江苏省盐城市2020届高三数学上学期期中试题(1)
江苏省盐城市2020届高三第三次模拟考试(6月)+数学+Word版含答案
若函数 f(x)=Msin(ωx+φ)(M>0,ω>0,0<φ<π)的最小值是-2,最小正周期是 2π,
π 且图象经过点 N( ,1).
3
(1) 求 f(x)的解析式;
(2) 在△ABC 中,若 f(A)=8,f(B)=10,求 cos C 的值.
5
13
16. (本小题满分 14 分) 如图,在四棱锥 PABCD 中,底面 ABCD 是菱形,PC⊥BC,点 E 是 PC 的中点,且平面 PBC⊥平面 ABCD.求证: (1) PA∥平面 BDE; (2) 平面 PAC⊥平面 BDE.
11. 若集合 P={(x,y)|x2+y2-4x=0},Q={(x,y)||x+2|≥ 15},则 P∩Q 表示的曲线 y
的长度为________.
m+ex,x>0,
12. 若函数 f(x)=
的图象上存在关于原点对称的相异两点,则实数 m 的最
e2x-1,x≤0
大值是________.
13. 在△ABC 中,AB=10,AC=15,∠A 的平分线与边 BC 的交点为 D,点 E 为边 BC
的中点.若A→B·A→D=90,则 A→B·A→E的值是________.
14. 若实数 x,y 满足 4x2+4xy+7y2=1,则 7x2-4xy+4y2 的最小值是________.
二、 解答题:本大题共 6 小题,共 90 分. 解答时应写出必要的文字说明、证明过程或
演算步骤.
15. (本小题满分 14 分)
数学附加题(满分 40 分,考试时间 30 分钟)
21. 【选做题】 在 A,B,C 三小题中只能选做两题,每小题 10 分,共 20 分.若多做,
江苏省盐城市2022届高三上学期期中化学试题 Word版含解析
2021-2022学年江苏省盐城市高三(上)期中化学试卷一、选择题(共10小题,每小题2分,满分20分)1.最近美国宇航局的科研人员确认火星地表含有溶有高氯酸盐的液态水.下列有关水及高氯酸盐的说法错误的是()A.水是一种弱电解质B.NH4ClO4溶液显酸性C.NaClO4中含有离子键和共价键D.NH4ClO4只有氧化性,没有还原性2.下列有关硫元素及其化合物的表示正确的是()A.中子数为18的硫原子:S B.CS2分子的电子式:C.硫离子(S2﹣)的结构示意图:D .苯磺酸的结构简式:3.用H2O2溶液处理含NaCN的废水的反应原理为:NaCN+H2O2+H2O═NaHCO3+NH3,已知:HCN酸性比H2CO3弱.下列有关说法正确的是()A.该反应中氮元素被氧化B.该反应中H2O2作还原剂C.试验室配制NaCN溶液时,需加入适量的NaOH溶液D.0.1mol•L﹣1NaCN溶液中含HCN和CN﹣总数目为0.1×6.02×10234.下列说法正确的是()A.分子式为C2H4O的有机化合物性质相同B.同温同压下,同体积的任何气体均含有相同的原子数C.密闭容器中1molN2与3molH2充分反应,产物的分子数为2×6.02×1023D.依据上图能量曲线可确定反应:CH2=CH2(g)+HBr(g)→CH3CH2Br(l)的△H=(E1+E3﹣E2﹣E4)kJ•mol﹣15.依据反应原理:NH3+CO2+H2O+NaCl═NaHCO3↓+NH4Cl,并利用下列装置制取碳酸氢钠粗品,试验装置正确且能达到试验目的是()A .用装置制取氨气B .用装置制取二氧化碳C .用装置制取碳酸氢钠D .用装置分别碳酸氢钠与母液6.在c(Ca2+)=0.1mol•L﹣1的新制漂白粉的溶液中,下列各组离子能在其中大量共存的是()A.Na+、K+、CO、NOB.K+、Na+、NO、CH3COO﹣C.Na+、K+、S2﹣、OH﹣D.H+、NH、NO、SO7.短周期主族元素X、Y、Z、W原子序数依次增大,X﹣与氦原子电子层结构相同,Y原子核外L层电子数为8且Y与X同主族,Z原子的最外层电子数是内层电子总数的一半,W的最高正价与最低负价的代数和为4,下列说法正确的是()A.微粒半径:X<X﹣B.简洁氢化物的稳定性:Z比W的强C.W的氧化物的水化物的酸性肯定比Z的强D.最外层电子数由大到小的挨次为:Z、W、Y8.利用海洋资源获得的部分物质如图所示,有关说法正确的是()A .在化学反应中,H2O可转变为D2OB.“加碘食盐”生产中碘添加剂为单质I2C.试验室用带玻璃塞的棕色瓶贮存液Br2D.电解饱和MgCl2溶液时在阴极得到Mg9.下列指定反应的离子方程式正确的是()A.MnO2与浓盐酸混合加热:MnO2+4H++2Cl ﹣Mn2++Cl2↑+2H2OB.(NH4)2Fe(SO4)2溶液中加入过量的NaOH溶液:Fe2++2OH﹣=Fe(OH)2↓C.Ba(HCO3)2溶液中加入稀硫酸:Ba2++SO=BaSO4↓D.H2C2O4(弱酸)溶液中加入酸性KMnO4溶液:2MnO+5H2C2O4=2Mn2++10CO2↑+2H2O+6OH﹣10.H2S废气资源化利用途径之一是回收能量并得到单质硫.反应原理为:2H2S(g)+O2(g)═S2(s)+2H2O (l)△H=﹣632kJ•mol﹣1.如图为质子膜H2S燃料电池的示意图.下列说法正确的是()A.电极a为电池的正极B.电极b上发生的电极反应为:O2+2H2O+4e﹣=4 OH﹣C.电路中每流过4mol电子,电池内部释放632kJ热能D.每17gH2S参与反应,有1mol H+经质子膜进入正极区二、选择题(共5小题,每小题4分,满分20分)11.下列有关氯气及其含氯分散系的说法正确的是()A.钢铁在Cl2气氛中主要发生电化腐蚀B.在新制氯水中加入少量CaCO3,溶液中c(HClO)增大C.反应3Cl2(g)+8NH3(g)=6NH4Cl(s)+N2(g)的△H>0,△S<0D.0.1mol•L﹣1NaClO溶液中:c(HClO)+c(H+)=c(OH﹣)12.2021年诺贝尔生理学或医学奖的一半授予我国药物化学家屠吆吆,以表彰她创造抗疟疾新药青蒿素和双氢青蒿素.以异胡薄荷醇为起始原料是人工全合成青蒿素的途径之一(如图).下列说法正确的是()A.异胡薄荷醇的分子式为C10H17OB.异胡薄荷醇在NaOH醇溶液中可发生消去反应C.青蒿素分子中含有7个手性碳原子D.青蒿素在热的酸、碱溶液中均可稳定存在13.下列图示箭头方向表示与某种常见试剂在通常条件下(不含电解)发生转化,其中6步转化均能一步实现的一组物质是选项W X Y ZA N2NH3NO NO2B Na Na2O2NaOH Na2CO3CC Cu CuSO4CuCl2Cu(OH)2D Al Al2(SO4)3AlCl3NaAlO2()A.A B.B C.C D.D14.下列有关设计的方案能达到试验目的是()A.制备Fe(OH)3胶体:向0.1mol•L﹣1FeCl3溶液中加入等体积0.3mol•L﹣1NaOH溶液B.除去FeCl3溶液中少量Cu2+:向含有少量Cu2+的FeCl3溶液中加入适量铁粉,充分反应后过滤C.比较Fe(OH)3和Al(OH)3的溶度积:向0.1mol•L﹣1FeCl3溶液中滴加0.1 mol•L﹣1氨水至不再产生沉淀,然后再滴入0.1mol•L﹣1AlCl3溶液,观看现象D.验证氧化性Fe3+<Br2<Cl2:向试管中依次加入1mL 0.1mol•L﹣1FeBr2溶液、几滴KSCN溶液和1mL苯,然后逐滴加入氯水,并缓缓振荡,直到氯水过量,观看整个过程中有机相和水相中的现象15.肯定温度下,在三个体积均为2.5L的恒容密闭容器中发生反应:CO2(g)+H2S(g)⇌COS(g)+H2O (g)容器温度/K 起始物质的量/mol 平衡物质的量/mol 平衡常数CO2H2S H2OⅠ607 0.11 0.41 0.01 /Ⅱ607 0.22 0.82 /Ⅲ620 0.1 0.4 / 6.74×10﹣3下列说法正确的是()A.该反应正反应为放热反应B.607K时该反应的平衡常数为2.50×10﹣3C.容器Ⅱ达到平衡时容器中COS的物质的量为0.02molD.容器Ⅲ达平衡时,再充入少量氦气,平衡将向正反应方向移动三、解答题(共5小题,满分68分)16.(12分)(2021秋•盐城期中)CMA(醋酸钙、醋酸镁固体的混合物)是高速大路的绿色融雪剂.以生物质废液﹣﹣木醋液(主要成分乙酸,以及少量的甲醇、苯酚、焦油等杂质)及白云石(主要成分MgCO3•CaCO3,含SiO2等杂质)等为原料生产CMA的试验流程如图1:(1)步骤①发生的反应离子方程式为.(2)步骤②所得滤渣1的主要成分为(写化学式);步骤②所得滤液常呈褐色,颜色除与木醋液中含有少量的有色的焦油有关外,产生颜色的另一主要缘由是.(3)已知CMA中钙、镁的物质的量之比与出水率(与融雪效果成正比)关系如图2所示,步骤④的目的除调整n(Ca):n(Mg)约为(选填:1:2;3:7;2:3)外,另一目的是.(4)步骤⑥包含的操作有、过滤、洗涤及干燥.17.(15分)(2021秋•盐城期中)丹参酮ⅡA是一种治疗心血管疾病的药物,其中的一种合成路线如下:(1)丹参酮ⅡA中含氧官能团为和(写名称).(2)试剂X的分子式为C5H11N,则X的结构简式为.(3)C→D的反应类型为.(4)写出同时满足下列条件的E的一种同分异构体的结构简式:.Ⅰ.能发生银镜反应Ⅱ.分子中除苯环外不含其它环状结构,分子中含有4种不同化学环境的氢(5)写出以CH3CH=CHCH3和CH2=CHCHO为原料制备的合成路线流程图(无机试剂可任选).合成路线流程图示例如下:CH3CHO CH3COOH CH3COOCH2CH3.18.(12分)(2021秋•盐城期中)PbI2是生产新型敏化太阳能电池的敏化剂﹣﹣甲胺铅碘的原料.合成PbI2的试验流程如图1(1)将铅块制成铅花的目的是.(2)31.05g铅花用5.00mol•L﹣1的硝酸溶解,至少需消耗5.00mol•L﹣1硝酸mL,同时产生L(标准状况下)NO.(3)取肯定质量(CH3COO)2Pb•nH2O样品在N2气氛中加热,测得样品固体残留率(×100%)随温度的变化如图2所示(已知:样品在75℃时已完全失去结晶水).①(CH3COO)2Pb•nH2O中结晶水数目n=(填数字).②100~200℃间分解产物为铅的氧化物和一种有机物,则该有机物为(写结构简式).(4)称取肯定质量的PbI2固体,用蒸馏水配制成室温时的饱和溶液,精确移取25.00mLPbI2饱和溶液分次加入阳离子交换树脂RH中,发生:2RH(s)+Pb2+(aq)=R2Pb(s)+2H+(aq),用锥形瓶接收流出液,最终用蒸馏水淋洗树脂至流出液呈中性,将洗涤液合并到锥形瓶中.加入2~3滴酚酞溶液,用0.002500mol•L ﹣1NaOH溶液滴定,到滴定终点时用去氢氧化钠标准溶液20.00mL.计算室温时PbI2的Ksp (请给出计算过程).19.(15分)(2021秋•盐城期中)焦亚硫酸钠(Na2S2O5)在食品加工中常用作防腐剂、漂白剂和疏松剂.焦亚硫酸钠为黄色结晶粉末,150℃时开头分解,在水溶液或含有结晶水时更易被空气氧化.试验室制备焦亚硫酸钠过程中依次包含以下几步反应:2NaOH+SO2═Na2SO3+H2O …(a)Na2SO3+H2O+SO2═2NaHSO3…(b)2NaHSO3Na2S2O5+H2O …(c)试验装置如下:(1)试验室可用废铝丝与NaOH溶液反应制取H2,制取H2的离子方程式为.(2)如图1装置中,导管X的作用是.(3)通氢气一段时间后,以恒定速率通入SO2,开头的一段时间溶液温度快速上升,随后温度缓慢变化,溶液开头渐渐变黄.“温度快速上升”的缘由为;试验后期须保持温度在约80℃,可接受的加热方式为.(4)反应后的体系中有少量白色亚硫酸钠析出,参照题如图2溶解度曲线,除去其中亚硫酸钠固体的方法是;然后获得较纯的无水Na2S2O5应将溶液冷却到30℃左右抽滤,把握“30℃左右”的理由是.(5)用如图3装置干燥Na2S2O5晶体时,通入H2的目的是;真空干燥的优点是.(6)测定产品中焦亚硫酸钠的质量分数常用剩余碘量法.已知:S2O52﹣+2I2+3H2O═2SO42﹣+4I﹣+6H+;2S2O32﹣+I2═S4O62﹣+2I﹣请补充试验步骤(可供应的试剂有:焦亚硫酸钠样品、标准碘溶液、淀粉溶液、酚酞溶液、标准Na2S2O3溶液及蒸馏水).①精确称取产品0.2000g放入碘量瓶(带磨口塞的锥形瓶)中.②精确移取肯定体积和已知浓度的标准碘溶液(过量)并记录数据,在暗处放置5min,然后加入5mL 冰醋酸及适量的蒸馏水.③用标准Na2S2O3溶液滴定至接近终点.④.⑤.⑥重复步骤①~⑤;依据相关记录数据计算出平均值.20.(14分)(2021秋•盐城期中)硫﹣氨热化学循环制氢示意图如图1 (1)反应1的离子方程式为.(2)反应2能量转化主要方式为.(3)反应3中把握反应条件很重要,不同条件下硫酸铵分解产物不同.若在400℃时分解,产物除水蒸气外还有A、B、C三种气体,A是空气中含量最多的单质,B能使潮湿的红色石蕊试纸变蓝,C能使品红溶液褪色.则400℃时硫酸铵分解的化学方程式为.(4)反应4是由(a)、(b)两步反应组成:H2SO4(l)=SO3(g)+H2O(g),△H=+177kJ•mol﹣1…(a)2SO3(g)⇌2SO2(g)+O2(g),△H=+196kJ•mol﹣1…(b)①则H2SO4(l)分解为SO2(g)、O2(g)及H2O(g)的热化学方程式为:.②在恒温密闭容器中,把握不同温度进行SO3分解试验.以SO3起始浓度均为cmol•L﹣1,测定SO3的转化率,结果如图2,图中Ⅰ曲线为SO3的平衡转化率与温度的关系,Ⅱ曲线表示不同温度下反应经过相同反应时间且未达到化学平衡时SO3的转化率.(i)图中点X与点Z的平衡常数K:K(X)K(Z)(选填:>,<,=);(ii)Y点对应温度下的反应速率:v(正)v(逆)(选填:>,<,=);(iii)随温度的上升,Ⅱ曲线靠近Ⅰ曲线的缘由是:.【物质结构与性质】21.(12分)(2021秋•盐城期中)K4[Fe(CN)6]强热可发生反应:3K4[Fe(CN)6] 2 (CN)2↑+12KCN+N2↑+Fe3C+C(1)K4[Fe(CN)6]中Fe2+的配位数为(填数字);Fe2+基态核外电子排布式为.(2)(CN)2分子中碳原子杂化轨道类型为;1mol(CN)2分子中含有σ键的数目为.(3)O与CN﹣互为等电子体,则O的电子式为.(4)Fe3C的晶胞结构中碳原子的配位数为6,碳原子与紧邻的铁原子组成的空间构型为.【试验化学】22.(2021秋•盐城期中)三乙酸甘油酯是一种优良的溶剂、定香剂和增塑剂.试验室制备三乙酸甘油酯的反应原理、试验装置及相关数据如下:3CH3COOH++3H2O物质相对分子质量密度/g•cm﹣3沸点/℃水中溶解性甘油92 1.2636 290(分解)溶乙酸60 1.0492 118 溶三乙酸甘油酯218 1.1596 258 不溶试验步骤:步骤1.在500mL反应器中加入200g冰醋酸,92g甘油和100mL苯,开动搅拌器,渐渐从插温度计口加入3mL浓硫酸后,缓缓加热并回流1h,停止加热.步骤2.用5%碳酸钠溶液洗涤,再用水洗涤,最终加入无水氯化钙.步骤3.先进行常压蒸馏收集75~85℃馏分.步骤4.将常压馏分再进行减压蒸馏,收集128~131℃/933Pa馏分,最终得产品176g.(1)步骤1先开搅拌器后加浓硫酸的目的是;冰醋酸过量的目的是(2)用5%碳酸钠溶液洗涤的主要目的是;加无水氯化钙的目的是(3)最终用减压蒸馏而不用常压蒸馏其缘由是(4)本次试验产率为.2021-2022学年江苏省盐城市高三(上)期中化学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.最近美国宇航局的科研人员确认火星地表含有溶有高氯酸盐的液态水.下列有关水及高氯酸盐的说法错误的是()A.水是一种弱电解质B.NH4ClO4溶液显酸性C.NaClO4中含有离子键和共价键D.NH4ClO4只有氧化性,没有还原性【考点】氯、溴、碘及其化合物的综合应用;水的电离.【专题】氧化还原反应专题;卤族元素.【分析】A.水是部分电离的电解质,为弱电解质;B.高氯酸铵是强酸弱碱盐,铵根离子水解导致溶液呈酸性;C.活泼金属和活泼非金属元素之间易形成离子键,非金属元素之间易形成共价键;D.元素处于最高价时只有氧化剂,处于最低价态时只有还原性,中间价态的元素既有氧化剂又有还原性.【解答】解:A.水是部分电离的电解质,为弱电解质,故A正确;B.高氯酸铵是强酸弱碱盐,铵根离子水解导致溶液呈酸性,所以高氯酸铵溶液呈酸性,故B正确;C.活泼金属和活泼非金属元素之间易形成离子键,非金属元素之间易形成共价键,则钠离子和高氯酸根离子之间存在离子键、Cl原子和O原子之间存在共价键,故C正确;D.Cl元素处于最高价,则具有氧化性,N元素处于最低价态,则具有还原性,所以该物质具有氧化性和还原性,故D错误;故选D.【点评】本题考查较综合,涉及电解质强弱推断、氧化性和还原性推断、化学键、盐类水解等学问点,侧重考查基本理论,知道物质氧化性和还原性比较方法,题目难度不大.2.下列有关硫元素及其化合物的表示正确的是()A.中子数为18的硫原子:S B.CS2分子的电子式:C.硫离子(S2﹣)的结构示意图:D.苯磺酸的结构简式:【考点】电子式、化学式或化学符号及名称的综合.【专题】常规题型;化学用语专题.【分析】A.质量数=质子数+中子数,元素符号的左上角表示质量数、左下角表示质子数;B.CS2为共价化合物,分子中中含有两个C=S键;C .硫离子的核电荷数为16,最外层含有8个电子;D.苯磺酸中S与苯环碳原子相连.【解答】解:A.中子数为18的硫原子的质量数为34,该S原子可以表示为1634S,故A错误;B.硫原子与碳原子之间形成2对共用电子对,电子式为,故B正确;C.硫离子的核内质子数为16,核外有3个电子层,第一层上有2个电子,其次层上有8个电子,第三层上有8个电子,其离子结构示意图为,故C错误;D.苯磺酸中S与苯环C原子相连,苯磺酸正确的结构简式为,故D错误;故选B.【点评】本题考查了常见化学用语的表示方法,题目难度中等,涉及电子式、结构简式、离子结构示意图、元素符号等学问,明确常见化学用语的书写原则为解答关键,试题培育了同学的规范答题力量.3.用H2O2溶液处理含NaCN的废水的反应原理为:NaCN+H2O2+H2O═NaHCO3+NH3,已知:HCN酸性比H2CO3弱.下列有关说法正确的是()A.该反应中氮元素被氧化B.该反应中H2O2作还原剂C.试验室配制NaCN溶液时,需加入适量的NaOH溶液D.0.1mol•L﹣1NaCN溶液中含HCN和CN﹣总数目为0.1×6.02×1023【考点】氧化还原反应.【专题】氧化还原反应专题.【分析】NaCN+H2O2+H2O=NaHCO3+NH3↑反应中O元素从﹣1价降低为﹣2价,C元素从+2价上升到+4价,结合电子转移和NaCN的性质分析.【解答】解:A.NaCN中C为+2价,Na为+1价,则氮元素的化合价为﹣3,反应前后N元素化合价不变,故A错误;B.NaCN+H2O2+H2O=NaHCO3+NH3↑反应中O元素从﹣1价降低为﹣2价,所以反应中H2O2作氧化剂,故B错误;C.由于HCN酸性比H2CO3弱,所以试验室配制NaCN溶液时,需加入适量的NaOH溶液防止水解,故C 正确;D.无体积无法计算,故D错误.故选C.【点评】本题考查了氧化还原反应和盐的水解,侧重于氧化还原反应电子转移和物质性质的考查,留意从化合价的角度分析,题目难度不大.4.下列说法正确的是()A.分子式为C2H4O的有机化合物性质相同B.同温同压下,同体积的任何气体均含有相同的原子数C.密闭容器中1molN2与3molH2充分反应,产物的分子数为2×6.02×1023D.依据上图能量曲线可确定反应:CH2=CH2(g)+HBr(g)→CH3CH2Br(l)的△H=(E1+E3﹣E2﹣E4)kJ•mol﹣1【考点】反应热和焓变.【专题】化学反应中的能量变化.【分析】A.分子式为C2H4O的可能是乙醛也可能为环氧乙烷;B.同温同压下,气体摩尔体积相等,相同体积的任何气体含有相同数目的分子;C.可逆反应不行能反应到底;D.依据右图能量曲线可确定反应:CH2=CH2(g)+HBr(g)→CH3CH2Br(l)的△H=反应物的焓﹣生成物的焓.【解答】解:A.分子式为C2H4O的可能是乙醛也可能为环氧乙烷,所以性质不相同,故A错误;B.同温同压下,气体摩尔体积相等,相同体积的任何气体含有相同数目的分子,分子构成不同,所以其原子个数不肯定相等,故B错误;C.密闭容器中1molN2与3molH2充分反应生成氨气为可逆反应,又可逆反应不行能反应到底,则无法计算,故C错误;D.依据右图能量曲线可确定反应:CH2=CH2(g)+HBr(g)→CH3CH2Br(l)的△H=反应物的焓﹣生成物的焓=(E1+E3﹣E2﹣E4)kJ•mol﹣1,故D正确;故选D.【点评】本题考查较综合,涉及气体摩尔体积、同分异构体、可逆反应以及能量图象等学问点,侧重考查基本概念、基本理论,题目难度不大.5.依据反应原理:NH3+CO2+H2O+NaCl═NaHCO3↓+NH4Cl,并利用下列装置制取碳酸氢钠粗品,试验装置正确且能达到试验目的是()A .用装置制取氨气B .用装置制取二氧化碳C .用装置制取碳酸氢钠D .用装置分别碳酸氢钠与母液【考点】化学试验方案的评价.【专题】试验评价题.【分析】A.加热固体制取气体时,试管口要低于试管底;B.稀硫酸和碳酸钙反应生成的硫酸钙属于微溶物,阻挡进一步反应;C.氨气极易溶于水,为防止倒吸要有缓冲装置;D.过滤时需要用玻璃棒引流.【解答】解:A.加热固体制取气体时,试管口要低于试管底,否则生成的水蒸气冷凝会倒流而炸裂试管,故A错误;B.稀硫酸和碳酸钙反应生成的硫酸钙属于微溶物,阻挡进一步反应,应当用稀盐酸和碳酸钙制取二氧化碳,故B错误;C.氨气极易溶于水,为防止倒吸要有缓冲装置,通入氨气的装置有缓冲作用,能防止倒吸,故C正确;D.过滤时需要用玻璃棒引流,否则易溅出液体且易导致滤纸损坏,故D错误;故选C.【点评】本题考查化学试验方案评价,为高频考点,涉及试验基本操作,明确试验原理及操作规范性是解本题关键,留意从操作规范性分析评价,易错选项是B.6.在c(Ca2+)=0.1mol•L﹣1的新制漂白粉的溶液中,下列各组离子能在其中大量共存的是()A.Na+、K+、CO、NOB.K+、Na+、NO、CH3COO﹣C.Na+、K+、S2﹣、OH﹣D.H+、NH、NO、SO【考点】离子共存问题.【专题】离子反应专题.【分析】新制漂白粉的溶液含Ca2+、ClO﹣、Cl﹣,依据离子之间不能结合生成沉淀、气体、水等,不能发生氧化还原反应等,则离子大量共存,以此来解答.【解答】解:A.Ca2+、CO32﹣结合生成沉淀,不能大量共存,故A错误;B.新制漂白粉的溶液含Ca2+、ClO﹣、Cl﹣,该组离子之间均不反应,可大量共存,故B正确;C.ClO﹣、S2﹣发生氧化还原反应,不能大量共存,故C错误;D.Ca2+、SO42﹣反应生成沉淀,不能大量共存,故D错误;故选B.【点评】本题考查离子的共存,为高频考点,把握习题中的信息及常见离子之间的反应为解答的关键,侧重复分解反应、氧化还原反应的离子反应考查,题目难度不大.7.短周期主族元素X、Y、Z、W原子序数依次增大,X﹣与氦原子电子层结构相同,Y原子核外L层电子数为8且Y与X同主族,Z原子的最外层电子数是内层电子总数的一半,W的最高正价与最低负价的代数和为4,下列说法正确的是()A.微粒半径:X<X﹣B.简洁氢化物的稳定性:Z比W的强C.W的氧化物的水化物的酸性肯定比Z的强D.最外层电子数由大到小的挨次为:Z、W、Y【考点】原子结构与元素周期律的关系.【专题】元素周期律与元素周期表专题.【分析】短周期元素X、Y、Z、W的原子序数依次增大,X﹣与He原子的电子层结构相同,则X为H元素;Y原子核外L层电子数为8且Y与X同主族,则Y为Na;Z原子的最外层电子数是内层电子总数的一半,Z原子序数比X大,可知Z只能处于第三周期,故原子最外层电子数为5,则Z为P元素;W的最高正价与最低负价的代数和为4,处于ⅥA族,则W为S元素,据此解答.【解答】解:短周期元素X、Y、Z、W的原子序数依次增大,X﹣与He原子的电子层结构相同,则X为H 元素;Y原子核外L层电子数为8且Y与X同主族,则Y为Na;Z原子的最外层电子数是内层电子总数的一半,Z原子序数比X大,可知Z只能处于第三周期,故原子最外层电子数为5,则Z为P元素;W的最高正价与最低负价的代数和为4,处于ⅥA族,则W为S元素.A.核电荷数相等,核外电子越多,半径越大,故微粒半径:H<H﹣,故A正确;B.非金属性Z(P)<W(S),故氢化物稳定性:Z比W的弱,故B错误;C.应是最高价氧化物对应水化物的酸性:W比Z的强,故C错误;D.Z(P)、W(S)、Y(Na)最外层电子数依次为5、6、1,故D错误,故选A.【点评】本题考查结构性质位置关系应用,推断元素是解题关键,留意微粒半径比较与元素周期律应用.8.利用海洋资源获得的部分物质如图所示,有关说法正确的是()A .在化学反应中,H2O可转变为D2OB.“加碘食盐”生产中碘添加剂为单质I2C.试验室用带玻璃塞的棕色瓶贮存液Br2D.电解饱和MgCl2溶液时在阴极得到Mg【考点】海水资源及其综合利用.【专题】卤族元素.【分析】A、海水中存在重水,海水蒸馏不能实现水变化为重水;B、加碘食盐是添加了碘酸钾;C、溴单质具有强氧化性和腐蚀性,不能用橡胶塞而用玻璃塞,易挥发,密度比水大,所以应保存在棕色瓶中,避开光照,放在阴凉处,同时在液溴表层加水,就是所谓的液封,防止其挥发;D、依据电解原理分析,电解氯化镁溶液,阳离子是氢离子在阴极得到电子生成氢气,镁离子不能放电.【解答】解:A、海水中存在重水,海水蒸馏是微粒变化不能实现水变化为重水的分子变化,故A错误;B、加碘食盐是添加了碘酸钾,不是碘单质,故B错误;C、溴单质具有强氧化性和腐蚀性,不能用橡胶塞而用玻璃塞,易挥发,密度比水大,所以应保存在棕色瓶中,避开光照,放在阴凉处,同时在液溴表层加水,就是所谓的液封,防止其挥发,试验室用带玻璃塞的棕色瓶贮存液Br2,故C正确;D、依据电解原理分析,电解氯化镁溶液,阳离子是氢离子在阴极得到电子生成氢气,镁离子不能放电,工业上是电解熔融氯化镁得到金属镁,故D错误;故选C.【点评】本题考查了海水资源的利用,物质性质的分析应用,把握基础是解题关键,题目难度中等.9.下列指定反应的离子方程式正确的是()A.MnO2与浓盐酸混合加热:MnO2+4H++2Cl ﹣Mn2++Cl2↑+2H2OB.(NH4)2Fe(SO4)2溶液中加入过量的NaOH溶液:Fe2++2OH﹣=Fe(OH)2↓C.Ba(HCO3)2溶液中加入稀硫酸:Ba2++SO=BaSO4↓D.H2C2O4(弱酸)溶液中加入酸性KMnO4溶液:2MnO+5H2C2O4=2Mn2++10CO2↑+2H2O+6OH﹣【考点】离子方程式的书写.【专题】高考化学专题;离子反应专题.【分析】A.浓盐酸在离子方程式中需要拆开,二者反应生成氯化锰、氯气和水;B.氢氧化钠过量,铵根离子和亚铁离子都参与反应;C.反应生成硫酸钡沉淀、二氧化碳气体和水,漏掉了碳酸氢根离子与氢离子反应;D.酸性条件下反应产物中不会生成氢氧根离子.【解答】解:A.MnO2与浓盐酸混合加热生成氯化锰、氯气和水,反应的离子方程式为:MnO2+4H++2Cl ﹣Mn2++Cl2↑+2H2O,故A正确;B.(NH4)2Fe(SO4)2溶液中加入过量的NaOH溶液,铵根离子也参与反应,正确的离子方程式为:Fe2++2NH4++4OH﹣=Fe(OH)2↓+2NH3•H2O,故B错误;C.Ba(HCO3)2溶液中加入稀硫酸生成硫酸钡、二氧化碳气体和水,正确的离子方程式为:Ba2++2HCO3﹣+2H++SO42﹣=BaSO4↓+2H2O+2CO2↑,故C错误;D.H2C2O4(弱酸)溶液中加入酸性KMnO4溶液,反应产物中不会生成氢氧根离子,正确的离子方程式为:5C2O42﹣+2MnO4﹣+16H+=10CO2↑+2Mn2++8H2O,故D错误;故选A.【点评】本题考查了离子方程式的推断,为高考的高频题,属于中等难度的试题,留意把握离子方程式正误推断常用方法:检查反应物、生成物是否正确,检查各物质拆分是否正确,如难溶物、弱电解质等需要保留化学式,检查是否符合原化学方程式等.10.H2S废气资源化利用途径之一是回收能量并得到单质硫.反应原理为:2H2S(g)+O2(g)═S2(s)+2H2O (l)△H=﹣632kJ•mol﹣1.如图为质子膜H2S燃料电池的示意图.下列说法正确的是()A.电极a为电池的正极B.电极b上发生的电极反应为:O2+2H2O+4e﹣=4 OH﹣C.电路中每流过4mol电子,电池内部释放632kJ热能D.每17gH2S参与反应,有1mol H+经质子膜进入正极区【考点】原电池和电解池的工作原理.【专题】化学反应中的能量变化;电化学专题.【分析】依据2H2S(g)+O2(g)═S2(s)+2H2O反应,得出负极H2S失电子发生氧化反应,正极O2得电子发生还原反应,据此分析解答.【解答】解:A、由2H2S(g)+O2(g)═S2(s)+2H2O反应,得出负极H2S失电子发生氧化反应,则a为电池的负极,故A错误;B、正极O2得电子发生还原反应,所以电极b上发生的电极反应为:O2+4H++4e﹣=2H2O,故B错误;C、电路中每流过4mol电子,则消耗1mol氧气,但该装置将化学能转化为电能,所以电池内部几乎不放出能量,故C错误;D、每17g 即=0.5molH2S参与反应,则消耗0.25mol氧气,则依据O2+4H++4e﹣=2H2O,所以有1mol H+经质子膜进入正极区,故D正确;故答案为:D.【点评】本题侧重考查原电池原理,明确电解质溶液酸碱性是解本题关键,难点是电极反应式的书写,题目难度不大.二、选择题(共5小题,每小题4分,满分20分)11.下列有关氯气及其含氯分散系的说法正确的是()A.钢铁在Cl2气氛中主要发生电化腐蚀B.在新制氯水中加入少量CaCO3,溶液中c(HClO)增大C.反应3Cl2(g)+8NH3(g)=6NH4Cl(s)+N2(g)的△H>0,△S<0D.0.1mol•L﹣1NaClO溶液中:c(HClO)+c(H+)=c(OH﹣)【考点】氯气的化学性质.【专题】常规题型;卤族元素.【分析】A.钢铁在氯气中主要发生化学腐蚀;B.氯气与水的反应为可逆过程,加入碳酸钙会消耗产物HCl;C.气体的物质的量越大,熵越大,结合△H﹣T△S<0反应自发进行来推断;D.依据溶液中的质子守恒分析.【解答】解:A.钢铁在氯气中主要发生化学腐蚀,由于没有电解质溶液,不能发生电化学腐蚀,故A错误;B.氯气与水的反应为可逆过程,加入碳酸钙会消耗产物HCl,使化学平衡向正方向移动,所以另一种产物HClO的浓度会增大,故B正确;C.反应3Cl2(g)+8NH3(g)=6NH4Cl(s)+N2(g)的△S<0,由△H﹣T△S<0可知,该反应的△H<0,故C错误;D.0.1mol•L﹣1NaClO溶液中存在质子守恒,即水电离出的氢离子的浓度等于氢氧根离子的浓度,则c (HClO)+c(H+)=c(OH﹣),故D正确.故选BD.【点评】本题考查了金属的腐蚀、化学平衡移动、反应自发性的推断、质子守恒等,题目涉及的学问点较多,侧重于考查同学对基础学问的综合应用力量,题目难度中等.12.2021年诺贝尔生理学或医学奖的一半授予我国药物化学家屠吆吆,以表彰她创造抗疟疾新药青蒿素和双氢青蒿素.以异胡薄荷醇为起始原料是人工全合成青蒿素的途径之一(如图).下列说法正确的是()A.异胡薄荷醇的分子式为C10H17OB.异胡薄荷醇在NaOH醇溶液中可发生消去反应C.青蒿素分子中含有7个手性碳原子D.青蒿素在热的酸、碱溶液中均可稳定存在【考点】有机物的结构和性质.【专题】有机物的化学性质及推断.【分析】A.含有的H原子应为偶数;B.应在浓硫酸作用下发生消去反应;C.依据手性碳原子的定义推断;D.青蒿素含有酯基,可发生水解反应.【解答】解:A.由结构简式可知异胡薄荷醇的分子式为C10H22O,故A错误;B.应在浓硫酸作用下发生消去反应,故B错误;C.手性碳原子连接4个不同的原子或原子团,手性碳原子标识如图:,共7个,故C正确;D.青蒿素含有酯基,可发生水解反应,可与酸、碱发生反应,故D错误.故选C.【点评】本题考查有机物的结构和性质,为高频考点,侧重于同学的分析力量的考查,此类题目留意把握物质的结构和官能团的性质,易错点为C,留意手性碳原子的推断,难度中等.。
【新结构】江苏省盐城市盐城中学2024届高三第一次模拟考试数学试卷+答案解析
【新结构】江苏省盐城市盐城中学2024届高三第一次模拟考试数学试卷❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.函数的最小正周期是()A.B.C.D.2.已知随机事件A ,B 相互独立,且,则()A.B.C. D.3.已知向量,满足,,则()A.1B.C.2D.4.若从1至9的9个整数中随机取2个不同的数,则这2个数的和是3的倍数的概率为()A. B.C.D.5.已知为数列的前n 项和,则“”是“数列为单增数列”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知,,,,则的值是()A.B.C.D.7.已知球O 与圆台的上下底面和侧面都相切.若圆台上下底面半径分别为,且若球和圆台的体积分别为和,则的最大值为()A.B.C. D.8.已知函数的零点为,存在零点,使,则不能是()A. B.C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知非零复数在复平面内对应的点分别为,O 为坐标原点,则A.当时,B.当时,C.若,则存在实数t,使得D.若,则10.定义平面斜坐标系xOy,记,,分别为x轴、y轴正方向上的单位向量,若平面上任意一点P的坐标满足:,则记向量的坐标为,给出下列四个命题,正确的选项是()A.若,,则B.若,,则C.若,,则D.若,以O为圆心、半径为1的圆的斜坐标方程为11.已知直四棱柱,,底面ABCD是边长为1的菱形,且,点E,F,G分别为,,BC的中点,点H是线段上的动点含端点以为球心作半径为R的球,下列说法正确的是()A.直线AH与直线BE所成角的正切值的最小值为B.存在点H,使得平面EFGC.当时,球与直四棱柱的四个侧面均有交线D.在直四棱柱内,球外放置一个小球,当小球体积最大时,球直径的最大值为三、填空题:本题共3小题,每小题5分,共15分。
2022年江苏省高考数学模拟应用题选编一-图文
2022年江苏省高考数学模拟应用题选编一-图文1、(江苏省如皋市2022届高三下学期语数英联考)如图,矩形公园ABCD中:OA2km,OC1km,公园的左下角阴影部分为以O为圆心,半径为1km的1圆面的人4工湖。
现计划修建一条与圆相切的观光道路EF(点E、F分别在边OA与BC上),D为切点。
(1)试求观光道路EF长度的最大值;(2)公园计划在道路EF右侧种植草坪,试求草坪ABFE面积S的最大值。
2.(江苏省张家港市崇真中学2022届高三上学期寒假自主学习检测)梯形ABCD顶点B、C在以AD为直径的圆上,AD=2米,(1)如图1,若电热丝由AB,BC,CD这三部分组成,在AB,CD上每米可辐射1单位热量,在BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;⌒⌒⌒⌒(2)如图2,若电热丝由弧AB,CD和弦BC这三部分组成,在弧AB,CD上每米可辐射1单位热量,在弦BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大.图1第2题图图23、(江苏省淮阴中学、南师附中、海门中学、天一中学2022届高三下学期期初考试)如图,在某商业区周边有两条公路l1,l2,在点O处交汇,该商业区为圆心角,半径3km的扇形.现规划在该商业区外修建一条公路AB,与l1,l2分布交31于A,B,要求AB与扇形弧相切,切点T不在l1,l2上..(1)设OAakm,OBbkm,,试用a,b表示新建公路AB的长度,求出a,b 满足的关系式,并写出a,b的范围;(2)设AOT,试用表示新建公路AB的长度,并且确定A,B的位置,使得新建公路AB的长度最短.4、(江苏省联盟大联考2022届高三2月联考数学试题)某校园内有一块三角2,绿地内种植有3一呈扇形AMN的花卉景观,扇形AMN的两边分别落在AE和AF上,圆弧MN与形绿地AEF(如图1),其中AE20m,AF10m,EAFEF相切于点P.(1)求扇形花卉景观的面积;(2)学校计划2022年年整治校园环境,为美观起见,设计在原有绿地基础上2,并种植两块面积相同3的扇形花卉景观,两扇形的边都分别落在平行四边形ABCD的边上,圆弧都与扩建成平行四边形ABCD(如图2),其中BADBD相切,若扇形的半径为8m,求平行四边形ABCD绿地占地面积的最小值.5、(江苏省如皋市2022-2022学年度高三第二学期期初高三数学试卷)如图2所示,某工厂要设计一个三角形原料,其中AB3AC.(1)若BC2,求ABC的面积的最大值;(2)若ABC的面积为1,问BAC为何值时BC取得最小值.6、(江苏省中华中学、溧水高级中学、省句中、省扬中、镇江一中、省镇中2022届高三下学期六校联考试卷)某工厂要生产体积为定值V的漏斗,现选择半径为R的圆形马口铁皮,截取如图所示的扇形,焊制成漏斗.3(1)若漏斗的半径为2R,求圆形铁皮的半径R;(2)这张圆形铁皮的半径R至少是多少?7、(江苏盐城中学2022年高三开学检测)悦达集团开发一种新产品,为便于运输,现欲在大丰寻找一个工厂代理加工生产该新产品,为保护核心技术,核心配件只能从集团购买且由集团统一配送,该厂每天需要此核心为200个,配件的价格为1.8元/个,每次购买需支付运费238元。
考点17 分组求和法(1月)(期末复习热点题型)(人教A版2019)(解析版)
考点17 分组求和法一、单选题1.若数列{}n a 的通项公式是()()131nn a n =--,则1210···+a a a ++= A .15 B .12 C .12-D .15-【试题来源】吉林省蛟河市第一中学校2020-2021学年第一学期11月阶段性检测高二(理) 【答案】A【解析】因为()()131nn a n =--,所以12253a a +=-+=,348113a a +=-+=,5614173a a +=-+=,7820233a a +=-+=,91026293a a +=-+=, 因此1210···+3515a a a ++=⨯=.故选A . 2.已知数列{}n a 满足11n n a a λ+=+,且11a =,23a =,则数列{}n a 前6项的和为 A .115 B .118 C .120D .128【试题来源】河南省豫北名校2020-2021学年高二上学期12月质量检测(文) 【答案】C【分析】由题干条件求得2λ=,得到121n n a a +=+,构造等比数列可得数列{}n a 的通项公式,再结合等比数列求和公式即可求得数列{}n a 前6项的和. 【解析】21113a a λλ=+=+=,则2λ=,可得121n n a a +=+,可化为()1121n n a a ++=+,有12nn a +=,得21n n a =-,则数列{}n a 前6项的和为()()6262122226612012⨯-+++-=-=-.故选C .3.设数列{a n }的前n 项和为S n ,且a 1=2,a n +a n +1=2n (n ∈N *),则S 2020=A .2020223-B .202022 3+C .202122 3-D .202122 3+【试题来源】河南省濮阳市2019-2020学年高二下学期升级考试(期末)(文) 【答案】C【分析】根据递推公式a n +a n +1 =2n (n ∈N *)的特点在求S 2020时可采用分组求和法,然后根据等比数列的求和公式即可得到正确选项. 【解析】由题意,可知2020122020123420192020()()()S a a a a a a a a a =+++=++++++132019222=+++2021223-=.故选C . 4.定义:在数列{}n a 中,0n a >,且1n a ≠,若1n an a +为定值,则称数列{}n a 为“等幂数列”.已知数列{}n a 为“等幂数列”,且122,4,n a a S ==为数列{}n a 的前n 项和,则2009S 为 A .6026 B .6024 C .2D .4【试题来源】山西省长治市第二中学2019-2020学年高一下学期期末(文) 【答案】A【分析】根据数列新定义求出数列的前几项,得出规律,然后求和.【解析】因为122,4a a ==,所以334242a a a ==,32a =,4216a =,44a =,所以212n a -=,24n a =,*n N ∈,2009(24)100426026S =+⨯+=.故选A . 【名师点睛】本题考查数列的新定义,解题关键是根据新定义计算出数列的项,然后寻找出规律,解决问题. 5.数列111111,2,3,4,,248162n n +++++的前n 项和等于 A .21122n n n +-++B .2122n n n++C .2122n n n +-+D .【试题来源】四川省三台中学实验学校2019-2020学年高一6月月考(期末适应性) 【答案】A 【解析】因,故,故选A .6.已知一组整数1a ,2a ,3a ,4a ,…满足130m m a a +++=,其中m 为正整数,若12a =,则这组数前50项的和为 A .-50 B .-73 C .-75D .-77【试题来源】四川省自贡市旭川中学2020-2021学年高一上学期开学考试 【答案】C【分析】先利用已知条件写出整数列的前五项,得到其周期性,再计算这组数前50项的和即可.【解析】因为130m m a a +++=,12a =,所以2130a a ++=,得25a =-;3230a a ++=,得32a =-;4330a a ++=,得41a =-;5430a a ++=,得52a =-,由此可知,该组整数从第3项开始,以-2,-1,-2,-1,…的规律循环, 故这组数的前50项和为()()25212475+-+--⨯=-.故选C .7.已知n S 为数列{}n a 的前n 项和,且满足11a =,23a =,23n n a a +=,则2020S = A .1010232⨯-B .101023⨯C .2020312-D .1010312+【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】A【分析】利用递推关系得出数列的奇数项与偶数项分别成等比数列,对2020S 进行分组求和. 【解析】因为11a =,23a =,23n n a a +=,所以数列{}n a 的奇数项成等比数列,偶数项也成等比数列,且仅比均为3,所以101010102020132019242020133(13)()()1313S a a a a a a --=+++++++=+--1010232=⨯-.故选A .【名师点睛】本题考查等比数列的判定,等比数列的前n 项和公式,考查分组求和法,解题时注意对递推式23n n a a +=的认识,它确定数列的奇数项与偶数项分别成等比数列,而不是数列{}n a 成等比数列.8.已知数列{(1)(21)}n n -+的前n 项和为n S ,*N n ∈,则11S = A .13- B .12- C .11-D .10-【试题来源】山东省青岛胶州市2019-2020学年高二下学期期末考试 【答案】A【分析】本题根据数列通项公式的特点可先求出相邻奇偶项的和,然后运用分组求和法可计算出11S 的值,得到正确选项.【解析】由题意,令(1)(21)nn a n =-+,则当n 为奇数时,1n +为偶数, 1(21)[2(1)1]2n n a a n n ++=-++++=,111211S a a a ∴=++⋯+ 123491011()()()a a a a a a a =++++⋯+++222(2111)=++⋯+-⨯+2523=⨯-13=-.故选A .【名师点睛】本题主要考查正负交错数列的求和问题,考查了转化与化归思想,整体思想,分组求和法,以及逻辑推理能力和数学运算能力.本题属中档题.9.已知数列{}n a 的前n 项和为n S ,且11a =,13nn n a a +=,那么100S 的值为A .()50231-B .5031-C .5032-D .50342-【试题来源】吉林省四平市公主岭范家屯镇第一中学2019-2020学年高一下学期期末考试 【答案】A【分析】根据题中条件,得到23n na a +=,推出数列{}n a 的奇数项和偶数项都是成等比数列,由等比数列的求和公式,分别计算奇数项与偶数项的和,即可得出结果.【解析】因为11a =,13nn n a a +=,所以23a =,1123n n n a a +++=,所以1213n n n n a a a a +++=,即23n na a +=,所以135,,,a a a ⋅⋅⋅成以1为首项、3为公比的等比数列,246,,,a a a ⋅⋅⋅也成以3为首项、3为公比的等比数列,所以()()()5050100139924100313131313Sa a a a a a --=++⋅⋅⋅++++⋅⋅⋅+=+--505050313532322-+⋅-==⋅-.故选A .【名师点睛】本题主要考查等比数列求和公式的基本量运算,考查分组求和,熟记公式即可,属于常考题型.10.已知数列{}n a 满足12321111222n n a a a a n -++++=,记数列{2}n a n -的前n 项和为n S ,则n S =A .2222nn n--B .22122nn n---C .212222n n n +--- D .2222nn n--【试题来源】河北省秦皇岛市第一中学2020-2021学年高二上学期第一次月考 【答案】C【分析】利用递推关系求出数列{}n a 的通项公式,然后利用等差数列和等比数列的前n 项和公式进行求解即可.【解析】因为12321111(1)222n n a a a a n -++++=,所以有11a =, 当2,n n N *≥∈时,有1231221111(2)222n n a a a a n --++++=-,(1)(2)-得,111122n n n n a a --=⇒=,显然当1n =时,也适合,所以12()n n a n N -*=∈,令 2n n a n b -=,所以2n n b n =-,因此有:2323(21)(22)(23)(2)(2222)(123)n n n n S n =-+-+-++-=++++-++++22112(12)(1)222 2.1222222n n n n n n n n n ++-+=-=---=----故选C.【名师点睛】本题考查了由递推关系求数列的通项公式,考查了等差数列和等比数列的前n 项和公式,考查了数学运算能力.11.已知数列{}n a 的前n 项和为n S ,且(),n P n a 为函数221x y x =+-图象上的一点,则n S =A .2122n n ++-B .212n n ++C .22n -D .22n n +【试题来源】四川省仁寿第二中学2020-2021学年高三9月月考(理) 【答案】A【分析】根据已知条件求得n a ,利用分组求和法求得n S【解析】因为(),n P n a 为函数221x y x =+-图象上的一点,所以()212nn a n =-+,则()()121212322121321222nnn S n n =++++⋅⋅⋅+-+=++⋅⋅⋅+-+++⋅⋅⋅+()()212121212nn n -+-=+-1222n n +=+-.故选A .12.数列112、134、158、1716、的前n 项和n S 为A .21112n n -+-B .2122n n +-C .2112n n +-D .21122n n -+-【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期线上学习质量检测 【答案】C【分析】归纳出数列的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,然后利用分组求和法可求得n S . 【解析】数列112、134、158、1716、的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,所以,2341111113572122222n n S n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++++++-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()231111211111221352112222212n n n n n ⎛⎫- ⎪+-⎛⎫⎝⎭=++++-+++++=+⎡⎤ ⎪⎣⎦⎝⎭-2112n n =+-.故选C .13.若数列{}n a 的通项公式是1(1)(32)n n a n +=-⋅-,则122020a a a ++⋯+=A .-3027B .3027C .-3030D .3030【试题来源】江苏省扬州市宝应中学2020-2021学年高二上学期阶段考试 【答案】C【分析】分组求和,结合等差数列求和公式即可求出122020a a a ++⋯+. 【解析】12202014710...60556058a a a ++⋯+=-+-++-()()101010091010100917...6055410...60551010610104622⨯⨯⎛⎫=+++-+++=+⨯-⨯+⨯ ⎪⎝⎭3030=-.故选C .14.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=A .10B .145C .300D .320【试题来源】山西省太原市2021届高三上学期期中 【答案】C【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解.【解析】因为129a =-,()*13n n a a n N +=+∈,所以数列{}n a 是以29-为首项,公差为3的等差数列,所以()11332n a a n d n =+-=-,所以当10n ≤时,0n a <;当11n ≥时,0n a >;所以()()12201210111220a a a a a a a a a +++=-++⋅⋅⋅++++⋅⋅⋅+1101120292128101010103002222a a a a ++--+=-⨯+⨯=-⨯+⨯=.故选C . 15.数列{}n a 的通项公式为2π1sin 2n n a n =+,前n 项和为n S ,则100S = A .50 B .-2400 C .4900-D .9900-【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(理) 【答案】C【分析】由πsin2n y =的周期为4,可得22222210010013579799S =+-+-+⋅⋅⋅+-,利用并项求和可得解.【解析】2111a =+,21a =,2313a =-,41a =,…,考虑到πsin2n y =的周期为4, 所以()222222100100135797991002135799S =+-+-+⋅⋅⋅+-=-⨯++++⋅⋅⋅+(199)50100249002+⨯=-⨯=-.故选C .16.已知{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,则2019S 的值为 A .1008 B .1009 C .1010D .1011【试题来源】广东省广州市增城区增城中学2020-2021学年高二上学期第一次段考 【答案】C【分析】由2n ≥时,可得1n n n S S a -=-,结合题设条件,推得11n n a a -+=,进而求得2019S 的值,得到答案.【解析】由题意,当2n ≥时,可得1n n n S S a -=-,因为12n n a S n -+=,所以2()n n n S a a n +-=,即2n n S a n =+,当2n ≥时,1121n n S a n --=+-,两式相减,可得121n n n a a a -=-+,即11n n a a -+=, 所以2345671,1,1,a a a a a a +=+=+=,所以()()()12345201820120991201911110102a a a a a a a S -=+++++++=+⨯=.故选C . 17.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a =,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人 A .225 B .255 C .365D .465【试题来源】山东省烟台市2020-2021学年高二上学期期末月考 【答案】B【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和【解析】当n 为奇数时,2n n a a +=,当n 为偶数时,22n n a a +-=,所以13291a a a ==⋅⋅⋅==, 2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=,故选B 18.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为 A .1348 B .1358 C .1347D .1357【试题来源】江苏省镇江市八校2020-2021学年高三上学期期中联考 【答案】C【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案.【解析】由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+=,故选C. 19.已知数列{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,,则S 2019的值为 A .1008 B .1009 C .1010D .1011【试题来源】江苏省南通市2020-2021学年高三上学期期中考前热身 【答案】C【分析】由2n ≥时,12n n a S n -+=,得到121n n a S n ++=+,两式相减,整理得()112n n a a n ++=≥,结合并项求和,即可求解.【解析】当2n ≥时,12n n a S n -+=,①,可得121n n a S n ++=+,②, 由②-①得,112()1n n n n a a S S +--+-=,整理得()112n n a a n ++=≥, 又由11a =,所以20191234520182019()()()1010S a a a a a a a =+++++++=.故选C .20.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为 A .0 B .1 C .2D .3【试题来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)(文)试卷 【答案】D【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【解析】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-,联立得()212133k k a a +-+=, 所以()232134k k a a +++=,故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++()()()()234538394041...a a a a a a a a =++++++++()()201411820622k k =+⨯=-==∑1220,故①②③正确.故选D.21.已知正项数列{}n a 中,11a =,前n 项和为n S ,且当*2,n n N ≥∈时,2n a =,数列()1cos 12n n n a π⎧⎫-⋅+⎨⎬⎩⎭的前64项和为 A .240 B .256 C .300D .320【试题来源】重庆市第一中学2019-2020学年高一下学期期末【答案】D【分析】由题意结合数列n a 与n S 2-=,由等差数列的性质即可得21n =-,进而可得当2n ≥时,88n a n =-,结合余弦函数的性质、分组求和法可得()()()642664648264T a a a a a a --=+++⋅⋅⋅+-,即可得解.【解析】由题意,当*2,n n N ≥∈时,12n n n S a S -==-,即2=,由0n S >2=,所以数列1=,公差为2的等差数列,()12121n n =+-=-,所以当2n ≥时,()222121188n a n n n ==-+--=-⎡⎤⎣⎦,设数列()1cos12nn n a π⎧⎫-⋅+⎨⎬⎩⎭的前n 项和为数列n T ,所以该数列前64项的和为 164234234cos 1cos 1cos 1cos 12222T a a a a ππππ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅++⋅++-⋅++⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6464cos 12a π⎛⎫+⋅⋅⋅+⋅+ ⎪⎝⎭ ()()()262642664624486464a a a a a a a a a a =-+-⋅⋅⋅-+=+++⋅⋅⋅--+-641616320=+⨯=.故选D .【名师点睛】本题考查了数列n a 与n S 的关系、等差数列的判断及性质的应用,考查了分组求和法求数列前n 项和的应用,属于中档题. 22.数列{}n a 的前n 项和为n S ,项n a 由下列方式给出1121231234,,,,,,,,,,2334445555⋅⋅⋅⋅⋅⋅.若100k S ≥,则k 的最小值为 A .200 B .202 C .204D .205【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】首先观察数列中项的特征,先分组求和,之后应用等差数列求和公式,结合题中所给的条件,建立不等关系式,之后再找其满足的条件即可求得结果. 【解析】11212312112312334442222n n S n nn --⎛⎫⎛⎫⎛⎫=+++++++++⋅⋅⋅+=+++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (1)1004n n -=≥.所以(1)400n n -≥,21n ≥.而当20n =时,95S =,只需要125212121m++⋅⋅⋅+≥,解得14m ≥. 所以总需要的项数为1231914204+++⋅⋅⋅++=,故选C .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列求和公式,分组求和法,属于中档题目.23.已知数列{} n a 中,10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和为A .10311102-+B .1131902-+C .1031902-+D .11311102-+【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】根据n 为奇数时,22n n a a +-=;n 为偶数时,23n n a a +=,得到数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列;所有偶数项构成以1为首项,以3为公比的等比数列;然后分别利用等差数列和等比数列前n 项和求解.【解析】因为10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和:数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列; 数列{}n a 中所有偶数项构成以1为首项,以3为公比的等比数列; 所有()()2013192420......S a a a a a a =+++++++()()10113101012100213⨯-+=⨯++-1031902-=+,故选C . 24.已知数列{}n a 的通项公式为2(1)n n a n =-,设1n n n c a a +=+,则数列{}n c 的前200项和为 A .200- B .0 C .200D .10000【试题来源】安徽省六安市第一中学2019-2020学年高一下学期期中(理)【答案】A【分析】利用分组求和法及等差数列求和公式求解. 【解析】记数列{}n c 的前200项和为n T ,122001223199200200201n T c c c a a a a a a a a =++=++++++++123419920012012[()()()]a a a a a a a a =++++++-+()()()2222[41169200199]1201=-+-++-+-22[3711399]1201=⨯+++++-()2100339921201402004040112002+=⨯+-=-+=-.故选A .25.已知等差数列{}n a 的首项为1a ,公差0d ≠,记n S 为数列(){}1nn a -⋅的前n 项和,且存在*k N ∈,使得10k S +=成立,则 A .10a d > B .10a d < C .1a d >D .1a d <【试题来源】浙江省浙考交流联盟2020-2021学年高三上学期8月线上考试 【答案】B【分析】由题意按照k 为奇数、k 为偶数讨论,利用并项求和法可得1k S +,转化条件得存在*k N ∈且k 为偶数时,102ka d --=,即可得解.【解析】因为等差数列{}n a 的首项为1a ,公差0d ≠,n S 为数列(){}1nn a -⋅的前n 项和,所以当*k N ∈且k 为奇数时,112341k k k S a a a a a a ++=-+-++⋅⋅⋅-+()()()12341102k k k a a a a a a d ++=-++-++⋅⋅⋅+-+=≠; 当*k N ∈且k 为偶数时,1123411k k k k S a a a a a a a +-+=-+-++⋅⋅⋅-+-()()()()1234111122k k k k ka a a a a a a d a kd a d -+=-++-++⋅⋅⋅+-+-=-+=--; 所以存在*k N ∈且k 为偶数时,102k a d --=即102ka d =-≠,当2k =时,1a d =-,此时1a d =,故排除C 、D ;所以1a 与d 异号即10a d <,故A 错误,B 正确.故选B . 26.已知函数()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++,则1232020a a a a ++++的值为A .4040B .4040-C .2020D .2020-【试题来源】四川省宜宾市叙州区第一中学校2020-2021学年高二上学期开学考试(文) 【答案】A【分析】由题意得2222(1)sin(1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++,从而可求出11a =,222232018201920203,,2019,2021a a a a a ==-⋅⋅⋅==-=,然后通过分组求和可得答案.【解析】因为()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++, 所以2222(1)sin (1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++, 所以11a =,222223452018201920203,5,,2019,2021a a a a a a a ==-==⋅⋅⋅==-=,所以1232020a a a a ++++13520192462020()()a a a a a a a a =+++++++++22222222222[(13)(57)(20172019)][(35)(79)(20192021)]=-+-+⋅⋅⋅+-+-++-++⋅⋅⋅+-+2(135720172019)2(35720192021)=-++++⋅⋅⋅++++++⋅⋅⋅++10102020101020242222⨯⨯=-⨯+⨯1010202010102024=-⨯+⨯4040=,故选A.27.已知数列{}n a 中,11a =,23a =,*122(3,)n n n a a a n n N --=+≥∈,设211(2)(2)n n n b a a n n --=-≥,则数列{}n b 的前40项的和为A .860B .820C .820-D .860-【试题来源】河南省开封市河南大学附属中学2020-2021学年高二9月质检 【答案】A【分析】本题先对数列{}n a 的递推公式进行转化可发现数列{}12n n a a --是以1为首项,1-为公比的等比数列,通过计算出数列{}12n n a a --的通项公式可得1n b -的表达式,进一步可得数列{}n b 的通项公式,最后在求和时进行转化并应用平方差公式和等差数列的求和公式即可得到前40项的和.【解析】由题意,可知当3n ≥时,122n n n a a a --=+,两边同时减去12n a -,可得112112222(2)n n n n n n n a a a a a a a -------=+-=--,2123211a a -=-⨯=,∴数列{}12n n a a --是以1为首项,1-为公比的等比数列, 11121(1)(1)n n n n a a ---∴-=⋅-=-,*(2,)n n ≥∈N ,21211(2)(1)n n n n b a a n n ---∴==-⋅-,故2(1)(1)n n b n ⋅=-+,令数列{}n b 的前n 项和为n T ,则4012343940T b b b b b b =++++⋯++22222223454041=-+-+-⋯-+222222[(23)(45)(4041)]=--+-+⋯+-[(23)(45)(4041)]=--+-+-⋯-+23454041=++++⋯++40(241)2⨯+=860=.故选A .【名师点睛】本题主要考查数列由递推公式推导出通项公式,以及数列求和问题.考查了转化与化归思想,整体思想,定义法,平方差公式,以及逻辑推理能力和数学运算能力.本题属中档题.28.在数列{}n a 中,122,2a a ==,且11(1)(*),nn n a a n N +-=+-∈则100S =A .5100B .2600C .2800D .3100【试题来源】河南省洛阳市第一中学2020-2021学年高二上学期10月月考 【答案】A【分析】转化条件为22n n a a +-=,进而可得21k a -,2k a ,由分组求和法结合等差数列的前n 项和公式即可得解.【解析】因为11(1)(*)n n n a a n N +-=+-∈,所以1211(1)n n n a a +++-=+-,所以()()122121n n n n a a ++-=+--+=,因为122,2a a ==,所以()211212k a a k k -=+-=,()22212k k a k a =+-=,*k N ∈,所以()()100123499100139924100S a a a a a a a a a a a a =++++⋅⋅⋅++=++⋅⋅⋅++++⋅⋅⋅+()()2100241002410025051002+=++⋅⋅⋅++++⋅⋅⋅+=⨯⨯=.故选A . 【名师点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了分组求和法的应用及转化化归思想,属于中档题.29.正项数列{}n a 的前n 项和为n S ,且()2*2n n n S a a n N =+∈,设()2112nn n na c s +=-,则数列{}n c 的前2020项的和为A .20192020-B .20202019-C .20202021-D .20212020-【试题来源】2020届广东省华南师范大学附属中学高三年级月考(三)(理) 【答案】C【分析】先根据和项与通项关系得11n n a a --=,再根据等差数列定义与通项公式、求和公式得,n n a S ,代入化简n c ,最后利用分组求和法求结果. 【解析】因为()2*2,0n n n nS a a n Na=+∈>,所以当1n =时,21112a a a =+,解得11a =,当2n ≥时,()()2211122n n n n n n n a S S a a a a ---=-=+-+,所以 ()()1110n n n n a a a a --+--=, 因为0n a >,所以11n n a a --=,所以数列{}n a 是等差数列,公差为1,首项为1, 所以()()111,2n n n n a n n S +=+-==,所以()()21111121n n n n na c s n n +⎛⎫=-=-+ ⎪+⎝⎭,则数列{}n c 的前2020项的和11111111202011223342020202120212021⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选C . 30.若数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅,则满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值是 A .4B .5C .6D .7【试题来源】山西省运城市2021届高三(上)期中(理) 【答案】B【分析】求得1122nn c c c ++⋅⋅⋅+关于n 的表达式,利用数列的单调性可求得满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值.【解析】数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅, 所以()()2121212121iji j i jij i j i j c a a a a +=⋅++=--+-+-=-.令1122n nn S c c c =+++,则()102,n n nn S S c n n N *--=>≥∈,所以,数列{}n S 为递增数列,当11222021nn c c c +++<时,所有的元素之和为246212121212021n n n S +=-+-+-++-<,当4n =时,24684222243362021S =+++-=<, 当5n =时,246810522222513592021S =++++-=<, 当6n =时,246810126222222654542021S =+++++-=>, 故n 的最大值为5,故选B .【点评】关键点【名师点睛】本题考查数列不等式的求解,解题的关键在于求出1122nn c c c ++⋅⋅⋅+关于n 的表达式,在求解数列不等式时,要充分结合数列的单调性求解.31.公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”{}n a :1,1,2,3,5,8,13,21,34,55,……,即11a =,21a =,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用.若将此数列{}n a 的各项除以2后的余数构成一个新数列{}n b ,设数列{}n b 的前n 项的和为n T ;若数列{}n a 满足:212n n n n c a a a ++=-,设数列{}n c 的前n 项的和为n S ,则20202020T S +=A .1348B .1347C .674D .673【试题来源】浙江省宁波市慈溪市2020-2021学年高三上学期期中 【答案】B【分析】根据题意写出数列{}n a 的前若干项,观察发现此数列是以3为周期的周期数列,可得2020T ,再计算1n nc c +,结合等比数列的通项公式和求和公式,可得2020S ,进而得到所求和. 【解析】“兔子数列”的各项为1,1,2,3,5,8,13,21,34,55,⋯,∴此数列被2除后的余数依次为1,1,0,1,1,0,1,1,0,⋯⋯,即11b =,21b =,30b =,41b =,51b =,60b =,⋯⋯, ∴数列{}n b 是以3为周期的周期数列,20201231673()673211347T b b b b ∴=+++=⨯+=,由题意知22212112221121222121212()()1n n n n n n n n n n n n n n n n n n n n n n c a a a a a a a a a a a c a a a a a a a a a +++++++++++++++++-+---====----, 由于212131c a a a =-=-,所以(1)n n c =-,所以2020(11)(11)(11)0S =-++-++⋯+-+=. 则202020201347T S +=.故选B.【名师点睛】确定数列数列{}n b 是以3为周期的周期数列,利用周期性求出数列的和,摆动数列(1)n n c =-可以利用分组求和,是解决问题的关键,属于中档题. 32.已知函数()()()22,,n n f n n n ⎧⎪=⎨-⎪⎩当为奇数时当为偶数时且()(1)n a f n f n =++,则121100a a a a ++++等于A .0B .100C .-100D .10200【试题来源】广东省普宁市2020-2021学年高二上学期期中质量测试 【答案】B【分析】先求出通项公式n a ,然后两项一组,即可求解数列的前100项的和【解析】()(1)n a f n f n =++,∴由已知条件知,2222(1),(1),n n n n a n n n ⎧-+=⎨-++⎩为奇数为偶数,即()21,21,n n n a n n ⎧-+=⎨+⎩为奇数为偶数,(1)(21)n n a n ∴=-+,12(n n a a n +∴+=是奇数),123100123499100()()()2222100a a a a a a a a a a ∴+++⋯+=++++⋯++=+++⋯+=故选B .【名师点睛】解答本题的关键是求出数列{}n a 的通项(1)(21)n n a n =-+,即得到12(n n a a n ++=是奇数).33.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是 A .8 B .9 C .10D .11【试题来源】山东省菏泽市2021届高三上学期期中考试(A ) 【答案】A【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案.【解析】由题意得323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2nn +-()212312n n ⨯-=⨯-- 1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<;当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选A .【名师点睛】本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .34.已知数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,*n N ∈,且23n n b π=,记n S 为数列{}n b 的前n 项和,则2020S =A .1B .12C .12-D .-1【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】C【分析】由题设条件以及等差数列的性质得出2n a n =,进而得出2cos3n n b n π=,利用诱导公式求出32313,,k k k b b b --,即可求得2020S . 【解析】1(1)(1)n n na n a n n +=+++,111n na a n n+∴-=+, ∴数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,公差与首项都为1,21(1)n n a n a n n ∴=+-⇒=,2cos3n n b n π∴=,3241(32)cos 2(32)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭, 3121(31)cos 2(31)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭,33cos 23k b k k k π==, 3231332k k k b b b --+∴=+,20203674212020(36742)101022b b ⨯-=-⨯-=-=-=, ()()()1234562017201820192020202031673101022b b b b b b b b b S b ++++++++++==⨯-=-故选C .35.设()f n ()*n ∈N 的整数, 如()()()()()11,21,324252f f f f f =====,,,若正整数m 满足()()()()11114034123f f f f m ++++=,则m = A .20162017⨯ B .20172018⨯ C .20182019⨯D .20192020⨯【试题来源】陕西省西安市高新一中2018-2019学年高二上学期期末(理) 【答案】B【解析】设()f x j =,,*x j N ∈,n 是整数,则221124n n n ⎛⎫+=++ ⎪⎝⎭不是整数,因此任意正整数的正的平方根不可能是1()2n n Z +∈形式,所以1122j j -<<+,221144j j x j j -+<<++, 因为,*x j N ∈,所以221j j x j j -+≤≤+,故()f x j =时,2221,2,,x j j j j j j =-+-++共2j 个,设222111(1)(2)()p a f j j f j j f j j =+++-+-++,则22p ja j==,*p N ∈, 由题意()()()()11114034123f f f f m ++++=,403422017=⨯, 所以()()()()1111111111123(1)(2)(3)(4)(5)(6)f f f f m f f f f f f ⎡⎤⎡⎤++++=+++++++⎢⎥⎢⎥⎣⎦⎣⎦1114034(220171)(220172)()f m f m f m ⎡⎤+++=⎢⎥-⨯+-⨯+⎣⎦, 故()2017f m =,m 为方程2017f =的最大整数解, 所以22017201720172018m =+=⨯.故选B .【名师点睛】本题主要考查数列与函数的关系、数列的应用,解题关键是设()f x j =,,*x j N ∈,确定x 的范围,得出x 的个数,然后计算出满足()f x j =的所有1()f x 的和为2. 二、多选题1.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 【试题来源】湖南省长沙市第一中学2020-2021学年高三上学期月考(三) 【答案】ACD【解析】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的;又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的,故选ACD . 【名师点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 【试题来源】江苏省扬州市仪征中学2020-2021学年高二上学期期中模拟(2) 【答案】ACD【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【解析】因为a 11=2,a 13=a 61+1,所以2m 2=2+5m +1,解得m =3或m 12=-(舍去), 所以a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,所以a 67=17×36,所以S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()()12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1),故选ACD . 【名师点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题. 三、填空题1.已知数列{}n a 的前n 项和为n S ,满足112a =-,且()1222n n a a n N n n *++=∈+,则10S =__________.【试题来源】广西桂林市第十八中学2021届高三上学期第二次月考(理) 【答案】1011【分析】根据题中条件,由裂项的方法得到1112n n a a n n ++=-+,根据裂项相消与并项求和的方法,即可得出结果. 【解析】因为()122211222n n a a n n n n n n ++===-+++,则()()()()()1012345678910S a a a a a a a a a a =+++++++++11111111113355779911⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11011111=-=.2.设n S 为数列{}n a 的前n 项和,10a =,若11(1)(2)n n n na a +⎡⎤=+-+-⎣⎦(*n N ∈),则100S =__________.【试题来源】江苏省徐州市沛县2020-2021学年高三上学期第一次学情调研【答案】101223- 【分析】分n 为奇数、n 为偶数两种情况讨论,可得数列{}n a 的特点,然后可算出答案. 【解析】当n 为奇数时,()12nn a +=-,则()122a =-,()342a =-,,()991002a =-,当n 为偶数时,()12222nn n n n a a a +=+-=+,则232220a a =+=,454220a a =+=,,989998220a a =+=,又10a =,所以10110024100223S a a a -=+++=. 3.已知数列{}n a 满足:11a =,12n n n a a a +=+,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S =__________. 【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期第二次质量检测(理) 【答案】122n n +--【分析】根据题中条件,得到11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭,判定数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,求出121n na =-,由分组求和的方法,即可求出结果. 【解析】由12n n n a a a +=+得12121n n n n a a a a ++==+,所以11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭, 因此数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,又11a =,所以1112a +=,因此111222n n n a -+=⨯=,所以121n n a =-,因此()()2121222 (22212)n nn n n n S n +-=+++-=-=---.故答案为122n n +--.【名师点睛】求解本题的关键在于,根据12n n n a a a +=+,由构造法,得到111121n n a a +⎛⎫+=+ ⎪⎝⎭,再根据等比数列的求和公式,以及分组求和的方法求解即可. 4.数列{}n a 的通项公式22cos4n n a n n π=-,其前n 项和为n S ,则2021S =__________. 【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】1010.【分析】由于22cos(1cos )cos 422n n n n a n n n n n πππ=-=+-=,可得数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项,从而可求得其结果 【解析】因为22cos (1cos )cos 422n n n n a n n n n n πππ=-=+-=,所以数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项, 所以2021246820182020S a a a a a a =++++⋅⋅⋅++246820182020=-+-+-⋅⋅⋅-+(24)(68)(20182020)=-++-++⋅⋅⋅+-+1010210102=⨯=.故答案为1010 5.2020年疫情期间,某医院30天每天因患新冠肺炎而入院就诊的人数依次构成数列{}n a ,已知11a =,22a =,且满足21(1)nn n a a +-=--,则该医院30天内因患新冠肺炎就诊的人数共有__________.【试题来源】山东省聊城市2020-2021学年高三上学期期中 【答案】255【分析】根据题目所给递推关系式,求得数列{}n a 项的规律,由此进行分组求和,求得数列前30项的和.【解析】由于()211nn n a a +-=--,当n 为偶数时,20n na a +-=,因此前30项中的偶数项构成常数列,各项都等于22a =,共有15项,和为15230⨯=;当n 为奇数时,22n n a a +-=;又11a =,所以前30项中的奇数项构成首项为1,公差为2的等差数列,共有15项,和为151415122252⨯⨯+⨯=. 故30天的总人数为30225255+=.故答案为255. 6.数列{}n a 的前n 项和为n S ,若()*1cos2n n a n n N π=+⋅∈,则2020S =__________.【试题来源】上海市复兴高级中学2021届高三上学期期中 【答案】3030【分析】根据题意,先确定cos2n π的周期,再求出一个周期的和,即可得出结果. 【解析】由()4coscos 2cos 222n n n ππππ+⎛⎫=+= ⎪⎝⎭,知cos 2n π的周期为4,又11cos12a π=+=,212cos 12a π=+=-, 3313cos12a π=+=, 414cos 214a π=+=+,则1234426a a a a +++=+=,所以20202020630304S =⨯=.故答案为3030.7.已知数列{}n a 的前n 项和为n S ,且21n n S a =-.则数列{}n S 的前n 项和n T =__________. 【试题来源】重庆市巴蜀中学2021届高三上学期适应性月考(四) 【答案】122n n +--【分析】通过前n 项和n S 与n a 的关系式以及等比数列的定义得出{}n a 及{}n S 的表达式,进而利用分组求和即可.【解析】由21n n S a =-,得111211a a a =-⇒=,由21n n S a =-,有1121(2)n n S a n --=-≥,两式相减,11222(2)n n n n n a a a a a n --=-⇒=, 故数列{}n a 是首项为1,公比为2的等比数列,12n na ,122112nn n S -==--,()12122212n n n T n n +-∴=-=---.8.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当[)0,1x ∈时,()sin f x x π=,当[)0,x ∈+∞时,函数()f x 的极大值点从小到大依次记为1a 、2a 、3a 、、n a 、,并记相应的极大值为1b 、2b 、3b 、、n b 、,则数列{}n n a b +前9项的和为__________.【试题来源】湖北省荆州中学2020-2021学年高三上学期8月月考 【答案】11032【分析】求出函数()y f x =在区间[)()1,n n n N*-∈上的解析式,利用导数求出函数()y f x =在区间[)()1,n n n N *-∈上的极大值点与极大值,可得出数列{}n n a b +的通项公式,再利用分组求和法可求得数列{}n n a b +的前9项的和. 【解析】函数()f x 的定义域为R ,满足()()12f x f x +=,则()()21=-f x f x ,且当[)0,1x ∈时,()sin f x x π=,则当[)()1,x n n n N *∈-∈,()[)10,1x n --∈,()()()()()2112122212sin 1n n f x f x f x f x n x n ππ--=-=-==--=--⎡⎤⎡⎤⎣⎦⎣⎦,()()12cos 1n f x x n πππ-'=--⎡⎤⎣⎦,当[)()1,x n n n N*∈-∈时,()[)10,1x n --∈,则()[)10,x n πππ--∈⎡⎤⎣⎦,令()0f x '=,可得()12x n πππ--=,解得12x n =-, 当112n x n -<<-时,()0f x '>,当12n x n -<<时,()0f x '<. 所以,函数()y f x =在12x n =-处取得极大值,即1122n n b f n -⎛⎫=-= ⎪⎝⎭,又12n a n =-,1122n n n a b n -∴+=-+,因此,数列{}n n a b +的前9项的和991199121103222122S ⎛⎫+-⨯ ⎪-⎝⎭=+=-. 【名师点睛】本题考查了数列的分组求和,同时也考查了利用导数求函数的极值点和极值,考查计算能力,属于中等题.9.在数列{}n a 中,若121,(1)2nn n a a a +=+-=,记n S 是数列{}n a 的前n 项和,则100S =__________.【试题来源】江苏省盐城市响水中学2020-2021学年高二上学期期中 【答案】2550【分析】当n 为奇数时,可得数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,可得偶数项的特征,将所求问题转化为奇数项和偶数项求和即可.【解析】因为121,(1)2nn n a a a +=+-=,所以当n 为奇数时,22n n a a +-=,即数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,22n n a a ++=,所以135995049501225002a a a a ⨯++++=⨯+⨯=, ()()()()24681012485022550a a a a a a a a ++++++++=⨯=,所以1002500502550S =+=,故答案为2550.【名师点睛】(1)得到数列{}n a 的奇数项为公差是2的等差数列; (2)得到数列{}n a 的偶数项满足22n n a a ++=.10.已知数列{}n a 的前n 项和为n S ,21122n n a a a =+,=+,则5S 的值为__________. 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】732【解析】122n n a a +=+,()1222n n a a +∴+=+,故数列{}2n a +是以2为公比,以223a +=为第二项的等比数列, 故2232n n a -+=⋅,故2322n n a -=⋅-,()5531273225122S -∴=-⨯=-,故答案为732. 【名师点睛】1n n a pa q +=+(1,0p q ≠≠的常数)递推关系求通项,构造等比数列是解题关键,属于基础题. 11.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为__________.【试题来源】江苏省宿迁中学2020-2021学年高三上学期期中巩固测试 【答案】3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案.【解析】由等比数列的前n 项和公式得()1314112821112n nn na q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦===---, 由于数列{}32n-是以4为首项,12为公比的等比数列,。
江苏省盐城市2015届高三上学期期中考试 数学 Word版含答案
盐城市2015届高三年级第一学期期中考试数 学 试 题(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上. 1. 若集合{}0,1A =,集合{}0,1B =-,则AB = ▲ .2.命题“若a b >, 则22a b>”的否命题为 ▲ .3.函数2()sin f x x =的最小正周期为 ▲ . 4.若幂函数()()f x x Q αα=∈的图象过点(2,2,则α= ▲ . 5.若等比数列{}n a 满足23a =,49a =,则6a = ▲ .6.若,a b 均为单位向量,且(2)⊥-a a b ,则,a b 的夹角大小为 ▲ .7.若函数12()21x x mf x ++=-是奇函数,则m = ▲ .8.已知点P 是函数()cos (0)3f x x x π=≤≤图象上一点,则曲线()y f x =在点P 处的切线斜率的最小值为 ▲ .9.在等差数列}{n a 中,n S 是其前n 项和,若75=+4S S ,则93S S -= ▲ . 10.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若4a =,3b =,2A B =,则sin B = ▲ .11.如图,在等腰ABC ∆中,=AB AC ,M 为BC 中点,点D 、E 分别在边AB 、AC 上,且1=2A D DB ,=3AE EC ,若90DME ∠=,则cos A = ▲ .12.若函数2()2f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是 ▲ . 13. 设函数211*3224()n n y x x n N --=-⨯+⨯∈的图象在x 轴上截得的线段长为n d ,记数列{}n d 的前n项和为n S ,若存在正整数n ,使得()22log 118m n n S -+≥成立,则实数m 的最小值为 ▲ .MEDAB第11题14.已知函数32|2|(1)()ln (1)x x x x f x x x ⎧--+<=⎨≥⎩,若命题“t R ∃∈,且0t ≠,使得()f t kt ≥”是假命题,则实数k 的取值范围是 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15. (本小题满分14分)已知函数()sin cos f x x a x ωω=+满足(0)f =()f x 图象的相邻两条对称轴间的距离为π. (1)求a 与ω的值; (2)若()1f α=,(,)22ππα∈-,求5cos()12πα-的值.17. (本小题满分14分)设△ABC 的面积为S ,且20S AC ⋅=. (1)求角A 的大小;(2)若||3BC =,且角B 不是最小角,求S 的取值范围.18. (本小题满分16分)如图是一块镀锌铁皮的边角料ABCD ,其中,,AB CD DA 都是线段,曲线段BC 是抛物线的一部分,且点B 是该抛物线的顶点,BA 所在直线是该抛物线的对称轴. 经测量,AB =2米,3AD =米,A B A D ⊥,点C 到,AD AB 的距离,CH CR 的长均为1米.现要用这块边角料裁一个矩形AEFG (其中点F 在曲线段BC 或线段CD 上,点E 在线段AD 上,点G 在线段AB 上). 设BG 的长为x 米,矩形AEFG 的面积为S 平方米. (1)将S 表示为x 的函数;(2)当x 为多少米时,S 取得最大值,最大值是多少?19. (本小题满分16分)设数列{}n a 的前n 项和为n S ,且21132(2,)n n n S S S n n n N *-+++=+≥∈. (1)若{}n a 是等差数列,求{}n a 的通项公式; (2)若11a =.① 当21a =时,试求100S ;② 若数列{}n a 为递增数列,且3225k S =,试求满足条件的所有正整数k 的值.20. (本小题满分16分)已知函数()xf x e =,()g x x m =-,m R ∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值;B C D EFG R 第18题H(2)记()()()h x f x g x =⋅,求()h x 在[]01,上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.盐城市2015届高三年级第一学期期中考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1. {}0,1,1-2. 若a b ≤, 则22a b≤ 3. π 4. 12-5. 276. 3π7. 28. 9. 12 10. 11. 15 12. [4,0]- 13. 13 14. 1(,1)e二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.解:(1)(0)f =∴sin 0cos0a +=a = ……………2分∴()sin 2sin()3f x x x x πωωω==+, ……………4分()f x 图象的相邻两条对称轴间的距离为π,∴22T ππω==,∴1ω=. ……………6分 (2)()1f α=,∴1sin()32πα+=, ……………8分(,)22ππα∈-,∴5(,)366πππα+∈-,∴36ππα+=,即6πα=-, ……………10分∴57cos()cos1212ππα-=,又7cos cos()1234πππ=+,∴5cos()cos cos sin sin 123434πππππα-=⋅-⋅=. …………14分 16.解:(1)由2430x x -+->,解得13x <<,所以(1,3)A =, …………2分又函数21y x =+在区间(0,)m 上单调递减,所以2(,2)1y m ∈+,即2(,2)1B m =+, …………4分当2m =时,2(,2)3B =,所以(1,2)AB =. …………6分(2)首先要求0m >, …………8分而“x A ∈”是“x B ∈”的必要不充分条件,所以B A Ø,即2(,2)(1,3)1m +?, …………10分 从而211m ≥+, …………12分 解得01m <≤. …………14分 17.解:(1)设ABC ∆中角,,A B C 所对的边分别为,,a b c,由20S AB AC +⋅=,得12sin cos 02bc A A ⨯+=,即sin 0A A +=, …………2分所以tan A =, …………4分又(0,)A π∈,所以23A π=. …………6分(2)因为3BC =,所以a =,sin sin b cB C ==, 所以2sin ,2sin b B c C ==, …………8分从而1sin sin sin()23S bc A B C B B π===- …………10分11cos 2sin )2))246B B B B B B π-=--=+-, …………12分又5(,),2(,)63626B B πππππ∈+∈,所以S ∈. …………14分(说明:用余弦定理处理的,仿此给分) 18.解:(1)以点B 为坐标原点,BA 所在直线为x 轴,建立平面直角坐标系. …………2分设曲线段BC 所在抛物线的方程为22(0)y px p =>, 将点(1,1)C 代入,得21p =, 即曲线段BC的方程为1)y x =≤≤. …………4分又由点(1,1),(2,3)C D 得线段CD 的方程为21(12)y x x =-≤≤. …………6分 而2GA x =-,所以),01,(21)(2),1 2.x x S x x x ⎧-<≤⎪=⎨--<<⎪⎩ …………8分(2)①当01x <≤时,因为1322)2S x x x =-=-,所以112232S xx -'=-=,由0S '=,得23x =, …………10分 当2(0,)3x ∈时,0S '>,所以S 递增;当2(,1)3x ∈时,0S '<,所以S 递减,所以当23x =时,max 9S =; …………12分 ②当12x <<时,因为259(21)(2)2()48S x x x =--=--+,所以当54x =时,max 98S =; …………14分综上,因为989>,所以当54x =米时,max 98S =平方米. …………16分(说明:本题也可以按其它方式建系,如以点A 为坐标原点,AD 所在直线为x 轴,建立平面直角坐标系,仿此给分)19.解:(1)由等差数列求和公式211(1)()222n n n d dS na d n a n -=+=+-, 11n n n S S S -+∴++222111(1)()(1)()(1)()(1)222222d d d d d dn a n n a n n a n =-+--++-+++-+21(32)3(),22d dn a n =++- ……………2分 ∴222113(32)3()3()322222d d d dn a n n a n d n ++-=+-+=+, ∴133,,222d da d =-=,解得12,1d a ==,∴ 21n a n =-; ……………4分 (说明:也可以设2n S an bn =+;或令2,3n n ==,先求出首项1a 与公差d ) (2)由21132(2)n n n S S S n n -+++=+≥,得2123(1)2n n n S S S n ++++=++ , ……………6分∴1263(2)n n n a a a n n ++++=+≥, ∴10012345679899100()()()S a a a a a a a a a a =++++++++++11(6236983)33100002=+⋅++⋅+⋅=. ………………8分(说明:用21a =,利用分组方法求和,类似给分.)(3)设2a x =,由21132(2)n n n S S S n n -+++=+≥,得12314S S S ++=与23429S S S ++=,∴1233214a a a ++=,∴3112a x =-,∴123433229a a a a +++=,∴44a x =+, ……………10分又2123(1)2n n n S S S n ++++=++,∴1263(2)n n n a a a n n ++++=+≥,∴1163(3)n n n a a a n n -+++=-≥, 相减得216(3)n n a a n +--=≥, ∴5266a a x =+=+,数列{}n a 为递增数列,∴12345a a a a a <<<<,解得71133x <<, ……………12分由312345678932313()()()k k k k S a a a a a a a a a a a a --=++++++++++++,∴3112(6436(32)3)(1)2k S x k k =-+⋅++-+-,∴2393225k S k x =-+=, ……………14分∴27119222(,)33x k =-∈,解得5k =. ……………16分20.解:(1)设曲线()x f x e =与()g x x m =-相切于点()00,P x y ,由()x f x e '=,知0=1xe ,解得00x =, ……………2分 又可求得点P 为()01,,所以代入()g x x m =-,得1m =-. ……………4分 (2)因为()()x h x x m e =-,所以()()()(1),[0,1]x x x h x e x m e x m e x '=+-=--∈.①当10m -≤,即1m ≤时,()0h x '≥,此时()h x 在[]01,上单调递增,所以()()()max 11h x h m e ==-; ……………6分 ②当011m <-<即12m <<时,当()01x m ∈-,时,()0h x '<,()h x 单调递减, 当()1,1x m ∈-时,()0h x '>,()h x 单调递增,()0h m =-,()()11h m e =-.(i)当()1m m e -≥-,即21em e ≤<-时,()()max 0h x h m ==-; (ii) 当()1m m e -<-,即11em e <<-时,()()()max 11h x h m e ==-; ……………8分③当11m -≥,即2m ≥时,()0h x '≤,此时()h x 在[]01,上单调递减,所以()()min 0h x h m ==-. 综上,当1e m e <-时,()()max 1h x m e =-;当1em e ≥-时,()max h x m =-. ……………10分 (3)当0m =时,()22=x f x e ee --,()g x x =,①当0x ≤时,显然()()2f x eg x ->;②当0x >时,()222ln =ln x f x ex e e e ---=,()ln ln g x x =,记函数()221=ln ln x x x ex e x eϕ--=⨯-, ……………12分 则()22111=e x x x e e x xϕ-'⨯-=-,可知()x ϕ'在()0,+∞上单调递增,又由()10ϕ'<,()20ϕ'>知,()x ϕ'在()0,+∞上有唯一实根0x ,且012x <<,则()02001=0x x e x ϕ-'-=,即0201x e x -=(*), 当()00,x x ∈时,()0x ϕ'<,()x ϕ单调递减;当()0+x x ∈∞,时,()0x ϕ'>,()x ϕ单调递增,所以()()0200=ln x x x e x ϕϕ-≥-, ……………14分结合(*)式021x ex -=,知002ln x x -=-, 所以()()()22000000001211=2=0x x x x x x x x x ϕϕ--+≥+-=>,则()2=ln 0x x e x ϕ-->, 即2ln x ex ->,所以2x ee x ->.综上,()()2f x eg x ->. ……………16分(说明:若学生找出两个函数()2f x y e -=与()yg x =图象的一条分隔线,如1y x =-,然后去证()21f x e x -≥-与()1x g x -≥,且取等号的条件不一致,同样给分)。
2020届江苏省徐州市高三上学期第一次质量抽测数学试题(解析版)
2i
【答案】
【解析】
【分析】
zabia,bR
设
,可知0,利用复数的乘法法则可得出关于实数a、的方程组,解出即可.
bb
2
zabia,bR
abiab2abi4
,
【详解】设
,由题意可知z2
2
2
4
a
2
b
2
a
0
2ab0
b0
2
z
i
则
,解得
b2,因此,
.
2i
故答案为:
求出实数a的值.
【详解】由于函数
yfx
xfx
f
是定义在R上的奇函数,则
,
1xf1x
又该函数的图象关于直线x
1对称,则
f
,
f2xf11xfxfx
f
4xfx2fx
所以,
,则
,
yfx
4
是周期为的周期函数,
所以,函数
a
2020ln2fln2fln2ee
28
a3.
,解得
所以f
ln2
ln2
a
a
3
故答案为:.
【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数
ABAD
uuuruuur
ACAE
利用基底
表示向量
,结合等式
可得出cosADE
的表达式,
2
然后利用基本不等式可求出cosADE的最小值.
uuuruuuruuur
BDDEEC
【详解】由于D、是
上的两个三等分点,则
专题04 恒成立问题(文理通用)(含详细答案)
专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0a f f a e>2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为14.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .16.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+ D .21cos 12x x ≥-1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________. 2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________.6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________. 14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________.1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________.3.已知函数1()ln (0)f x ax x a x=+>.(1)当1a =时,()f x 的极小值为___________;(2)若()f x ax ≥在(0,)+∞上恒成立,则实数a 的取值范围为___________. 4.已知函数()()221xf exx x =-+,则()f x 在点()()0,0f 处的切线方程为___________,若()f x ax ≥在()0,∞+上恒成立,则实数a 的取值范围为___________.5.设函数()32f x ax bx cx =++(a ,b ,R c ∈,0a ≠)若不等式()()2xf x af x '-≤对一切R x ∈恒成立,则a =___________,b ca+的取值范围为___________. 6.已知函数()()x x f x x ae e -=-为偶函数,函数()()xg x f x xe -=+,则a =___________;若()g x mx e >-对()0,x ∈+∞恒成立,则m 的取值范围为___________. 五、解答题1.已知函数()sin f x x ax =-,()=ln 1xg x x x e -+,2.71828e =⋅⋅⋅为自然对数的底数. (1)当()0,x π∈,()0f x <恒成立,求a 的取值范围;(2)当0a =时,记()()()h x f x g x =+,求证:对任意()1,x ∈+∞,()0h x <恒成立. 2.已知函数()1x f x ae x =--(1)若()0f x ≥对于任意的x 恒成立,求a 的取值范围 (2)证明:1111ln(1)23n n++++≥+对任意的n N +∈恒成立 3.若对任意的实数k 、b ,函数()y f x kx b =++与直线y kx b =+总相切,则称函数()f x 为“恒切函数”.(1)判断函数()2f x x =是否为“恒切函数”;(2)若函数()()ln 0f x m x nx m =+≠是“恒切函数”,求实数m 、n 满足的关系式;(3)若函数()()1x xf x e x e m =--+是“恒切函数”,求证:104m -<≤. 4.已知函数()(ln )sin x f x e x a x =+-.(1)若()ln sin f x x x ≥⋅恒成立,求实数a 的最大值; (2)若()0f x ≥恒成立,求正整数a 的最大值.专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断【试题来源】安徽省皖江名校联盟2021届高三第二次联考(理) 【答案】C【分析】当1x <时,求导,得出导函数恒小于零,得出()f x 在(),1-∞内是增函数.再由()()2f x f x -=+得()f x 的图象关于直线1x =对称,从而得()f x 在()1,+∞内是减函数,由此可得选项.【解析】当1x <时,'1()0xx f x e -=->,则()f x 在(),1-∞内是增函数. 由()()2f x f x -=+得()f x 的图象关于直线1x =对称,所以()f x 在()1,+∞内是减函数, 所以()()350f f ->.故选C .2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef【试题来源】2020届福建省仙游县枫亭中学高三上学期期中考试(理) 【答案】B【分析】构造函数()()xf x F x e =,求出'()0F x >,得到该函数为R 上的增函数,故得(0)(1)F F <,(0)(2018)F F <,从而可得到结论.【解析】设()()x f x F x e =,x R ∈(),所以'()()[]xf x F x e '==()()xf x f x e '-, 因为对于()(),x R f x f x ∀∈<',所以'()0F x >,所以()F x 是R 上的增函数,所以(0)(1)F F <,(0)(2018)F F <,即(1)(0)f f e <,2018(2018)(0)f f e <, 整理得()()10f ef >和()20182018(0f ef >).故故选B .3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 【试题来源】浙江省杭州市萧山中学2019-2020学年高三下学期返校考试 【答案】D【解析】对于A ,不妨令01a <≤,1b ≥,则1aab bb a aa a ab a b a b ⎛⎫⎛⎫⋅=⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,所以1baa b ⋅=即11b aaab-=,由10b a -≥可知101b aa -<≤,则101ab <≤,所以1≥ab ,2a b +≥,故A 正确; 对于B ,若a b ≤,则0a b e e -≤,320b a ->,故32ab e e b a -≠-即23a b e a e b +≠+,与已知矛盾,故B 正确;对于C ,()ln ln ln 1b b a a b a b a a-≥-⇔-≥-, 令0b x a =>,()()ln 10f x x x x =-->,则()1x f x x-'=, 则()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()10f x f ≥=,所以ln 10b b a a --≥即ln 1b ba a-≥-,故C 正确; 对于D ,设()()ln 0h x x x x =>,()()0x xg x x e=>, 则()ln 1h x x '=+,()1xxg x e -'=, 所以()h x 在()10,e -上单调递减,在()1,e -+∞上单调递增,则()()11h x h e e --≥=-,()g x 在()0,1上单调递增,在()1,+∞上单调递减,则()()11g x g e -≤=,所以()()110h e g e --+<,即当1a b e -==时ln 0bba a e +<,故D 错误.故选D . 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010【试题来源】新疆维吾尔自治区2021届高三第二次联考数学(理)能力测试试题 【答案】D【分析】由极值点得数列的递推关系,由递推关系变形得数列1{}n n a a +-是等比数列,求得1n n a a +-,由累加法求得n a ,计算出n b ,然后求和122311202020202020n n b b b b b b ++++,利用增函数定义得此式的最小值,从而得出n S 的最小值,再由不等式恒成立可得t 的最大值. 【解析】3212()43n n n f x a x a x a '++=--,所以12(1)430n n n f a a a '++=--=, 即有()2113n n n n a a a a +++-=-,所以{}1n n a a +-是以2为首项3为公比的等比数列, 所以1123n n n a a -+-=⋅,1201111221123232313n n nn n n n n n n a a a a a a a a a a --++---=-+-+-++-+=⋅+⋅++⋅+=所以31log n n b a n +==,所以12231120202020202011120201223(1)n n b b b b b b n n +⎛⎫+++=+++⎪⨯⨯+⎝⎭1111120202020122311n n n n ⎛⎫=-+-++-=⎪++⎝⎭, 又20201ny n =+为增函数,当1n =时,1010n S =,10102020n S ≤<, 若n S t ≥恒成立,则t 的最大值为1010.故选D .【名师点睛】本题考查函数的极值,等比数列的判断与通项公式,累加法求通项公式,裂项相消法求和,函数新定义,不等式恒成立问题的综合应用.涉及知识点较多,属于中档题.解题方法是按部就班,按照题目提供的知识点顺序求解.由函数极值点得数列的递推公式,由递推公式引入新数列是等比数列,求得通项公式后用累加法求得n a ,由对数的概念求得n b ,用裂项相消法求和新数列的前n 项和,并利用函数单调性得出最小值,然后由新定义得n S 的最小值,从而根据不等式恒成立得结论. 二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0af f a e>【试题来源】江苏省扬州中学2019-2020学年高二下学期6月月考 【答案】BD【分析】根据()()'0f x f x +>,设()()xh x e f x =,()()()()xh x ef x f x ''=+,得到()h x 在R 上是增函数,再根据a 是正实数,利用单调性逐项判断.【解析】设()()xh x e f x =,()()()()xh x ef x f x ''=+,因为()()'0f x f x +>,所以()0h x '>,()h x 在R 上是增函数, 因为a 是正实数,所以2a a <,所以()()22aae f a e f a <,因为21a a e e >>, ()(),2f a f a 大小不确定,故A 错误, 因为a a -<,所以()()aa ef a e f a --<,即()()2a f a e f a >-,故B 正确.因为0a >,所以()()()000a e f a e f f >=, 因为1a e >,()(),0f a f 大小不确定.故C 错误.()()()000a e f a e f f >=,因为1a e >,所以()()0af f a e>,故D 正确.故选BD. 【名师点睛】本题主要考查导数与函数单调性比较大小,还考查了运算求解的能力,属于中档题.2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->【试题来源】江苏省盐城市伍佑中学2019-2020学年高二下学期期中 【答案】BCD【分析】构造出函数()()xxf x F x e =,再运用求导法则求出其导数,借助导数与函数单调性之间的关系及题设中()()()f x xf x xf x '+<,从而确定函数()()xxf x F x e =是单调递减函数,然后可判断出每个答案的正误. 【解析】构造函数()()xxf x F x e =, 因为2[()()]()()()()()0()x x x xe f x xf x xe f x f x xf x xf x F x e e '+-+-=='<', 故函数()()xxf x F x e=在R 上单调递减函数, 因为21>,所以212(2)(1)(2)(1)f f F F e e <⇒<,即2(2)(1)f f e<,故A 正确,B 错误; 因为()(1)0F F <,即()10f e<,所以()10f <,故C 错误; 因为()(1)0F F ->,即()110f e--->,所以()10f -<,故D 错误,故选BCD. 【名师点睛】解答本题的难点所在是如何依据题设条件构造出符合条件的函数()()xxf x F x e=,这里要求解题者具有较深的观察力和扎实的基本功,属于较难题. 3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1【试题来源】山东省肥城市2019-2020学年高二下学期期中考试 【答案】BCD【分析】先对函数求导,根据022f ππ⎛⎫'=-≠⎪⎝⎭,排除A ;再由导数的方法研究函数单调性,判断出B 选项;构造函数()sin xg x x=,由导数的方法研究其单调性,即可判断C 选项;根据()sin x g x x =的单调性,先得到sin 2x x π>,再令()sin h x x x =-,根据导数的方法研究其单调性,得到sin 1xx<,即可判断D 选项. 【解析】因为()cos sin f x x x x =-,所以()cos sin cos sin f x x x x x x x '=--=-, 所以022f ππ⎛⎫'=-≠⎪⎝⎭,所以2x π=不是函数的极值点,故A 错; 若[]0,x π∈,则()sin 0f x x x '=-≤,所以函数()cos sin f x x x x =-在区间[]0,π上单调递减;因此()()00≤=f x f ,故B 正确; 令()sin x g x x =,则()2cos sin x x x g x x -'=, 因为()cos sin 0f x x x x =-≤在[]0,π上恒成立,所以()2cos sin 0x x xg x x -'=<在()0,π上恒成立,因此函数()sin xg x x=在()0,π上单调递减;又120x x π<<<,所以()()12g x g x >,即1212sin sin x x x x >,所以1122sin sin x x x x <,故C 正确;因为函数()sin x g x x =在()0,π上单调递减;所以0,2x π⎛⎫∈ ⎪⎝⎭时,函数()sin x g x x =也单调递减,因此()sin 22x g x g x ππ⎛⎫=>= ⎪⎝⎭在0,2π⎛⎫⎪⎝⎭上恒成立;令()sin h x x x =-,0,2x π⎛⎫∈ ⎪⎝⎭,则()1cos 0h x x '=-≥在0,2π⎛⎫⎪⎝⎭上恒成立,所以()sin h x x x =-在0,2π⎛⎫⎪⎝⎭上单调递增, 因此()sin 0h x x x =->,即sin 1xx <在0,2π⎛⎫ ⎪⎝⎭上恒成立; 综上,2sin 1x x π<<在0,2π⎛⎫⎪⎝⎭上恒成立,故D 正确.故选BCD . 【名师点睛】本题主要考查导数的应用,利用导数的方法研究函数的极值,单调性等,属于常考题型.4.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 【试题来源】冲刺2020高考数学之拿高分题目强化卷(山东专版) 【答案】ACD【分析】对选项A ,()f x 在[]1,2上的最小值小于a 即可;对选项B ,()g x 的最小值大于0即可;对选项C ,()f x 在[]1,2上的最小值大于()g x 的最大值即可;对选项D ,[]11,2x ∀∈,[]20,1x ∃∈,()min min ()g x f x ≤,()max max ()g x f x ≥即可.【解析】对选项A ,只需()f x 在[]1,2上的最小值小于a ,()f x 在[]1,2上单调递增,所以min 2()(1)111f x f ==-=-,所以1a >-,故正确; 对选项B ,只需()g x 的最小值大于0,因为[]πcos,2x a a a∈-,所以min ()52530g x a a a =-+-=->,所以503a <<,故错误; 对选项C ,只需()f x 在[]1,2上的最小值大于()g x 的最大值,min ()1f x =-,max ()525g x a a a =+-=-,即15a ->-,6a >,故正确;对选项D ,只需()min min ()g x f x ≤,()max max ()g x f x ≥,max 2()(2)212f x f ==-=,所以[]11,2x ∈,[]1()1,1f x ∈-, []0,1x ∈时,π0,22x π⎡⎤∈⎢⎥⎣⎦,所以()g x 在[]0,1上单调递减, ()min (1)52a g x g ==-,()max (0)5a g x g ==-,所以()[]52,5g x a a ∈--,由题意,52151a a -≤-⎧⎨-≥⎩⇒34a ≤≤,故正确.故选ACD .【名师点睛】本题主要考查不等式恒成立和存在性问题,考查学生的分析转化能力,注意恒成立问题和存在性问题条件的转化,属于中档题.5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .1【试题来源】江苏省南京市2020-2021学年高三上学期期中考前训练 【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立,令()()3ln ln 1x F x x x x x =++>,利用导数法研究其最小值即可.【解析】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x =++>,则()222131ln 2ln x x x F x x x x x---'=-+=.令()ln 2x x x ϕ=--,因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=,将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数,所以713,34t ⎛⎫∈ ⎪⎝⎭,即()min1713,41216F x ⎛⎫∈ ⎪⎝⎭. 因为k 为整数,所以0k ≤.故选ABC . 6.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+D .21cos 12x x ≥-【试题来源】广东省中山市2019-2020学年高二下学期期末 【答案】ACD 【分析】令10tx ,()1ln 1f t t t=+-,导数方法求出最小值,即可判定出A 正确;令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >,导数方法研究单调性,求出范围,即可判定B 错; 令()1xf x e x =--,导数的方法求出最小值,即可判定C 正确;令()21cos 12f x x x =-+,导数的方法求出最小值,即可判定D 正确. 【解析】A 选项,因为1x >-,令10t x ,()1ln 1f t t t=+-,则()22111t f t t t t -'=-=,所以01t <<时,()210t f t t-'=<,即()f t 单调递减;1t >时,()210t f t t -'=>,即()f t 单调递增; 所以()()min 10f t f ==,即()1ln 10f t t t=+-≥,即1ln t t t -≥,即()ln 11x x x +≥+,1x >-恒成立;故A 正确;B 选项,令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >, 则()()2222211112110222x x x f x x x x x ---⎛⎫'=-+==-≤ ⎪⎝⎭显然恒成立, 所以()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭在0x >上单调递减, 又()10f =,所以当()0,1x ∈时,()()10f x f >=,即11ln 2x x x ⎛⎫>- ⎪⎝⎭,故B 错; C 选项,令()1xf x e x =--,则()1xf x e '=-,当0x >时,()10xf e x ='->,即()f x 单调递增;当0x <时,()10xf e x ='-<,所以()f x 单调递减;则()()00f x f ≥=,即1x e x ≥+恒成立;故C 正确; D 选项,令()21cos 12f x x x =-+,则()sin f x x x '=-+, 所以()cos 10f x x ''=-+≥恒成立,即函数()sin f x x x '=-+单调递增, 又()00f '=,所以当0x >时,()0f x '>,即()21cos 12f x x x =-+单调递增; 当0x <时,()0f x '<,即()21cos 12f x x x =-+单调递减; 所以()()min 00f x f ==,因此21cos 12x x ≥-恒成立,故D 正确;故选ACD . 三、填空题1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________.【试题来源】【全国区级联考】江苏省徐州市铜山区下学期高二数学(文)期中试题 【答案】2c ≥【解析】由()()f x g x ≥,即32ln 1x x c x -+≥+,即32ln 1c x x x ≥-+++.令()()32ln 10h x x x x x =-+++>,()()()21331x x x h x x'-++=-,故函数()h x 在区间()0,1上递增,在()1,+∞上递减,最大值为()12h =,所以2c ≥.【名师点睛】本题主要考查利用分析法和综合法求解不等式恒成立,问题,考查利用导数研究函数的单调性,极值和最值等知识.首先根据()()f x g x ≥,对函数进行分离常数,这里主要的思想方法是分离常数后利用导数求得另一个部分的最值,根据这个最值来求得参数的取值范围.2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.【试题来源】2020届湖南省长沙市长郡中学高三下学期3月停课不停学阶段性测试(理) 【答案】(,2]e -∞【分析】首先对参数的范围进行讨论,分两种情况,尤其是当0m >时,对式子进行变形,构造新函数,将恒成立问题转化为最值来处理,利用函数的单调性来解决,综述求得最后的结果.【解析】(1)0m ≤,显然成立;(2)0m >时,由32ln 0mxx x me -≥22ln m x m x x e x ⇒≥2ln (2ln )mxx m x e e x⇒≥,由()x f x xe =在[),e +∞为增2ln mx x⇒≥2ln m x x ⇒≤在[),e +∞恒成立, 由()2ln g x x x =在[),e +∞为增,min ()2g x e =,02m e <≤, 综上,2m e ≤,故答案为(,2]e -∞.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.【试题来源】四川省泸州市2020学年下学期高二期末统一考试(文) 【答案】(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【解析】函数的导数2()21f ax x x '=+-,由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立,即221a x x+,得322x x a +在1x 上恒成立,设32()2g x x x =+, 则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数, 则当1x =时,()g x 取得最小值()1213g =+=,则3a , 即实数a 的取值范围是(],3-∞,故答案为(],3-∞.【名师点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 【试题来源】2020年高考数学选填题专项测试(文理通用) 【答案】[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【解析】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)x g x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥,故答案为[)0,+∞.【名师点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________. 【试题来源】2020届四川省成都七中高三二诊数学模拟(理)试题 【答案】0a e ≤<【分析】若函数()0x f x e ax =->恒成立,即min ()0f x >,求导得'()x f x e a =-,在0,0,0a a a >=<三种情况下,分别讨论函数单调性,求出每种情况时的min ()f x ,解关于a的不等式,再取并集,即得.【解析】由题意得,只要min ()0f x >即可,'()x f x e a =-,当0a >时,令'()0f x =解得ln x a =,令'()0f x <,解得ln x a <,()f x 单调递减, 令'()0f x >,解得ln x a >,()f x 单调递增,故()f x 在ln x a =时,()f x 有最小值,min ()(ln )(1ln )f x f a a a ==-, 若()0f x >恒成立,则(1ln )0a a ->,解得0a e <<; 当0a =时,()0x f x e =>恒成立; 当0a <时,'()x f x e a =-,()f x 单调递增,,()x f x →-∞→-∞,不合题意,舍去.综上,实数a 的取值范围是0a e ≤<.故答案为0a e ≤<6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 【试题来源】陕西省商洛市洛南中学2019-2020学年高二下学期第二次月考(理) 【答案】(2,)+∞【分析】设()3212,[1,2]2x x x x f x --∈-=,利用导数求得函数的单调性与最大值,结合题意,即可求得实数m 的取值范围.【解析】由题意,设()3212,[1,2]2x x x x f x --∈-=, 则()22(1)(323)x x f x x x --=-+'=,当2[1,)3x ∈--或(1,2]x ∈时,()0f x '>,()f x 单调递增;当2(,1)3x ∈-时,()0f x '<,()f x 单调递减, 又由222(),(2)2327f f -==,即2()(2)3f f -<, 即函数()f x 在区间[1,2]-的最大值为2,又由当[1,2]x ∈-时,32122x x x m --<恒成立,所以2m >, 即实数m 的取值范围是(2,)+∞.故答案为(2,)+∞【名师点睛】本题主要考查了恒成立问题的求解,其中解答中熟练应用函数的导数求得函数的单调性与最值是解答的关键,着重考查推理与运算能力,属于基础题.7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.【试题来源】浙江省杭州地区(含周边)重点中学2020-2021学年高三上学期期中 【答案】32m ≤-【分析】对已知不等式进行变形,利用换元法、构造函数法、常变量分离法,结合导数的性质进行求解即可.【解析】()()()()222210xx x x x xme ex e ex me ex e ex e e++++-⇒≤≤ (1), 令x ext e=,因为()0,x ∈+∞,所以0t >, 则不等式(1)化为2221(2)(1)11t t m t t m t --+++≤⇒≤+,设()xex f x e=,()0,x ∈+∞,'(1)()x e x f x e -=,当1x >时,'()0,()f x f x <单调递减, 当01x <<时,'()0,()f x f x >单调递增,因此当()0,x ∈+∞时,max ()(1)1f x f ==, 而(0)0f =,因此当()0,x ∈+∞时,()(0,1]f x ∈,因此(0,1]t ∈,设2221()1t t g t t --+=+,(0,1]t ∈,因此要想()()220x x xme ex e ex e ++-≤在()0,x ∈+∞上恒成立,只需min ()m g t ≤,2'2243()(1)t t g t t ---=+,因为(0,1]t ∈,所以'()0g t <,因此()g t 在(0,1]t ∈时单调递减,所以min 3()(1)2g t g ==-,因此32m ≤-.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.【试题来源】四川省三台中学实验学校2019-2020学年高二下学期期末适应性考试(理) 【答案】1,e e ⎛⎫ ⎪⎝⎭【分析】先由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;原问题即可转化为直线y ax =介于x y e =与ln y x =之间,作出其大致图象,由图象得到只需<<OA OB k a k ;根据导数的方法求出OA ,OB 所在直线斜率,进而可得出结果. 【解析】由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;所以若()()(ln )0=--<xf x e ax x ax 恒成立,只需0ln 0x e ax x ax ⎧->⎨-<⎩,即直线y ax =介于x y e =与ln y x =之间,作出其大致图象如下:由图象可得,只需<<OA OB k a k ;设11(,)A x y ,由ln y x =得1y x'=,所以111OA x x k y x =='=, 所以曲线ln y x =在点11(,)A x y 处的切线OA 的方程为1111ln ()-=-y x x x x , 又该切线过点O ,所以11110ln (0)1-=-=-x x x ,解得1x e =,所以1=OA k e; 设22(,)B x y ,由x y e =得e x y '=,所以22x OB x x k y e =='=,所以曲线x y e =在点22(,)B x y 处的切线OB 的方程为222()-=-x x y e e x x ,又该切线过点O ,所以2220(0)-=-x x ee x ,解得21x =,所以=OB k e ;所以1a e e <<.故答案为1,e e ⎛⎫⎪⎝⎭. 【名师点睛】本题主要考查由导数的方法研究不等式恒成立的问题,熟记导数的几何意义即可,属于常考题型.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________. 【试题来源】黑龙江省七台河市田家炳高级中学2019-2020学年高二下学期期中考试(理)【答案】[1,)-+∞【分析】求导得到()x f x e a '=+,讨论10a +和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =,不符合,排除,得到答案. 【解析】因为()1x f x e ax =+-,所以()x f x e a '=+,因为0x ,所以()1f x a '+. 当10a +,即1a ≥-时,()0f x ',则()f x 在[0,)+∞上单调递增,从而()(0)0f x f =,故1a ≥-符合题意;当10a +<,即1a <-时,因为()x f x e a '=+在[0,)+∞上单调递增,且(0)10f a '=+<,所以存在唯一的0(0,)x ∈+∞,使得()00f x '=.令()0f x '<,得00x x <,则()f x 在[)00,x 上单调递减,从而()(0)0f x f =,故1a <-不符合题意.综上,a 的取值范围是[1,)-+∞.故答案为[1,)-+∞.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________. 【试题来源】北京市101中学2019-2020学年高三10月月考 【答案】331n n >-【分析】将不等式中的数字2变为3,得出331n n >-,然后利用导数证明出当3n ≥时,33n n ≥即可,即可得出不等式331n n >-对任意的n *∈N 恒成立.【解析】13311>-,23321>-,33331>-,猜想,对任意的n *∈N ,331n n >-.下面利用导数证明出当3n ≥时,33n n ≥,即证ln 33ln n n ≥,即证ln ln 33n n ≤, 构造函数()ln x f x x =,则()21ln xf x x -'=,当3x ≥时,()0f x '<. 所以,函数()ln x f x x =在区间[)3,+∞上单调递减,当3n ≥时,ln ln 33n n ≤.所以,当3n ≥且n *∈N 时,33n n ≥,所以,331n n >-.故答案为331n n >-. 【名师点睛】本题考查数列不等式的证明,考查了归纳法,同时也考查了导数在证明数列不等式的应用,考查推理能力,属于中等题.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________. 【试题来源】湖北省襄阳市第一中学2019-2020学年高二下学期5月月考 【答案】(,1)-∞【分析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->,分类讨论,分离参数,求最值,即可求实数m 的取值范围.【解析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->, (ⅰ)当(0,1)x ∈时,||0x m -≥,ln 0xx<,不等式恒成立,所以m R ∈; (ⅰ)当1x =时,|1|0m -≥,ln 0xx=,所以1m ≠; (ⅰ)当1x >时,不等式恒成立等价于ln x m x x <-恒成立或ln xm x x>+恒成立, 令ln ()x h x x x =-,则221ln ()x x h x x'-+=,因为1x >,所以()0h x '>,从而()1h x >, 因为ln xm x x<-恒成立等价于min ()m h x <,所以1m , 令ln ()x g x x x =+,则221ln ()x xg x x+-'=, 再令2()1ln p x x x =+-,则1'()20p x x x=->在(1,)x ∈+∞上恒成立,()p x 在(1,)x ∈+∞上无最大值,综上所述,满足条件的m 的取值范围是(,1)-∞.故答案为(,1)-∞.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.【试题来源】陕西省安康市2020-2021学年高三上学期10月联考(理)【答案】4e -⎡⎤⎣⎦【分析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立,当0x ≠时,则2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩,然后构造函数()x e g x x=(0x >),()221x h x x x +=-(0x <),分别求解函数()g x 的最小值和()h x 的最大值,只需()()min max h x a g x ≤≤即可.【解析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立;当0x ≠时,则()2,012,0x e ax x a x x x x ⎧≥>⎪⎨-≥--<⎪⎩,因为当0x <时,20x x ->, 所以只需满足2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩即可,令()x e g x x =(0x >),则()()21x x e g x x-'=, 则()0,1x ∈时,()0g x '<,所以()g x 在()0,1x ∈上递减, 当()1,x ∈+∞时,()0g x '>,则()g x 在()1,+∞上递增, 所以()()1min g x g e ==,所以a e ≤,令()221x h x x x +=-(0x <), 则()()()()()()22222222112221x x x x x x h x x x x x --+-+-'==--,令()0h x '=,得x =x =则当x ⎛∈-∞ ⎝ ⎭时,()0h x '>;当x ⎫∈⎪⎪⎝⎭时,()0h x '<, 所以函数()h x在⎛-∞ ⎝ ⎭上递增,在⎫⎪⎪⎝⎭上递减, 所以()4maxh x h ===-⎝⎭⎝⎭故4a ≥-4a e -≤.故答案为4e -⎡⎤⎣⎦.【名师点睛】本题考查根据不等式恒成立问题求参数的取值范围问题,考查学生分析问题、转化问题的能力,考查参变分离思想的运用,考查利用导数求解函数的最值,属于难题. 解决此类问题的方法一般有以下几种:(1)作出函数的图象,利用数形结合思想加以研究;(2)先进行参变分离,然后利用导数研究函数的最值,即可解决问题,必要时可以构造新函数进行研究.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________.【试题来源】河南省名校联盟2020届高三(6月份)高考数学(理)联考试题 【答案】[)0,+∞ 【分析】先根据2x π=时22f a ππ⎛⎫≤⎪⎝⎭得0a ≥,再对函数()f x 求导,研究导函数的单调性、最值等,进而研究函数()f x 单调性,即可解决.【解析】22f a ππ⎛⎫≤ ⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π,0a ∴≥. 由题意得()()2sin sin cos 1sin cos 1f x x x x x x x x '=-++-=-+-⎡⎤⎣⎦, 令()sin cos 1g x x x x =-+-,则()sin g x x x '=-. 当,2x π⎛⎤∈π⎥⎝⎦时,()0g x '<,()g x 单调递减; 当3,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,()g x ∴的最小值为()1g ππ=--. 又22g π⎛⎫=- ⎪⎝⎭,302g π⎛⎫= ⎪⎝⎭,3,22x ππ⎡⎤∴∈⎢⎥⎣⎦,()0g x ≤,即()0f x '≤, ()f x ∴在区间3,22ππ⎡⎤⎢⎥⎣⎦为减函数.02f π⎛⎫= ⎪⎝⎭,∴当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()0f x ≤.又当0a ≥,3,22x ππ⎡⎤∈⎢⎥⎣⎦时,0ax ≥,故()f x ax ≤恒成立,因此a 的取值范围是[)0,+∞.14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.【试题来源】6月大数据精选模拟卷04(上海卷)(满分冲刺篇) 【答案】e -【分析】把不等式()221ln 0a x ax x ax -+≥+恒成立,转化为函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,结合函数的单调性和零点,得出1a-是函数ln y ax x =-的零点,即可求解. 【解析】由题意,不等式()221ln 0a x ax x ax -+≥+恒成立,即函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,由ln ,0,0y ax x a x =-<>,则10y a x'=-<,所以ln y ax x =-为(0,)+∞减函数, 又由当0a <,可得1y ax =+为(0,)+∞减函数, 所以1y ax =+ 与ln y ax x =-同为单调减函数,且1a-是函数1y ax =+的零点, 故1a -是函数ln y ax x =-的零点,故110ln a a a ⎛⎫⎛⎫=⋅--- ⎪ ⎪⎝⎭⎝⎭,解得a e =-.【名师点睛】本题主要考查了不等式的恒成立问题,以及函数与方程的综合应用,其中解答中把不等式恒成立问题转化为函数的性质和函数的零点问题是解答的关键,着重考查转化思想,以及推理与运算能力.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________. 【试题来源】2020届辽宁省抚顺市高三二模考试(理) 【答案】12-【分析】设()()2211xx ax f x x e-+=≤,结合导数可知当0a <时,()()min 21f x f a =+;由题意可知,()()2122211a a f x f a e++≥+=≥,设()1t g t e t =--,则()0g t ≤,由导数可求出当0t =时,()g t 有最小值0,即()0g t ≥.从而可确定()0g t =,即可求出a 的值.【解析】设()()2211xx ax f x x e -+=≤,则()()()121xx x a f x e --+⎡⎤⎣⎦'=.当211a +≥,即0a ≥时,()0f x '≤,则()f x 在(],1-∞上单调递减, 故()()2211a f x f e -≥=≥,解得102ea ≤-<,所以0a ≥不符合题意; 当211a +<,即0a <时,()f x 在(),21a -∞+上单调递减,在(]21,1a +上单调递增, 则()()min21f x f a =+.因为2211xx ax e -+≥,所以()()2122211a a f x f a e ++≥+=≥. 令211a t +=<,不等式21221a a e++≥可转化为10te t --≤,设()1t g t e t =--, 则()1tg t e '=-,令()0g t '<,得0t <;令()0g t '>,得01t <<,则()g t 在(),0-∞上单调递减,在()0,1上单调递增;当0t =时,()g t 有最小值0, 即()0g t ≥.因为()0g t ≤,所以()0g t =,此时210a +=,故12a =-. 【名师点睛】本题考查了函数最值的求解,考查了不等式恒成立问题.本题的难点在于将已知恒成立问题,转化为()10tg t e t =--≤恒成立.本题的关键是结合导数,对含参、不含参函数最值的求解. 四、双空题1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.【试题来源】辽宁省锦州市渤大附中、育明高中2020-2021学年高三上学期第一次联考 【答案】10,2⎛⎫ ⎪⎝⎭[)5,-+∞【分析】求出导函数()2122122ax x f x ax x x-+'=-+=,只需方程22210ax x -+=有两个不相等的正根,满足1212010210x x a x x a ⎧⎪∆>⎪⎪=>⎨⎪⎪+=>⎪⎩,解不等式组可得a 的取值范围;求出 ()()1212f x f x x x +--的表达式,最后利用导数,通过构造函数,求出新构造函数的单调性,最后求出t 的取值范围.【解析】2221()(0)ax x f x x x'-+=>,因为函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,所以方程22210ax x -+=有两个不相等的正实数根,于是有:121248010102a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()212121212()23ln a x x x x x x x x ⎡⎤=+--++⎣⎦21ln 2a a=---, 设21()1ln 2,02h a a a a ⎛⎫=---<< ⎪⎝⎭, 22()0a h a a '-=>,故()h a 在102a <<上单调递增,故1()52h a h ⎛⎫<=-⎪⎝⎭,所以5t ≥-.因此t 的取值范围是[)5,-+∞. 故答案为10,2⎛⎫ ⎪⎝⎭;[)5,-+∞【名师点睛】本题考查了已知函数极值情况求参数取值范围问题,考查了不等式恒成立问题,构造新函数,利用导数是解题的关键,属于基础题.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________. 【试题来源】2021年新高考数学一轮复习学与练 【答案】13,2⎛⎤-∞-⎥⎝⎦132-【分析】将2n =代入求解即可;当n 为奇数时,cos 1n π=-,则转化。
2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)
6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.
江苏省苏州市2021届高三上学期期中考试数学试题及答案
。图己心 沁。 又为△ABC内角,所以,A=年,
”儿下心
又c=(√5-1,由正弦定理得∶sinC=(√-1)sinB
变当己了石子量沁己。3-√23c,osC'5+-12。-sinC
得∶sinC-cosC'=0.即2sinC-Z)=0
cl0.3-寸)
二、多项选题∶本题共4小题, 每小题5分,共 20分.在每小题给出的选项中, 有多项符
合题.目要求,,全部选对的得5分,有选错的得0分,部分选对的得3分.
9.已知函数 f(x)= cosx-√3sinx.g(x)=f(x),则( ( )
kI9 A.g(x)的图象关于点(;0)对称
。 。之逆 56π π上递减
(2)设该区间为【a,b】三【2.4 则g(x)=-x2+4x=-(x-2)+4
余额作为资金全部用于再进货,如此继续,预计 2020年小王的农产品加工厂的年利润为____
元(取1.2"=7.5,1.2=9)
16.已知定义在R上的函数f(x)关于y轴对称,其导函数为 f(x).当x≥0时,
x(x)>1-f(x).若对任意x∈R,不等式e'f(e)-e+ax-af/(ax)>0恒成立,则正
即Vx≥132>a(x-2)恒成立 ①x=2时,8>0, aER;
②x e【1,2)时,a>X- ,令g(3)= —,.xe【12)则a>g60m
e(x)=G3(-x2-4))<0.故g((3)在L12)递减,所以,g(x)mm=g4)=-1<a;
③x e(2,+t?)时0,aY <松-式2 窗它”“不”可言:毫人空己引
在△ABC中,已知内角A,B、C所对的边分别为a,bc若clv3-1b,
2020年6月2020届江苏省盐城一中2017级高三6月三模考试数学试卷及答案(含附加题)
2020年6月2020届江苏省盐城一中2017级高三6月三模考试数学试卷★祝考试顺利★(含答案)2020.06.29第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........) 1.已知集合}31|{<<=x x A ,}42|{<<=x x B ,则A∪B=________.2.若复数满足(2)5i z +=,则在复平面内与复数z 对应的点Z 位于第______象限.3.袋中共有大小相同的4只小球,编号为1,2,3,4.现从中任取2只小球,则取出的2只球的编号之和是奇数的概率为 .4.某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,则第三组的人数为________.5.如图是某算法的伪代码,输出的结果S 的值为________.6.设向量a =(1,-1),a -2b =(k -1,2k +2),且a ⊥b ,则k = _______.7.已知等比数列{}n a 满足82=a ,144453-=a a a ,则=3a _______.8.已知双曲线2214x y m -=的渐近线方程为2y x =±,则m = . 9.我国古代劳动人民在筑城、筑堤、挖沟、挖渠、建仓、建囤等工程中,积累了丰富的经验,总结出了一套有关体积、容积计算的方法,这些方法以实际问题的形式被收入我国古代数学名著《九章算术》中.《九章算术商功》:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”下图解释了这段话中由一个长方体,得到“堑堵”、“阳马”、“鳖臑”的过程.已知如图堑堵的棱长1,1,2===c b a ,则鳖臑的外接球的体积为 .10.已知函数2)(x x f =,则不等式2(2)()f x f x ->的解集是 .11.函数x x y 2cos 2sin +=的图像向右平移6π得到函数()y f x =的图像,则()f x 在⎥⎦⎤⎢⎣⎡2,0π上的增区间为 .12.已知函数f (x )是定义在R 上的奇函数,当x >0时,x x x f e 1)(-=.若关于x 的方程f (x )=m有解,则实数m 的取值范围是 .13.在△ABC中,cos cos A B AB +==当sin sin A B +取最大值时,△ABC 内切圆的半径为___.14.已知函数)(x f y =是定义域为R 的偶函数,当0≥x 时,⎪⎪⎩⎪⎪⎨⎧>-⎪⎭⎫ ⎝⎛-≤≤-=,2,4321,20,41)(2x x x x f x 若关于x 的方程[]R a a x af x f ∈=++,0167)()(2有且仅有8个不同的实数根,则实数a 的取值范围 . 二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本题满分14分)在锐角ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量2(2sin(),3),cos 2,2cos 12B m A C n B ⎛⎫=+=-⎪ ⎭⎝,且向量m ,n 共线. (1)求角B 的大小; (2)如果1b =,求ABC ∆的面积ABC S ∆的最大值.。
江苏省盐城市、南京市2022届高三年级第一次模拟考试数学试题及答案解析
高三数学试题第1页(共5页)盐城市、南京市2022届高三年级第一次模拟考试数学2022.01(总分150分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I 卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={y |y =sin x ,x ∈R },N ={y |y =2x ,x ∈R },则M ∩N =A .[-1,+ )B .[-1,0)C .[0,1]D .(0,1]2.在等比数列{a n }中,公比为q ,已知a 1=1,则0<q <1是数列{a n }单调递减的条件A .充分不必要B .必要不充分C .充要D .既不充分又不必要3.某中学高三(1)班有50名学生,在一次高三模拟考试中,经统计得:数学成绩X ~N (110,100),则估计该班数学得分大于120分的学生人数为(参考数据:P (|X -μ|<σ)≈0.68,P (|X -μ|<2σ)≈0.95)A .16B .10C .8D .24.若f (α)=cos α+isin α(i 为虚数单位),则[f (α)]2=A .f (α)B .f (2α)C .2f (α)D .f (α2)5.已知直线2x +y +a =0与⊙C :x 2+(y -1)2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =A .-4或2B .-2或4C .-1±3D .-1±66.在平面直角坐标系xOy 中,设A (1,0),B (3,4),向量→OC =x →OA +y →OB ,x +y =6,则|→AC |的最小值为A .1B .2C .5D .25高三数学试题第2页(共5页)7.已知α+β=π4(α>0,β>0),则tan α+tan β的最小值为A .22B .1C .-2-22D .-2+228.已知f (x )x -4,x ≤4x -16)2-143,x >4,则当x ≥0时,f (2x )与f (x 2)的大小关系是A .f (2x )≤f (x 2)B .f (2x )≥f (x 2)C .f (2x )=f (x 2)D .不确定二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数f (x )=cos2x +sin x ,则关于f (x )的性质说法正确的有A .偶函数B .最小正周期为πC .既有最大值也有最小值D .有无数个零点10.若椭圆C :x 29+y 2b 2=1(b >0)的左右焦点分别为F 1,F 2,则下列b 的值,能使以F 1F 2为直径的圆与椭圆C 有公共点的有A .b =2B .b =3C .b =2D .b =511.若数列{a n }的通项公式为a n =(-1)n -1,记在数列{a n }的前n +2(n ∈N *)项中任取两项都是正数的概率为P n ,则A .P 1=13B .P 2n <P 2n +2C .P 2n -1<P 2nD .P 2n -1+P 2n <P 2n +1+P 2n +212.如图,在四棱锥P -ABCD 中,已知PA ⊥底面ABCD ,底面ABCD 为等腰梯形,AD ∥BC ,AB=AD =CD =1,BC =P A =2,记四棱锥P -ABCD 的外接球为球O ,平面P AD 与平面PBC 的角线为l ,BC 的中点为E ,则A .l ∥BC B .AB ⊥PCC .平面PDE ⊥平面PAD D .l 被球O 截得的弦长为1第II 卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.若f (x )=(x +3)5+(x +m )5是奇函数,则m =.ABDCEP(第12题图)高三数学试题第3页(共5页)14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3b ,则cos B 的最小值是.15.计算机是二十世纪最伟大的发明之一,被广泛地应用于人们的工作于生活之中,计算机在进行数的计算处理时,使用的是二进制.一个十进制数n (n ∈N *)可以表示成二进制数(a 0a 1a 2…a k )2,k ∈N ,则n =a 0⋅2k +a 1⋅2k -1+a 2⋅2k -2+…+a k ⋅20,其中a 0=1,当i ≥1时,a i ∈{0,1}.若记a 0,a 1,a 2,…,a k 中1的个数为f (n ),则满足k =6,f (n )=3的n 的个数为.16.已知:若函数f (x ),g (x )在R 上可导,f (x )=g (x ),则f′(x )=g′(x ).又英国数学家泰勒发现了一个恒等式e2x=a 0+a 1x +a 2x 2+…+a n x n +…,则a 0=,∑=+1011n nn na a =.(第一空2分,第二空3分)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)从①sin D =sin A ;②S △ABC =3S △BCD ;③→DB ·→DC =-4这三个条件中任选一个,补充在下面的问题中,并完成解答.已知点D 在△ABC 内,cos A >cos D ,AB =6,AC =BD =4,CD =2,若,求△ABC 的面积.注:选择多个条件分别解答,按第一个解答计分.18.(本小题满分12分)已知数列{a n }的通项公式为a n =2n +4,数列{b n }的首项为b 1=2.(1)若{b n }是公差为3的等差数列,求证:{a n }也是等差数列;(2)若{a b n}是公比为2的等比数列,求数列{b n }的前n 项和.高三数学试题第4页(共5页)19.(本小题满分12分)佩戴头盔是一项对家庭与社会负责的表现,某市对此不断进行安全教育.下表是该市某主干路口连续4年监控设备抓拍到的驾驶员不戴头盔的统计数据:年度2018201920202021年度序号x 1234不戴头盔人数y125010501000900(1)请利用所给数据求不戴头盔人数y 与年度序号x 之间的回归直线方程ŷ=bˆx +a ˆ,并估算该路口2022年不戴头盔的人数;(2)交警统计2018~2021年通过该路口的开电瓶车出事故的50人,分析不戴头盔行为与事故是否伤亡的关系,得到右表,能否有95%的把握认为不戴头盔行为与事故伤亡有关?参考公式:bˆ=∑∑==--ni ini iix n xyx n yx 1221=()()()∑∑==---n i ini ii x x y yx x 121,aˆ=y -x bˆ.P (K 2≥k )0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .不戴头盔戴头盔伤亡73不伤亡1327高三数学试题第5页(共5页)20.(本小题满分12分)在三棱柱ABC -A 1B 1C 1中,AA 1=13,AB =8,BC =6,AB ⊥BC ,AB 1=B 1C ,D 为AC 中点,平面AB 1C ⊥平面ABC .(1)求证:B 1D ⊥平面ABC ;(2)求直线C 1D 与平面A 1BC 所成角的正弦值.21.(本小题满分12分)(1)设双曲线C :x2a 2-y2b 2=1(a ,b >0)的右顶点为A ,虚轴长为2,两准线间的距离为263.(1)求双曲线C 的方程;(2)设动直线l 与双曲线C 交于P 、Q 两点,已知AP ⊥AQ ,设点A 到动直线l 的距离为d ,求d 的最大值.22.(本小题满分12分)设函数f (x )=-3ln x +x 3+ax 2-2ax ,a ∈R .(1)求函数f (x )在x =1处的切线方程;(2)若x 1,x 2为函数f (x )的两个不等于1的极值点,设P (x 1,f (x 1)),Q (x 2,f (x 2)),记直线PQ 的斜率为k ,求证:k +2<x 1+x 2.A BC 1D(第20题图)A 1CB 1高三数学试题第1页(共18页)盐城市、南京市2022届高三年级第一次模拟考试数学2022.01(总分150分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I 卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={y |y =sin x ,x ∈R },N ={y |y =2x ,x ∈R },则M ∩N =A .[-1,+ )B .[-1,0)C .[0,1]D .(0,1]2.在等比数列{a n }中,公比为q ,已知a 1=1,则0<q <1是数列{a n }单调递减的条件A .充分不必要B .必要不充分C .充要D.既不充分又不必要3.某中学高三(1)班有50名学生,在一次高三模拟考试中,经统计得:数学成绩X ~N (110,100),高三数学试题第2页(共18页)则估计该班数学得分大于120分的学生人数为(参考数据:P (|X -μ|<σ)≈0.68,P (|X -μ|<2σ)≈0.95)A .16B .10C .8D .24.若f (α)=cos α+isin α(i 为虚数单位),则[f (α)]2=A .f (α)B .f (2α)C .2f (α)D .f (α2)5.已知直线2x +y +a =0与⊙C :x 2+(y -1)2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =A .-4或2B .-2或4C .-1±3D .-1±66.在平面直角坐标系xOy 中,设A (1,0),B (3,4),向量→OC =x →OA +y →OB ,x +y =6,则|→AC |的最小值为A .1B .2C .5D .25高三数学试题第3页(共18页)7.已知α+β=π4(α>0,β>0),则tan α+tan β的最小值为A .22B .1C .-2-22D .-2+228.已知f (x )x -4,x ≤4x -16)2-143,x >4,则当x ≥0时,f (2x )与f (x 2)的大小关系是A .f (2x )≤f (x 2)B .f (2x )≥f (x 2)C .f (2x )=f(x 2)D .不确定二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数f (x )=cos2x +sin x ,则关于f (x )的性质说法正确的有A .偶函数B .最小正周期为πC .既有最大值也有最小值D .有无数个零点高三数学试题第4页(共18页)10.若椭圆C :x 29+y 2b 2=1(b >0)的左右焦点分别为F 1,F 2,则下列b 的值,能使以F 1F 2为直径的圆与椭圆C 有公共点的有A .b =2B .b =3C .b =2D .b =511.若数列{a n }的通项公式为a n =(-1)n -1,记在数列{a n }的前n +2(n ∈N *)项中任取两项都是正数的概率为P n ,则A .P 1=13B .P 2n <P 2n +2C .P 2n -1<P 2nD .P 2n -1+P 2n <P 2n +1+P 2n +2高三数学试题第5页(共18页)12.如图,在四棱锥P -ABCD 中,已知PA ⊥底面ABCD ,底面ABCD 为等腰梯形,AD ∥BC ,AB=AD =CD =1,BC =P A =2,记四棱锥P -ABCD 的外接球为球O ,平面P AD 与平面PBC 的角线为l ,BC 的中点为E ,则A .l ∥BC B .AB ⊥PCC .平面PDE ⊥平面PAD D .l 被球O 截得的弦长为1ABDCEP(第12题图)高三数学试题第6页(共18页)高三数学试题第7页(共18页)第II 卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.若f (x )=(x +3)5+(x +m )5是奇函数,则m =.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3b ,则cos B 的最小值是.高三数学试题第8页(共18页)15.计算机是二十世纪最伟大的发明之一,被广泛地应用于人们的工作于生活之中,计算机在进行数的计算处理时,使用的是二进制.一个十进制数n (n ∈N *)可以表示成二进制数(a 0a 1a 2…a k )2,k ∈N ,则n =a 0⋅2k +a 1⋅2k -1+a 2⋅2k -2+…+a k ⋅20,其中a 0=1,当i ≥1时,a i ∈{0,1}.若记a 0,a 1,a 2,…,a k 中1的个数为f (n ),则满足k =6,f (n )=3的n 的个数为.16.已知:若函数f (x ),g (x )在R 上可导,f (x )=g (x ),则f′(x )=g′(x ).又英国数学家泰勒发现了一个恒等式e 2x=a 0+a 1x +a 2x 2+…+a n x n +…,则a 0=,∑=+1011n nn na a =.(第一空2分,第二空3分)高三数学试题第9页(共18页)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)高三数学试题第10页(共18页)从①sin D =sin A ;②S △ABC =3S △BCD ;③→DB ·→DC =-4这三个条件中任选一个,补充在下面的问题中,并完成解答.已知点D 在△ABC 内,cos A >cos D ,AB =6,AC =BD =4,CD =2,若,求△ABC 的面积.注:选择多个条件分别解答,按第一个解答计分.【解析】高三数学试题第11页(共18页)18.(本小题满分12分)已知数列{a n }的通项公式为a n =2n +4,数列{b n }的首项为b 1=2.(1)若{b n }是公差为3的等差数列,求证:{a n }也是等差数列;(2)若{a b n}是公比为2的等比数列,求数列{b n }的前n 项和.【解析】19.(本小题满分12分)佩戴头盔是一项对家庭与社会负责的表现,某市对此不断进行安全教育.下表是该市某主干路口连续4年监控设备抓拍到的驾驶员不戴头盔的统计数据:年度2018201920202021年度序号x 1234不戴头盔人数y125010501000900(1)请利用所给数据求不戴头盔人数y 与年度序号x 之间的回归直线方程ŷ=bˆx +a ˆ,并估算该路口2022年不戴头盔的人数;(2)交警统计2018~2021年通过该路口的开电瓶车出事故的50人,分析不戴头盔行为与事故是否伤亡的关系,得到右表,能否有95%的把握认为不戴头盔行为与事故伤亡有关?参考公式:bˆ=∑∑==--ni ini iix n xyx n yx 1221=()()()∑∑==---n i ini ii x x y yx x 121,aˆ=y -x b ˆ.不戴头盔戴头盔伤亡73不伤亡1327高三数学试题第12页(共18页)P (K 2≥k )0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .【解析】不戴头盔戴头盔总计伤亡7310不伤亡132740总计203050高三数学试题第13页(共18页)20.(本小题满分12分)在三棱柱ABC -A 1B 1C 1中,AA 1=13,AB =8,BC =6,AB ⊥BC ,AB 1=B 1C ,D 为AC 中点,平面AB 1C ⊥平面ABC .(1)求证:B 1D ⊥平面ABC ;(2)求直线C 1D 与平面A 1BC 所成角的正弦值.【解析】A BC 1D(第20题图)A 1CB 1高三数学试题第14页(共18页)21.(本小题满分12分)(1)设双曲线C :x2a 2-y2b 2=1(a ,b >0)的右顶点为A ,虚轴长为2,两准线间的距离为263.(1)求双曲线C 的方程;(2)设动直线l 与双曲线C 交于P 、Q 两点,已知AP ⊥AQ ,设点A 到动直线l的距离为d ,求d 的最大值.【解析】高三数学试题第15页(共18页)法二:高三数学试题第16页(共18页)22.(本小题满分12分)设函数f (x )=-3ln x +x 3+ax 2-2ax ,a ∈R .(1)求函数f (x )在x =1处的切线方程;(2)若x 1,x 2为函数f (x )的两个不等于1的极值点,设P (x 1,f (x 1)),Q (x 2,f (x 2)),记直线PQ 的斜率为k ,求证:k +2<x 1+x 2.【解析】法一:高三数学试题第17页(共18页)高三数学试题第18页(共18页)。
专题4-2 三角函数图像与性质归类-(原卷版)
专题4-2 三角函数图像与性质归类目录一、热点题型归纳【题型一】平移1:正弦←→余弦 (1)【题型二】平移2:识图平移 (3)【题型三】平移3:恒等变形平移 (4)【题型四】平移4:中心对称,轴对称,单调性等性质 (5)【题型五】平移5:最小平移 (6)【题型六】平移6:求w 最值 (7)【题型七】正余弦函数对称轴 (8)【题型八】正余弦对称中心 (9)【题型九】三角函数周期 (9)【题型十】单调性与最值 (11)【题型十一】正余弦“和”与“积”性质、最值 (11)【题型十二】三角函数零点 (12)【题型十三】图像与性质:x1与x2型 (13)【题型十四】三角函数最值 (14)【题型十五】万能代换与换元 (15)【题型十六】图像和性质综合 (15)二、真题再现 (16)三、模拟检测 (178)【题型一】平移1:正弦←→余弦【典例分析】(2022·安徽省太和中学高三阶段练习)已知函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭,若()f x 的图象向右平移π12个单位后,得到函数()2πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象,则( )A .6π=ϕB .π4ϕ= C .π3ϕ= D .2π5ϕ=1(2023·全国·高三专题练习)已知直线8x π=是函数()2sin(2)||2πϕϕ⎛⎫=+< ⎪⎝⎭f x x 的图像的一条对称轴,为了得到函数()y f x =的图像,可把函数2cos 26y x π⎛⎫=- ⎪⎝⎭的图像( )A .向左平移24π个单位长度B .向右平移24π个单位长度C .向左平移12π个单位长度 D .向右平移12π个单位长度2.(2022·全国·高三专题练习)为得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-- ⎪⎝⎭图象上所有的点( )A .向左平移712π个单位长度B .向右平移712π个单位长度 C .向左平移724π个单位长度D .向右平移724π个单位长度3.(2023·全国·高三专题练习)为了得到函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象,可以将函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移5π24个单位 B .向右平移7π24个单位 C .向右平移5π24个单位D .向左平移7π24个单位【题型二】平移2:识图平移【典例分析】(2022·陕西·渭南市华州区咸林中学高三开学考试(理))如图,函数()()π2sin 0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像过()π,0,2π,22⎛⎫⎪⎝⎭两点,为得到函数()()2cos g x x ωϕ=-的图像,应将()f x 的图像( )A .向右平移7π6个单位长度 B .向左平移7π6个单位长度 C .向右平移5π2个单位长度D .向左平移5π2个单位长度()++(0)0Asin x b A ,的步骤和方法:确定函数的最大值M 和最小值2M mA ,2M mb; :确定函数的周期T ,则可2T得=; :常用的方法有代入法和五点法. 把图象上的一个已知点代入(此时A b ,,已知)或代入图象与直线y b =的交点求解注意交点是在上升区间上还是在下降区间上).五点法”中的某一个点为突破口.【变式演练】1.(2022·河南·高三阶段练习(理))函数()()2sin f x x ωϕ=+(0>ω且0πϕ<<)在一个周期内的图象如图所示,将函数()y f x =图象上的点的横坐标伸长为原来的2倍,再向右平移π4个单位长度,得到函数()y g x =的图象,则π3g ⎛⎫= ⎪⎝⎭( )AB .1C .-1D .2.(2022·全国·长垣市第一中学高三开学考试(理))将函数sin y x =的图象上所有点的横坐标变为原来的(0)m m >倍,纵坐标不变,再将所得函数图象向左平移(0)ϕϕπ<<个单位长度,最后将所得函数图象上所有点的纵坐标变为原来的(0)n n >倍,横坐标不变,得到如图所示的函数()f x 的部分图象,则,,m n ϕ的值分别为( )A .22,2,3m n πϕ===B .12,2,23m n πϕ===C .2,2,3m n πϕ===D .1,2,23m n πϕ===3.(2022·四川省内江市第六中学模拟预测(文))已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,将函数()f x 的图象向左平移34π个单位长度,得到函数()g x 的部分图象如图所示,则3f π⎛⎫= ⎪⎝⎭( )A .12 B .12-C D .【题型三】平移3:恒等变形平移【典例分析】(2022·湖北·高三开学考试)要得到2()sin 43g x x π⎛⎫=+⎪⎝⎭的图象,只需要将22()cos 2sin 2f x x x =-的图象( ) A .向左平移24π个单位长度 B .向右平移24π个单位长度 C .向左平移12π个单位长度D .向右平移12π个单位长度【变式演练】1.(2023·全国·高三专题练习)已知函数()2sin cos f x x x =+的图象向左平移()0ϕϕ>个单位长度后得到函数()sin 2cos g x x x =+的图象,则()g ϕ=( )A .65B .115C .15 D .852.(2022·全国·高三专题练习)为了得到函数2cos2y x =的图象,只需把函数2cos 2y x x =+的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度3.(【百强校】2015届浙江省宁波市镇海中学高三5月模拟考试理科数学)设()cos 22f x x x =,把()y f x =的图像向左平移(0)ϕϕ>个单位后,恰好得到函数()cos 22g x x x =-的图象,则ϕ的值可以为( ) A .6π B .3πC .23πD .56π【题型四】平移4:中心对称,轴对称,单调性等性质【典例分析】(2022·安徽·高三开学考试)将函数()sin(2)(0)f x x ϕϕπ=+<<的图象向右平移6π个单位长度得到()g x 的图象,若()g x 的图象关于直线3x π=对称,则6g π⎛⎫= ⎪⎝⎭( )A .B .12-C .0D .12)+)00((Asin x A ,两个点关于中心对称,则函数值互为相反数。
人教版数学高三期中测试精选(含答案)8
【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x
,
y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn
.
【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .
高考数学《平面解析几何》练习题及答案
平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。
江苏省盐城市2020届高三第三次模拟考试(6月) 数学 Word版含答案
2020届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2020.6 参考公式:锥体体积公式:V =13Sh ,其中S 为锥体的底面积,h 为高.一、 填空题:本大题共14小题,每小题5分,共70分.1. 若集合A ={x|x ≤m},B ={x|x ≥-1},且A ∩B ={m},则实数m 的值为________.2. 已知i 为虚数单位,复数z 满足z(3+i)=10,则|z|的值为________.3. 从数字0,1,2中任取两个不同的数字构成一个两位数,则所得的两位数大于10的概率为________.4. 如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,图中小矩形从左向右所对应的区间依次为[0,50),[50,100),[100,150),[150,200),[200,250].若一个月以30天计算,估计这家面包店一个月内这种面包的日销售量少于100个的天数为________天.5. 执行如图所示的流程图,输出k 的值为________.6. 若双曲线x 2a 2-y 2b 2=1(a>0,b>0)的渐近线为y =±2x ,则其离心率的值为________.7. 若三棱柱ABCA 1B 1C 1的体积为12,点P 为棱AA 1上一点,则四棱锥PBCC 1B 1的体积为________.8. “ω=2”是“函数f(x)=sin (ωx +π6)的图象关于点(5π12,0)对称”的__________条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)9. 在△ABC 中,C =B +π4,AB =324AC ,则tan B 的值为________.10. 若数列{a n }的前n 项和为S n ,a n =2n -1+(-1)n (2n -1),则2a 100-S 100的值为________. 11. 若集合P ={(x ,y)|x 2+y 2-4x =0},Q ={(x ,y)||x +2|y≥15},则P ∩Q 表示的曲线的长度为________.12. 若函数f(x)=⎩⎪⎨⎪⎧m +e x ,x>0,e 2x -1,x ≤0的图象上存在关于原点对称的相异两点,则实数m 的最大值是________.13. 在△ABC 中,AB =10,AC =15,∠A 的平分线与边BC 的交点为D ,点E 为边BC 的中点.若AB →·AD →=90,则 AB →·AE →的值是________.14. 若实数x ,y 满足4x 2+4xy +7y 2=1,则7x 2-4xy +4y 2的最小值是________. 二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)若函数f(x)=Msin (ωx +φ)(M>0,ω>0,0<φ<π)的最小值是-2,最小正周期是2π,且图象经过点N(π3,1).(1) 求f(x)的解析式;(2) 在△ABC中,若f(A)=85,f(B)=1013,求cos C的值.16. (本小题满分14分)如图,在四棱锥PABCD中,底面ABCD是菱形,PC⊥BC,点E是PC的中点,且平面PBC⊥平面ABCD.求证:(1) PA∥平面BDE;(2) 平面PAC⊥平面BDE.17. (本小题满分14分)如图,在一旅游区内原有两条互相垂直且相交于点O的道路l1,l2,一自然景观的边界近似为圆形,其半径约为1千米,景观的中心C到l1,l2的距离相等,点C到点O的距离约为10千米.现拟新建四条游览道路方便游客参观,具体方案:在线段OC上取一点P,新建一条道路OP,并过点P新建两条与圆C相切的道路PM,PN(M,N为切点),同时过点P新建一条与OP垂直的道路AB(A,B分别在l1,l2上).为促进沿途旅游经济,新建道路长度之和越大越好,求新建道路长度之和的最大值.(所有道路宽度忽略不计)如图,在平面直角坐标系中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的短轴长为2,F 1,F 2分别是椭圆C 的左、右焦点,过点F 2的动直线与椭圆交于点P ,Q ,过点F 2与PQ 垂直的直线与椭圆C 交于A ,B 两点.当直线AB 过原点时,PF 1=3PF 2.(1) 求椭圆C 的标准方程;(2) 若点H(3,0),记直线PH ,QH ,AH ,BH 的斜率依次为k 1,k 2,k 3,k 4.① 若k 1+k 2=215,求直线PQ 的斜率;② 求(k 1+k 2)(k 3+k 4)的最小值.如果存在常数k使得无穷数列{a n}满足a mn=ka m a n恒成立,则称{a n}为P(k)数列.(1) 若数列{a n}是P(1)数列,a6=1,a12=3,求a3;(2) 若等差数列{b n}是P(2)数列,求{b n}的通项公式;(3) 是否存在P(k)数列{c n},使得c2 020,c2 021,C2 022,…是等比数列?若存在,请求出所有满足条件的数列{c n};若不存在,请说明理由.设函数f(x)=-3ln x+x3+ax2-2ax.(1) 当a=0时,求函数f(x)的单调递增区间;(2) 若函数f(x)在x=1时取极大值,求实数a的取值范围;(3) 设函数f(x)的零点个数为m,试求m的最大值.2020届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤a 2b 1.若矩阵A 属于特征值3的一个特征向量为α=⎣⎢⎡⎦⎥⎤11,求该矩阵属于另一个特征值的特征向量.B. (选修44:坐标系与参数方程)在极坐标系中,已知直线l :ρcos θ+2ρsin θ=m(m 为实数),曲线C :ρ=2cos θ+4sin θ,当直线l 被曲线C 截得的弦长取最大值时,求实数m 的值.C. (选修45:不等式选讲)已知实数x ,y ,z 满足x +y +2z =1,求x 2+y 2+z 2的最小值.【必做题】 第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,抛物线C :y 2=2px(p>0)的焦点为F ,过点P(2,0)作直线l 与抛物线交于A ,B 两点,当直线l 与x 轴垂直时AB 的长为4 2.(1) 求抛物线的方程;(2) 若△APF 与△BPO 的面积相等,求直线l 的方程.23. 若有穷数列{a n }共有k 项(k ≥2),且a 1=1,a r +1a r =2(r -k )r +1,当1≤r ≤k -1时恒成立.设T k =a 1+a 2+…+a k .(1) 求T 2,T 3; (2) 求T k .2020届高三模拟考试试卷(盐城) 数学参考答案及评分标准1. -12. 103. 34 4. 12 5. 4 6.5 7. 8 8. 充分不必要 9. 2 10. 299 11.2π312. 1+e 2 13.1752 14. 3815. 解:(1) 因为f(x)的最小值是-2,所以M =2.(2分)因为f(x)的最小正周期是2π,所以ω=1.(4分)又由f(x)的图象经过点N(π3,1),可得f(π3)=1,sin(π3+φ)=12,所以φ+π3=2k π+π6或φ+π3=2k π+5π6,k ∈Z .又0<φ<π,所以φ=π2,故f(x)=2sin(x +π2),即f(x)=2cos x .(6分)(2) 由(1)知f(x)=2cos x. 又f(A)=85,f(B)=1013,故2cos A =85,2cos B =1013,即cos A =45,cos B =513.因为在△ABC 中,A ,B ∈(0,π), 所以sin A =1-cos 2A =1-(45)2=35,sin B =1-cos 2B =1-(513)2=1213,(10分)所以cos C =cos[π-(A +B)]=-cos(A +B)=-(cos Acos B -sin Asin B)=-(45×513-35×1213)=1665.(14分)16. 证明:(1) 设AC ∩BD =O ,连结OE , 因为底面ABCD 是菱形,故O 为BD 中点. 因为点E 是PC 的中点,所以AP ∥OE. (2分)因为OE ⊂平面BDE ,AP ⊄平面BDE ,所以AP ∥平面BDE.(6分)(2) 因为平面PBC ⊥平面ABCD ,PC ⊥BC ,平面PBC ∩平面ABCD =BC ,PC ⊂平面PBC ,所以PC ⊥平面ABCD.(9分)又BD ⊂平面ABCD ,所以PC ⊥BD.因为四边形ABCD 是菱形,所以AC ⊥BD.又PC ⊥BD ,AC ∩PC =C ,AC ⊂平面PAC ,PC ⊂平面PAC , 所以BD ⊥平面PAC. (12分)又BD ⊂平面BDE ,所以平面PAC ⊥平面BDE.(14分)17. 解:连结CM ,设∠PCM =θ,则PC =1cos θ,PM =PN =tan θ,OP =OC -PC =10-1cos θ,AB =2OP =20-2cos θ.设新建的道路长度之和为f(θ),则f(θ)=PM +PN +AB +OP =2tan θ-3cos θ+30.(6分)由1<PC ≤10得110≤cos θ<1.设cos θ0=110,θ0∈(0,π2),则θ∈(0,θ0],sin θ0=31110,f ′(θ)=2-3sin θcos 2θ.令f′(θ)=0得sin θ=23.(10分)设sin θ1=23,θ1∈(0,θ0],则θ,f ′(θ),f (θ)的情况如下表:由表可知当θ=θ1时f(θ)有最大值,此时sin θ=23,cos θ=53,tan θ=25,f (θ)=30- 5.(13分)答:新建道路长度之和的最大值为30-5千米.(14分) 注:定义域扩展为(0,π2),求出最值后验证也可.18. 解:(1) 因为椭圆C :x 2a 2+y 2b 2=1(a>b>0)的短轴长为2,所以b =1.当直线AB 过原点时,PQ ⊥x 轴,所以△PF 1F 2为直角三角形. 由定义知PF 1+PF 2=2a ,而PF 1=3PF 2,故PF 1=32a ,PF 2=12a.由PF 21=PF 22+F 1F 22得94a 2=14a 2+4c 2=14a 2+4(a 2-1),化简得a 2=2, 故椭圆的方程为x 22+y 2=1. (4分)(2) ① 设直线PQ :y =k(x -1),代入到椭圆方程得(1+2k 2)x 2-4k 2x +(2k 2-2)=0. 设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2, (6分)所以k 1+k 2=y 1x 1-3+y 2x 2-3=k[(x 1-1)(x 2-3)+(x 2-1)(x 1-3)](x 1-3)(x 2-3),化简可得k 1+k 2=2k 8k 2+7=215,(10分) 解得k =1或k =78,即为直线PQ 的斜率.(12分)② 当这两条直线中有一条与坐标轴垂直时,(k 1+k 2)(k 3+k 4)=0. 当两条直线与坐标轴都不垂直时,由①知k 1+k 2=2k8k 2+7,同理可得k 3+k 4=-2k 8+7k 2,(14分)故(k 1+k 2)(k 3+k 4)=-4k 256k 4+56+113k 2=-456(k 2+1k2)+113≥-456×2k 2×1k2+113=-4225, 当且仅当k 2=1k 2,即k =±1时取等号.综上,(k 1+k 2)(k 3+k 4)的最小值为-4225.(16分)19. 解:(1) 由数列{a n }是P(1)数列得a 6=a 2a 3=1,a 12=a 2a 6=3,可得a 3=13.(2分)(2) 由{b n }是P(2)数列知b mn =2b m b n 恒成立,取m =1得b n =2b 1b n 恒成立. 当b 1=0,b n =0时满足题意,此时b n =0.当b 1≠0时,由b 1=2b 21,可得b 1=12,取m =n =2得b 4=2b 22. 设公差为d ,则12+3d =2(12+d)2,解得d =0或d =12.综上,b n =0或b n =12或b n =n2,经检验均合题意.(8分)(3) (解法1)假设存在满足条件的P(k)数列{c n },不妨设该等比数列c 2 020,c 2 021,c 2 022,…的公比为q ,则有c 2 020×2 020=kc 2 020·c 2 020⇒c 2 020·q 2 020×2 020-2 020=kc 2 020·c 2 020,可得q 2 020×2 020-2 020=kc 2 020 ①,c 2 020×2 021=kc 2 020·c 2 021⇒c 2 020·q 2 020×2 021-2 020=kc 2 020·c 2 020·q ,可得q 2 020×2 021-2 021=kc 2 020 ②.综合①②可得q =1,(10分)故c 2 020×2 020=c 2 020,代入c 2 020×2 020=kc 2 020·c 2 020得c 2 020=1k ,则当n ≥2 020时c n =1k .(12分)又c 2 020=kc 1·c 2 020⇒c 1=1k.当1<n<2 020时,不妨设n i ≥2 020,i ∈N *且i 为奇数,由c ni =c n ×ni -1=kc n ×c ni -1=kc n ×c n ×ni -2=k 2(c n )2×c ni -2=…=k i -1(c n )i . 而c ni =1k ,所以1k =k i -1(c n )i ,(c n )i =(1k )i ,c n =1k.综上,满足条件的P(k)数列{c n }有无穷多个,其通项公式为c n =1k .(16分)(解法2)同解法1得,当n ≥2 020时c n =1k.当1<n<2 020时,c n ×2 020=kc n c 2 020,而c n ×2 020=1k ,c 2 020=1k ,故c n =1k ,以下同解法1.(解法3)假设存在满足条件的P(k)数列{c n },显然{c n }的所有项及k 均不为零,c 1=1k ,不妨设该等比数列c 2 020,c 2 021,c 2 022,…的公比为q ,当1≤n ≤2 018时,c n ×2 020=kc n c 2 020,c (n +1)×2 020=kc n +1c 2 020, 两式相除可得c n +1c n =c (n +1)×2 020c n ×2 020=q 2 020,故当1≤n ≤2 019时,{c n }也为等比数列,(10分) 故c n =c 1×q 2 020(n-1)=1k ×q 2 020(n -1),则c 2=1k ×q 2 020,c 4=1k×q 6 060. 由c 4=k(c 2)2得q 2 020=1,且当1≤n ≤2 019时c n =1k,(12分)则c 2 020=kc 2c 1 010=k ×1k ×1k =1k ,c 2 025=kc 5c 405=k ×1k ×1k =1k ,所以c 2 025c 2 020=1=q 5,所以q=1,故当n ≥2 020时c n =1k.综上,满足条件的P(k)数列{c n }有无穷多个,其通项公式为c n =1k.(16分)20. 解:(1) 当a =0时,f(x)=-3ln x +x 3,所以f′(x)=-3x +3x 2=3(x 3-1x),(1分)由f′(x)=0得x =1,当x ∈(0,1)时,f ′(x)<0;当x ∈(1,+∞)时,f ′(x)>0,所以函数f(x)的单调增区间为(1,+∞).(3分) (2) 由题意得f′(x)=-3x +3x 2+2ax -2a =3(x -1)x [x 2+(2a 3+1)x +1]. 令g(x)=x 2+(2a3+1)x +1(x>0),则f′(x)=3(x -1)xg(x).当2a 3+1≥0,即a ≥-32时,g(x)>0恒成立,得f(x)在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数f(x)的极小值点;当Δ=(2a 3+1)2-4<0,即-92<a<32时,此时g(x)>0恒成立,f(x)在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数f(x)的极小值点;当Δ=(2a 3+1)2-4=0,即a =-92或a =32时,易得f(x)在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数f(x)的极小值点;(6分)当Δ=(2a 3+1)2-4>0时,解得a<-92或a>32(舍去),当a<-92时,设g(x)的两个零点为x 1,x 2,所以x 1x 2=1,不妨设0<x 1<x 2.又g(1)=2a 3+3<0,所以0<x 1<1<x 2,故f′(x)=3x(x -x 1)(x -1)(x -x 2).当x ∈(0,x 1)时,f ′(x)<0;当x ∈(x 1,1)时,f ′(x)>0;当x ∈(1,x 2)时,f ′(x)<0;当x ∈(x 2,+∞)时,f ′(x)>0;所以f(x)在(0,x 1)上递减,在(x 1,1)上递增,在(1,x 2)上递减,在(x 2,+∞)上递增; 所以x =1是函数f(x)极大值点. 综上所述a<-92.(10分)(3) ① 由(2)知当a ≥-92时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,故函数f(x)至多有两个零点,欲使f(x)有两个零点,需f(1)=1-a<0,得a>1,此时f(x)=-3ln x +x 3+ax 2-2ax>-3ln x -2ax ,f(1a )>3ln a -2,当a>e 时,f(1a )>0,此时函数f(x)在(0,1)上恰有1个零点;(12分)又当x>2时,f(x)=-3ln x +x 3+ax(x -2)>-3ln x +x 3. 由(1)知φ(x)=-3ln x +x 3在(1,+∞)上单调递增,所以f(e)>-3+e 3>0,故此时函数f(x)在(1,+∞)上恰有1个零点; 由此可知当a>e 时,函数f(x)有两个零点.(14分)② 当a<-92时,由(2)知f(x)在(0,x 1)上递减,在(x 1,1)上递增,在(1,x 2)上递减,在(x 2,+∞)上递增;而0<x1<1,所以f(x1)=-3ln x1+x31+ax1(x1-2)>0,此时函数f(x)也至多有两个零点.综上①②所述,函数f(x)的零点个数m的最大值为2.(16分)2020届高三模拟考试试卷(盐城) 数学附加题参考答案及评分标准21. A. 解:由题意知Aα=⎣⎢⎡⎦⎥⎤a 2b 1⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11,所以⎩⎪⎨⎪⎧a +2=3,b +1=3,即⎩⎪⎨⎪⎧a =1,b =2,(4分) 所以矩阵A 的特征多项式f(λ)=⎪⎪⎪⎪⎪⎪λ-1-2 -2λ-1=(λ-1)2-4.由f(λ)=0,解得λ=3或λ=-1.(8分)当λ=-1时,⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,令x =1,则y =-1,所以矩阵A 的另一个特征值为-1,对应的一个特征向量为⎣⎢⎡⎦⎥⎤1-1.(10分)B. 解:由题意知直线l 的直角坐标方程为x +2y -m =0.(2分)又曲线C 的极坐标方程为ρ=2cos θ+4sin θ,即ρ2=2ρcos θ+4ρsin θ, 所以曲线C 的直角坐标方程为x 2+y 2-2x -4y =0, 所以曲线C 是圆心为(1,2)的圆,(8分)当直线l 被曲线C 截得的弦长最大时,得1+2×2-m =0,解得m =5.(10分) C. 解:由柯西不等式有(12+12+22)(x 2+y 2+z 2)≥(x +y +2z)2=1,(6分) 所以x 2+y 2+z 2≥16(当且仅当x 1=y 1=z 2,即x =y =16,z =13时取等号),(8分)所以x 2+y 2+z 2的最小值是16.(10分)22. 解:(1) 当直线l 与x 轴垂直时AB 的长为42,又P(2,0),取A(2,22),(1分) 所以(22)2=2p·2,解得p =2,所以抛物线的方程为y 2=4x.(2分) (2) 由题意知S △APF =12·FP ·|y A |=12|y A |,S △BPO =12·OP ·|y B |=|y B |.因为S △APF =S △BPO ,所以|y A |=2|y B |.(4分)当k AB =0时,直线AB 与抛物线不存在两个交点,所以k AB ≠0,故设直线AB 的方程为x =my +2,代入抛物线方程得y 2-4my -8=0, 所以y A +y B =4m ,y A y B =-8.(6分) 当y A >0,y B <0时,y A =-2y B ,-2y 2B =-8,所以y B =-2,x B =y 2B4=1,所以k PB =2,直线AB 的方程为2x -y -4=0.(8分)当y A <0,y B >0时,同理可得直线AB 的方程为2x +y -4=0. 综上所述,直线AB 的方程为2x±y -4=0.(10分)23. 解:(1) 当k =2时,r =1,由a 2a 1=2(1-2)1+1=-1,得a 2=-1,T 2=0.(1分)当k =3时,r =1或2,由a 2a 1=2(1-3)1+1=-2,得a 2=-2.由a 3a 2=2(2-3)2+1=-23,得a 3=43,T 3=13.(3分) (2) 因为a r +1a r =2(r -k )r +1,由累乘法得a 2a 1·a 3a 2·…·a r +1a r =2(1-k )2·2(2-k )3·…·2(r -k )r +1, 所以a r +1=(-2)r (k -1)2·(k -2)3·…·(k -r )r +1=(-2)r k !k (r +1)!(k -r -1)!,(5分)所以a r +1=1-2kC r +1k (-2)r +1.(6分) 当r =0时,a 1=1也适合a r +1=1-2kC r +1k (-2)r +1, 所以T k =1-2k [C 1k (-2)1+C 2k (-2)2+…+C k k (-2)k ],(8分) 即T k =1-2k [C 0k (-2)0+C 1k (-2)1+C 2k (-2)2+…+C k k (-2)k-1], 所以T k =1-2k [(1-2)k -1]=12k [1-(-1)k ].(10分)。
江苏省南京市、盐城市2024届高三第一次模拟考试数学试题(含解析)
江苏省南京市、盐城市2024届高三第一次模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集U 与集合A ,B 的关系如图,则图中阴影部分所表示的集合为( )A .U A BðB .U A B UðC .U B A ⋂ðD .U B AU ð2.复数z 满足()21i 1i z -=+,(i 为虚数单位),则z =( )A .14B .12C D .13.等比数列{}n a 的前n 项和为n S ,已知3215S a a =+,54a =,则1a =( )A .14B .14-C .12D .12-4.德国天文学家约翰尼斯·开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过本人的观测和分析后,于1618年在《宇宙和谐论》中提出了行星运动第三定律——绕以太阳为焦点的椭圆轨道运行的所有行星,其椭圆轨道的长半轴长a 与公转周期T 有如下关系:32T a =,其中M 为太阳质量,G 为引力常量.已知火星的公转周期约为水星的8倍,则火星的椭圆轨道的长半轴长约为水星的( )A .2倍B .4倍C .6倍D .8倍5.关于函数()()sin f x A x =+ωϕ(0A >,0ω>,π02ϕ<<),有下列四个说法:①()f x 的最大值为3②()f x 的图象可由3sin y x =的图象平移得到③()f x 的图象上相邻两个对称中心间的距离为π2④()f x 的图象关于直线π3x =对称若有且仅有一个说法是错误的,则π2f ⎛⎫= ⎪⎝⎭( )A .B .32-C .32D6.设O 为坐标原点,圆()()22:124M x y -+-=与x 轴切于点A ,直线0x +=交圆M 于,B C 两点,其中B 在第二象限,则OA BC ⋅=( )A B C D 7.在棱长为()20a a >的正方体1111ABCD A B C D -中,点,M N 分别为棱AB ,11D C 的中点.已知动点P 在该正方体的表面上,且0PM PN ⋅=,则点P 的轨迹长度为( )A .12aB .12πaC .24aD .24πa8.用{}min ,x y 表示x ,y 中的最小数.已知函数()e xxf x =,则()(){}min ,ln 2f x f x +的最大值为( )A .22e B .1eC .ln 22D .ln2二、多选题9.已知,x y ∈R ,且123x =,124y =,则( )A .y x >B .1x y +>C .14xy <D <10.有n (n *∈N ,10n ≥)个编号分别为1,2,3,…,n 的盒子,1号盒子中有2个白球和1个黑球,其余盒子中均有1个白球和1个黑球.现从1号盒子任取一球放入2号盒子;再从2号盒子任取一球放入3号盒子;…;以此类推,记“从i 号盒子取出的球是白球”为事件i A (1i =,2,3,…,n ),则( )A .()1213P A A =B .()124|5P A A =C .()1279P A A +=D .()1012P A =11.已知抛物线E :24x y =的焦点为F ,过F 的直线1l 交E 于点()11,A x y ,()22,B x y ,E 在B 处的切线为2l ,过A 作与2l 平行的直线3l ,交E 于另一点()33,C x y ,记3l 与y 轴的交点为D ,则( )A .121y y =B .1323x x x +=C .AF DF=D .ABC 面积的最小值为16三、填空题12.621x x ⎛⎫- ⎪⎝⎭展开式的常数项为 .13.设双曲线C :22221x y a b-=(0a >,0b >)的一个焦点为F ,过F 作一条渐近线的垂线,垂足为E .若线段EF 的中点在C 上,则C 的离心率为 .14.已知π,0,2αβ⎛⎫∈ ⎪⎝⎭,且1sin sin 2αβ-=-,1cos cos 2αβ-=,则tan tan αβ+= .四、解答题15.在ABC 中,()sin sin B A A C -+=.(1)求B 的大小;(2)延长BC 至点M ,使得2BC CM = .若π4CAM ∠=,求BAC ∠的大小.16.如图,已知四棱台1111ABCD A B C D -的上、下底面分别是边长为2和4的正方形,平面11AA D D ⊥平面ABCD ,11A A D D ==,点P 是棱1DD 的中点,点Q 在棱BC 上.(1)若3BQ QC =,证明:PQ ∥平面11ABB A ;(2)若二面角P QD C --BQ 的长.17.已知某种机器的电源电压U (单位:V )服从正态分布()2220,20N .其电压通常有3种状态:①不超过200V ;②在200V~240V 之间③超过240V .在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.(1)求该机器生产的零件为不合格品的概率;(2)从该机器生产的零件中随机抽取n (2n ≥)件,记其中恰有2件不合格品的概率为n p ,求n p 取得最大值时n 的值.附:若()2~,Z N μσ,取()0.68P Z μσμσ-<<+=,()220.95P Z μσμσ-<<+=.18.已知椭圆C :()222210x y a b a b+=>>的右焦点为()1,0F ,右顶点为A ,直线l :4x =与x 轴交于点M ,且AM a AF =,(1)求C 的方程;(2)B 为l 上的动点,过B 作C 的两条切线,分别交y 轴于点P ,Q ,①证明:直线BP ,BF ,BQ 的斜率成等差数列;②⊙N 经过B ,P ,Q 三点,是否存在点B ,使得,90PNQ ∠=︒若存在,求BM ;若不存在,请说明理由.19.已知0a >,函数()sin cos 1f x ax x ax =+-,π04x <<.(1)若2a =,证明:()0f x >;(2)若()0f x >,求a 的取值范围;(3)设集合()1π{|cos,N }21nn n k P a a n k k *===∈+∑,对于正整数m ,集合{}|2m Q x m x m =<<,记m P Q 中元素的个数为m b ,求数列{}m b 的通项公式.参考答案:1.A 【分析】利用韦恩图表示的集合运算,直接写出结果即可.【详解】观察韦恩图知,阴影部分在集合A 中,不在集合B 中,所以所求集合为U A B ð.故选:A 2.C 【分析】根据复数的运算求出复数z ,再求模长即可求解.【详解】由已知得:z ()()221i i 1i1i 11i 2i 2i 221i +++====-+---,所以,||z ==故选:C .3.A【分析】把等比数列{}n a 各项用基本量1a 和q 表示,根据已知条件列方程即可求解.【详解】设等比数列{}n a 的公比为q ,由3215S a a =+,得:123215a a a a a ++=+,即:23114a a a q ==,所以,24q =,又54a =,所以,4222111()44a q a q a ==⨯=,所以,114a =.故选:A.4.B 【分析】根据已知的公式,由周期的倍数关系求出长半轴长的倍数关系即可.【详解】设火星的公转周期为1T ,长半轴长为1a ,火星的公转周期为2T ,长半轴长为2a ,则,128T T =,且32113222T T ⎧=⎪⎪⎨⎪=⎪⎩①②①②得: 311222()8T a T a ==,所以,124a a =,即:124a a =.故选:B .5.D【分析】根据题意,由条件可得②和③相互矛盾,然后分别验证①②④成立时与①③④成立时的结论,即可得到结果.【详解】说法②可得1ω=,说法③可得π22T =,则2ππT ω==,则2ω=,②和③相互矛盾;当①②④成立时,由题意3A =,1ω=,ππ2π32k ϕ+=+,k ∈Z .因为π0,2ϕ⎛⎫∈ ⎪⎝⎭,故0k =,π6ϕ=,即()3sin 6f x x π⎛⎫=+ ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭说法①③④成立时,由题意3A =,2ω=,2ππ2π32k ϕ+=+,k ∈Z ,则ππ20,62k ϕπ⎛⎫=-∉ ⎪⎝⎭,故不合题意.故选:D.6.D 【分析】先根据圆的弦长公式求出线段BC的长度,再求出直线0x +=的倾斜角,即可求得OA 与BC的的夹角,进而可得出答案.【详解】由题意()1,0A ,圆心()1,2M ,()1,2M 到直线0x +=距离为12,所以BC ==直线0x +=π6,则OA 与BC 的的夹角为π6,所以cos ,1OA BC OA BC OA BC ⋅===故选:D .7.B【分析】根据条件得到P 点轨迹为以MN 为直径的球,进而得出点P 的轨迹是六个半径为a 的圆,即可求出结果.【详解】因为0PM PN ⋅=,故P 点轨迹为以MN 为直径的球,如图,易知MN 中点即为正方体中心O ,球心在每个面上的射影为面的中心,设O 在底面ABCD 上的射影为1O ,又正方体的棱长为2a ,所以MN =,易知1OO a =,1O M a =,又动点P 在正方体的表面上运动,所以点P 的轨迹是六个半径为a 的圆,轨迹长度为6212a a ⨯π=π,故选:B .8.C 【分析】利用导数研究()e xxf x =的单调性,作出其图象,根据图象平移作出()ln 2y f x =+的图象,数形结合即可得到答案.【详解】∵()e x xf x =,∴()1e xx f x ='-,根据导数易知()f x 在(),1∞-上单调递增,在()1,∞+上单调递减;由题意令()()ln 2f x f x =+,即ln 2ln 2e ex x x x ++=,解得ln 2x =;作出图象:则()(){}min ,ln 2f x f x +的最大值为两函数图象交点处函数值,为ln 22.故选:C .9.ACD 【分析】用对数表示x ,y ,利用对数函数的性质、对数的计算、基本不等式等即可逐项计算得到答案.【详解】∵123x =,∴12log 3x =,同理12log 4y =,∵12log y x =在0x >时递增,故y x >,故A 正确;∵12log 121x y +==,∴B 错误;∵0x >,0y >,∴2124x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当x y =时等号成立,而x y <,故14xy <,∴C 正确;∴212x y =++=+<<,∴D 正确.故选:ACD .10.BC 【分析】根据题意,由概率的公式即可判断AC ,由条件概率的公式即可判断B ,由()n P A 与()1n P A -的关系,即可得到()11123n n P A ⎛⎫=⋅+ ⎪⎝⎭,从而判断D 【详解】对A ,()12224339P A A =⨯=,所以A 错误;对B ,()22211533339P A =⨯+⨯=,故()()()121224|5P A A P A A P A ==,所以B 正确;对C ,()()()()12121225473999P A A P A P A P A A +=+-=+-=,所以C 正确;对D ,由题意:()()()1121133n n n P A P A P A --⎡⎤=+-⎣⎦,所以()()1111232n n P A P A -⎡⎤-=-⎢⎥⎣⎦,()123P A =,()112112326P A -=-=,所以()11111126323n nn P A -⎛⎫⎛⎫-=⨯=⨯ ⎪ ⎪⎝⎭⎝⎭,所以()11123n n P A ⎛⎫=⋅+ ⎪⎝⎭,则()101011123P A ⎛⎫=⋅+ ⎪⎝⎭,所以D 错误.故选:BC .11.ACD 【分析】A 选项,求出焦点坐标与准线方程,设直线1l 的方程为1y kx =+,联立抛物线方程,得到两根之积,从而求出121y y =;B 选项,求导,得到切线方程,联立抛物线方程,得到1322x x x +=;C 选项,求出()10,2D y +,11DF y =+,结合焦半径公式求出11AF y =+,C 正确;D 选项,作出辅助线,结合B 选项,得到2ABC ABM S S = ,表达出ABM S △,利用基本不等式求出最小值,从而得到ABC 面积最小值.【详解】A 选项,由题意得()0,1F ,准线方程为1y =-,直线1l 的斜率存在,故设直线1l 的方程为1y kx =+,联立24x y =,得2440x k --=,124x x =-,故2212121116y y x x ==,A 正确;B 选项,12y x '=,直线2l 的斜率为212x ,故直线3l 的方程为()2112x y y x x -=-,即2122x y x y =++,联立24x y =,得()2212220x x x y --+=,故1322x x x +=,所以B 错误;C 选项,由直线3l 的方程()2112x y y x x -=-,令0x =得()2112x y x y =-+,又124x x =-,所以12y y =+,故()10,2D y +,故11DF y =+,又由焦半径公式得11AF y =+,所以C 正确;D 选项,不妨设12x x <,过B 向3l 作平行于y 轴的直线交3l 于M ,根据B 选项知,1322x x x +=,故2ABC ABM S S = ,根据直线3l 的方程()2112x y y x x -=-,当2x x =时,()22221222111122222x x x x x y x x y y y =-+=+-=++,故2221,22x M x y ⎛⎫++ ⎪⎝⎭,故222222221211212111614222244444x x x x x BM y y x x x ⎛⎫=++-=+-=++=+ ⎪⎝⎭,故()2212111111114144248ABMS x x x x x x x x ⎛⎫⎛⎫⎛⎫=-⋅⋅+=+⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭311141888x x ⎛⎛⎫=+≥ ⎪ ⎝⎭⎝,当且仅当114x x =,即12x =时,等号成立,故ABC 的面积最小值为16,D正确.故选:ACD【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.12.15【分析】利用二项式的展开式通项公式求解.【详解】展开式的通项公式为66316621C (1)C kk kk k kk T x x x --+⎛⎫=-=- ⎪⎝⎭,令630k -=,解得2k =,所以常数项为236C 15T ==,故答案为:15.13【分析】由直线EF 与渐近线方程联立求出E 的坐标,代入双曲线标准方程即可求出离心率.【详解】直线EF 与渐近线方程联立得(),,b y x a a y x c b ⎧=⎪⎪⎨⎪=--⎪⎩解得2E a x c =,E ab y c =,∴EF 中点M 的坐标为22,22a c ab c c ⎛⎫+ ⎪⎝⎭,又M 点在双曲线上,代入其标准方程,得()2222222144c ac a a c+-=,化简得222c a =,∴22e =,e =14.83/223【分析】变形后得到sin cos sin cos ααββ+=+,利用辅助角公式得到π2αβ+=,得到1sin cos 2αα-=-,两边平方后得到3sin cos 8αα=,利用同角三角函数关系求出18tan tan sin cos 3αβαα+==.【详解】由题可知sin sin cos cos αβαβ-=-+,所以sin cos sin cos ααββ+=+,ππ44αβ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,因为π,0,2αβ⎛⎫∈ ⎪⎝⎭,所以ππ3πππ3π,,,444444αβ⎛⎫⎛⎫+∈+∈ ⎪ ⎪⎝⎭⎝⎭,又αβ≠,所以πππ44a β+++=,故π2αβ+=,所以1sin cos 2sin sin αβαα-=--=,两边平方后得221sin 2sin cos cos 4αααα-+=,故3sin cos 8αα=,1sin cos 18tan tan tan tan cos sin sin cos 3αααβαααααα+=+=+==.故答案为:8315.(1)π4B =;(2)π12BAC ∠=或5π12.【分析】(1)由()sin sin C A B =+,代入已知等式中,利用两角和与差的正弦公式化简得cos B =B 的大小;(2)设BC x =,BAC θ∠=,在ABC 和ACM △中,由正弦定理表示边角关系,化简求BAC ∠的大小.【详解】(1)在ABC 中,A B C π++=,所以()sin sin C A B =+.因为()sin sin B A A C -=,所以()()sin sin B A A A B -=+,即sin cos cos sin sin cos cos sin B A B A A B A B A -=+2cos sin A B A =.因为()0,πA ∈,所以sin 0A ≠,cos B =因为0πB <<,所以π4B =.(2)法1:设BC x =,BAC θ∠=,则2CM x =.由(1)知π4B =,又π4CAM ∠=,所以在ABM 中,π2AMC θ∠=-.在ABC 中,由正弦定理得sin sin BC AC BAC B=∠,即πsin sin 4x ACθ=①.在ACM △中,由正弦定理得sin sin CM ACCAM M =∠,即2ππsin sin 42x ACθ=⎛⎫- ⎪⎝⎭②.①÷②=,即12sin cos 2θθ=,所以1sin 22θ=.因为3π0,4θ⎛⎫∈ ⎪⎝⎭,3π20,2θ⎛⎫∈ ⎪⎝⎭,所以π26θ=或5π6,故π12θ=或5π12.法2:设BC x =,则2CM x =,3BM x =.因为π4CAM B ∠==,所以ACM BAM △△∽,因此AM CMBM AM=,所以226AM BM CM x =⋅=,AM =.在ABM 中,由正弦定理得sin sin =∠BM AM BAM B,即3sin x BAM =∠化简得sin BAM ∠=因为30,4BAM π⎛⎫∠∈ ⎪⎝⎭,所以π3BAM ∠=或2π3,π4BAC BAM ∠=∠-,故π12BAC ∠=或5π12.16.(1)证明见解析;(2)1.【分析】(1)取1AA 的中点M ,先证明四边形BMPQ 是平行四边形得到线线平行,再由线面平行性质定理可得;(2)法一:应用面面垂直性质定理得到线面垂直,建立空间直角坐标系,再利用共线条件设CQ CB λ=()01λ≤≤,利用向量加减法几何意义表示所需向量的坐标,再由法向量方法表示面面角,建立方程求解可得;法二:同法一建立空间直角坐标系后,直接设点Q 坐标()()4,,013Q t t -≤≤,进而表示所需向量坐标求解两平面的法向量及夹角,建立方程求解t ;法三:一作二证三求,设()04BQ x x =≤≤,利用面面垂直性质定理,作辅助线作角,先证明所作角即为二面角的平面角,再利用已知条件解三角形建立方程求解可得.【详解】(1)证明:取1AA 的中点M ,连接MP ,MB .在四棱台1111ABCD A B C D -中,四边形11A ADD 是梯形,112AD =,4=AD ,又点M ,P 分别是棱1A A ,1D D 的中点,所以MP AD ∥,且1132A D ADMP +==.在正方形ABCD 中,BC AD ∥,4BC =,又3BQ QC =,所以3BQ =.从而MP BQ ∥且MP BQ =,所以四边形BMPQ 是平行四边形,所以PQ MB ∥.又因为MB ⊂平面11ABB A ,PQ ⊄平面11ABB A ,所以PQ ∥平面11ABB A ;(2)在平面11AA D D 中,作1A O AD ⊥于O .因为平面11AA D D ⊥平面ABCD ,平面11AA D D ⋂平面ABCD AD =,1A O AD ⊥,1A O ⊂平面11AA D D ,所以1A O ⊥平面ABCD .在正方形ABCD 中,过O 作AB 的平行线交BC 于点N ,则ON OD ⊥.以{}1,,ON OD OA为正交基底,建立空间直角坐标系O xyz -.因为四边形11AA D D 是等腰梯形,112AD =,4=AD ,所以1AO =,又11A A D D ==,所以14A O =.易得()4,1,0B -,()0,3,0D ,()4,3,0C ,()10,2,4D ,50,,22P ⎛⎫⎪⎝⎭,所以()4,0,0DC = ,10,,22DP ⎛⎫=- ⎪⎝⎭ ,()0,4,0CB =-.法1:设()()0,4,001CQ CB λλλ==-≤≤ ,所以()4,4,0DQ DC CQ λ=+=-.设平面PDQ 的法向量为(),,m x y z = ,由00m DP m DO ⎧⋅=⎪⎨⋅=⎪⎩ ,得1202440y z x y λ⎧-+=⎪⎨⎪-=⎩,取()4,4,1m λ= ,另取平面DCQ 的一个法向量为()0,0,1n =.设二面角P QD C --的平面角为θ,由题意得cos θ==.又cos cos ,m n m n m nθ⋅===⋅=解得34λ=±(舍负),因此3434CQ =⨯=,1BQ =.所以当二面角P QDC --BQ 的长为1.法2:设()()4,,013Q t t -≤≤,所以()4,3,0DQ t =-.设平面PDQ 的法向量为(),,m x y z = ,由00m DP m DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得12024(3)0y z x t y ⎧-+=⎪⎨⎪+-=⎩,取()3,4,1m t =-,另取平面DCQ 的一个法向量为()0,0,1n =.设二面角P QD C --的平面角为θ,由题意得cos θ==.又cos cos ,m n m n m nθ⋅===⋅=解得0=t 或6(舍),因此1BQ =.所以当二面角P QD C --BQ 的长为1.法3:在平面11A ADD 中,作PH AD ⊥,垂足为H .因为平面11A ADD ⊥平面ABCD ,平面11 A ADD 平面ABCD AD =,PH AD ⊥,PH ⊂平面11A ADD ,所以PH ⊥平面ABCD ,又DQ ⊂平面ABCD ,所以PH DQ ⊥.在平面ABCD 中,作HG DQ ⊥,垂足为G ,连接PG .因为PH DQ ⊥,HG DQ ⊥,PH HG H = ,PH ,HG ⊂平面PHG ,所以DQ ⊥平面PHG ,又PG ⊂平面PHG ,所以DQ PG ⊥.因为HG DQ ⊥,PG DQ ⊥,所以PGH ∠是二面角P QD A --的平面角.在四棱台1111ABCD A B C D -中,四边形11A ADD 是梯形,112AD =,4=AD ,11A A D D ==,点P 是棱1DD 的中点,所以2PH =,12DH =.设()04BQ x x =≤≤,则4CQ x =-,DQ ==在QHD △中,1114222HG ⨯⨯=,从而HG =.因为二面角P QD C --的平面角与二面角P QD A --的平面角互补,且二面角P QD C --sin PGH ∠=tan 5PGH ∠=.所以在Rt PHG △中,5PHHG=,解得1x =或7x =(舍).所以当二面角P QD C --BQ 的长为1.17.(1)0.09;(2)22n =.【分析】(1)根据题意,由正态分布的概率公式代入计算,再由全概率公式,即可得到结果;(2)根据题意,由二项分布的概率公式代入计算,即可得到结果.【详解】(1)记电压“不超过200V”、“在200V~240V 之间”、“超过240V”分别为事件A ,B ,C ,“该机器生产的零件为不合格品”为事件D .因为()2~220,20U N ,所以()()()110.682000.1622P Z P A P U μσμσ--<<+-=≤===,()()()2002400.68P B P U P Z μσμσ=<<=-<<+=,()()()110.682400.1622P Z P C P U μσμσ--<<+-=>===.所以()()()()()()()|||P D P A P D A P B P D B P C P D C =++0.160.150.680.050.160.20.09=⨯+⨯+⨯=,所以该机器生产的零件为不合格品的概率为0.09.(2)从该机器生产的零件中随机抽取n 件,设不合格品件数为X ,则()~,0.09X B n ,所以()2222C 0.910.09n n n p P X -===⋅⋅.由21211222C 0.910.0910.911C 0.910.091n n n n n n p n p n -++-⋅⋅+==⨯>⋅⋅-,解得19129n ≤<.所以当221n ≤≤时,1n n p p +<;当22n ≥时,1n n p p +>;所以22p 最大.因此当22n =时,n p 最大.18.(1)22143x y +=(2)①证明见解析;②【分析】(1)先求出右顶点D 和M 的坐标,利用题中条件列等式,分类讨论计算得出椭圆的方程;(2)设直线的方程为()4y t k x -=-,将直线方程与椭圆方程联立,得出韦达定理,由题意,将韦达定理代入可出答案.【详解】(1)由右焦点为()1,0F ,得1c =,因为AM a AF =,所以()41a a a -=-,若4a ≥,则()41a a a -=-,得2402a a -+=,无解,若4a <,则()41a a a -=-,得24a =,所以23b =,因此C 的方程22143x y +=.(2)设()4,B t ,易知过B 且与C 相切的直线斜率存在,设为()4y t k x -=-,联立()224143y t k x x y ⎧-=-⎪⎨+=⎪⎩,消去y 得()()()222348444120k x k t k x t k ++-+--=,由()()()2222Δ64443444120k t k k t k ⎡⎤=--+--=⎣⎦,得2212830k tk t -+-=,设两条切线BP ,BQ 的斜率分别为1k ,2k ,则1282123t t k k +==,212312t k k -=.①设BF 的斜率为3k ,则3413t t k ==-,因为123223tk k k +==,所以BP ,BF ,BQ 的斜率成等差数列,②法1:在()14y t k x -=-中,令0x =,得14P y t k =-,所以()10,4P t k -,同理,得()20,4Q t k -,所以PQ 的中垂线为()122y t k k =-+,易得BP 中点为()12,2t k -,所以BP 的中垂线为()11122y x t k k =--+-,联立12112()1(2)2y t k k y x t k k =-+⎧⎪⎨=--+-⎪⎩,解得()()121222,2N k k t k k +-+,所以()122122,22NP k k k k =---,()121222,22NQ k k k k =---,要使0NP NQ ⋅= ,即()()2212124140k k k k +--=,整理得12121k k k k +=-,而12k k -===所以23112t -+=,解得27t=,t =,因此BM =故存在符合题意的点B ,使得0NP NQ ⋅=,此时BM =法2:在()14y t k x -=-中,令0x =,得14P y t k =-,因此()10,4P t k -,同理可得()20,4Q t k -,所以PQ 的中垂线为()122y t k k =-+,因为BP 中点为()12,2t k -,所以BP 的中垂线为()11122y x t k k =--+-,联立12112()1(2)2y t k k y x t k k =-+⎧⎪⎨=--+-⎪⎩,解得1222N x k k =+,要使0NP NQ ⋅= ,则2PNQ π∠=,所以2N PQ x =,即1212222k k k k +=-,而12k k -==,所以23112t -+=,解得27t =,t =,因此BM =故存在符合题意的点B ,使得0NP NQ ⋅=,此时BM =法3:要使90PNQ ∠=︒,即45PBQ ∠=︒或135︒,从而1tan PBQ ∠=,又1212tan 1k k PBQ k k -∠=+,所以121211k k k k -=+,因为12k k -===23112t -=+,解得27t=,t =,所以BM =故存在符合题意的点B ,使得0NP NQ ⋅=,此时BM =法4:要使90PNQ ∠=︒,即45PBQ ∠=︒或135︒,从而cos BP BQ PBQ BP BQ⋅∠==⋅ 在()14y t k x -=-中,令0x =,得14P y t k =-,故()10,4P t k -,同理可得()20,4Q t k -,因此()14,4BP k =-- ,()24,4BQ k =--,所以BP BQ BP BQ ⋅==⋅)121k k +=,即222222121212122241k k k k k k k k ++=+++,整理得()22212121261k k k k kk++=+,所以22223326112123t t t ⎛⎫--⎛⎫+⋅+= ⎪ ⎪⎝⎭⎝⎭,整理得422630t t +-=,解得27t =或9-(舍去),因此t =,BM =故存在符合题意的点B ,使得0NP NQ ⋅= ,此时BM =法5:要使90PNQ ∠=︒,即45PBQ ∠=︒或135︒,在()14y t k x -=-中,令0x =,得14P y t k =-,故()10,4P t k -,同理可得()20,4Q t k -,由等面积法得12B PBQ PQ x S ⋅==即121144422k k -⋅=⋅()22212121261k k k k k k +=++,所以22222336131212t t t ⎛⎫--⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭,整理得422630t t +-=,解得27t =或9-(舍去),因此t =,BM =故存在符合题意的点B ,使得0NP NQ ⋅= ,此时BM =【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.19.(1)证明见解析;(2)(]0,2;(3)m b m =.【分析】(1)通过构造函数,利用导数判断函数单调性,求最小值即可证明;(2)对a 的值分类讨论,利用导数判断函数单调性,求最小值,判断能否满足()0f x >;(3)利用(1)中结论,()()ππcos12121k k k k >-++,通过放缩并用裂项相消法求()1πcos 21n k k k =+∑,有()1π1cos 21n k n n k k =-<<+∑,可得m b m =.【详解】(1)因为2a =,所以()()2sin cos 212sin sin f x x x x x x x =+-=-,π04x <<,2sin 0x >.设()sin g x x x =-,π04x <<,则()1cos 0g x x ='->,所以()g x 在π0,4⎛⎫ ⎪⎝⎭上单调递增,所以()()00g x g >=,因此()0f x >.(2)函数()sin cos 1f x ax x ax =+-,π04x <<,方法一:()()sin cos sin f x a x x x ax '=+-,当02a <≤时,注意到π022ax x <≤<,故sin sin2ax x ≤,因此()()()()sin cos sin2sin 1cos sin cos f x a x x x x a x x x x x '≥+-=-+-⎡⎤⎣⎦,由(1)得sin 0x x ->,因此()0f x ¢>,所以()f x 在π0,4⎛⎫ ⎪⎝⎭上单调递增,从而()()00f x f >=,满足题意;当2a >时,令()()()sin cos sin h x f x a x x x ax '==+-,()()()222cos sin cos 2cos cos h x a x x x a ax a a ax a ax a ⎛⎫'=--<-=- ⎪⎝⎭,因为201a <<,所以存在0,2a θπ⎛⎫∈ ⎪⎝⎭,使得2cos a a θ=,则当(0,)x θ∈时,0,()ax a θ∈,()2220h x a a a ⎛⎫'<-= ⎪⎝⎭,所以()f x '在()0,θ上单调递减,从而()()00f x f ''<=,所以()f x 在()0,θ上单调递减,因此()()00f f θ<=,不合题意;综上,02a <≤.方法二:()()sin cos sin f x a x x x ax '=+-,当02a <≤时,注意到π022ax x <≤<,故sin sin2ax x ≤,因此()()()()sin cos sin2sin 1cos sin cos f x a x x x x a x x x x x '≥+-=-+-⎡⎤⎣⎦,由(1)得sin 0x x ->,因此()0f x ¢>,所以()f x 在π0,4⎛⎫ ⎪⎝⎭上单调递增,从而()()00f x f >=,满足题意;当2a >时,先证明当0x >时,2sin x x x -<.令()2sin G x x x x =--,则()12cos G x x x '=--,令()12cos H x x x =--,则()2sin 0H x x '=-+<,所以()G x '在()0,∞+上单调递减,有()()00G x G ''<=,所以()G x 在()0,∞+上单调递减,有()()00G x G <=,因此当0x >时,2sin x x x -<.又由(1)得sin 0x x ->,此时()()()()()2222sin cos s 22in 2a x ax ax a a x a x ax a x a f x a x x x ax ⎡⎤⎡⎤⎡⎤<-+=--=--⎣⎦⎣⎦⎣⎦'=+-,则0π0,4x ⎛⎫∈ ⎪⎝⎭∃且022a x a -<,当()00,x x ∈时,()0f x '<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盐城市2020届高三年级第一学期期中考试数 学 试 题(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上. 1.已知集合{}1,3,6A =,{}1,2B =,则A B U = ▲ . 2.函数2sin y x =的最小正周期为 ▲ .3.若幂函数y x α=的图象经过点,则α的值为 ▲ .4.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若2a =,b =3B π=,则A = ▲ .5.若命题“x R ∃∈,210x ax -+<”是真命题,则实数a 的取值范围是 ▲ .6.在等差数列}{n a 中,若2523a a +=,则数列}{n a 的前6项的和6S = ▲ . 7.若向量(2,3)a =r ,(3,3)b =r ,(7,8)c =r ,且(,)c xa yb x y R =+∈r r r,则x y += ▲ .8.若函数x x a x x f ln )3()(2+++=在区间(1,2)上存在唯一的极值点,则实数a 的取值范围为 ▲ .9.若菱形ABCD 的对角线AC 的长为4,则AB AC ⋅=uu u r uuu r▲ .10.函数)sin()(ϕω+=x A x f (其中A ,ω,ϕ为常数,且0>A ,0>ω,22πϕπ<<-)的部分图象如图所示,若56)(=αf (20πα<<),则()6f πα+的值为 ▲ .11.函数()f x 是以4为周期的奇函数,当[1,0)x ∈-时,()2x f x =,则2(log 20)f = ▲ .12.设函数9()||()f x x a a R x=-+∈,若当(0,)x ∈+∞时,不等式()4f x …恒成立,则a 的取值范围是 ▲ .13.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,已知74,3==a A π,角A 的平分线交边BC 于点D ,其中33=AD ,则ABC S ∆= ▲ .14.设数列{}n a 共有4项,满足12340a a a a >>>…,若对任意的,(14i j i j 剟?,且*,i j N ∈),j i a a -仍是数列{}n a 中的某一项. 现有下列命题:①数列{}n a 一定是等差数列;②存在14i j <剟,使得j i ja ia =;③数列{}n a 中一定存在一项为0. 其中,真命题的序号有 ▲ .(请将你认为正确命题的序号都写上)二、解答题:本大题共6小题,共计90分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,角C B A ,,的对边分别为c b a ,,,已知3a =,7cos 9B =,且7BA BC ⋅=uu r uu u r . (1)求b 的值;(2)求sin()A B -的值.16.(本小题满分14分)记函数2()lg(1)f x ax =-的定义域、值域分别为集合,A B .(1)当1a =时,求A B I ;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.17.(本小题满分14分)设直线6x π=-是函数()sin cos f x x a x =+的图象的一条对称轴.(1)求函数()f x 的最大值及取得最大值时x 的集合; (2)求函数()f x 在[0,]π上的单调减区间.18.(本小题满分16分)2020年射阳县洋马镇政府投资8千万元启动“鹤乡菊海”观光旅游及菊花产业项目. 规划从2020年起,在相当长的年份里,每年继续投资2千万元用于此项目. 2020年该项目的净收入为5百万元(含旅游净收入与菊花产业净收入),并预测在相当长的年份里,每年的净收入均为上一年的1.5倍. 记2020年为第1年,()f n 为第1年至此后第*()n n N ∈年的累计利润(注:含第n 年,累计利润 = 累计净收入-累计投入,单位:千万元),且当()f n 为正值时,认为该项目赢利.(1)试求()f n 的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由. (参考数据:43()52≈,ln 20.7≈,ln3 1.1≈)19. (本小题满分16分)已知数列}{n a 满足11a =-,21a =,且*22(1)()2n n n a a n N ++-=∈.(1)求65a a +的值;(2)设n S 为数列}{n a 的前n 项的和,求n S ;(3)设n n n a a b 212+=-,是否存正整数,,()i j k i j k <<,使得k j i b b b ,,成等差数列?若存在,求出所有满足条件的k j i ,,;若不存在,请说明理由.20.(本小题满分16分)设函数()ln ()f x m x m R =∈,()cos g x x =.(1)若函数1()()h x f x x=+在(1,)+∞上单调递增,求m 的取值范围; (2)设函数()()()x f x g x ϕ=+,若对任意的3(,)2x ππ∈,都有()0x ϕ…,求m 的取值范围;(3)设0m >,点00(,)P x y 是函数()f x 与()g x 图象的一个交点,且函数()f x 与()g x 的图象在点P 处的切线互相垂直,求证:存在唯一的0x 满足题意,且0(1,)2x π∈.数学参考答案一、填空题:本大题共14小题,每小题5分,共计70分.1.{}1,2,3,62.π3.12 4.2π5.(,2)(2,)-∞-+∞U6.27.838.15(,6)2-- 9. 8 10. 11.45- 12. (,2]-∞ 13.14.①②③二、解答题:本大题共6小题,共计90分.15.解:(1)由7BA BC ⋅=uu r uu u r ,得cos 7ac B =,即7379c ⨯=,解得3c =. (3)分在ABC ∆中,由余弦定理,得2222272cos 3323349b ac ac B =+-=+-⨯⨯⨯=, 所以2b =. ………………6分 (2)因为7cos 9B =,所以B为锐角,故sin 9B =. ………………8分 又由余弦定理,得2222222331cos 22233b c a A bc +-+-===⨯⨯, 所以A 为锐角,且sin A =. ………………11分所以71sin()sin cos cos sin 393927A B A B A B -=-=-⨯=.………………14分16.解:(1)当1a =时,2()lg(1)f x x =-,由210x ->,得(1,1)A =-. ……………2分又2011x <-…,所以(,0]B =-∞. ……………4分故(1,0]A B =-I . ……………6分(2)“x A ∈”是“x B ∈”的必要不充分条件⇔B A Ü. ……………8分 ①当0a =时,A R=,{}0B =,适合题意; ……………9分②当0a <时,A R=,[0,)B =+∞,适合题意; ……………11分③当0a >时,(A =,(,0]B =-∞,不适合题意. ……………13分综上所述,实数a 的取值范围是(,0]-∞. ……………14分17.解:(1)因为直线6x π=-是函数()f x 的图象的对称轴,所以()()66f x f x ππ-+=--对x R ∈恒成立. ……………2分所以sin()cos()sin()cos()6666x a x x a x ππππ-++-+=--+--对x R ∈恒成立,即(0a x +=对x R∈恒成立,所以a =. ……………6分从而()sin 2sin()3f x x x x π==-. ……………8分故当232x k πππ-=+,即52()6x k k Z ππ=+∈时,()f x 取得最大值为2. ……………10分(说明:其它方法的,类似给分)(2)由322232k x k πππππ+-+剟,解得()f x 的递减区间为511[2,2]()66k k k Z ππππ++∈. …12分从而()f x 在[0,]π上的减区间为5[,]6ππ.(注:区间的形式不唯一) ……………14分18.解:(1)由题意知,第1年至此后第*()n n N ∈年的累计投入 为82(1)26n n +-=+(千万元), ……………3分第1年至此后第*()n n N ∈年的累计净收入为1211131313()()()2222222n -+⨯+⨯+⋅⋅⋅+⨯13(()1)322()13212nn -==--(千万元). ………7分所以33()()1(26)()2722n n f n n n =--+=--(千万元). ……………8分(2)方法一:因为133(1)()[()2(1)7][()27]22n n f n f n n n ++-=-+----13[()4]22n =-,所以当3n …时,(1)()0f n f n +-<,故当4n …时,()f n 递减; 当4n …时,(1)()0f n f n +->,故当4n …时,()f n 递增. ……………12分又15(1)02f =-<,732733(7)()215210288f =-≈⨯-=-<, 83(8)()232523202f =-≈-=>.所以,该项目将从第8年开始并持续赢利. ……………15分答:该项目将从2023年开始并持续赢利. ……………16分方法二:设3()()27(1)2xf x x x =--…,则33()()ln 222xf x '=-, 令()0f x '=,得3222()532ln 3ln 2 1.10.7ln 2x==≈=--,所以4x ≈. 从而当[1,4)x ∈时,()0f x '<,()f x 递减; 当(4,)x ∈+∞时,()0f x '>,()f x 递增. ……………12分又15(1)02f =-<,7333(7)()21028f =-≈-<, 83(8)()232523202f =-≈-=>.所以,该项目将从第8年开始并持续赢利. ……………15分答:该项目将从2023年开始并持续赢利. ……………16分 19.解:(1)由题意,当n 为奇数时,n n a a 212=+;当n 为偶数时,n n a a 232=+. …………2分又11a =-,21a =,所以49,23;41,216453==-=-=a a a a ,即265=+a a . …………4分(2)①当2n k =时,21321242()()n k k k S S a a a a a a -==++⋅⋅⋅++++⋅⋅⋅+131(1())1(1())22131122k k -⋅-⋅-=+--312[()()]422k k =+-22312[()()]422n n =+-. ……………6分②当21n k =-时,22n k k S S a =-13132[()()]4()222k k k -=+--11312()()422k k --=⨯+-1122312()()422n n --=⨯+-. ……………8分所以,*2211*22312()2()4,,,22312()()4,,22n nn n n n n N S n n N --⎧⨯+⨯-∈⎪⎪=⎨⎪⨯+-∈⎪⎩为偶数为奇数 ……………9分 (3)由(1),得1121231022n n n n n b a a ---⎛⎫⎛⎫=+=- ⎪⎪⎝⎭⎝⎭…(仅10b =且{}n b 递增). ……………10分因为k j >>,且,k j Z ∈,所以1k j +….①当2k j +…时,2k j b b +…,若k j i b b b ,,成等差数列,则 1111231312222222j j j j i j k j j b b b b b --+++⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--=---⎢⎥⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦…11137104242j j --⎛⎫⎛⎫=-⨯-⨯< ⎪⎪⎝⎭⎝⎭, 此与0n b …矛盾.故此时不存在这样的等差数列. ……………12分②当1k j =+时,1k j b b +=,若k j i b b b ,,成等差数列,则11131312222222j j j j i j k j j b b b b b --+⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-=---⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦111331()()2222j j --=⨯-⨯,又因为i j <,且,i j Z ∈,所以1i j -….若2i j -…,则2i j b b -刡,得1133133131()()()()222222j j j j ----⨯-⨯-…, 得3331()5()022j j --+⨯?,矛盾,所以1i j =-=.从而112j j j b b b -+=+,得11223131312222222j j j j j j ----⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,化简,得231j -=,解得2j ==. ……………15分从而,满足条件的k j i ,,只有唯一一组解,即1i =,2j =,3k =. ……………16分20.解:(1)由题意,知1()ln h x m x x =+,所以21()m h x x x'=-. 由题意,21()0m h x x x '=-…,即1m x…对(1,)x ∈+∞恒成立. ……………2分又当(1,)x ∈+∞时,11x<,所以1m …. ……………4分(2)因为()()()ln cos x f x g x m x x ϕ=+=+,所以()sin mx x xϕ'=-. ①当0m …时,因为3(,)2x ππ∈,所以ln 0x >,cos 0x <,故()0x ϕ<,不合题意.…6分②当0m >时,因为3(,)2x ππ∈,所以()0x ϕ'>,故()x ϕ在3(,)2ππ上单调递增. ……8分欲()0x ϕ…对任意的3(,)2x ππ∈都成立,则需()0ϕπ…,所以ln cos 0m ππ+…,解得1ln m π…. 综上所述,m的取值范围是1[,)ln π+∞. ……………10分 (3)证明:因为()mf x x '=,()sing x x '=-,且函数()f x 与()g x 在点00(,)P x y 处的切线互相垂直,所以00(sin )1mx x ⋅-=-,即00sin m x x = (*).又点00(,)P x y 是函数()f x 与()g x 的一个交点,所以00ln cos m x x = (**).由(*)(**)消去m ,得0000ln sin cos 0x x x x -=. ……………12分 ①当0(0,1]x ∈时,因为0m >,所以0ln 0m x …,且0cos 0x >,此与(**)式矛盾. 所以在(0,1]上没有x 适合题意. ……………13分 ②当0(1,)x ∈+∞时,设()ln sin cos r x x x x x =-,(1,)x ∈+∞. 则()ln 1cos 20r x x x '=+->,即函数()r x 在(1,)+∞上单调递增, 所以函数()r x 在(1,)+∞上至多有一个零点. 因为(1)ln1sin1cos1sin1cos10r =-=-<,()ln sin cos ln 02222222r πππππππ=-=>,且()r x 的图象在(1,)+∞上不间断,所以函数()r x 在(1,)2π有唯一零点.即只有唯一的0(1,)x ∈+∞,使得0000ln sin cos 0x x x x -=成立,且0(1,)2x π∈.综上所述,存在唯一的0(0,)x ∈+∞,且0(1,)2x π∈. ……………16分。