16–√2=1−x 26–√2(2)=4××−6×3–√23–√3()2–√22=2−3=−1x ≥−1x <3−1≤x <3x ≥−1x <3−1≤x <3(1)(2)a =(80+85+85+92+88)÷5=86(1)58285868691b =86(2)5852c =85(1)d ==8.41+0+16+25+05(2)(1)86(2)85(1)(1)86(2)85(1)(1)8.4(2)15.6(1)86(1)5()根据平均数、中位数、众数的概念及方差公式计算解答即可;()根据它们的平均数,中位数,众数,方差比较分析,从而可以解答本题.【解答】解:八班的平均分.将八班的前名学生的成绩按从小到大的顺序排列为:,,,,,则中位数.八班的前名学生的成绩中,出现了次,次数最多,所以众数.八班的方差:.八班中位数分高于八班中位数分,说明八班成绩更好;八班众数分高于八班众数分,说明八班成绩更好;八班方差分低于八班方差分,说明八班成绩更稳定;两个班平均分都是分,成绩一样.综上得知,八班前名同学成绩较好.22.【答案】画树状图为:,共有种等可能的结果数,取出的两个球中恰好个白球、个黄球的有种结果,所以取出的两个球中恰好个白球、个黄球的概率为.【考点】列表法与树状图法概率公式【解析】(1)直接利用概率公式计算可得;(2)先画出树状图展示所有种等可能的结果数,再找出恰好个白球、个黄球的结果数,然后根据概率公式求解;【解答】解:若从第一盒中随机取出个球,则取出的球是白球的概率是,故答案为:;画树状图为:,共有种等可能的结果数,取出的两个球中恰好个白球、个黄球的有种结果,所以取出的两个球中恰好个白球、个黄球的概率为.23.【答案】解:设甲工程队单独完成这个项目需要天,则乙工程队单独完成这个项目需要天,12(1)(2)a =(80+85+85+92+88)÷5=86(1)58285868691b =86(2)5852c =85(1)d ==8.41+0+16+25+05(2)(1)86(2)85(1)(1)86(2)85(1)(1)8.4(2)15.6(1)86(1)523(2)61131112611(1)12323(2)61131112(1)x 2x解得:,经检验,是原方程的解,且符合题意,∴.答:甲工程队单独完成这个项目需要天,乙工程队单独完成这个项目需要天.设甲乙两队合作天后乙队还要再单独工作天,依题意得:,解得:,∴(万元).答:这个项目总共要支出的工程费用为万元.【考点】分式方程的应用【解析】无无【解答】解:设甲工程队单独完成这个项目需要天,则乙工程队单独完成这个项目需要天,依题意得:,解得:,经检验,是原方程的解,且符合题意,∴.答:甲工程队单独完成这个项目需要天,乙工程队单独完成这个项目需要天.设甲乙两队合作天后乙队还要再单独工作天,依题意得:,解得:,∴(万元).答:这个项目总共要支出的工程费用为万元.24.【答案】证明:∵四边形是平行四边形,∴,=,∵=,∴=,即=,∴四边形是平行四边形.【考点】平行四边形的性质与判定【解析】欲证明四边形是平行四边形,只要证明=,即可.【解答】证明:∵四边形是平行四边形,∴,=,∵=,∴=,即=,∴四边形是平行四边形.25.x =12x =122x =241224(2)5y +=15125+y 24y =97×5+3×(5+9)=7777(1)x 2x +=17x 3+72x x =12x =122x =241224(2)5y +=15125+y 24y =97×5+3×(5+9)=7777ABCD AD//BC AD BC AE CF AD−AE BC −CF DE BF BFDE BFDE DE BF DE//BFABCD AD//BC AD BC AE CF AD−AE BC −CF DE BF BFDE解:所在直线与相切;理由:∵为的直径,∴,∵,∴,∵平分,∴,∴,∴,∵,∴,∴,∴,∴是的切线.∵平分,∴,∴,∵,∴,设,∴,∵,∴,解得:,∴,∴的半径为.【考点】切线的判定解直角三角形直线与圆的位置关系【解析】【解答】解:所在直线与相切;理由:∵为的直径,∴,∵,∴,∵平分,∴,∴,∴,∵,∴,∴,∴,∴是的切线.∵平分,∴,∴,∵,∴,设,∴,∵,(1)BC ⊙O AB ⊙O ∠ADB=90∘AB=AF ∠ABF=∠AFB BF ∠DBC ∠DBF =∠CBF ∠ABD+∠DBF =∠CBF +∠C ∠ABD=∠C ∠A+∠ABD=90∘∠A+∠C =90∘∠ABC=90∘AB ⊥BC BC ⊙O (2)BF ∠DBC ∠DBF =∠CBF tan ∠FBC =tan ∠DBF ==DF BD 13DF =2BD =6AB=AF =x AD=x−2AB 2=A +B D 2D 2x 2=(x−2+)262x=10AB=10⊙O 5(1)BC ⊙O AB ⊙O ∠ADB=90∘AB=AF ∠ABF=∠AFB BF ∠DBC ∠DBF =∠CBF ∠ABD+∠DBF =∠CBF +∠C ∠ABD=∠C ∠A+∠ABD=90∘∠A+∠C =90∘∠ABC=90∘AB ⊥BC BC ⊙O (2)BF ∠DBC ∠DBF =∠CBF tan ∠FBC =tan ∠DBF ==DF BD 13DF =2BD =6AB=AF =x AD=x−2AB 2=A +B D 2D 2解得:,∴,∴的半径为.26.【答案】解:设焚烧吨垃圾,发电厂发电度,发电厂发电度,根据题意得:解得答:焚烧吨垃圾,发电厂发电度,发电厂发电度;设发电厂焚烧吨垃圾,则发电厂焚烧吨垃圾,总发电量为度,则,∵,∴,∵随的增大而增大,∴当时,有最大值为:(元).答:厂和厂总发电量的最大是度.【考点】一次函数的应用由实际问题抽象出二元一次方程组【解析】(1)设焚烧吨垃圾,发电厂发电度,发电厂发电度,根据“每焚烧一吨垃圾,发电厂比发电厂多发度电,焚烧吨垃圾比焚烧吨垃圾少度电”列方程组解答即可;(2)设发电厂焚烧吨垃圾,则发电厂焚烧吨垃圾,总发电量为度,得出与之间的函数关系式以及的取值范围,再根据一次函数的性质解答即可.【解答】解:设焚烧吨垃圾,发电厂发电度,发电厂发电度,根据题意得:解得答:焚烧吨垃圾,发电厂发电度,发电厂发电度;设发电厂焚烧吨垃圾,则发电厂焚烧吨垃圾,总发电量为度,则,∵,∴,∵随的增大而增大,∴当时,有最大值为:(元).答:厂和厂总发电量的最大是度.27.【答案】(1)解:(2)(答案不唯一);①∵与都是等边三角形,,,,即,∵在与中,x=10AB=10⊙O 5(1)1A a B b { a −b =40,30b −20a =1800,{ a =300,b =260,1A 300B 260(2)A x B (90−x)y y =300x+260(90−x)=40x+23400x ≤2(90−x)x ≤60y x x =60y 40×60+23400=25800A B 258001A x B y A B 40A 20B 301800A x B (90−x)y y x x (1)1A a B b {a −b =40,30b −20a =1800,{ a =300,b =260,1A 300B 260(2)A x B (90−x)y y =300x+260(90−x)=40x+23400x ≤2(90−x)x ≤60y x x =60y 40×60+23400=25800A B 2580030AB =AC △ABC △AMN ∴AB =AC ,AM =AN ∠BAC =∠MAN =60∘∴∠BAC −∠MAC =∠MAN −∠MAC ∠BAM =∠CAN △BAM △CAN AB =AC,;②成立.理由:∵与都是等边三角形,, ,,即,∵在与中,,.【考点】三角形综合题【解析】此题暂无解析【解答】解:(1)当时,,.故答案为:.(2)故答案为:(答案不唯一);①∵与都是等边三角形,,,,即,∵在与中,,;②成立.理由:∵与都是等边三角形,, ,,即,∵在与中,,.28.【答案】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴△BAM ≅△CAN (SAS)∴BM =CN △ABC △AMN ∴AB =AC ,AM =AN ∠BAC =∠MAN =60∘∴∠BAC +∠MAC =∠MAN +∠MAC ∠BAM =∠CAN △BAM △CAN AB =AC∠BAM =∠CAN ,AM =AN∴△BAM ≅△CAN (SAS)∴BM =CN ∠BAM =30∘∴∠AMB =−−=180∘60∘30∘90∘∴AB =2BM 30AB =AC △ABC △AMN ∴AB =AC ,AM =AN ∠BAC =∠MAN =60∘∴∠BAC −∠MAC =∠MAN −∠MAC ∠BAM =∠CAN △BAM △CAN AB =AC∠BAM =∠CAN ,AM =AN∴△BAM ≅△CAN (SAS)∴BM =CN △ABC △AMN ∴AB =AC ,AM =AN ∠BAC =∠MAN =60∘∴∠BAC +∠MAC =∠MAN +∠MAC ∠BAM =∠CAN △BAM △CAN AB =AC∠BAM =∠CAN ,AM =AN∴△BAM ≅△CAN (SAS)∴BM =CN A(1,3)B(0,1)y =−+bx+c 12x 2 −+b +c =312c =1b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1k =12m=11设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,∴,∴,∴,综上所述满足条件的点有,.【考点】二次函数综合题【解析】(1)将,,代入抛物线,即可得出答案;(2)延长交轴于点,由点可求得,由=,设,求得,则,由勾股定理得,,所以的周长可用表示,最后利用二次函数的性质解决问题;(3)由,为公共角,可得.从而=.分当=时,当M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√5a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC =PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133A(1,3)B(0,1)y =−+bx+c12x 2CA y D C(4,3)=BD CD 12tan ∠C tan ∠M ==FH MH 12M(a,−+a +1)12a 252F(a,a +1)12MF =−+2a 12a 2FH =MF,MH =MF 5–√525–√5△MFH MF ==AD BD BD CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC 2∘【解答】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴直线的解析式为,设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,∴,∴,∴,综上所述满足条件的点有,.A(1,3)B(0,1)y =−+bx+c12x 2 −+b +c =312c =1 b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1 k =12m=1BC y =x+112M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√5a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC =PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133。

2020年江苏省扬州市中考数学试卷及答案

2020年江苏省扬州市中考数学试卷及答案

2020年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2020•扬州)实数3的相反数是( )A .﹣3B .13C .3D .±32.(3分)(2020•扬州)下列各式中,计算结果为m 6的是( )A .m 2•m 3B .m 3+m 3C .m 12÷m 2D .(m 2 )33.(3分)(2020•扬州)在平面直角坐标系中,点P (x 2+2,﹣3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.(3分)(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A .B .C .D .5.(3分)(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )A .①②③B .①③⑤C .②③④D .②④⑤6.(3分)(2020•扬州)如图,小明从点A 出发沿直线前进10米到达点B ,向左转45°后又沿直线前进10米到达点C ,再向左转45°后沿直线前进10米到达点D …照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .100米B .80米C .60米D .40米7.(3分)(2020•扬州)如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ∠ADC 的值为( )A .2√1313B .3√1313C .23D .32 8.(3分)(2020•扬州)小明同学利用计算机软件绘制函数y =ax(x+b)2(a 、b 为常数)的图象如图所示,由学习函数的经验,可以推断常数a 、b 的值满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)(2020•扬州)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为 .10.(3分)(2020•扬州)分解因式:a 3﹣2a 2+a = .11.(3分)(2020•扬州)代数式√x+23在实数范围内有意义,则实数x 的取值范围是 . 12.(3分)(2020•扬州)方程(x +1)2=9的根是 .13.(3分)(2020•扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为 .14.(3分)(2020•扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 尺高.15.(3分)(2020•扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm 的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 cm 2.16.(3分)(2020•扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b =3cm ,则螺帽边长a = cm .17.(3分)(2020•扬州)如图,在△ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交AB 、BC 于点D 、E .②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F . ③作射线BF 交AC 于点G .如果AB =8,BC =12,△ABG 的面积为18,则△CBG 的面积为 .18.(3分)(2020•扬州)如图,在▱ABCD 中,∠B =60°,AB =10,BC =8,点E 为边AB上的一个动点,连接ED 并延长至点F ,使得DF =14DE ,以EC 、EF 为邻边构造▱EFGC ,连接EG ,则EG 的最小值为 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(2020•扬州)计算或化简:(1)2sin60°+(12)﹣1−√12. (2)x−1x ÷x 2−1x 2+x .20.(8分)(2020•扬州)解不等式组{x +5≤0,3x−12≥2x +1,并写出它的最大负整数解.21.(8分)(2020•扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是 ,扇形统计图中表示A 等级的扇形圆心角为 °;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.22.(8分)(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A 、B 、C 三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A 测温通道通过的概率是 ;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.23.(10分)(2020•扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品进价(元/件) 数量(件) 总金额(元) 甲7200 乙 3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.24.(10分)(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=32,求EF的长;(2)判断四边形AECF的形状,并说明理由.25.(10分)(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.26.(10分)(2020•扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组{2x+y=7,x+2y=8,则x﹣y=,x+y=;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x *y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1= .27.(12分)(2020•扬州)如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC=OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F .(1)求证:OC ∥AD ;(2)如图2,若DE =DF ,求AE AF 的值;(3)当四边形ABCD 的周长取最大值时,求DE DF 的值.28.(12分)(2020•扬州)如图,已知点A (1,2)、B (5,n )(n >0),点P 为线段AB 上的一个动点,反比例函数y =k x (x >0)的图象经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当n =1时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.2020年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2020•扬州)实数3的相反数是( )A .﹣3B .13C .3D .±3【解答】解:实数3的相反数是:﹣3.故选:A .2.(3分)(2020•扬州)下列各式中,计算结果为m 6的是( )A .m 2•m 3B .m 3+m 3C .m 12÷m 2D .(m 2 )3【解答】解:A 、m 2•m 3=m 5,故此选项不合题意;B 、m 3+m 3=2m 3,故此选项不合题意;C 、m 12÷m 2=m 10,故此选项不合题意;D 、(m 2 )3=m 6,故此选项符合题意.故选:D .3.(3分)(2020•扬州)在平面直角坐标系中,点P (x 2+2,﹣3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:∵x 2+2>0,∴点P (x 2+2,﹣3)所在的象限是第四象限.故选:D .4.(3分)(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A .B .C.D.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.5.(3分)(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤【解答】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.6.(3分)(2020•扬州)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A .100米B .80米C .60米D .40米【解答】解:∵小明每次都是沿直线前进10米后向左转45度, ∴他走过的图形是正多边形, ∴边数n =360°÷45°=8,∴他第一次回到出发点A 时,一共走了8×10=80(m ). 故选:B .7.(3分)(2020•扬州)如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ∠ADC 的值为( )A .2√1313B .3√1313C .23D .32【解答】解:如图,连接BC .∵∠ADC 和∠ABC 所对的弧长都是AC ̂, ∴根据圆周角定理知,∠ADC =∠ABC . 在Rt △ACB 中,根据锐角三角函数的定义知, sin ∠ABC =ACAB , ∵AC =2,BC =3,∴AB =√AC 2+BC 2=√13, ∴sin ∠ABC =213=2√1313, ∴sin ∠ADC =2√1313. 故选:A .8.(3分)(2020•扬州)小明同学利用计算机软件绘制函数y =ax(x+b)2(a 、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a 、b 的值满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0【解答】解:由图象可知,当x >0时,y <0, ∴a <0;x =﹣b 时,函数值不存在, ∴﹣b <0, ∴b >0; 故选:C .二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)(2020•扬州)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为 6.5×106 .【解答】解:6500000用科学记数法表示应为:6.5×106, 故答案为:6.5×106.10.(3分)(2020•扬州)分解因式:a 3﹣2a 2+a = a (a ﹣1)2 . 【解答】解:a 3﹣2a 2+a =a (a 2﹣2a +1) =a (a ﹣1)2. 故答案为:a (a ﹣1)2.11.(3分)(2020•扬州)代数式√x+23在实数范围内有意义,则实数x 的取值范围是 x ≥﹣2 .【解答】解:代数式√x+23在实数范围内有意义, 则x +2≥0, 解得:x ≥﹣2.故答案为:x ≥﹣2.12.(3分)(2020•扬州)方程(x +1)2=9的根是 x 1=2,x 2=﹣4 . 【解答】解:(x +1)2=9, x +1=±3, x 1=2,x 2=﹣4.故答案为:x 1=2,x 2=﹣4.13.(3分)(2020•扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为 4 . 【解答】解:∵S 侧=πrl , ∴3πl =12π, ∴l =4.答:这个圆锥的母线长为4. 故答案为:4.14.(3分)(2020•扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 4.55 尺高.【解答】解:设折断处离地面x 尺, 根据题意可得:x 2+32=(10﹣x )2, 解得:x =4.55.答:折断处离地面4.55尺.15.(3分)(2020•扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm 的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 2.4 cm 2.【解答】解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右, ∴点落入黑色部分的概率为0.6, ∵边长为2cm 的正方形的面积为4cm 2, 设黑色部分的面积为S , 则S4=0.6,解得S =2.4(cm 2).答:估计黑色部分的总面积约为2.4cm 2. 故答案为:2.4.16.(3分)(2020•扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b =3cm ,则螺帽边长a = √3 cm .【解答】解:如图,连接AC ,过点B 作BD ⊥AC 于D , 由正六边形,得∠ABC =120°,AB =BC =a , ∠BCD =∠BAC =30°. 由AC =3,得CD =1.5.cos ∠BCD =CDBC =√32,即1.5a =√32,解得a =√3,17.(3分)(2020•扬州)如图,在△ABC 中,按以下步骤作图: ①以点B 为圆心,任意长为半径作弧,分别交AB 、BC 于点D 、E . ②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F .③作射线BF 交AC 于点G .如果AB =8,BC =12,△ABG 的面积为18,则△CBG 的面积为 27 .【解答】解:如图,过点G 作GM ⊥AB 于点M ,GN ⊥AC 于点N ,根据作图过程可知: BG 是∠ABC 的平分线, ∴GM =GN ,∵△ABG 的面积为18, ∴12×AB ×GM =18,∴4GM =18, ∴GM =92,∴△CBG 的面积为:12×BC ×GN =12×12×92=27.故答案为:27.18.(3分)(2020•扬州)如图,在▱ABCD 中,∠B =60°,AB =10,BC =8,点E 为边AB 上的一个动点,连接ED 并延长至点F ,使得DF =14DE ,以EC 、EF 为邻边构造▱EFGC ,连接EG ,则EG 的最小值为 9√3 .【解答】解:作CH ⊥AB 于点H , ∵在▱ABCD 中,∠B =60°,BC =8, ∴CH =4√3,∵四边形ECGF 是平行四边形, ∴EF ∥CG , ∴△EOD ∽△GOC , ∴EO GO=DO OC=ED GC,∵DF =14DE , ∴DE EF =45,∴ED GC =45,∴EO GO=45,∴当EO 取得最小值时,EG 即可取得最小值, 当EO ⊥CD 时,EO 取得最小值, ∴CH =EO , ∴EO =4√3, ∴GO =5√3,∴EG 的最小值是9√3, 故答案为:9√3.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(8分)(2020•扬州)计算或化简: (1)2sin60°+(12)﹣1−√12.(2)x−1x÷x 2−1x 2+x.【解答】解:(1)原式=2×√32+2﹣2√3 =√3+2﹣2√3 =2−√3;(2)原式=x−1x •x(x+1)(x−1)(x+1)=1.20.(8分)(2020•扬州)解不等式组{x +5≤0,3x−12≥2x +1,并写出它的最大负整数解.【解答】解:解不等式x +5≤0,得x ≤﹣5, 解不等式3x−12≥2x +1,得:x ≤﹣3,则不等式组的解集为x ≤﹣5, 所以不等式组的最大负整数解为﹣5.21.(8分)(2020•扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是500,扇形统计图中表示A等级的扇形圆心角为108°;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.【解答】解:(1)本次调查的样本容量是150÷30%=500,扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,故答案为:500,108;(2)B等级的人数为:500×40%=200,补全的条形统计图如右图所示;(3)2000×50500=200(人),答:该校需要培训的学生人有200人.22.(8分)(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是13;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.【解答】解:(1)小明从A 测温通道通过的概率是13,故答案为:13;(2)列表格如下:A B C A A ,A B ,A C ,A B A ,B B ,B C ,B CA ,CB ,CC ,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为39=13.23.(10分)(2020•扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染. 进货单 商品 进价(元/件)数量(件)总金额(元)甲7200 乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.【解答】解:设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件, 依题意,得:7200(1+50%)x−3200x=40,解得:x =40,经检验,x =40是原方程的解,且符合题意, ∴(1+50%)x =60,3200x=80,7200(1+50%)x=120.答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.24.(10分)(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=32,求EF的长;(2)判断四边形AECF的形状,并说明理由.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=3 2,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.25.(10分)(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE 与⊙O 的位置关系,并说明理由; (2)若AC =6,求阴影部分的面积.【解答】(1)证明:连接OA 、AD ,如图, ∵CD 为⊙O 的直径, ∴∠DAC =90°, 又∵∠ADC =∠B =60°, ∴∠ACD =30°, 又∵AE =AC ,OA =OD , ∴△ADO 为等边三角形,∴∠E =30°,∠ADO =∠DAO =60°, ∴∠P AD =30°, ∴∠EAD +∠DAO =90°, ∴OA ⊥E ,∴AE 为⊙O 的切线; (2)解:作OF ⊥AC 于F ,由(1)可知△AEO 为直角三角形,且∠E =30°, ∴OA =2√3,AE =6,∴阴影部分的面积为12×6×2√3−60π×(2√3)2360=6√3−2π.故阴影部分的面积为6√3−2π.26.(10分)(2020•扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足3x ﹣y =5①,2x +3y =7②,求x ﹣4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x ﹣4y =﹣2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x ﹣y = ﹣1 ,x +y = 5 ;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x *y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1= ﹣11 . 【解答】解:(1){2x +y =7①x +2y =8②.由①﹣②可得:x ﹣y =﹣1, 由13(①+②)可得:x +y =5.故答案为:﹣1;5.(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元, 依题意,得:{20m +3n +2p =32①39m +5n +3p =58②,由2×①﹣②可得m +n +p =6, ∴5m +5n +5p =5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元. (3)依题意,得:{3a +5b +c =15①4a +7b +c =28②,由3×①﹣2×②可得:a +b +c =﹣11, 即1*1=﹣11.故答案为:﹣11.27.(12分)(2020•扬州)如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F . (1)求证:OC ∥AD ; (2)如图2,若DE =DF ,求AE AF的值;(3)当四边形ABCD 的周长取最大值时,求DE DF的值.【解答】(1)证明:∵AO =OD , ∴∠OAD =∠ADO , ∵OC 平分∠BOD , ∴∠DOC =∠COB ,又∵∠DOC +∠COB ∠=∠OAD +∠ADO , ∴∠ADO =∠DOC , ∴CO ∥AD ; (2)解:如图1,∵OA =OB =OC , ∴∠ADB =90°,∴△AOD 和△ABD 为等腰直角三角形,∴AD =√2AO , ∴AD AO=√2,∵DE =EF , ∴∠DFE =∠DEF , ∵∠DFE =∠AFO , ∴∠AFO =∠AED , 又∠ADE =∠AOF =90°, ∴△ADE ∽△AOF , ∴AE AF=AD AO=√2.(3)解:如图2,∵OD =OB ,∠BOC =∠DOC , ∴△BOC ≌△DOC (SAS ), ∴BC =CD ,设BC =CD =x ,CG =m ,则OG =2﹣m , ∵OB 2﹣OG 2=BC 2﹣CG 2, ∴4﹣(2﹣m )2=x 2﹣m 2, 解得:m =14x 2, ∴OG =2−14x 2,∵OD =OB ,∠DOG =∠BOG , ∴G 为BD 的中点, 又∵O 为AB 的中点, ∴AD =2OG =4−12x 2,∴四边形ABCD 的周长为2BC +AD +AB =2x +4−12x 2+4=−12x 2+2x +8=−12(x −2)2+10,∵−12<0,∴x =2时,四边形ABCD 的周长有最大值为10. ∴BC =2,∴△BCO 为等边三角形, ∴∠BOC =60°, ∵OC ∥AD ,∴∠DAC =∠COB =60°,∴∠ADF =∠DOC =60°,∠DAE =30°, ∴∠AFD =90°, ∴DE DA =√33,DF =12DA ,∴DE DF=2√33. 28.(12分)(2020•扬州)如图,已知点A (1,2)、B (5,n )(n >0),点P 为线段AB 上的一个动点,反比例函数y =kx(x >0)的图象经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.” (1)当n =1时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【解答】解:(1)①当n =1时,B (5,1), 设线段AB 所在直线的函数表达式为y =kx +b , 把A (1,2)和B (5,1)代入得:{k +b =25k +b =1,解得:{k =−14b =94, 则线段AB 所在直线的函数表达式为y =−14x +94; ②不完全同意小明的说法,理由为: k =xy =x (−14x +94)=−14(x −92)2+8116, ∵1≤x ≤5,∴当x =1时,k min =2; 当x =92时,k max =8116, 则不完全同意;(2)当n =2时,A (1,2),B (5,2),符合; 当n ≠2时,y =n−24x +10−n4, k =x (n−24x +10−n 4)=n−24(x −n−102n−4)2+(10−n)216(2−n),先增大当x 取92时,k 为8116,为最大,到B 为5时减小,即在直线上A 到x =92时增大,到5时减小, 当92<x ≤5时,k 在减小,当n <2时,k 随x 的增大而增大,则有n−102n−4≥5,此时109≤n <2;当n >2时,k 随x 的增大而增大,则有n−102n−4≤1,此时n >2, 综上,n ≥109.。

2023年江苏省扬州市中考数学试卷含答案解析

2023年江苏省扬州市中考数学试卷含答案解析

绝密★启用前2023年江苏省扬州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 实数−3的绝对值是( )D. ±3A. −3B. 3C. 132. 若⋅2a2b=2a3b,则括号内应填的单项式是( )A. aB. 2aC. abD. 2ab3. 空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是( )A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布直方图4. 下列图形是棱锥侧面展开图的是( )A. B.C. D.5. 已知a=√ 5,b=2,c=√ 3,则a、b、c的大小关系是( )A. b>a>cB. a>c>bC. a>b>cD. b>c>a6. 函数y=1的大致图象是( )x2A. B.C. D.7. 在△ABC中,∠B=60°,AB=4,若△ABC是锐角三角形,则满足条件的BC长可以是( )A. 1B. 2C. 6D. 88. 已知二次函数y=ax2−2x+1(a为常数,且a>0),下列结论:①函数图象一定经过第2一、二、四象限;②函数图象一定不经过第三象限;③当x<0时,y随x的增大而减小;④当x>0时,y随x的增大而增大.其中所有正确结论的序号是( )A. ①②B. ②③C. ②D. ③④二、填空题(本大题共10小题,共30.0分)9. 扬州市大力推进城市绿化发展,2022年新增城市绿地面积约2345000平方米,数据2345000用科学记数法表示为______ .10. 分解因式:xy2−4x=______.11. 如果一个多边形每一个外角都是60°,那么这个多边形的边数为______ .12. 某种绿豆在相同条件下发芽试验的结果如下:这种绿豆发芽的概率的估计值为______ (精确到0.01).13. 若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则实数k的取值范围是______.14. 用半径为24cm,面积为120πcm2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为______ cm.15. 某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa)是气球体积V(m3)的反比例函数,且当V=3m3时,p=8000Pa.当气球内的气体压强大于40000Pa 时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于______ m3.16. 我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a、b,斜边长为c,若b−a=4,c=20,则每个直角三角形的面积为______ .17.如图,△ABC中,∠A=90°,AB=8,AC=15,以点B为圆心,适当长为半径画弧,分别交BA、BC于点M、N,再分别以点M、N为圆心,大于1MN的长为半径画弧,两弧交于点E,作射线BE交2AC于点D,则线段AD的长为______ .18.如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B′处,如果四边形ABFE与四边形EFCD的面积比为3:5,那么线段FC的长为______ .三、解答题(本大题共10小题,共96.0分。

2020年江苏省扬州市中考数学一调试卷附解析

2020年江苏省扬州市中考数学一调试卷附解析

2020年江苏省扬州市中考数学一调试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列计算错误的是( )A .sin60° - sin30°= sin30°B .22045cos 451o sin +=C .00sin 60tan 60cos 60o =D .00301sin 30tan 30o cos = 2.在△ABC 中,∠C = 90°,a 、b 分别是∠A 、∠B 的对边,若a :b=2:5,则 sinA : sinB 的值是 ( )A .25B .52C .425D .2543.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ; ② CM =CN ;③ AC =DN .其中正确结论的个数是( )A . 3个B .2个C . 1个D .0个4.如图是某人骑自行车的行驶路程s (km )与行驶时间t (h )的函数图象,下列说法不正确的是( )A .从0 h 到3 h ,行驶了30 kmB .从l h 到2 h 匀速前进C .从l h 到2 h 在原地不动D .从0 h 到l h 与从2 h 到3 h 的行驶速度相同5.下列统计量中不能反映一组数据集中程度的是( )A .平均数B .中位数C .众数D .方差6.下图中经过折叠可以围成一个三棱注的有( ) A . B . C . D .7.要使分式2143x x -+的值为 0,则x 的值应为( ) A .1 B .-1 C .34- D .1±8.下列事件中,属于随机事件的是( )A .掷一枚普通正六面体骰子所得点数不超过 6B .买一张体育彩票中奖C .太阳从西边落下D .口袋中只装有 10个红球,从中摸出一个白球9.如图,直线123,,l l l 表示三条相互交叉的公路,现要建造一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处二、填空题10.如图,AM 、AN 分别切⊙O 于M 、N 两点,点B 在⊙O 上,且∠MBN =70°,则A ∠= .11.若反比例函数1y x=-的图象上有两点A (1,y 1),B (2,y 2),则y 1______ y 2(填“>”或“=”或“<”).12.已知等腰梯形的周长为25 cm ,上、下底分别为7 cm 和8 cm ,则腰长为 . 13.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.14.已知等腰三角形的两条边长为3和5,求等腰三角形的周长.15.在甲、乙两地之间修二条笔直的公路,从甲地测得公路的走向是北偏东48°. 甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .16.鸡免同笼,共有 8个头、26条腿,则鸡、兔的只数依次分别是 .17.已知△CDE 是△CAB 经相似变换后得到的像,且∠A=30°,∠CDE=30°,AB=4,DE=2,AC=3,则CD= .解答题18.计算结果用度表示:59°17′+18°28′= .三、解答题19.如图,甲、乙两艘船同时从O 点出发,甲以每小时260°方向航行,乙以每小时15海里的速度向东北方向航行,2小时后甲船到达A 处,此时发现有东西遗忘在乙船里,甲船就沿北偏东75°方向去追赶乙船,结果在B 处追上乙船.(1)求甲船追上乙船的时间;(2)求甲船追赶乙船速度.20.如图,这是圆桌上方一灯泡发出的光线在地面形成阴影的示意图.已知桌面直径为1.2m ,桌面距地面1m ,若灯泡离地面3m ,求地面上桌子的阴影面积.21.某产品每件成本 10 元,试销阶段每件产品的销售价 x(元)与产品的日 销售量 y(件) 之间的关系如下表所示:O A B 北 东x(元)152030…y(件)252010…若日销售量是销售价的一次函数.(1)求出日销售量 y(件)与销售价 x(元)的函数关系式;(2)要使每日销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元.22.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E是BC边的中点,EM⊥AB,EN ⊥CD,垂足分别为M、N.求证:EM=EN.23.如图所示,在四边形ABCD中,∠B=∠D=90°,∠A:∠C=1:2,AB=2,CD=1.求:(1)∠A,∠C的度数;(2)AD,BC的长度;(3)四边形ABCD的面积.24.如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,O),B(3,6),C(14,8),D(16,0),确定这个四边形的面积.25.4(2)532x a +-=+的解小于31(23)32a a x x ++=的解,求a 的取值范围. 115a >-26.第一组数据8,8,8,第二组数据8,9,9,10,第三组数据l5,20,25.(1)每一组数据的平均数分别是多少?(2)如果将这三组数组成一组新数,新数的平均数是多少?中位数与众数是多少?27.如图,在△ABC 中,AB =AC ,D 为 BC 边上的一点,∠BAD = ∠CAD ,BD = 6cm ,求BC 的长.28.完全平方公式计算:(1)2(3)a b +;(2)2(3)x y -+;(3)21(2)2x y -;(4)()()b c b c +--29.如图,射线OC 和OD 把平角AOB 三等分,OE 平分∠AOC ,OF 平分∠BOD .(1)求∠COD 的度数;(2)写出图中所有的直角;(3)写出∠COD 的所有余角和补角.30.新华社2003年4月3日发布了一则由国家安全生产监督管理局统计的信息:2003年1月至2月全国共发生事故l7万多起,各类事故发生情况具体统计如下:事故类型事故数量(起)死亡人数(人)死亡人数占各类事故总死亡人数的百分比(%)火灾事故54773610铁路路外伤亡事故19621409工矿企业伤亡事故道路交通事故11581517290合计173********数的百分比,填入上表.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.B4.B5.D6.D7.D.8.B9.D二、填空题10.40°11.< 12.5cm13. 41214.11或l315.48°16.3、517.1.518.78.25°三、解答题19.(1)画OH ⊥AB ,垂足为H .由题意:OA=A=45°,∠B=30°,则OH=AH=30,BH=,OB=60 设甲船追上乙船的时间为t 小时,则30+15t=60,∴t=2,即甲船追上乙船的时间为2小时.(2)甲船追赶乙船速度为(15AB t =+海里/小时. 20.0.81πm 2 .21.(1)设y kx b =+,15252020k b k b +=⎧⎨+=⎩,解得140k b =-⎧⎨=⎩,∴40y x =-+ (2)设每日销售利润为 w 元,则2(10)(40)(25)225w x x x =--+=--+∴当每件产品的销售价定为 25元时,销售利润最大,最大利润为 225元.22.∵AD ∥BC ,AB=DC ,∴B C ∠=∠,∵,,EM AB EN CD ⊥⊥∴90BME CNE ∠=∠=︒,在Rt △BME 和Rt △CNE 中,BME CNE B CBE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △BME ≌ Rt △CNE ,∴EM =EN . 23.(1)∠A=60°,∠C=120°;(2)AD=4BC=2;(3)S =24.9425.115a >-26. (1)第一组:8,第二组:9,第三组:20 (2)平均数为12,中位数为9,众数为8 27.∵∠BAD=∠CAD ,∴AD 是∠BAC 的平分线.∵AB=AC ,∴△ABC 是等腰三角形.∴AD 是△ABC 的BC 边上的中线,∴BD=CD=12BC . ∵BD=6cm ,∴BC=12(cm) 28.(1)2296a ab b ++;(2)2269x xy y -+;(3)221244x xy y -+;(4)222b bc c --- 29.(1)60° (2)∠DOE 与∠COF (2)∠COD 的余角:∠AOE 、∠EOC 、∠DOF 、∠FOB ;∠COD 的补角:∠AOD 、∠EOF 、∠BOC30.事故数量栏填1417;死亡人数栏填1639;所占百分比栏填2.91,6.73,7.82,82.54,100。

2022年江苏省扬州市中考数学真题(含解析答案)

2022年江苏省扬州市中考数学真题(含解析答案)
A. B. C. D.
【答案】C
【解析】
【分析】根据SSS,SAS,ASA逐一判定,其中SSA不一定符合要求.
【详解】A. .根据SSS一定符合要求;
B. .根据SAS一定符合要求;
C. .不一定符合要求;
D. .根据ASA一定符合要求.
故选:C.
【点睛】本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS,SAS,ASA三个判定定理.
②直接写出运动过程中线段 长度的最小值.
扬州市2022年初中毕业、升学统一考试数学试题解析
一、选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.-2的相反数是()
A.2B.-2C.±2D.-
【答案】A
【解析】
【分析】根据相反数的定义直接解答即可.
【详解】解:-2的相反数是2.
∴该几何体 四棱锥,
故选B.
【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.
6.如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为 ,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是()
(友情提醒:以上作图均不写作法,但需保留作图痕迹)
27.如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘 在 轴上,且 dm,外轮廓线是抛物线的一部分,对称轴为 轴,高度 dm.现计划将此余料进行切割:
(1)若切割成正方形,要求一边在底部边缘 上且面积最大,求此正方形的面积;
(2)若切割成矩形,要求一边在底部边缘 上且周长最大,求此矩形 周长;
【答案】8℃.

2022年江苏省扬州市中考数学试题(含答案解析)

2022年江苏省扬州市中考数学试题(含答案解析)
①点 在线段 的延长线上且 ;
②点 线段 上且 .
(2)若 .
①当 时,求 的长;
②直接写出运动过程中线段 长度的最小值.
扬州市2021年初中毕业、升学统一考试
数学试题参考答案
一、选择题:本题共8小题,每小题3分,共24分.
1.A2.B3.D4.D5.B6.C7.D8.C
二、填空题(本大题共有10小题,每小题3分,共30分)
的关系为 (其中 为大于0的常数),那么震级为8级的地震所释放的能量
是震级为6级的地震所释放能量的________倍.
15.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两
选手成绩的方差分别记为 ,则 ________ .(填“>”“<”或“=”)
16.将一副直角三角板如图放置,已知 , , ,则 ________°.

②当 ,AE最小,最小为4
10.若 在实数范围内有意义,则 的取值范围是________.
11.分解因式 ________.
12.请填写一个常数,使得关于 的方程 __________ 有两个不相等的实数根.
13.如图,函数 的图像经过点 ,则关于 的不等式 的解集为
________.
(第13题图)(第15题图)
14.掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量 与震级
图3
27.
(1)解:由题目可知A(-4,0),B(4,0),C(0,8)
设二次函数解析式为y=ax²+bx+c,
∵对称轴为y轴,
∴b=0,将A、C代入得,a= ,c=8
则二次函数解析式为 ,
如下图所示,正方形MNPQ即 符合题意得正方形,设其边长为2m,

2020年江苏省扬州市中考数学试卷(有详细解析)

2020年江苏省扬州市中考数学试卷(有详细解析)

2020年江苏省扬州市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共8小题,共24.0分)1.实数3的相反数是()C. 3D. ±3A. −3B. 132.下列各式中,计算结果为m6的是()A. m2⋅m3B. m3+m3C. m12÷m2D. (m2 )33.在平面直角坐标系中,点P(x2+2,−3)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A. B.C. D.5.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A. ①②③B. ①③⑤C. ②③④D. ②④⑤6.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A. 100米B. 80米C. 60米D. 40米7.如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A. 2√1313B. 3√1313C. 23D. 32(a、b为常数)的图象如图所示,由学习函8.小明同学利用计算机软件绘制函数y=ax(x+b)2数的经验,可以推断常数a、b的值满足()A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<0二、填空题(本大题共10小题,共30.0分)9.2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为______.10.分解因式:a3−2a2+a=______.11.代数式√x+2在实数范围内有意义,则实数x的取值范围是______.312.方程(x+1)2=9的根为______.13.圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为______.14.《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面______尺高.15.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为______cm 2.16. 如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b =3cm ,则螺帽边长a =______cm .17. 如图,在△ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交AB 、BC于点D 、E .②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F .③作射线BF 交AC 于点G .如果AB =8,BC =12,△ABG 的面积为18,则△CBG 的面积为______.18. 如图,在▱ABCD 中,∠B =60°,AB =10,BC =8,点E 为边AB 上的一个动点,连接ED 并延长至点F ,使得DF =14DE ,以EC 、EF 为邻边构造▱EFGC ,连接EG ,则EG 的最小值为______.三、解答题(本大题共10小题,共96.0分)19. 计算或化简:(1)2sin60°+(12)−1−√12.(2)x−1x ÷x 2−1x 2+x .20. 解不等式组{x +5≤0,3x−12≥2x +1,并写出它的最大负整数解.21.扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是______,扇形统计图中表示A等级的扇形圆心角为______°;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.22.防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是______;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.23.如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.24.如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=3,求EF的长;2(2)判断四边形AECF的形状,并说明理由.25.如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.26. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足3x −y =5①,2x +3y =7②,求x −4y 和7x +5y 的值. 本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①−②可得x −4y =−2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x −y =______,x +y =______; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x ∗y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3∗5=15,4∗7=28,那么1∗1=______.27. 如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F .(1)求证:OC//AD ;(2)如图2,若DE =DF ,求AEAF 的值;(3)当四边形ABCD的周长取最大值时,求DE的值.DF28.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=k(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,x当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.答案和解析1.A解:实数3的相反数是:−3.2.D解:A、m2⋅m3=m5,故此选项不合题意;B、m3+m3=2m3,故此选项不合题意;C、m12÷m2=m10,故此选项不合题意;D、(m2 )3=m6,故此选项符合题意.3.D解:∵x2+2>0,∴点P(x2+2,−3)所在的象限是第四象限.4.C解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.5.C解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,6.B解:∵小明每次都是沿直线前进10米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×10=80(m).7.A解:如图,连接BC.∵∠ADC和∠ABC所对的弧长都是AC⏜,∴根据圆周角定理知,∠ADC=∠ABC.在Rt△ACB中,根据锐角三角函数的定义知,sin∠ABC=AC,AB∵AC=2,BC=3,∴AB=√AC2+BC2=√13,∴sin∠ABC=√13=2√1313,∴sin∠ADC=2√1313.8.D解:由图象可知,当x>0时,y<0,∴a<0;∵图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,∴b<0;9.6.5×106解:6500000用科学记数法表示应为:6.5×106,故答案为:6.5×106.10.a(a−1)2解:a3−2a2+a=a(a2−2a+1)=a(a−1)2.故答案为:a(a−1)2.11.x≥−2解:代数式√x+23在实数范围内有意义,则x+2≥0,解得:x≥−2.12.x1=2,x2=−4解:(x+1)2=9,x+1=±3,x1=2,x2=−4.故答案为:x1=2,x2=−4.13.4解:∵S侧=πrl,∴3πl=12π,∴l=4.答:这个圆锥的母线长为4.14.4.55解:设折断处离地面x尺,根据题意可得:x2+32=(10−x)2,解得:x=4.55.答:折断处离地面4.55尺.15.2.4解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,∴点落入黑色部分的概率为0.6,∵边长为2cm的正方形的面积为4cm2,设黑色部分的面积为S,则S4=0.6,解得S=2.4(cm2).答:估计黑色部分的总面积约为2.4cm2.16.√3解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∠BCD=∠BAC=30°.由AC=3,得CD=1.5.cos∠BCD=CDBC =√32,即1.5a=√32,解得a=√3,17.27解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴12×AB×GM=18,∴4GM=18,∴GM=92,∴△CBG的面积为:12×BC×GN=12×12×92=27.18.9√3解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EOGO =DOOC=EDGC,∵DF=14DE,∴DEEF =45,∴EDGC =45,∴EOGO =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,19.解:(1)原式=2×√32+2−2√3=√3+2−2√3=2−√3;(2)原式=x−1x ⋅x(x+1) (x−1)(x+1)=1.20.解:解不等式x+5≤0,得x≤−5,解不等式3x−12≥2x+1,得:x≤−3,则不等式组的解集为x≤−5,所以不等式组的最大负整数解为−5.21.500 108解:(1)本次调查的样本容量是150÷30%=500,扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,故答案为:500,108;(2)B等级的人数为:500×40%=200,补全的条形统计图如右图所示;(3)2000×50500=200(人),答:该校需要培训的学生人有200人.22.13解:(1)小明从A测温通道通过的概率是13,故答案为:13;A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为39=13.23.解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:7200(1+50%)x −3200x=40,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴(1+50%)x=60,3200x =80,7200(1+50%)x=120.答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.24.解:(1)∵四边形ABCD是平行四边形,∴AB//CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=32,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE//CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.25.(1)证明:连接OA、AD,如图,∵CD为⊙O的直径,∴∠DAC=90°,又∵∠ADC=∠B=60°,∴∠ACD=30°,又∵AE=AC,OA=OD,∴△ADO为等边三角形,∴∠E=30°,∠ADO=∠DAO=60°,∴∠PAD=30°,∴∠EAD+∠DAO=90°,∴OA⊥E,∴AE为⊙O的切线;(2)解:作OF⊥AC于F,由(1)可知△AEO为直角三角形,且∠E=30°,∴OA=2√3,AE=6,∴阴影部分的面积为12×6×2√3−60π×(2√3)2360=6√3−2π.故阴影部分的面积为6√3−2π.26.−1 5 −11解:(1){2x+y=7 ①x+2y=8 ②.由①−②可得:x−y=−1,由13(①+②)可得:x+y=5.故答案为:−1;5.(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,依题意,得:{20m+3n+2p=32 ①39m+5n+3p=58 ②,由2×①−②可得m+n+p=6,∴5m+5n+5p=5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a+5b+c=15 ①4a+7b+c=28 ②,由3×①−2×②可得:a+b+c=−11,即1∗1=−11.27.(1)证明:∵AO=OD,∴∠OAD=∠ADO,∵OC平分∠BOD,∴∠DOC=∠COB,又∵∠DOC+∠COB∠=∠OAD+∠ADO,∴∠ADO=∠DOC,∴CO//AD;(2)解:如图1,过点E作EM//FD交AD的延长线于点M,设∠DAC=α,∵CO//AD,∴∠ACO=∠DAC=α,∵AO=OC,∴∠OAC=∠OCA=α,∵OA=OD,∴∠ODA=∠OAD=2α,∵DE=EF,∴∠DFE=∠DEF=3α,∵AO=OB=OD,∴∠ADB=90°,∴∠DAE+∠AED=90°,即4α=90°,∴∠ADF=2α=45°,∴∠FDE=45°,∴∠M=∠ADF=45°,∴EM=√2DE=√2DF,∵DF//EM,∴△AME∽△ADF,∴AEAF =EMDF=√2;(3)解:如图2,∵OD=OB,∠BOC=∠DOC,∴△BOC≌△DOC(SAS),∴BC=CD,设BC=CD=x,CG=m,则OG=2−m,∵OB2−OG2=BC2−CG2,∴4−(2−m)2=x2−m2,解得:m=14x2,∴OG=2−14x2,∵OD=OB,∠DOG=∠BOG,∴G为BD的中点,又∵O为AB的中点,∴AD=2OG=4−12x2,∴四边形ABCD的周长为2BC+AD+AB=2x+4−12x2+4=−12x2+2x+8=−12(x−2)2+10,∵−12<0,∴x=2时,四边形ABCD的周长有最大值为10.∴BC=2,∴△BCO为等边三角形,∴∠BOC=60°,∵OC//AD,∴∠DAC=∠COB=60°,∴∠ADF=∠DOC=60°,∠DAE=30°,∴∠AFD=90°,∴DEDA =√33,DF=12DA,∴DE DF =2√33.28. 解:(1)①当n =1时,B(5,1),设线段AB 所在直线的函数表达式为y =kx +b ,把A(1,2)和B(5,1)代入得:{k +b =25k +b =1, 解得:{k =−14b =94, 则线段AB 所在直线的函数表达式为y =−14x +94; ②当n =1时,完全同意小明的说法,理由为:若反比例函数经过点A ,把A(1,2)代入反比例解析式得:k =2;若反比例函数经过点B ,把B(5,1)代入反比例解析式得:k =5,∴2≤k ≤5,则点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,最小值为2,在点B 位置时k 值最大,最大值为5;(2)若小明的说法完全正确,则有5n >2,解得:n >25.。

江苏省扬州市2020年数学中考试题及答案

江苏省扬州市2020年数学中考试题及答案
二、填空题(本大题共有10小题,不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为________.
10.分解因式: .
11.代数式 在实数范围内有意义,则实数x的取.第三象限D.第四象限
4.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()
A. B. C. D.
5.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:
王师傅:甲商品比乙商品的数量多40件.
请你求出乙商品 进价,并帮助他们补全进货单.
24.如图, 对角线AC,BD相交于点O,过点O作 ,分别交AB,DC于点E、F,连接AF、CE.
(1)若 ,求EF的长;
(2)判断四边形AECF的形状,并说明理由.
25.如图, 内接于 , ,点E在直径CD的延长线上,且 .
13.4
14.
15.2 4
16.
17.
18.9 .
19.解:(1)
(2)
20.解不等式x+5≤0,得x≤−5,
解不等式 ,得:x≤−3,
则不等式组的解集为x≤−5,
所以不等式组的最大负整数解为−5.
21.解:(1)150÷30%=500(人),
360°×30%=108°,
答案为:500;108;
(2)500×40%=200(人),补全条形统计图如下:
由(2)可知∠DAF=∠OAF,∠ADE=90°,

2020年年江苏省扬州市数学中考试题(解析版)

2020年年江苏省扬州市数学中考试题(解析版)

扬州市2020年初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号.3.所有的试题都必须在考用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答.在试卷或草稿纸上答题无效.4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置上)1.的相反数是( )A .2 B . C . D .【答案】B .【考点】相反数。

【分析】利用绝对值的定义,直接得出结果。

2.下列计算正确的是( )A . B .C . D .【答案】C .【考点】积的乘方和幂的乘方运算法则。

【分析】利用积的乘方和幂的乘方运算法则,直接得出结果。

3.下列调查,适合用普查方式的是( )A .了解一批炮弹的杀伤半径B .了解扬州电视台《关注》栏目的收视率C.了解长江中鱼的种类 D .了解某班学生对“扬州精神”的知晓率【答案】D .【考点】普查方式的适用。

【分析】根据普查方式的适用范围,直接得出结果。

4.已知相交两圆的半径分别为4和7,则它们的圆心距可能是( )A .2 B .3 C .6 D .11【答案】C .【考点】两圆的位置与圆心距的关系。

【分析】根据两圆的位置与圆心距的关系知,相交两圆的圆心距在两圆的半径的差跟和之间,从而所求圆心距在3和11 之间,因此得出结果。

5.如图是由几个小立方块所塔成的几何的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是( )12-122-12-236a a a =·()()2222a b a b a b+-=-()2326aba b =523a a -=【答案】A .【考点】三视图。

2020年江苏省扬州市中考数学试卷 (解析版)

2020年江苏省扬州市中考数学试卷 (解析版)

2020年扬州市中考数学试卷一、选择题(共8小题).1.实数3的相反数是()A.﹣3B.C.3D.±32.下列各式中,计算结果为m6的是()A.m2•m3B.m3+m3C.m12÷m2D.(m2 )33.在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A.B.C.D.5.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤6.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米7.如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.B.C.D.8.小明同学利用计算机软件绘制函数y=(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为.10.分解因式:a3﹣2a2+a=.11.代数式在实数范围内有意义,则实数x的取值范围是.12.方程(x+1)2=9的根是.13.圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为.14.《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面尺高.15.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为cm2.16.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=cm.17.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.②分别以点D、E为圆心,大于DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为.18.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算或化简:(1)2sin60°+()﹣1﹣.(2)÷.20.解不等式组并写出它的最大负整数解.21.扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是,扇形统计图中表示A等级的扇形圆心角为°;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.22.防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C 三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.23.如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.24.如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC 于点E、F,连接AF、CE.(1)若OE=,求EF的长;(2)判断四边形AECF的形状,并说明理由.25.如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.26.阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组则x﹣y=,x+y=;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=.27.如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求的值;(3)当四边形ABCD的周长取最大值时,求的值.28.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k 值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.实数3的相反数是()A.﹣3B.C.3D.±3【分析】直接利用相反数的定义分析得出答案.解:实数3的相反数是:﹣3.故选:A.2.下列各式中,计算结果为m6的是()A.m2•m3B.m3+m3C.m12÷m2D.(m2 )3【分析】直接利用同底数幂的惩处以及合并同类项法则分别判断得出答案.解:A、m2•m3=m5,故此选项不合题意;B、m3+m3=2m3,故此选项不合题意;C、m12÷m2=m10,故此选项不合题意;D、(m2 )3=m6,故此选项符合题意.故选:D.3.在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用各象限内点的坐标特点分析得出答案.解:∵x2+2>0,∴点P(x2+2,﹣3)所在的象限是第四象限.故选:D.4.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.5.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.6.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.解:∵小明每次都是沿直线前进10米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×10=80(m).故选:B.7.如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.B.C.D.【分析】首先根据圆周角定理可知,∠ADC=∠ABC,然后在Rt△ACB中,根据锐角三角函数的定义求出∠ABC的正弦值.解:如图,连接BC.∵∠ADC和∠ABC所对的弧长都是,∴根据圆周角定理知,∠ADC=∠ABC.在Rt△ACB中,根据锐角三角函数的定义知,sin∠ABC=,∵AC=2,BC=3,∴AB==,∴sin∠ABC==,∴sin∠ADC=.故选:A.8.小明同学利用计算机软件绘制函数y=(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0【分析】由图象可知,当x>0时,y<0,可知a<0;图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,则b<0;解:由图象可知,当x>0时,y<0,∴a<0;∵图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,∴b<0;故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为6.5×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:6500000用科学记数法表示应为:6.5×106,故答案为:6.5×106.10.分解因式:a3﹣2a2+a=a(a﹣1)2.【分析】此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.11.代数式在实数范围内有意义,则实数x的取值范围是x≥﹣2.【分析】直接利用二次根式有意义的条件分析得出答案.解:代数式在实数范围内有意义,则x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.12.方程(x+1)2=9的根是x1=2,x2=﹣4.【分析】根据直接开平方法的步骤先把方程两边分别开方,再进行计算即可.解:(x+1)2=9,x+1=±3,x1=2,x2=﹣4.故答案为:x1=2,x2=﹣4.13.圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为4.【分析】根据圆锥的侧面积公式:S侧=2πr•l=πrl即可进行计算.解:∵S侧=πrl,∴3πl=12π,∴l=4.答:这个圆锥的母线长为4.故答案为:4.14.《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 4.55尺高.【分析】根据题意结合勾股定理得出折断处离地面的高度即可.解:设折断处离地面x尺,根据题意可得:x2+32=(10﹣x)2,解得:x=4.55.答:折断处离地面4.55尺.故答案为:4.55.15.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 2.4cm2.【分析】经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,可得点落入黑色部分的概率为0.6,根据边长为2cm的正方形的面积为4cm2,进而可以估计黑色部分的总面积.解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,∴点落入黑色部分的概率为0.6,∵边长为2cm的正方形的面积为4cm2,设黑色部分的面积为S,则=0.6,解得S=2.4(cm2).答:估计黑色部分的总面积约为2.4cm2.故答案为:2.4.16.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=cm.【分析】根据正六边形的性质,可得∠ABC=120°,AB=BC=a,根据等腰三角形的性质,可得CD的长,根据锐角三角函数的余弦,可得答案.解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∠BCD=∠BAC=30°.由AC=3,得CD=1.5.cos∠BCD==,即=,解得a=,故答案为:.17.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.②分别以点D、E为圆心,大于DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为27.【分析】过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC 的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM 的长,进而可得△CBG的面积.解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴AB×GM=18,∴4GM=18,∴GM=,∴△CBG的面积为:BC×GN=12×=27.故答案为:27.18.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9.【分析】根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴=,∵DF=DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算或化简:(1)2sin60°+()﹣1﹣.(2)÷.【分析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质、二次根式的性质分别化简得出答案;(2)直接将分式的分子与分母分解因式进而化简得出答案.解:(1)原式=2×+2﹣2=+2﹣2=2﹣;(2)原式=•=1.20.解不等式组并写出它的最大负整数解.【分析】分别求出每一个不等式的解集,根据口诀:同小取小确定不等式组的解集,从而得出答案.解:解不等式x+5≤0,得x≤﹣5,解不等式≥2x+1,得:x≤﹣3,则不等式组的解集为x≤﹣5,所以不等式组的最大负整数解为﹣5.21.扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是500,扇形统计图中表示A等级的扇形圆心角为108°;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.【分析】(1)根据A等级的人数和所占的百分比,可以求得样本容量,然后即可计算出扇形统计图中表示A等级的扇形圆心角的度数;(2)根据(1)中的结果,可以计算出B等级的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出该校需要培训的学生人数.解:(1)本次调查的样本容量是150÷30%=500,扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,故答案为:500,108;(2)B等级的人数为:500×40%=200,补全的条形统计图如右图所示;(3)2000×=200(人),答:该校需要培训的学生人有200人.22.防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C 三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.【分析】(1)直接利用概率公式求解可得答案;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.解:(1)小明从A测温通道通过的概率是,故答案为:;(2)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为=.23.如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.【分析】设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其分别代入(1+50%)x,,中即可得出结论.解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:﹣=40,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴(1+50%)x=60,=80,=120.答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.24.如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC 于点E、F,连接AF、CE.(1)若OE=,求EF的长;(2)判断四边形AECF的形状,并说明理由.【分析】(1)判定△AOE≌△COF(ASA),即可得OE=OF=,进而得出EF的长;(2)先判定四边形AECF是平行四边形,再根据EF⊥AC,即可得到四边形AECF是菱形.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.25.如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.【分析】(1)连接OA、AD,可求得∠ACE=∠AEC=30°,可证明△AOD为等边三角形,可求得∠EAO=90°,可证明AE为⊙O的切线;(2)作OF⊥AC于F,结合(1)可得到OA=2,AE=6,再根据圆的面积公式和扇形面积公式即可求解.【解答】(1)证明:连接OA、AD,如图,∵CD为⊙O的直径,∴∠DAC=90°,又∵∠ADC=∠B=60°,∴∠ACD=30°,又∵AE=AC,OA=OD,∴△ADO为等边三角形,∴∠E=30°,∠ADO=∠DAO=60°,∴∠PAD=30°,∴∠EAD+∠DAO=90°,∴OA⊥E,∴AE为⊙O的切线;(2)解:作OF⊥AC于F,由(1)可知△AEO为直角三角形,且∠E=30°,∴OA=2,AE=6,∴阴影部分的面积为×6×2﹣=6﹣2π.故阴影部分的面积为6﹣2π.26.阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组则x﹣y=﹣1,x+y=5;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=﹣11.【分析】(1)利用①﹣②可得出x﹣y的值,利用(①+②)可得出x+y的值;(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m,n,p的三元一次方程组,由2×①﹣②可得除m+n+p的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a,b,c的三元一次方程组,由3×①﹣2×②可得出a+b+c的值,即1*1的值.解:(1).由①﹣②可得:x﹣y=﹣1,由(①+②)可得:x+y=5.故答案为:﹣1;5.(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,依题意,得:,由2×①﹣②可得m+n+p=6,∴5m+5n+5p=5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:,由3×①﹣2×②可得:a+b+c=﹣11,即1*1=﹣11.故答案为:﹣11.27.如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求的值;(3)当四边形ABCD的周长取最大值时,求的值.【分析】(1)由等腰三角形的性质及角平分线的定义证得∠ADO=∠DOC,则可得出结论;(2)过点E作EM∥FD交AD的延长线于点M,证得∠M=∠ADF=45°,由直角三角形的性质得出EM=DE=DF,证明△AME∽△ADF,得出;(3)设BC=CD=x,CG=m,则OG=2﹣m,由勾股定理得出4﹣(2﹣m)2=x2﹣m2,解得:m=,可用x表示四边形ABCD的周长,根据二次函数的性质可求出x=2时,四边形ABCD有最大值,得出∠ADF=∠DOC=60°,∠DAE=30°,由直角三角形的性质可得出答案.【解答】(1)证明:∵AO=OD,∴∠OAD=∠ADO,∵OC平分∠BOD,∴∠DOC=∠COB,又∵∠DOC+∠COB∠=∠OAD+∠ADO,∴∠ADO=∠DOC,∴CO∥AD;(2)解:如图1,过点E作EM∥FD交AD的延长线于点M,设∠DAC=α,∵CO∥AD,∴∠ACO=∠DAC=α,∵AO=OC,∴∠OAC=∠OCA=α,∵OA=OD,∴∠ODA=∠OAD=2α,∵DE=EF,∴∠DFE=∠DEF=3α,∵AO=OB=OD,∴∠ADB=90°,∴∠DAE+∠AED=90°,即4α=90°,∴∠ADF=2α=45°,∴∠FDE=45°,∴∠M=∠ADF=45°,∴EM=DE=DF,∵DF∥EM,∴△AME∽△ADF,∴;(3)解:如图2,∵OD=OB,∠BOC=∠DOC,∴△BOC≌△DOC(SAS),∴BC=CD,设BC=CD=x,CG=m,则OG=2﹣m,∵OB2﹣OG2=BC2﹣CG2,∴4﹣(2﹣m)2=x2﹣m2,解得:m=,∴OG=2﹣,∵OD=OB,∠DOG=∠BOG,∴G为BD的中点,又∵O为AB的中点,∴AD=2OG=4﹣,∴四边形ABCD的周长为2BC+AD+AB=2x+4﹣+4=﹣+2x+8=﹣+10,∵﹣<0,∴x=2时,四边形ABCD的周长有最大值为10.∴BC=2,∴△BCO为等边三角形,∴∠BOC=60°,∵OC∥AD,∴∠DAC=∠COB=60°,∴∠ADF=∠DOC=60°,∠DAE=30°,∴∠AFD=90°,∴,DF=DA,∴.28.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k 值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.【分析】(1)①把n=1代入确定出B的坐标,利用待定系数法求出线段AB所在直线的解析式即可;②若n=1,完全同意小明的说法,求出正确k的最大值与最小值即可;(2)若小明的说法完全正确,把A与B坐标代入反比例解析式,并列出不等式,求出解集即可确定出n的范围.解:(1)①当n=1时,B(5,1),设线段AB所在直线的函数表达式为y=kx+b,把A(1,2)和B(5,1)代入得:,解得:,则线段AB所在直线的函数表达式为y=﹣x+;②当n=1时,完全同意小明的说法,理由为:若反比例函数经过点A,把A(1,2)代入反比例解析式得:k=2;若反比例函数经过点B,把B(5,1)代入反比例解析式得:k=5,∴2≤k≤5,则点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,最小值为2,在点B位置时k值最大,最大值为5;(2)若小明的说法完全正确,则有5n>2,解得:n>.。

2020年江苏省扬州市中考数学附解析

2020年江苏省扬州市中考数学附解析

2020年江苏省扬州市中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.点A (5,y 1)和B (2,y 2)都在直线y =-x 上,则y 1与y 2的关系是( ) A .y 1≥ y 2 B . y 1= y 2 C . y 1 <y 2 D . y 1 >y 2 2.若-2减去-个有理数的差是-5,则-2与这个有理数相乘的积是( )A .10B .-10C . 6D .-63.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( ) A . 1个 B . 2个C .3个D .4个4.若1044m xx x--=--无解,则m 的值是( ) A .-2B .2C .3D .-35.=⋅-n m a a 5)(( ) A .ma+-5B .ma+5C . nm a+5D .nm a+-56.如果一个三角形有一个角是99°,那么这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .钝角三角形或直角三角形 7.31254--可以读作( )A .35减负2减负14B .正35,正 2 与正14的和C .正35,负 2与负14的差D .35减 2减148.如图,在等边△ABC 中,BD 、CE 分别是AC 、AB 上的高,它们相交于点0,则∠BOC 等于( ) A .100°B .ll0°C .120°D .130°9.抛物线223y x x =--的顶点坐标是( )A .(-1,-4)B .(3,0)C .(2,-3)D .(1,-4)10.-5<x <5的非正整数x 是( ) A .-1B .0C .-2,-1,0D .1,-1,011.已知,420930a b c a b c -+=++=,,则二次函数2y ax bx c =++图象的顶点可能在( )A .第一或第四象限B .第三或第四象限C .第一或第二象限D .第二或第三象限 12. 如图,已知圆锥形烛台的侧面积是底面积的 2 倍,则两条母线所夹的∠AOB 为( )A .30°B .45°C .60°D .120°13.如图,点 D .E 、F 分别是△ABC (AB>AC )各边的中点,下列说法中,错误..的是( ) A .AD 平分∠BACB .EF=12BCC .EF 与 AD 互相平分 D .△DFE 是△ABC 的位似图形14.如图,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是( ) A .AEACAD AB =B .DEBCAD AB =C .D B ∠=∠ D .AED C ∠=∠15. 现有一批产品共 10 件,其中正品 9件,次品1件,从中任取 2 件,取出的全是正品的概率为( ) A .45B .89C .910D .192016.下列各式从左到右的变形中,是因式分解的为( ) A .()a x y ax ay -=-B .2221+(1)(1)x y x x y -=-++ C .221()a b a a b a+=+D .1(1)(1)ab a b a b -+-=+-二、填空题17.如图,在正方形网格交点上找一点C ,使由A 、B 、C 三点构成的三角形与⊿ABO 相似,但不全等,则点C 的坐标是 .18.将数据分成4组,画出频数分布直方图,各小长方形的高的比是1:3:4:2,若第2 组的频数是15,则此样本的样本容量是_______.19.某校抽取一部分学生测量身高,有关人员将所得的身高数据以3 cm 为组距分成8组,画出了频数分布直方图,如图所示:(1)已知图中数据在157.5~160.5 cm 的小组的频数为l8,频率为0.3,则参加测量身高的学生的总人数是 人.(2)已知148.5~151.5 cm 这个小组的频率为0.05,相应的小长方形的高是151.5~154.5 cm 这个小组相应小长方形高的一半,则151.5~154.5 cm 这个小组有 人. 20.如果不等式2(1)3x a --≤的正整数解是 1、2、3,那么a 的取值范围是 . 21.如图,将一等边三角形剪去一个角后,∠1+∠2= .22. 用小数表示33.1410-⨯,结果是 .23.已知三角形的两条边的长分别是3和5,第三条边的长为a ,则a 的长度在 和 之间.三、解答题24.如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数).11xyBAOA住宅小区M45° 30° B北25.如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.⑴请你在图中画出小亮在照明灯(P)照射下的影子;⑵如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.26.如图是一个几何体的表面展开图,请你画出表示这个几何体的立体图形,并根据图中的相关数据计算其侧面积(单位mm).27.如图,∠BAC =∠ABD,AC = BD,点 0是AD、BC的点,点E是AB边的中点,试判断OE和AB的位置关系,并说明理由.28.一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外其余均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,然后将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率.29.由 16 个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图). 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.30.一辆出租车从A地出发,在一条东西走向的街道上往返行驶,每次行驶的路程(记向东为正)记录如下(9<x<26,单位:km):第1次第2次第3次第4次x12x-5x-2(9)x-(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)这辆出租车一共行驶了多少路程?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.C5.D6.B7.D8.C9.D10.C11.A12.C13.A14.B15.A16.D二、填空题 17. (2,5),(4,4)18.5019.(1)60;(2)620.13a ≤<21.240°22.0.0031423.2,8三、解答题 24.过点M 作AB 的垂线MN ,垂足为N . ∵M 位于B 的北偏东45°方向上, ∴∠MBN = 45°,BN = MN. 又M 位于A 的北偏西30°方向上, ∴∠MAN=60°,AN =tan 603MN MN=.∵AB = 300,∴AN+NB = 300 . ∴3003=+MN MN , MN ≈190米.25.解:⑴连结PA 并延长交地面于点C ,线段BC 就是小亮在照明灯(P )照射下的影子. ⑵在△CAB 和△CPO 中,∵∠C=∠C ,∠ABC=∠POC=90°,∴△CAB ∽△CPO ∴CO CB PO AB =,∴BCCB+=13126.1,∴BC=2,∴小亮影子的长度为2m . 26.是五棱柱,侧面积为3600mm 2.27.OE 和AB 互相垂直, 即0E ⊥AB .理由:∵AC=BD ,∠BAC=∠ABD ,AB=BA ,∴△ABC ≌△BAD , ∴∠CBA=∠DAB ,∴A0=BO . 又∵点E 是AB 边的中点,∴0E ⊥AB .28.(1)32;(2)9429.略30.(1)第 1 次向东,第 2 次向西,第 3 次向东,第 4 次向西(2)1152(9)13022x x x x x -+-+-=->.在A 地东(1132x -)km 处 (3) (9232x -)km。

2024年江苏省扬州市中考真题数学试卷含答案解析

2024年江苏省扬州市中考真题数学试卷含答案解析

2024年江苏省扬州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数2的倒数是( )A .2-B .2C .12-D .122.“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识.其中的轴对称图形是( )A .B .C .D .【答案】C【分析】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,进行分析即可.【详解】解:A ,B ,D 选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C 选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C .3.下列运算中正确的是( )A .222()a b a b -=-B .523a a a -=C .()235a a =D .236326a a a ⋅=【答案】B【分析】本题考查了乘法公式,合并同类项,幂的乘方,同底数幂乘法,掌握整式的混合运算法则是解题的关键.【详解】解:A 、()2222a b a ab b -=-+,原选项错误,不符合题意;B 、523a a a -=,正确,符合题意;C 、()236a a =,原选项错误,不符合题意;D 、2353·26a a a =,原选项错误,不符合题意;故选:B .4.第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班45名同学视力检查数据如下表:视力4.3 4.4 4.5 4.6 4.7 4.8 4.95.0人数7447111053这45名同学视力检查数据的众数是( )A .4.6B .4.7C .4.8D .4.9【答案】B【分析】本题主要考查了众数的定义,在一组数据中出现最多的数,叫做众数,根据众数的定义进行判断即可.【详解】解:这45名同学视力检查数据中,4.7出现的次数最多,因此众数是4.7.故选:B .5.在平面直角坐标系中,点()1,2P 关于原点的对称点P'的坐标是( )A .()1,2B .()1,2-C .()1,2-D .()1,2--【答案】D【分析】根据关于原点对称的点的坐标特征:横坐标、纵坐标都变为相反数,即可得答案.【详解】∵点()1,2P 关于原点的对称点为P',∴P'的坐标为(-1,-2),故选D .【点睛】本题考查关于原点对称的点的坐标,其坐标特征为:横坐标、纵坐标都变为相反数.6.如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体【答案】C【分析】本题考查了几何图形展开的识别,理解并掌握几何展开图的特点与立体图形的关系是解题的关键.根据平面图形的特点,结合立体图形的特点即可求解.【详解】解:根据图示,上下是两个三角形,中间是长方形,∴三棱柱,故选:C .7.在平面直角坐标系中,函数42=+yx的图像与坐标轴的交点个数是()A.0B.1C.2D.48.1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,……,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为( )A .676B .674C .1348D .1350【答案】D【分析】将这一列数继续写下去,发现这列数的变化规律即可解答.本题主要考查的是数字规律类问题,发现这列数的变化规律是解题的关键.【详解】这一列数为:1,1,2,3,5,8,13,21,34,…可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数.由于202436742÷= ,即前2024个数共有674组,且余2个数,∴奇数有674221350⨯+=个.故选:D 二、填空题9.近年来扬州经济稳步发展:2024年4月26日,扬州市统计局、国家统计局扬州调查队联合发布一季度全市实现地区生产总值约18700000万元,把18700000这个数用科学记数法表示为 .【答案】71.8710⨯【分析】根据科学记数法的要求,将18700000变为10(110)n a a ⨯<≤,分别确定a 和n 的值即可.本题考查了科学记数法,其表示形式为10(110)n a a ⨯<≤,正确确定a 和n 的值是解答本题的关键.n 是整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数的绝对值大于等于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】718700000 1.8710=⨯,故答案为:71.8710⨯.10.分解因式:2242a a -+= .【答案】()221a -【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.11.某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106158264527105615872650盖面朝上频率0.56000.54000.53000.52670.52800.52700.52800.52900.530随着实验次数的增大,“盖面朝上”的概率接近于(精确到0.01).【答案】0.53【分析】本题考查了利用频率估计概率的知识,解题的关键是能够仔细观察表格并了解:现随着实验次数的增多,频率逐渐稳定到某个常数附近,可用这个常数表示概率.根据图表中数据解答本题即可.【详解】解:由表中数据可得:随着实验次数的增大,“盖面朝上”的概率接近0.53,故答案为:0.5312有意义,则x 的取值范围是 .13.若用半径为10cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为 cm .【答案】5【分析】本题考查了圆锥的计算.用到的知识点为:圆锥的侧面展开图弧长等于底面周长.根据题意得圆锥的母线长为10cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为210210(cm)ππ⨯÷=,∴圆锥的底面半径为1025(cm)ππ÷=,故答案为:5.14.如图,已知一次函数(0)y kx b k =+≠的图象分别与x 、y 轴交于A 、B 两点,若2OA =,1OB =,则关于x 的方程0kx b +=的解为 .【答案】2x =-【分析】本题主要考查了一次函数与一元一次方程之间的关系,难度不大,认真分析题意即可.根据一次函数与x 轴交点坐标可得出答案.【详解】解:∵2OA =,∴(2,0)A -,∵一次函数y kx b =+的图象与x 轴交于点(2,0)A -,∴当0y =时,2x =-,即0kx b +=时,2x =-,∴关于x 的方程0kx b +=的解是2x =-.故答案为:2x =-.15.《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,书中第八章内容“方程”里记载了一个有趣的追及问题,可理解为:速度快的人每分钟走100米,速度慢的人每分钟走60米,现在速度慢的人先走100米,速度快的人去追他.问速度快的人追上他需要 分钟.【答案】2.5【分析】本题考查了一元一次方程的运用,理解数量关系,掌握方程解决实际问题是解题的关键.根据题意,设需要t 分钟追上,则速度快的人的路程等于速度慢的人的路程,由此列式求解即可.【详解】解:根据题意,设t 分钟追上,∴10060100t t +=,解得, 2.5t =,∴速度快的人追上速度慢的人需要2.5分钟,故答案为:2.5 .16.物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图像投影的方法.如图,燃烧的蜡烛(竖直放置)AB 经小孔O 在屏幕(竖直放置)上成像A B ''.设36cm AB =,24cm A B ''=.小孔O 到AB 的距离为30cm ,则小孔O 到A B ''的距离为 cm .【答案】20【分析】此题主要考查了相似三角形的应用,由题意得AB A B ''∥,AOB A OB ''∽△△,过O 作OC AB ⊥于点C ,CO 交A B ''于点C ',利用已知得出''AOB A OB △∽△,进而利用相似三角形的性质求出即可,熟练掌握相似三角形的性质是解题关键.【详解】由题意得:AB A B ''∥,∴AOB A OB ''∽△△,如图,过O 作OC AB ⊥于点C ,CO 交A B ''于点C ',∴OC A B '''⊥,30cm OC =∴A B OC AB OC'''=,即243630OC =∴20OC '=(cm ),即小孔O 到A B ''的距离为20cm 2017.如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)k y x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .18.如图,已知两条平行线1l 、2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C 、D 分别是1l 、2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为 .则点H 在O 上运动,∴当AH 与O 相切时BAH ∠最大,∴OH AH ⊥,∵2AE OB OE ==,∴3AO AE OE OE =+=,三、解答题19.(1)计算:0|3|2sin 302)π-+︒--;(2)化简:2(2)1x x x -÷-+.20.解不等式组260412x x x -≤⎧⎪⎨-<⎪,并求出它的所有整数解的和.21.2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x (分)百分比A 组60x <5%B 组6070x ≤<15%C 组7080x ≤<a D 组8090x ≤<35%E 组90100x ≤≤25%成绩条形统计图根据所给信息,解答下列问题:(1)本次调查的成绩统计表中=a ________%,并补全条形统计图;(2)这200名学生成绩的中位数会落在________组(填A 、B 、C 、D 或E );(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.【答案】(1)20,条形统计图见详解(2)D(3)300人【分析】(1)用1减去其余各组人数所占的百分数即可得a 的值,进而可求出C 组人数,补全条形统计图即可.(2)按照中位数的定义解答即可.(3)用总人数乘以D 组人数所占百分比即可.【详解】(1)5153522105%%%%%a -=---=,C 组人数为:20020%40⨯=,补全条形统计图如图所示:故答案为:20(2)055124005%%%%%+=<+,51532075505%%%%%%++=>+,∴200名学生成绩的中位数会落在D 组.(3)120025%300⨯=(人)估计该校1200名学生中成绩在90分以上(包括90分)的人数为300人.【点睛】本题主要考查了统计表和统计图的综合运用、用样本估计总体等知识.综合运用所学知识并且正确计算是解题的关键.22.2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A 、B 、C 、D 、E )参加公益讲解活动.(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是______;(2)小明和小亮在C 、D 、E 三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.23.为了提高垃圾处理效率,某垃圾处理厂购进A 、B 两种机器,A 型机器比B 型机器每天多处理40吨垃圾,A 型机器处理500吨垃圾所用天数与B 型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?【答案】B 型机器每天处理60吨【分析】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.设B 型机器每天处理x 吨垃圾,则A 型机器每天处理(40)x +吨垃圾,根据题意列出方程即可求出答案.【详解】解:设B 型机器每天处理x 吨垃圾,则A 型机器每天处理(40)x +吨垃圾,24.如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形ABCD .(1)试判断四边形ABCD 的形状,并说明理由;(2)已知矩形纸条宽度为2cm ,将矩形纸条旋转至如图2位置时,四边形ABCD 的面积为28cm ,求此时直线AD CD 、所夹锐角1∠的度数.【答案】(1)四边形ABCD 是菱形,理由见详解(2)130∠=︒【分析】本题主要考查矩形的性质,菱形的判定和性质,全等三角形的判定和性质,含30︒的直角三角形的性质,掌握菱形的判定和性质是解题的关键.(1)根据矩形的性质可得四边形ABCD 是平行四边形,作AT NP CU EH ⊥⊥,,可证ATB CUB ≌,可得AB CB =,由此可证平行四边形ABCD 是菱形;(2)作AR CD ⊥,根据面积的计算方法可得42CD AR ==,,结合菱形的性质可得4AD =,根据含30︒的直角三角形的性质即可求解.【详解】(1)解:四边形ABCD 是菱形,理由如下,如图所示,过点A 作AT NP ⊥于点T ,过点C 作CU EH ⊥于点U ,根据题意,四边形EFGH ,四边形∴EH FG MQ NP ,,∴AB DC AD BC ,,∴四边形ABCD 是平行四边形,∵宽度相等,即AT CU =,且根据题意,2AR cm =,∵·8ABCD S CD AR ==四边形,∴4CD =,25.如图,已知二次函数2y x bx c =-++的图像与x 轴交于(2,0)A -,(1,0)B 两点.、的值;(1)求b c(2)若点P在该二次函数的图像上,且PAB的面积为6,求点P的坐标.当224x x --+=-时,13x =-,22x =;∴122434()()P P ---,,,.26.如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长.∴2COQ CAQ ∠=∠;点O 即为所求连接BC ,以点B 为圆心,以径画弧交AQ 于点11C D ,,分别以点连接11B F 并延长交AP 于点M ∵根据作图可得,2COQ CAQ ∠=∠,∴在Rt AMW 中,3sin 5WM A AM ==27.如图,点A B M E F 、、、、依次在直线l 上,点A B 、固定不动,且2AB =,分别以AB EF、为边在直线l 同侧作正方形ABCD 、正方形EFGH ,90PMN ∠=︒,直角边MP 恒过点C ,直角边MN 恒过点H .(1)如图1,若10BE =,12EF =,求点M 与点B 之间的距离;(2)如图1,若10BE =,当点M 在点B E 、之间运动时,求HE 的最大值;(3)如图2,若22BF =,当点E 在点B F 、之间运动时,点M 随之运动,连接CH ,点O 是CH 的中点,连接HB MO 、,则2OM HB +的最小值为_______.∵90CMH∠= ,点O是CH的中点,∴12OM CH=,∴2OM HB CH HB+=+,∴当C H B'、、三点共线时,CHRt'CB Q28.在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在 O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示)在Rt BDE △中,∴cos30BE BD =︒⋅=∴3BC =,∵AD 是直径,则ABD Ð∵ AB AB=∴60ADB ACB ∠=∠=∴DBF 是等边三角形,∴BF BD =,则60BFD ∠=︒∴120AFB ∠=︒∵四边形ACDB 是圆内接四边形,∴120CDB ∠=︒∴AFB CDB ∠=∠;∵CA CB =,60ACB ∠=︒,∴ABC 是等边三角形,则60CAB ∠=︒∴AB BC =,又∵ BDBD =∴BCD BAF=∠∠在,AFB CDB 中AFB CDB BAF BCDAB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AFB CDB ≌∴AF CD =,∴AD BD AD DF AF CD-=-==即AD BD CD -=;(3)解:①如图所示,当D 在 BC上时,在AD 上截取DE BD =,∵ AB AB=∴ACB ADBÐ=Ð又∵,CA CB DE DB==∴CAB DEB ∽,则ABC EBD∠=∠∴2sin2AB BC α=⋅∴2sin 2AD BD CD α-=,即②当D 在 AB 上时,如图所示,延长∵四边形ACDB 是圆内接四边形,∴180GAD ACB ∠=∠=又∵,CA CB DG DA==∴CAB DAG ∽,则。

2020年江苏省扬州市中考数学试题和答案

2020年江苏省扬州市中考数学试题和答案

2020年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)实数3的相反数是()A.﹣3B.C.3D.±3 2.(3分)下列各式中,计算结果为m6的是()A.m2•m3B.m3+m3C.m12÷m2D.(m2 )3 3.(3分)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A.B.C.D.5.(3分)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤6.(3分)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米7.(3分)如图,由边长为1的小正方形构成的网格中,点A、B、C 都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.B.C.D.8.(3分)小明同学利用计算机软件绘制函数y=(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为.10.(3分)分解因式:a3﹣2a2+a=.11.(3分)代数式在实数范围内有意义,则实数x的取值范围是.12.(3分)方程(x+1)2=9的根是.13.(3分)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为.14.(3分)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面尺高.15.(3分)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为cm2.16.(3分)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=cm.17.(3分)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.②分别以点D、E为圆心,大于DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为.18.(3分)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E 为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算或化简:(1)2sin60°+()﹣1﹣.(2)÷.20.(8分)解不等式组并写出它的最大负整数解.21.(8分)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是,扇形统计图中表示A等级的扇形圆心角为°;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.22.(8分)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.23.(10分)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.24.(10分)如图,▱ABCD的对角线AC、BD相交于点O,过点O 作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=,求EF的长;(2)判断四边形AECF的形状,并说明理由.25.(10分)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD 的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.26.(10分)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y 的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组则x﹣y=,x+y =;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c 是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=.27.(12分)如图1,已知点O在四边形ABCD的边AB上,且OA =OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求的值;(3)当四边形ABCD的周长取最大值时,求的值.28.(12分)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P 在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.参考答案:解:实数3的相反数是:﹣3.故选:A.2.参考答案:解:A、m2•m3=m5,故此选项不合题意;B、m3+m3=2m3,故此选项不合题意;C、m12÷m2=m10,故此选项不合题意;D、(m2 )3=m6,故此选项符合题意.故选:D.3.参考答案:解:∵x2+2>0,∴点P(x2+2,﹣3)所在的象限是第四象限.故选:D.4.参考答案:解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.5.参考答案:解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.6.参考答案:解:∵小明每次都是沿直线前进10米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×10=80(m).故选:B.7.参考答案:解:如图,连接BC.∵∠ADC和∠ABC所对的弧长都是,∴根据圆周角定理知,∠ADC=∠ABC.在Rt△ACB中,根据锐角三角函数的定义知,sin∠ABC=,∵AC=2,BC=3,∴AB==,∴sin∠ABC==,∴sin∠ADC=.故选:A.8.参考答案:解:由图象可知,当x>0时,y<0,∴a<0;x=﹣b时,函数值不存在,∴﹣b<0,∴b>0;故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.参考答案:解:6500000用科学记数法表示应为:6.5×106,故答案为:6.5×106.10.参考答案:解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.11.参考答案:解:代数式在实数范围内有意义,则x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.12.参考答案:解:(x+1)2=9,x+1=±3,x1=2,x2=﹣4.故答案为:x1=2,x2=﹣4.13.参考答案:解:∵S侧=πrl,∴3πl=12π,∴l=4.答:这个圆锥的母线长为4.故答案为:4.14.参考答案:解:设折断处离地面x尺,根据题意可得:x2+32=(10﹣x)2,解得:x=4.55.答:折断处离地面4.55尺.故答案为:4.55.15.参考答案:解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,∴点落入黑色部分的概率为0.6,∵边长为2cm的正方形的面积为4cm2,设黑色部分的面积为S,则=0.6,解得S=2.4(cm2).答:估计黑色部分的总面积约为2.4cm2.故答案为:2.4.16.参考答案:解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∠BCD=∠BAC=30°.由AC=3,得CD=1.5.cos∠BCD==,即=,解得a=,故答案为:.17.参考答案:解:如图,过点G作GM⊥AB于点M,GN⊥AC 于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴AB×GM=18,∴4GM=18,∴GM=,∴△CBG的面积为:BC×GN=12×=27.故答案为:27.18.参考答案:解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴=,∵DF=DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.参考答案:解:(1)原式=2×+2﹣2=+2﹣2=2﹣;(2)原式=•=1.20.参考答案:解:解不等式x+5≤0,得x≤﹣5,解不等式≥2x+1,得:x≤﹣3,则不等式组的解集为x≤﹣5,所以不等式组的最大负整数解为﹣5.21.参考答案:解:(1)本次调查的样本容量是150÷30%=500,扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,故答案为:500,108;(2)B等级的人数为:500×40%=200,补全的条形统计图如右图所示;(3)2000×=200(人),答:该校需要培训的学生人有200人.22.参考答案:解:(1)小明从A测温通道通过的概率是,故答案为:;(2)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为=.23.参考答案:解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:﹣=40,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴(1+50%)x=60,=80,=120.答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.24.参考答案:解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.25.参考答案:(1)证明:连接OA、AD,如图,∵CD为⊙O的直径,∴∠DAC=90°,又∵∠ADC=∠B=60°,∴∠ACD=30°,又∵AE=AC,OA=OD,∴△ADO为等边三角形,∴∠E=30°,∠ADO=∠DAO=60°,∴∠PAD=30°,∴∠EAD+∠DAO=90°,∴OA⊥E,∴AE为⊙O的切线;(2)解:作OF⊥AC于F,由(1)可知△AEO为直角三角形,且∠E=30°,∴OA=2,AE=6,∴阴影部分的面积为×6×2﹣=6﹣2π.故阴影部分的面积为6﹣2π.26.参考答案:解:(1).由①﹣②可得:x﹣y=﹣1,由(①+②)可得:x+y=5.故答案为:﹣1;5.(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,依题意,得:,由2×①﹣②可得m+n+p=6,∴5m+5n+5p=5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:,由3×①﹣2×②可得:a+b+c=﹣11,即1*1=﹣11.故答案为:﹣11.27.参考答案:(1)证明:∵AO=OD,∴∠OAD=∠ADO,∵OC平分∠BOD,∴∠DOC=∠COB,又∵∠DOC+∠COB∠=∠OAD+∠ADO,∴∠ADO=∠DOC,∴CO∥AD;(2)解:如图1,∵OA=OB=OC,∴∠ADB=90°,∴△AOD和△ABD为等腰直角三角形,∴AD=AO,∴,∵DE=EF,∴∠DFE=∠DEF,∵∠DFE=∠AFO,∴∠AFO=∠AED,又∠ADE=∠AOF=90°,∴△ADE∽△AOF,∴.(3)解:如图2,∵OD=OB,∠BOC=∠DOC,∴△BOC≌△DOC(SAS),∴BC=CD,设BC=CD=x,CG=m,则OG=2﹣m,∵OB2﹣OG2=BC2﹣CG2,∴4﹣(2﹣m)2=x2﹣m2,解得:m=,∴OG=2﹣,∵OD=OB,∠DOG=∠BOG,∴G为BD的中点,又∵O为AB的中点,∴AD=2OG=4﹣,∴四边形ABCD的周长为2BC+AD+AB=2x+4﹣+4=﹣+2x+8=﹣+10,∵﹣<0,∴x=2时,四边形ABCD的周长有最大值为10.∴BC=2,∴△BCO为等边三角形,∴∠BOC=60°,∵OC∥AD,∴∠DAC=∠COB=60°,∴∠ADF=∠DOC=60°,∠DAE=30°,∴∠AFD=90°,∴,DF=DA,∴.28.参考答案:解:(1)①当n=1时,B(5,1),设线段AB所在直线的函数表达式为y=kx+b,把A(1,2)和B(5,1)代入得:,解得:,则线段AB所在直线的函数表达式为y=﹣x+;②不完全同意小明的说法,理由为:k=xy=x(﹣x+)=﹣(x﹣)2+,∵1≤x≤5,∴当x=1时,k min=2;当x=时,k max=,则不完全同意;(2)当n=2时,A(1,2),B(5,2),符合;当n≠2时,y=x+,k=x(x+)=(x﹣)2+,先增大当x取时,k为,为最大,到B为5时减小,即在直线上A到x=时增大,到5时减小,当<x≤5时,k在减小,当n<2时,k随x的增大而增大,则有≥5,此时≤n<2;当n>2时,k随x的增大而增大,则有≤1,此时n>2,综上,n≥.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/8/1 20:55:24;用户:咖啡;邮箱:*****************************************.com;学号:36745343。

【真题】扬州市中考数学试卷含答案解析()

【真题】扬州市中考数学试卷含答案解析()

江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣52.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2=.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b.(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)因式分解:18﹣2x2=2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+=故答案为:【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14.(3分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=2.【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值范围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,=OD•DE=OE•DF,∵S△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.【点评】本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+18【点评】本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.【点评】本题主要考查解一元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是50,a+b11.(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.答:货车的速度约是121.8千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S=•AB•DE=•3=15.菱形AEBD【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE ﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE ﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x的取值范围.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,=﹣10(46﹣50)2+4000=3840,∴x=46时,w大答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点评】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为2;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使。

2023年江苏省扬州市中考数学真题(含解析)

2023年江苏省扬州市中考数学真题(含解析)

2023年江苏省扬州市中考数学真题学校:___________姓名:___________班级:___________考号:___________....3,则a 、b 、c 的大小关系是. . . ..在ABC 中,∠,4AB =,若 是锐角三角形,则满足条件的BC 长可以 )x>时,y随x的增大而增大.其中所有正确结论的序时,y随x的增大而减小;④当0号是()A.①②B.②③C.②D.③④二、填空题17.如图,ABC 中,A ∠分别交BA BC 、于点M 、N 两弧交于点E ,作射线BE18.如图,已知正方形ABCD 的边长为着EF 翻折,点B 恰好落在CD 边上的点积比为3∶5,那么线段FC 的长为________平均数众数中位数七年级参赛学生成绩85.5m 87八年级参赛学生成绩85.585n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断S “>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好.(1)试判断直线AB与O的位置关系,并说明理由;(2)若3sin,5B O= 的半径为3,求AC26.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔(1)如果四个点()()()()0,00,21,11,1-、、、中恰有三个点在二次函数y 0a ≠)的图象上.①=a ________;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且菱形的边长;③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点参考答案:1.A【分析】根据绝对值的概念,可得3-的绝对值就是数轴上表示3-的点与原点的距离.进而得到答案.【详解】解:3-的绝对值是3,故选:A .【点睛】本题考查绝对值的定义,正确理解绝对值的定义是解题的关键.2.A【分析】将已知条件中的乘法运算可以转化为单项式除以单项式进行计算即可解答.【详解】解:∵23( )22a b a b ⋅=,∴()3222a b a b a =÷=.故选:A .【点睛】本题主要考查了整式除法的应用,弄清被除式、除式和商之间的关系是解题的关键.3.C【分析】在扇形统计图中将总体看做一个圆,用各个扇形表示各部分,能清楚的表示出各部分所占总体的百分比.【详解】根据题意,将空气(除去水汽、杂质等)看做总体,用各个扇形表示空气的成分(除去水汽、杂质等)中每一种成分所占空气的百分比,由此可以选择扇形统计图.故选C .【点睛】本题考查了统计图的选取,扇形统计图的特点及优点,熟练掌握各种统计图的特点及优点是解题的关键.4.D【分析】由棱锥的侧面展开图的特征可知答案.【详解】棱锥的侧面是三角形.故选:D .【点睛】本题考查了几何体的展开图,熟记常见立体图形的侧面展开图和侧面的特征是解决此类问题的关键.5.C∴90ADB ∠=︒,90BAE ∠=︒,∴cos 2BD AB B =⋅∠=,8cos AB BE B==∠∵ABC 是锐角三角形,∴BD BC BE <<,即28BC <<,【详解】解:24xy x-24()x y =-()(2)2x y y =+-故答案为:()(22)x y y +-.【点睛】本题考查利用提公因式、平方差公式分解因式等知识,是重要考点,难度较易,掌握相关知识是解题关键.11.6【分析】根据题意知道这个多边形每一个外角都是60︒,所以确定这是一个正多边形,根据多边形的外角和等于360︒,就可求出这个多边形的边数.【详解】因为这个多边形每一个外角都是60︒,所以这个多边形是一个正多边形,设正多边形的边数为n ,根据正多边形外角和:60=360n °×°,得:6n =故答案为:6.【点睛】本题考查了多边形外角和,熟练掌握多边形外角和等于360︒是解题的关键,注意正多边形的每一个外角都相等.12.0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93,故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.k <1.【分析】由方程有两个不等实数根可得出关于k 的一元一次不等式,解不等式即可得出结论.【详解】∵关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,∴△=2241k 0-⨯⨯>,解得:k 1<,∴90Ð=Ð=°,BFD CFD∠,由题意得:BD平分ABC90A∠=︒,∴222==+=+,815 AD DF BC AB AC∵正方形ABCD 的边长为1,四边形∴33=1=88ABFE S ⨯四边形,设CF x =,则DH x =,则BF =∴()13==28ABFE AE BF AB S +⨯四边形即()131128AE x +-⨯=∴1AE x =-则不等式组的解集为:∵,H G 为,AD CD 的中点,∴1,2HG AC HG AC =∥,∴HNG CNA ∽,∴1HN HG ==,∵12BCD A ∠=∠,即:2BCD A ∠=∠,∴BOD A ∠=∠,∵90ACB ∠=︒,∴90B BOD B A ∠+∠=∠+∠=︒,∴90ODB ∠=︒,∵2AB AC ==,BAC ∠∴ABC 为等边三角形,∴2BC AB ==;当22BC =时,∵90DAC BAC BAD ∠=∠-∠=∴此时DAD CAD a ''=∠=∠-∠当AC 在AB 上方时,如图所示:∵60DAB D AC '∠=∠=︒∴此时DAB BAC a =∠+∠综上分析可知,当BC 故答案为:2;30或210(2)解:当90α=︒时,如图所示:∵2AB AC ==,∴112AD AD AB '===,∴22213BD CD '==-=∵90DAD a '∠==︒,【点睛】本题主要考查了正方形的判定和性质,等腰三角形的性质,等边三角形的判定和性质,解题的关键是画出相应的图形,数形结合,并注意分类讨论.28.(1)①1;②233;由正方形的性质可知,E 为AC ∴90ABM CBN CBN ∠+∠=︒=∠∴ABM BCN ∠=∠,∵ABM BCN ∠=∠,AMB ∠=∴()AAS AMB BNC ≌△△,。

江苏省扬州市中考真题

江苏省扬州市中考真题
A.线段EF的长慢慢增大B.线段EF的长慢慢减小
C.线段EF的长不变D.线段EF的长与点P的位置有关
7、函数 的图象与直线 没有交点,那么k的取值范围是()
A. B. C. D.
8.假设关于 的一元二次方程 的两根中有且仅有一根在0与1之间(不含0和1),那么 的取值范围是()
A. B. C. D.
和FB的比例中项吗?什么缘故?
22.(此题总分值12分)
一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外都相同.
(1)小明以为,搅均后从中任意摸出一个球,不是白球确实是红球,因此摸出白球和摸出红球是等可能的.你同意他的说法吗?什么缘故?
(2)搅均后从中一把摸出两个球,请通过列表或画树状图求两个球都是白球的概率;
26.(此题总分值14分)
已知:矩形ABCD中, ,点M在对角线AC上,直线l过点M且与AC垂直,与AD相交于点E.
(1)若是直线l与边BC相交于点H(如图1),AM AC且AD=a,求AE的长;(用含a的代数式表示)
(2)在(1)中,又直线l把矩形分成的两部份面积比为2∶5,求a的值;
(3)假设AM AC,且直线l通过点B(如图2),求AD的长;
第Ⅱ卷(非选择题共126分)
二.填空题(本大题共10题,每题3分,共30分.把答案填在题中的横线上.)
9.若是□+2=0,那么“□”内应填的实数是______________.
10.2020年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”声中成功终止,全程千米,千米用科学记数法表示是___________米.
14.小红将考试时自勉的话“细心·标准·勤思”写在一个正方体的六个面上,其平面展开图如下图,那么在该正方体中,和“细”相对的字是__________.

2020年江苏省扬州市中考数学联考试卷附解析

2020年江苏省扬州市中考数学联考试卷附解析

2020年江苏省扬州市中考数学联考试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,下列不等式一定能成立的是( )A .∠5>∠3B .∠4>∠3C .∠6>∠2D .∠5>∠62.如图,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于( )A .32B .23C .42D .333.下列图形中,一定是轴对称图形的是( )A .直角三角形B .平行四边形C .梯形D .等腰三角形4.如图,△ABC 和△ADC 有公共边AC ,∠BAC =∠DAC ,在下列条件中不能..判断△ABC ≌△ADC 的是( )A .BC=DCB .AB =ADC .∠B =∠D D .∠BCA =∠DCA5.小王只带20元和50元两种面值的人民币,他买一件学习用品要支付270元,则付款的方式有( )A .1种B .2种C .3种D .4种6.如图①,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿黑线剪开,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .222()a b a b ⋅-=-7.如果237m n -=,那么823m n -+等于( )A.15 B.1 C.7 D.8二、填空题8.如图,⊙O的半径为4cm,直线l⊥OA,垂足为O,则直线l沿射线OA方向平移________cm时与⊙O相切.9.升国旗时,某同学站在离旗杆24m处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m,则旗杆高度约为_________.(取3 1.73=,结果精确到0.1m)10.已知△ABC,可以画△ABC 的外接圆且只能画个;对于给定的⊙O,可以画⊙O的个内接三角形.11.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD= . 12.数a在数轴上的位置如图所示:化简2|1|a a--= .13.观察图象,与图①中的鱼相比,图②中的鱼发生了一些变化.若图①中鱼上点P的坐标为(4,3.2),则这个点在图②中的对应点P1的坐标为 (图中的方格是边长为1的小正方形).14.某中学举行歌咏比赛,六位评委对某位选手打分如下:8.5,8.9,8.0,8.0,9.5,9.2,去掉一个最高分和一个最低分后的平均分是.15.将方程35x y-=写成用含x的代数式表示y,则y= .16.幂的乘方,底数,指数.17.某一天杭州的最低气温是零下3℃,最高气温是零上8℃,则这一天杭州的最大温差是℃.18.华氏温度f和摄氏温度C的关系为9325f c=+,当人的体温为 37℃时,华氏温度为度.解答题19.某位老师在讲“实数”时,画了一个图 (如图),即“以数轴的单位长线段为边作一个正方形,然后以原点为圆心,正方形的对角线长为半径画弧交x 轴于一点A ”,作这样的图是用来说明: .20.式子13215472--+中的各项分别是 . 21.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2米的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一直线上,如果测得BD =20米,FD =4米,EF =1.8米,则树的高度为__________米.22.直角三角形的两个锐角的平分线AD ,BE 交于点0,则∠AOB= .三、解答题23.如图所示,拦水坝的横截面是梯形ABCD,已知坝高为4米,坝顶宽BC•为3米,背水坡AB 的坡度i=1:3,迎水坡CD 长为5米. (1)求大坝的下底宽AD 的长;(2)修建这种大坝100米,需要多少土石方?24.如图,已知AEAC DE BC AD AB ==,试说明∠BAD=∠CAE .F E D CB A AB CE D25.一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示:请结合图表完成下列问题:(1)表中的a =;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第组;(4)若八年级学生一分钟跳绳次数(x)达标要求是:120x<不合格;120140x<≤为合格;140160x<≤为良;160x≥为优.根据以上信息,请你给学校或八年级同学提一条合理化建议:.26.如图所示,D,E,F分别在△ABC的边BC,AB,AC上,且DE ∥AF,DE=AF,G在FD的延长线上,DG=DF,求证:AG和ED互相平分.27.解不等式组12512x xx+≤⎧⎪⎨->⎪⎩,并写出它的所有整数解.28.化简求值: )3)(3()5()4(222-+-+-+x x x x ,其中x=-2.29.如图所示,四边形ABCD 中,AB=CD ,BC=AD ,请你添一条辅助线,把它分成两个全等的三角形.你有几种添法?分别说明理由.30.制作适当统计图表示下列数据:2005年平均每人每月消费性支出446元,其中食品占40.6%,衣着占12.2%,家庭设 备日用品及服务占7.0%,医疗保健占5.9%,交通和通讯占8.7%,娱乐教育文化 服务占12.7%,居住占8.6%,杂项商品占4.3%.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.D4.A5.C6.A7.B二、填空题8.49.15.0m10.1,无数312.-113.(4,2.2)14.8.6515.35y x =-16.不变,相乘17.1118.98.619.实数与数轴有一一对应关系20.15,34- ,27- ,12+ 21.322.135°三、解答题23.解:(1) AD=18(米);(2)4200米3.24. ∵AEAC DE BC AD AB == ,∴△ABC ∽△ADE ,∴∠BAC=∠DAE , ∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE .25.⑴ 12;⑵略;⑶中位数落在第3组;⑷只要是合理建议都可以.连结AD,EG,证明四边形AEGD是平行四边形,得AG和ED互相平分27.1≤x<3,1,228.6x+16=4.29.连结AC或连结BD,都是根据SSS说明三角形全等30.略。

2023年江苏省扬州市中考数学试卷及答案解析

2023年江苏省扬州市中考数学试卷及答案解析

2023年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.(3分)实数﹣3的绝对值是()A.﹣3B.3C.D.±32.(3分)若()•2a2b=2a3b,则括号内应填的单项式是()A.a B.2a C.ab D.2ab3.(3分)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图4.(3分)下列图形是棱锥侧面展开图的是()A.B.C.D.5.(3分)已知a=,b=2,c=,则a、b、c的大小关系是()A.b>a>c B.a>c>b C.a>b>c D.b>c>a 6.(3分)函数y=的大致图象是()A.B.C.D.7.(3分)在△ABC中,∠B=60°,AB=4,若△ABC是锐角三角形,则满足条件的BC长可以是()A.1B.2C.6D.88.(3分)已知二次函数y=ax2﹣2x+(a为常数,且a>0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x<0时,y随x的增大而减小;④当x>0时,y随x的增大而增大.其中所有正确结论的序号是()A.①②B.②③C.②D.③④二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)扬州市大力推进城市绿化发展,2022年新增城市绿地面积约2345000平方米,数据2345000用科学记数法表示为.10.(3分)分解因式:xy2﹣4x=.11.(3分)如果一个多边形每一个外角都是60°,那么这个多边形的边数为.12.(3分)某种绿豆在相同条件下发芽试验的结果如下:每批粒数n2510501005001000150020003000发芽的频数m2494492463928139618662794发芽的频率(精1.0000.8000.9000.8800.9200.9260.9280.9310.9330.931确到0.001)这种绿豆发芽的概率的估计值为(精确到0.01).13.(3分)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则实数k的取值范围为.14.(3分)用半径为24cm,面积为120πcm2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm.15.(3分)某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p (Pa)是气球体积V(m3)的反比例函数,且当V=3m3时,p=8000Pa.当气球内的气体压强大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于______m3.16.(3分)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a、b,斜边长为c,若b﹣a=4,c=20,则每个直角三角形的面积为.17.(3分)如图,△ABC中,∠A=90°,AB=8,AC=15,以点B为圆心,适当长为半径画弧,分别交BA、BC于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点E,作射线BE交AC于点D,则线段AD的长为.18.(3分)如图,已知正方形ABCD的边长为1,点E、F分别在边AD、BC上,将正方形沿着EF翻折,点B恰好落在CD边上的点B′处,如果四边形ABFE与四边形EFCD的面积比为3:5,那么线段FC的长为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:(1)(2﹣)0﹣+tan60°;(2)÷(b﹣a).20.(8分)解不等式组并把它的解集在数轴上表示出来.21.(8分)某校为了普及环保知识,从七、八两个年级中各选出10名学生参加环保知识竞赛(满分100分),并对成绩进行整理分析,得到如下信息:平均数众数中位数七年级参赛学生成绩85.5m87八年级参赛学生成绩85.585n根据以上信息,回答下列问题:(1)填空:m=,n=;(2)七、八年级参赛学生成绩的方差分别记为、,请判断(填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好.22.(8分)扬州是个好地方,有着丰富的旅游资源.某天甲、乙两人来扬州旅游,两人分别从A、B、C三个景点中随机选择一个景点游览.(1)甲选择A景点的概率为;(2)请用画树状图或列表的方法,求甲、乙两人中至少有一人选择C景点的概率.23.(10分)甲、乙两名学生到离校2.4km的“人民公园”参加志愿者活动,甲同学步行,乙同学骑自行车,骑自行车速度是步行速度的4倍,甲出发30min后乙同学出发,两名同学同时到达,求乙同学骑自行车的速度.24.(10分)如图,点E、F、G、H分别是平行四边形ABCD各边的中点,连接AF、CE 相交于点M,连接AG、CH相交于点N.(1)求证:四边形AMCN是平行四边形;(2)若▱AMCN的面积为4,求▱ABCD的面积.25.(10分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,且∠BCD=∠A,点O在BC上,以点O为圆心的圆经过C、D两点.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若sin B=,⊙O的半径为3,求AC的长.26.(10分)近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?27.(12分)【问题情境】在综合实践活动课上,李老师让同桌两位同学用相同的两块含30°的三角板开展数学探究活动,两块三角板分别记作△ADB和△A′D′C,∠ADB=∠A′D′C=90°,∠B =∠C=30°,设AB=2.【操作探究】如图1,先将△ADB和△A′D′C的边AD、A′D′重合,再将△A′D′C绕着点A按顺时针方向旋转,旋转角为α(0°≤α≤360°),旋转过程中△ADB保持不动,连接BC.(1)当α=60°时,BC=;当BC=2时,α=°;(2)当α=90°时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取BC的中点F,将△A′D′C′绕着点A旋转一周,点F的运动路径长为.28.(12分)在平面直角坐标系xOy中,已知点A在y轴正半轴上.(1)如果四个点(0,0)、(0,2)、(1,1)、(﹣1,1)中恰有三个点在二次函数y=ax2(a为常数,且a≠0)的图象上.①a=;②如图1,已知菱形ABCD的顶点B、C、D在该二次函数的图象上,且AD⊥y轴,求菱形的边长;③如图2,已知正方形ABCD的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究n﹣m是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD的顶点B、D在二次函数y=ax2(a为常数,且a>0)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.2023年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.【分析】根据绝对值的定义即可求得答案.【解答】解:|﹣3|=3,故选:B.【点评】本题考查绝对值的定义,此为基础且重要知识点,必须熟练掌握.2.【分析】根据单项式乘单项式法则(或根据单项式除以单项式法则)求出答案即可.【解答】解:2a3b÷2a2b=a,即括号内应填的单项式是a,故选:A.【点评】本题考查了单项式乘单项式法则,能熟记掌握单项式乘单项式法则是解此题的关键.3.【分析】根据扇形统计图的特点:①用扇形的面积表示部分在总体中所占的百分比.②易于显示每组数据相对于总数的大小即可得到答案.【解答】解:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是扇形统计图.故选:C.【点评】此题考查的是扇形统计图的特点,掌握其特点是解决此题关键.4.【分析】由棱锥的侧面展开图的特征可知答案.【解答】解:四棱锥的侧面展开图是四个三角形.故选:D.【点评】本题考查了几何体的展开图,熟记常见立体图形的侧面展开图和侧面的特征是解决此类问题的关键.5.【分析】一个正数越大,其算术平方根越大,据此进行判断即可.【解答】解:∵3<4<5,∴<<,即<2<,则a>b>c,故选:C.【点评】本题考查实数的大小比较,此为基础且重要知识点,必须熟练掌握.6.【分析】函数y=的图象是双曲线,它的两个分支分别位于第一、二象限.【解答】解:由函数y=可知,函数是双曲线,它的两个分支分别位于第一、二象限,当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大.故选:A.【点评】考查了函数的图象,函数y=的图象是双曲线,当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大.7.【分析】作△ABC的高AD、CE.根据锐角三角形的三条高均在三角形的内部得出BC>BD,AB>BE.解直角三角形求出2<BC<8,即可求解.【解答】解:如图,作△ABC的高AD、CE.∵△ABC是锐角三角形,∴AD、CE在△ABC的内部,即BC>BD,AB>BE.∵在直角△ABD中,∠B=60°,AB=4,∴BD=AB•cos B=4×=2,∴BC>2;又∵BC=<==8,∴2<BC<8,∴综观各选项,BC可以为6.故选:C.【点评】本题考查了解直角三角形,三角形的高,三角形的三边关系,得出BC的范围是解题的关键.8.【分析】由a的正负可确定出抛物线的开口方向,结合函数的性质逐项判断即可.【解答】解:∵a>0时,抛物线开口向上对称轴为x==>0,当x<0时,y随x 的增大而减小,当x>时,y随x的增大而增大,函数图象一定不经过第三象限,函数图象可能经过第一、二、三、四象限.故选:B.【点评】本题主要考查二次函数的性质,掌握a决定二次函数的开口方向,进一步能确定出其最值是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:2345000=2.345×106.故答案为:2.345×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.【分析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【解答】解:多边形的边数是:360°÷60°=6,∴这个多边形的边数是6.故答案为:6.【点评】本题主要考查了多边形的外角和定理,掌握多边形的外角和是360°是解题关键.12.【分析】当试验次数足够大时,发芽的频率逐渐稳定并趋于某一个值,这个值作为概率的估计值.【解答】解:根据表中的发芽的频率,当实验次数的增多,发芽的频率越来越稳定在0.93左右,所以可估计这种绿豆发芽的机会大约是0.93.故答案为:0.93.【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率;用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.13.【分析】根据方程有两个不相等的实数根结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+2x+k=0有两个不相等的实数根,∴Δ=b2﹣4ac=22﹣4k=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式,根据方程有两个不相等的实数根结合根的判别式得出4﹣4k>0是解题的关键.14.【分析】根据扇形面积公式计算即可.【解答】解:设圆锥的底面圆的半径为rcm,则×2πr×24=120π,解得:r=5,故答案为:5.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.15.【分析】设气球内气体的压强p(Pa)与气球体积V(m3)之间的函数解析式为P=,把V=3m3时,p=8000Pa代入解析式求出k值,得到P关于V的函数解析式,再根据气球内的气体压强大于40000Pa得到关于V的不等式,从而确定正确的答案.【解答】解:设气球内气体的压强p(Pa)与气球体积V(m3)之间的函数解析式为P =.∵当V=3m3时,p=8000Pa,∴k=Vp=3×80000=24000,∴p=,∵气球内的气压大于40000Pa时,气球将爆炸,∴p≤40000时,气球不爆炸,∴≤40000,解得:V≥0.6,∴为确保气球不爆炸,气球的体积应不小于0.6m3.故答案为:0.6.【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.16.【分析】根据勾股定理可知a2+b2=c2,再根据b﹣a=4,c=20,即可得到a、b的值,然后即可计算出每个直角三角形的面积.【解答】解:由图可得,a2+b2=c2,∴且a、b均大于0,解得,∴每个直角三角形的面积为ab=×12×16=96,故答案为:96.【点评】本题考查勾股定理的证明、解直角三角形,解答本题的关键是明确题意,求出a、b的值.17.【分析】如图,过点D作DH⊥BC于点H.证明DA=DH,利用面积法求解.【解答】解:如图,过点D作DH⊥BC于点H.在△ABC中,∠A=90°,AB=8,AC=15,BC===17,∵DA⊥AB,DH⊥BC,BE平分∠ABC,∴DA=DH,=S△ABD+S△DCB,∵S△ABC∴×8×15=×8×AD+×17×DH,∴AD=DH=.故答案为:.【点评】本题考查作图﹣基本作图,解直角三角形等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.18.【分析】连接BB',过点F作FH⊥AD,设CF=x,则DH=x,BF=1﹣x,根据已知条件,分别表示出AE、EH、HD,证明△EHF≌△B'CB,得出EH=B'C=﹣2x,在Rt△B'FC中,根据勾股定理建立方程即可解答.【解答】解:如图,连接BB',过点F作FH⊥AD,∵已知正方形ABCD的边长为1,四边形ABFE与四边形EFCD的面积比为3:5,=,∴S四边形ABFE设CF=x,则DH=x,BF=1﹣x,=,∴S四边形ABFE即,解得AE=x﹣,∴DE=1﹣AE=,∴EH=ED﹣HD=,由折叠的性质可得BB'⊥EF,∴∠1+∠2=∠BGF=90°,∵∠2+∠3=90°,∴∠1=∠3,又FH=BC=1,∠EHF=∠C,∴△EHF≌△B'CB(ASA),∴EH=B'C=,在Rt△B'FC中,B'F2=B'C2+CF2,∴(1﹣x)2=x2+()2,解得x=.故答案为:.【点评】本题主要考查了正方形的性质,全等三角形的判定与性质,勾股定理,轴对称的性质,熟练掌握正方形的性质是解题的关键.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.【分析】(1)利用零指数幂,二次根式的性质,特殊锐角三角函数值进行计算即可;(2)根据分式的乘除运算法则进行计算即可.【解答】解:(1)原式=1﹣2+=1﹣;(2)原式=•=﹣.【点评】本题考查实数及分式的运算,它们的相关运算法则是基础且重要知识点,必须熟练掌握.20.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:,解不等式①得:x>﹣1,解不等式②得:x≤2,∴原不等式组的解集为:﹣1<x≤2,∴该不等式组的解集在数轴上表示如图所示:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的步骤是解题的关键.21.【分析】(1)根据众数和中位数的定义即可求出m和n的值;(2)根据方差公式分别计算出和即可;(3)从平均数、和中位数进行分析即可.【解答】解:(1)七年级成绩中80分的最多有3个,所以众数m=80,将八年级样成绩重新排列为:76,77,85,85,85,87,87,88,88,97,所以中位数n==86,故答案为:80,86;(2)∵七年级的方差是=×[(74﹣85.5)2+3×(80﹣85.5)2+(86﹣85.5)2+2×(88﹣85.5)2+(89﹣85.5)2+(91﹣85.5)2+(99﹣85.5)2]=46.05,八年级的方差是=×[(76﹣85.5)2+(77﹣85.5)2+3×(85﹣85.5)2+2×(87﹣85.5)2+2×(88﹣85.5)2+(97﹣85.5)2]=31.25,∴>;故答案为:>;(3)因为平均数相同,七年级的中位数较大,所以七年级的成绩较好.【点评】本题考查了平均数、中位数、众数、方差,明确平均数、中位数、众数、方差所反映数据的特征是解决问题、做出判断的前提.22.【分析】(1)由概率公式直接可得答案;(2)先画出树状图,共有9种等可能的情况,再根据概率公式,计算即可得出结果.【解答】解:(1)甲选择A景点的概率为,故答案为:;(2)根据题意画树状图如下:∵共有9种等可能的情况,其中甲、乙两人中至少有一人选择C景点的情况有5种,∴甲、乙两人中至少有一人选择C景点的概率是.【点评】本题考查了用树状图求概率,解本题的关键在根据树状图找出所有等可能的情况数.概率等于所求情况数与总情况数之比.23.【分析】设甲同学步行的速度为xkm/h,则乙同学骑自行车的速度为4xkm/h,根据甲出发30min后乙同学出发,两名同学同时到达,列出分式方程,解方程即可.【解答】解:设甲同学步行的速度为xkm/h,则乙同学骑自行车的速度为4xkm/h,由题意得:﹣=,解得:x=3.6,经检验,x=3.6是原方程的解,且符合题意,∴4x=4×3.6=14.4,答:乙同学骑自行车的速度为14.4km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.【分析】(1)依据四边形AFCH是平行四边形,可得AM∥CN,依据四边形AECG是平行四边形,可得AN∥CM,进而得出四边形AMCN是平行四边形;=S△ACH,再根据CH是△ACD (2)连接AC,依据三角形重心的性质,即可得到S△ACN=S△ACD,进而得到S平行四边形AMCN=S平行四边形ABCD,依据的中线,即可得出S△ACN▱AMCN的面积为4,即可得出结论.【解答】解:(1)∵点E、F、G、H分别是平行四边形ABCD各边的中点,∴AH∥CF,AH=CF,∴四边形AFCH是平行四边形,∴AM∥CN,同理可得,四边形AECG是平行四边形,∴AN∥CM,∴四边形AMCN是平行四边形;(2)如图所示,连接AC,∵H,G分别是AD,CD的中点,∴点N是△ACD的重心,∴CN=2HN,=S△ACH,∴S△ACN又∵CH是△ACD的中线,=S△ACD,∴S△ACN又∵AC是平行四边形AMCN和平行四边形ABCD的对角线,=S平行四边形ABCD,∴S平行四边形AMCN又∵▱AMCN的面积为4,∴▱ABCD的面积为12.【点评】本题主要考查了平行四边形的判定与性质以及三角形重心性质的运用,解决问题的关键是掌握平行四边形的判定方法以及三角形重心性质.25.【分析】(1)连接OD,根据等腰三角形的性质得到∠OCD=∠ODC,求得∠DOB=∠OCD+∠ODC=2∠BCD,等量代换得到∠BCD=∠A,求得∠BDO=90°,根据切线的判定定理即可得到结论;(2)根据三角函数的定义得到OB=5,求得BC=OB+OC=8,设AC=3x,AB=5x,根据勾股定理得到BC==4x=8,于是得到结论.【解答】解:(1)直线AB与⊙O相切,理由:连接OD,∵OC=OD,∴∠OCD=∠ODC,∴∠DOB=∠OCD+∠ODC=2∠BCD,∴,∵∠BCD=∠A,∴∠BCD=∠A,∵∠ACB=90°,∴∠A+∠B=90°,∴∠BOD+∠B=90°,∴∠BDO=90°,∵OD是⊙O的半径,∴直线AB与⊙O相切;(2)∵sin B==,OD=3,∴OB=5,∴BC=OB+OC=8,在Rt△ACB中,sin B==,∴设AC=3x,AB=5x,∴BC==4x=8,∴x=2,∴AC=3x=6.【点评】本题考查了直线与圆的位置关系,切线的判定,解直角三角形,等腰三角形的性质,正确地作出辅助线是解题的关键.26.【分析】(1)设甲种头盔的单价为x元,乙种头盔的单价为y元,根据购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元,列二元一次方程组,求解即可;(2)设再次购进甲种头盔m只,总费用为w元,根据此次购买甲种头盔的数量不低于乙种头盔数量的一半,列一元一次不等式,求出m取值范围,再表示出w与m的一次函数关系式,根据一次函数的增减性即可确定总费用最小时,甲种头盔购买数量,进一步求出最小费用即可.【解答】解:(1)设甲种头盔的单价为x元,乙种头盔的单价为y元,根据题意,得,解得,答:甲种头盔单价是65元,乙种头盔单价是54元;(2)设再次购进甲种头盔m只,总费用为w元,根据题意,得m≥(40﹣m),解得m≥,w=65×0.8m+(54﹣6)(40﹣m)=4m+1920,∵4>0,∴w随着m增大而增大,当m=14时,w取得最小值,即购买14只甲种头盔时,总费用最小,最小费用为14×4+1920=1976(元),答:购买14只甲种头盔时,总费用最小,最小费用为1976元.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,理解题意并根据题意建立相应关系式是解题的关键.27.【分析】(1)当α=60°时,A,D',B共线,A,D,C共线,可得△ABC是等边三角形,故BC=AB=2;当BC=2时,过A作AH⊥BC于H,分两种情况画出图形,可得答案;=×1×=,S△APD=×1×1=,故S△APQ=(2)画出图形,可得S△ADQ=﹣,从而两块三角板重叠部分图形的面积为1﹣;﹣,同理S△AD'R(3)连接AF,由AB=AC,F为BC中点,知∠AFB=90°,故F的运动轨迹是以AB 为直径的圆,用圆周长公式可得答案.【解答】解:(1)如图:∵∠ADB=∠A′D′C=90°,∠ABD=∠A'CD'=30°,∴∠BAD=∠D'AC=60°,∴当α=60°时,A,D',B共线,A,D,C共线,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=2;当BC=2时,过A作AH⊥BC于H,如图:∵AB=AC,∴BH=CH=BC=,∴sin∠BAH==,∴∠BAH=45°,∴∠BAC=2∠BAH=90°,∴α=120°﹣90°=30°;如图:同理可得∠BAC=90°,∴α=60°+90°+60°=210°,∴当BC=2时,α=30°或210°;故答案为:2,30或210;(2)如图:∵∠ADB=90°,∠B=30°,AB=2,∴AD=1,∵α=90°,∴∠BAC=60°+60°﹣90°=30°,∴∠QAD=∠BAD﹣∠BAC=30°,∴DQ==,=×1×=,∴S△ADQ∵∠D'=∠D'AD=∠D=90°,AD=AD',∴四边形ADPD'是正方形,∴DP=AD=1,=×1×1=,∴S△APD=﹣,∴S△APQ=﹣,同理S△AD'R∴两块三角板重叠部分图形的面积为1﹣;(3)连接AF,如图:∵AB=AC,F为BC中点,∴∠AFB=90°,∴F的运动轨迹是以AB为直径的圆,∴点F的运动路径长为2π×=2π.故答案为:2π.【点评】本题考查三角形综合应用,涉及旋转变换,与圆有关的计算问题,解题的关键是读懂题意,画出图形,灵活运用旋转的性质.28.【分析】(1)①在y=ax2中,令x=0得y=0,即知(0,2)不在二次函数y=ax2(a 为常数,且a≠0)的图象上,用待定系数法可得a=1;②设BC交y轴于E,设菱形的边长为2a,可得B(﹣a,a2),故AE==a,C(2a,a2+a),代入y=ax2得a2+a=4a2,可解得a=,故菱形的边长为;③过B作BF⊥y轴于F,过D作DE⊥y轴于E,由点B、D的横坐标分别为m、n,可得BF=m,OF=m2,DE=n,OE=n2,证明△ABF≌△DEA(AAS),有BF=AE,AF =DE,故m=n2﹣AF﹣m2,AF=n,即可得n﹣m=1;(2)过B作BF⊥y轴于F,过D作DE⊥y轴于E,由点B、D的横坐标分别为m、n,知B(m,am2),D(n,an2),分三种情况:①当B,D在y轴左侧时,由△ABF≌△DEA(AAS),可得﹣m=am2﹣AF﹣an2,AF=﹣n,故n﹣m=;②当B在y轴左侧,D在y轴右侧时,由△ABF≌△DEA(AAS),有﹣m=am2+AF﹣an2,AF=n,知m+n=0或n﹣m=;③当B,D在y轴右侧时,m=an2﹣AF﹣am2,AF=n,可得n﹣m=.【解答】解:(1)①在y=ax2中,令x=0得y=0,∴(0,0)在二次函数y=ax2(a为常数,且a≠0)的图象上,(0,2)不在二次函数y =ax2(a为常数,且a≠0)的图象上,∵四个点(0,0)、(0,2)、(1,1)、(﹣1,1)中恰有三个点在二次函数y=ax2(a为常数,且a≠0)的图象上,∴二次函数y=ax2(a为常数,且a≠0)的图象上的三个点是(0,0),(1,1),(﹣1,1),把(1,1)代入y=ax2得:a=1,故答案为:1;②设BC交y轴于E,如图:设菱形的边长为2a,则AB=BC=CD=AD=2a,∵B,C关于y轴对称,∴BE=CE=a,∴B(﹣a,a2),∴OE=a2,∵AE==a,∴OA=OE+AE=a2+a,∴D(2a,a2+a),把D(2a,a2+a)代入y=ax2得:a2+a=4a2,解得a=或a=0(舍去),∴菱形的边长为;③n﹣m是为定值,理由如下:过B作BF⊥y轴于F,过D作DE⊥y轴于E,如图:∵点B、D的横坐标分别为m、n,∴B(m,m2),D(n,n2),∴BF=m,OF=m2,DE=n,OE=n2,∵四边形ABCD是正方形,∴∠DAB=90°,AD=AB,∴∠FAB=90°﹣∠EAD=∠EDA,∵∠AFB=∠DEA=90°,∴△ABF≌△DEA(AAS),∴BF=AE,AF=DE,∴m=n2﹣AF﹣m2,AF=n,∴m=n2﹣n﹣m2,∴m+n=(n﹣m)(n+m),∵点B、D在y轴的同侧,∴m+n≠0,∴n﹣m=1;(2)过B作BF⊥y轴于F,过D作DE⊥y轴于E,∵点B、D的横坐标分别为m、n,∴B(m,am2),D(n,an2),①当B,D在y轴左侧时,如图:∴BF=﹣m,OF=am2,DE=﹣n,OE=n2,同理可得△ABF≌△DEA(AAS),∴BF=AE,AF=DE,∴﹣m=am2﹣AF﹣an2,AF=﹣n,∴﹣m=am2+n﹣an2,∴m+n=a(n﹣m)(n+m),∴m+n≠0,∴n﹣m=;②当B在y轴左侧,D在y轴右侧时,如图:∴BF=﹣m,OF=am2,DE=n,OE=an2,同理可得△ABF≌△DEA(AAS),∴BF=AE,AF=DE,∴﹣m=am2+AF﹣an2,AF=n,∴﹣m=am2+n﹣an2,∴m+n=a(n+m)(n﹣m),∴m+n=0或n﹣m=;③当B,D在y轴右侧时,如图:∴BF=m,OF=am2,DE=n,OE=an2,同理可得△ABF≌△DEA(AAS),∴BF=AE,AF=DE,∴m=an2﹣AF﹣am2,AF=n,∴m=an2﹣n﹣am2,∴m+n=a(n+m)(n﹣m),∵m+n≠0∴n﹣m=;综上所述,m、n满足的等量关系式为m+n=0或n﹣m=.【点评】本题考查二次函数的应用,涉及待定系数法,三角形全等的判定与性质,解题的关键是分类讨论思想的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扬州市2020年初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号.3.所有的试题都必须在考用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答.在试卷或草稿纸上答题无效. 4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置.......上) 1.12-的相反数是( ) A .2 B .12 C .2- D .12-【答案】B . 【考点】相反数。

【分析】利用绝对值的定义,直接得出结果。

2.下列计算正确的是( )A .236a a a =· B .()()2222a b a b a b +-=-C .()2326aba b = D .523a a -=【答案】C .【考点】积的乘方和幂的乘方运算法则。

【分析】利用积的乘方和幂的乘方运算法则,直接得出结果。

3.下列调查,适合用普查方式的是( )A .了解一批炮弹的杀伤半径B .了解扬州电视台《关注》栏目的收视率C .了解长江中鱼的种类D .了解某班学生对“扬州精神”的知晓率【答案】D .【考点】普查方式的适用。

【分析】根据普查方式的适用范围,直接得出结果。

4.已知相交两圆的半径分别为4和7,则它们的圆心距可能是( ) A .2 B .3 C .6 D .11 【答案】C .【考点】两圆的位置与圆心距的关系。

【分析】根据两圆的位置与圆心距的关系知,相交两圆的圆心距在两圆的半径的差跟和之间,从而所求圆心距在3和11 之间,因此得出结果。

5.如图是由几个小立方块所塔成的几何的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是( )【答案】A . 【考点】三视图。

【分析】根据三视图的原理,从俯视图看,主视图的左部分是两个小立方块,右部分是三个小立方块,从而得出结果。

6.某反比例函数图象经过点()16-,,则下列各点中此函数图象也经过的点是( ) A .()32-, B .()32, C .()23, D .()61, 【答案】A .【考点】待定系数法,反比例函数。

【分析】根据反比例函数的表达式,设为=ky x ,把()16-,代入可得=6k -,从而得出6=-y x,因此知()32-,在6=-y x上。

7.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( )A .1个B .2个C .3个D .4个 【答案】B .【考点】平行四边形的定义,等腰梯形的性质,菱形的判定,平行的性质。

【分析】根据平行四边形的定义①正确;根据等腰梯形的性质②正确;根据菱形的判定,对角线互相垂直的平行四边形是菱形,③错误;根据平行的性质,两直线平行,内错角相等, ④错误。

8.如图,在Rt ABC △中,90ACB ∠=°,30A ∠=°,2BC =.将ABC △绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .302, B .602,C .60,D .60,【答案】C .【考点】旋转,300角Rt ABC △的性质,三角形中位线性质,相似三角形的面积比等。

【分析】∵在Rt ABC △中,90ACB ∠=°,30A ∠=°,CD BC = 0903060,60CDB B n DCB ∴∠=∠=-=∴=∠=。

很易证出11,22ABCDF Rt ABC Rt CDF S BC AC CB ∆∆∆=⋅⋅==∽, 212CDF S ∆⎛⎫∴=⋅=⎪⎝⎭二、填空题(本大题共有10小题,每小3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.“十一五”期间,我市农民收入稳步提高,2010年农民人均纯收入达到9462元,将数据9462用科学记数法表示为______________. 【答案】9.462×103。

【考点】科学记数法。

【分析】利用科学记数法记数方法,直接得出结果。

10=_______________【考点】根式计算。

=11.因式分解:3244x x x -+=_______. 【答案】()22x x -。

【考点】提取公因式法和应用公式法因式分解。

【分析】()()23224444=2x x x x x x x x -+=-+-。

12.数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是___________题.答对题数 7 8 9 10 人数418167【答案】9。

【考点】中位数。

【分析】利用中位数的定义,直接得出结果.需要注意的是中位数是将一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数或最中间两个数据的平均数。

这45名学生答对题数组成的样本的中位数对应第23人答对的题数9。

7,7,7,7,8,8,…,8,9,9, (9)10,10,…,10 4人 1 8人 16人 7人计22 人 计23 人 13.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A B 、两岛的视角ACB ∠=__________° 【答案】105。

【考点】直角三角形两锐角互余,平角。

【分析】过点C 作东西方向线交两条北向线于点D ,E ,则知000090,30,45180903045105ADC BEC ACD BCE ACB ACD BCE ∠=∠=∴∠=∠=∴∠=-∠-∠=--=14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是___________. 【答案】25%。

【考点】列方程。

【分析】设平均每月增长x ,则()()2121601=250=0.25=25%= 2.25x x x +⇒-,不合题意,舍去 15.如图,O ⊙的弦CD 与直线径AB 相交,若50BAD ∠=°,则ACD ∠=___________°.【答案】40。

【考点】直径所对的圆周角是直角,直角三角形两锐角互余,同弧所对的圆周角相等。

【分析】0=90905040ACD ABD BAD ∠∠=-∠=-=。

16.如图,DE 是ABC △的中位数,M N 、分别是BD CE 、的中点,6MN =,则BC =_____________. 【答案】8。

【考点】直径所对的圆周角是直角,直角三角形两锐角互余,同弧所对的圆周角相等。

【分析】易知33,44AM MN AMN ABC AB BC ∆∆=⇒=∽6384BC BC ⇒=⇒=。

17.如图,已知函数3y x=- 与()200y ax bx a b =+>>,的图象交于点P ,点P 的纵坐标为1,则关于x 的方程230ax bx x++=的解为_____________.【答案】-3。

【考点】点在函数图象上坐标满足方程,函数与方程的关系。

【分析】先把1代入3y x =-求出点P 的横坐标为-3。

而关于x 的方程230ax bx x++=的解就是函数3y x=-与()200y ax bx a b =+>>,的图象交点的横坐标-3。

18.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为_____________. 【答案】39。

【考点】分类归纳。

【分析】因这是6个连续整数,故必有数6。

若6在4的对面,5对面必须是5,与题意不BADE N CBM①符;若6在5的对面,4对面必须是7,也与题意不符;若6在7的对面,4对面是9,5对面是8,与题意相符。

则这六个数的和为4+5+6+7+8+9=39。

三、解答题(本大题共有10个小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)()()0332011422---+÷- 【答案】解:原式=31122--=0。

【考点】绝对值,0次幂,负数的奇次方。

【分析】用绝对值,0次幂,负数的奇次方等运算法则直接求解。

(2)2111x x x -⎛⎫+÷ ⎪⎝⎭【答案】解:原式=211x x x x +-·=()()111x xx x x ++-·=11x -. 【考点】分式运算法则,平方差公式。

【分析】用分式运算法则直接求解。

20.(本题满分8分)解不等式组313112123x x x x+<-⎧⎪++⎨+⎪⎩≤ 并写出它的所有整数解.【答案】解:解不等式①,得2x <-, 解不等式②,得5x -≥∴原不等式组的解集为52x -<-≤. ∴它的所有整数解为:543---、、.【考点】不等式组。

【分析】用不等式组解法直接求解。

21.(本题满分8分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图. (1)本次抽测的男生有________人,抽测成绩的众数是_________; (2)请你将图2中的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?【答案】解: (1)50,5次. (2)完整统计图如下:(3)1614635025250++⨯=(人). 答:该校350名九年级男生约有252人体能达标. 【考点】统计图表分析,众数。

【分析】(1)本次抽测的男生有1020%=50÷。

做引体向上5次的男生有50-4-10-14-6=16,故抽测成绩的众数是5次(实际上从扇形统计图也可以看出5次占的面积最大)。

(2)只要求出做引体向上5次的男生有16人即可补全。

(3)先求出引体向上5次以上(含5次)占抽取50名男生的比例,再乘以男生总数即可。

22.(本题满分8分)扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项. (1)每位考生有__________种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种主案用A B C 、、、…或①、②、③、…等符号来代表可简化解答过程)。

相关文档
最新文档