整式练习题与答案

合集下载

整式练习题(含答案)

整式练习题(含答案)

七年级整 式训练题一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。

A 、2b a +B 、b a s +C 、b s a s +D 、b s a s s+29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3y D 。

52x10.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, 0。

整式的运算基础练习题

整式的运算基础练习题

整式的运算基础练习题整式的运算是数学中的一个重要分支,它涉及到各种基本运算规则,如加法、减法、乘法和除法等。

下面是一些关于整式运算的基础练习题,可以帮助大家巩固和加深对整式运算的理解。

1、单项式的加法1)计算:2x + 3x = __x2)计算:5a - 2a = __a答案:(1)5x;(2)3a2、多项式的加法1)计算:2x - 3x + 4x = __x2)计算:5a + 2b + 3a = __a + __b答案:(1)3x;(2)8a;2b3、单项式的乘法1)计算:2x × 3x = __x²2)计算:5a × 4b = __ab²答案:(1)6x2(2)20ab24、多项式的乘法1)计算:(2x + 3y) × (x - y) = __x² - __xy + __y²2)计算:(3a - 2b) × (4a + 5b) = __a×__b² + __a×__b - __a ×__b² - __a×__b答案:(1)x2xy+3y2(2)12a×4b+5a×2b−3a×5b−2a×4b即48ab+10ab−15ab−8ab,最终结果为45ab。

整式的运算测试题一、选择题1、下列哪个选项是整式?()A. 2/3B. 4x/3yC. x + 2yD. √22、下列哪个选项是整式的乘法?()A. 3(x + y)B. 4x^2yC. (x + 2y)(x - 2y)D. x + 2y = 03、下列哪个选项是整式的除法?()A. (x + y)/2B. (x + 2y)(x - 2y)C. x \div 2yD. 2x^2 - x = y二、填空题1、如果 a和 b是整数,那么 a + b的值是____。

2、如果 x和 y是整数,那么 x - y的值是____。

整式练习题(含答案)

整式练习题(含答案)

1.单项式2a3b的次数是A.2 B.3 C.4 D.5 2.在下列各式中,二次单项式是A.x2+1 B.13xy2C.2xy D.(–12)23.单项式–2xy3的系数和次数分别是A.–2,4 B.4,–2 C.–2,3 D.3,–2 4.下列说法正确的是A.35xy-的系数是–3 B.2m2n的次数是2次C.23x y-是多项式D.x2–x–1的常数项是15.下列关于多项式5ab2–2a2bc–1的说法中,正确的是A.它是三次三项式B.它是四次两项式C.它的最高次项是–2a2bc D.它的常数项是16.245π6x y的系数、次数分别为A.56,7 B.5π6,6 C.5π6,8 D.5π,67.对于式子:22x y+,2ab,12,3x2+5x–2,abc,0,2x yx+,m,下列说法正确的是A.有5个单项式,1个多项式B.有3个单项式,2个多项式C.有4个单项式,2个多项式D.有7个整式8.下列单项式中,次数为3的是A.223x y-B.mn C.3a2D.272ab c-9.下列关于单项式223x y-的说法中,正确的是A .系数是2,次数是2B .系数是–2,次数是3C .系数是23-,次数是2D .系数是23-,次数是3 10.下列关于单项式–23π5x y的说法中,正确的是A .系数是1,次数是2B .系数是–35,次数是2C .系数是15,次数是3D .系数是–3π5,次数是311.多项式x 2–2xy 3–12y –1是A .三次四项式B .三次三项式C .四次四项式D .四次三项式12.下列说法正确的是A .23vt-的系数是–2 B .32ab 3的次数是6次 C .5x y +是多项式D .x 2+x –2的常数项为213.下列结论正确的是A .0不是单项式B .52abc 是五次单项式C .–x 是单项式D .1x是单项式 14.单项式2ab 2的系数是__________. 15.多项式2a 2b –ab 2–ab 的次数是__________.16.若单项式–2x 3y n 与4x m y 5合并后的结果还是单项式,则m –n =__________.17.观察下面的一列单项式:2x ;–4x 2;8x 3;–16x 4,…根据你发现的规律,第n 个单项式为__________. 18.已知多项式(m –1)x 4–x n +2x –5是三次三项式,则(m +1)n =__________. 19.将多项式a 3+b 2–3a 2b –3ab 2按a 的降幂排列为:__________. 20.指出下列多项式是几次几项式:(1)x 3–x +1;(2)x 3–2x 2y 2+3y 2.21.单项式–258m a b 与–34117x y 是次数相同的单项式,求m 的值. 22.已知:关于x 的多项式(a –6)x 4+2x –12b x –a 是一个二次三项式,求:当x =–2时,这个二次三项式的值.23.单项式32π3x y z-的系数是A.π3B.–π3C.13D.–1324.单项式–ab2的系数是A.1 B.–1 C.2 D.3 25.多项式xy2+xy+1是A.二次二项式B.二次三项式C.三次二项式D.三次三项式26.下列说法中,正确的是A.单项式223x y-的系数是–2,次数是3B.单项式a的系数是0,次数是0C.–3x2y+4x–1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-27.如果整式x n–3–5x2+2是关于x的三次三项式,那么n等于A.3 B.4 C.5 D.628.一组按规律排列的式子:a2,43a,65a,87a,…,则第2017个式子是A.20172016aB.20174033aC.40344033aD.40324031a29.–25xy的系数是__________,次数是__________.30.单项式2x2y的次数是:__________.31.已知多项式kx2+4x–x2–5是关于x的一次多项式,则k=__________.32.单项式–22x y的系数是__________.33.多项式3x m+(n–5)x–2是关于x的二次三项式,则m,n应满足的条件是__________.34.多项式a3–3ab2+3a2b–b3按字母b降幂排序得__________.35.观察下列单项式:–x,3x2,–5x3,7x4,…–37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.(1)这组单项式的系数依次为多少,绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2016个,第2017个单项式.36.已知多项式x3–3xy2–4的常数是a,次数是b.(1)则a=__________,b=__________;并将这两数在数轴上所对应的点A、B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离之和为11,求点C在数轴上所对应的数.37.(2017•铜仁市)单项式2xy3的次数是A.1 B.2 C.3 D.4A.12B.πC.2 D.2【解析】A 、35xy -的系数是–35,故此选项错误;B 、2m 2n 的次数是3次,故此选项错误; C 、23x y-是多项式,正确;D 、x 2–x –1的常数项是–1,故此选项错误;故选C . 5.【答案】C【解析】多项式5ab 2–2a 2bc –1的次数是4,有3项,是四次三项式,故A 、B 错误; 它的最高次项是–2a 2bc ,故C 正确;它的常数项是–1,故D 错误.故选C . 6.【答案】B【解析】245π6x y 的系数为5π6,次数为6,故选B .7.【答案】C【解析】22x y +,2a b ,12,3x 2+5x –2,abc ,0,2x y x +,m 中,有4个单项式:12,abc ,0,m ; 有2个多项式:22x y+,3x 2+5x –2.故选C .8.【答案】A【解析】A 、223x y-次数为3,故此选项正确;B 、mn 次数为2,故此选项错误;C 、3a 2次数为2,故此选项错误;D 、272ab c -次数为4,故此选项错误;故选A .9.【答案】D【解析】单项式223x y-的系数是23-,次数是3.故选D .10.【答案】D【解析】该单项式的系数为:–3π5,次数为3,注意π是一个常数,故选D.11.【答案】C【解析】多项式x2–2xy3–12y–1有四项,最高次项–2xy3的次数为四,是四次四项式.故选C.12.【答案】C13.【答案】C【解析】A、0是单项式,错误;B、52abc是三次单项式,错误;C、正确;D、1x是分式,不是单项式,错误.故选C.14.【答案】2【解析】单项式2ab2的系数为2.故答案为:2.15.【答案】3【解析】多项式2a2b–ab2–ab的次数最高项的次数为:3.故答案为:3.16.【答案】【解析】由题意得:m=3,n=5,则m–n=3–5=–2,故答案为:–2.17.【答案】(–1)n+1•2n•x n【解析】∵2x=(–1)1+1•21•x1;–4x2=(–1)2+1•22•x2;8x3=(–1)3+1•23•x3;–16x4=(–1)4+1•24•x4;第n个单项式为(–1)n+1•2n•x n,故答案为:(–1)n+1•2n•x n.解得:62a b ==,, 则原式=2x –12x 2–6, 当x =–2时,原式=–4–2–6=–12. 23.【答案】B【解析】单项式32π3x y z-的系数是–π3,故选B .24.【答案】B【解析】单项式–ab 2的系数是–1,故选B . 25.【答案】D【解析】多项式xy 2+xy +1的次数是3,项数是3,所以是三次三项式.故选D . 26.【答案】D27.【答案】D【解析】∵整式x n –3–5x 2+2是关于x 的三次三项式,∴n –3=3,解得:n =6.故选D .28.【答案】C【解析】由题意,得分子是a的2n次方,分母是2n–1,第2017个式子是40344033a,故选C.29.【答案】–15,3【解析】–25xy的系数是:–15,次数是:3.故答案为:–15,3.30.【答案】3【解析】根据单项式次数的定义,字母x、y的次数分别是2、1,和为3,即单项式的次数为3.故答案为:3.31.【答案】1【解析】∵多项式kx2+4x–x2–5是关于x的一次多项式,∴k–1=0,则k=1.故答案为:1.32.【答案】–1 2【解析】单项式–22x y的系数是–12.故答案为:–12.33.【答案】m=2,n≠5【解析】∵多项式3x m+(n–5)x–2是关于x的二次三项式,∴m=2,n–5≠0,即m=2,n≠5.故答案为:m=2,n≠5.34.【答案】【解析】多项式a3–3ab2+3a2b–b3的各项分别是:a3、–3ab2、3a2b、–b3.故答案为:–b3–3ab2+3a2b+a3.35.【解析】(1)这组单项式的系数依次为:–1,3,–5,7,…系数为奇数且奇次项为负数,故单项式的36.【解析】(1)∵多项式x3–3xy2–4的常数项是a,次数是b,∴a=–4,b=3,点A、B在数轴上如图所示:,故答案为:–4、3;(2)设点C在数轴上所对应的数为x,∵C在B点右边,∴x>3.根据题意得x–3+x–(–4)=11,解得x=5,即点C在数轴上所对应的数为5.37.【答案】D【解析】单项式2xy3的次数是1+3=4,故选D.39.【答案】3【解析】单项式5mn2的次数是:1+2=3.故答案是:3.。

人教版数学七年级上册第二章《整式》练习题(含答案)

人教版数学七年级上册第二章《整式》练习题(含答案)

2.1整 式班级 学号 姓名 分数一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式C .-2不是整式D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。

A 、2b a +B 、b a s +C 、b s a s +D 、b s a s s+29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3yD.52x10.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , a A.4个 B.5个 C.6个 D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 19.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个 B .2个 C .3个 D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ;2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式;4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ;6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有10.x+2xy +y 是 次多项式.11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ; 13.设某数为x ,10减去某数的2倍的差是 ;14.n 是整数,用含n 的代数式表示两个连续奇数 ;15.42234263y y x y x x --+-的次数是 ;16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31t t +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次.21.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________. 25.多项式x 2y +xy -xy 2-53中的三次项是____________.26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。

史上最全整式练习题(各题型,含答案)

史上最全整式练习题(各题型,含答案)

21.1―1同底数幂的除法一、在括号内填上恰当的式子:1、20049·( )=2、a 3·( )=a 83、(-a )4·( )=a 74、a 3·( )=a 75、(-a) ·( )=a 36、-a 3·( )=a 8二、计算:1、107÷1032、 (-7)15÷(-7)63、 a 2004÷a 20024、 (-x)12÷(-x)55、 (a+b)3÷(a+b)6、 (-10a)5÷(-10a)5三、研讨:你用什么方法计算下列各题1、 12a 8÷(2a 2)2、 4x 5÷(2x)23、 x 9÷(-x )34、 -x 8÷(-x)3四、智能训练在n m n m aa a -=÷中,为什么在加上n m a 、,0≠都是正整数,且m>n 的条件,请说说你的看法。

21.1―2单项式除以单项式一、选择题(1)=÷-n m a a 5)(( )(A )m a +-5 (B )m a +5 (C ) -n m a -5 (D )n m a +-5(2)下列运算正确的是( )(A )954a a a =+(B )33333a a a a =⨯⨯(C )96156318a a a =÷(D )743)(a a =-二、填空题:(1)=-62)(a _______。

(2)=-÷-3245)()(a a _______。

三、计算1、 24a 2b ÷4ab2、 4x 4y 3÷12x 33、 )61()21(2344x a x a -÷-4、 ab b a ab b a 6)271830(2223÷-+四、智能训练:计算()m mc mb ma ÷++从上面的计算中,你能发现什么规律?用文字叙述这个规律。

整式练习题及答案

整式练习题及答案

整式练习题及答案一. 单项选择题。

1. 下列各式中,是一元二次整式的是()A. 3x - 2y + 1B. 2x^2 - 3xy + 4y^2C. 4x^3 - 5x^2y + 6xy^2D. 7x^2 + 8y^2 - 9z^2答案:B2. 化简下列各式:(1)3x^2 - 4x^2 - 2x + 3x + x^2 - x(2)(4x - 3y)^2 - (2x + 3y)^2答案:(1)3x^2 - 4x^2 - 2x + 3x + x^2 - x = -2x^2 + x(2)(4x - 3y)^2 - (2x + 3y)^2 = 16x^2 - 24xy + 9y^2 - 4x^2 - 12xy - 9y^2 = 12x^2 - 36xy二. 填空题。

1. 将 2xy - 3x^2 + 4y^2 + 5x^2 - 6xy 化简得到 ____________。

答案:-x^2 - 4xy + 4y^22. 按指数递减排列多项式 3xy^2 - 2x^2 + 5yx^2 - 4y^2 + x^2。

答案:3xy^2 - 4y^2 + 5yx^2 + x^2 - 2x^2三. 解答题。

将下列各式进行合并整理。

1. (3x^3 - x^2 + 2x + 4y) + (2x^3 - 3y + 5x^2 - 2x + 4y)答案:5x^3 + 4x^22. (5x^2 - 3xy + 2) - (3y^2 + 2xy - 4x^2 - 1)答案:9x^2 - 3xy + 3y^2 + 3四. 计算题。

1. 已知 a = 2x - y,b = 3x + y,计算 a^2 + 2ab - b^2。

答案:8x^2 + 4xy2. 计算 (2x - 3y)(4x + 5y)。

答案:8x^2 - 7y^2总结:本文提供了一套整式练习题及答案,涵盖了单项选择题、填空题、解答题和计算题。

在解答题部分,对各式进行了合并整理,使其更加简洁清晰。

人教版七年级上册数学《整式》练习题(含答案)

人教版七年级上册数学《整式》练习题(含答案)

2.1整 式一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x6.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3yD.52x7.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , a A.4个 B.5个 C.6个D.7个 8.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 9.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -1 10.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式C .0是单项式D .单项式-31x 2y 的系数是31 11.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2512.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,313.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式14.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 15.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个B .2个C .3个D .4个 三.填空题1填一填 整式-ab πr 2 232ab - -a+b 2453-+y x A 3b 2-2a 2b 2+b 3-7ab+5 系数次数项2.单项式: 3234y x -的系数是 ,次数是 ; 3.220053xy 是 次单项式;4.y x 342-的一次项系数是 ,常数项是 ;5.单项式21xy 2z 是_____次单项式.6.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 7.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有8.x+2xy +y 是 次多项式.9.b 的311倍的相反数是 ; 10.设某数为x ,10减去某数的2倍的差是 ;11.42234263y y x y x x --+-的次数是 ;12.当x =2,y =-1时,代数式||||x xy -的值是 ;13.当y = 时,代数式3y -2与43+y 的值相等; 14.-23ab 的系数是 ,次数是 次.15.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .16.若2313m x y z -与2343x y z 是同类项,则m = . 17.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .18.单项式7532c ab 的系数是____________,次数是____________. 19.多项式x 2y +xy -xy 2-53中的三次项是____________.20.当a=____________时,整式x 2+a -1是单项式.21.多项式xy-1是____________次____________项式.22.当x=-3时,多项式-x3+x2-1的值等于____________.23.一个n次多项式,它的任何一项的次数都____________.24.如果3x k y与-x2y是同类项,那么k=____ ____.四、合并下列多项式中的同类项(1)3x2+4x-2x2-x+x2-3x-1;(2)-a2b+2a2b(3)a3-a2b+ab2+a2b-2ab2+b3;(4)2a2b+3a2b-12a2b(5)(2x+3y)+(5x-4y);(6)(8a-7b)-(4a-5b)(7)(8x-3y)-(4x+3y-z)+2z;(8)(2x-3y)-3(4x-2y)(9)3a2+a2-2(2a2-2a)+(3a-a2)(10)3b-2c-[-4a+(c+3b)]+c五.先去括号,再合并同类项:(1)(2x+3y )+(5x -4y ); (2)(8a -7b )-(4a -5b )(3)(8x -3y )-(4x+3y -z )+2z (4)(2x -3y )-3(4x -2y )(5)3a 2+a 2-2(2a 2-2a )+(3a -a 2) (6)3b -2c -[-4a+(c+3b )]+c六、求代数式的值1.当x =-2时,求代数式132--x x 的值。

整式的练习题及解答

整式的练习题及解答

整式的练习题及解答一、填空题1. 化简以下整式:(3x² - 2)(x - 4) + 5(x² + 2x - 1)解:将括号内的整式进行分配律展开,并合并同类项,得到:3x³ - 14x² + 7x - 182. 将以下整式写成乘积形式:4x² - 9y²解:根据差平方公式,将整式分解为(2x - 3y)(2x + 3y)3. 将以下整式写成乘积形式:a³ - b³解:根据差立方公式,将整式分解为(a - b)(a² + ab + b²)4. 计算以下整式的值:(x - 3)²,当x = 4时解:将整式展开,得到(x - 3)² = x² - 6x + 9。

当x = 4时,代入得到:4² - 6 × 4 + 9 = 25二、选择题1. 化简整式 (2x + 3)² - (3x - 4)²结果为:A. -x² - 2x - 7B. -x² - x - 7C. -x² + 2x - 7D. -x² - 2x + 7答案:B2. 将整式 a²b + b²a - ab²写成乘积形式得到:A. (a + b)²B. (a + b)(ab - b²)C. (a² - ab + b²)(a + b)D. a²b + ab²答案:B三、解答题1. 将以下整式写成乘积形式:x⁴ - y⁴解:根据差平方公式可以将整式分解为(x² - y²)(x² + y²)。

其中,x² -y²可再分解为(x - y)(x + y)。

因此,整式的乘积形式为(x - y)(x + y)(x² + y²)2. 化简整式 (3a + b)² - (a - 2b)²解:展开整式得到 (3a + b)² - (a - 2b)² = 9a² + 6ab + b² - (a² - 4ab + 4b²) 合并同类项得到 9a² + 6ab + b² - a² + 4ab - 4b²化简得到 8a² + 10ab - 3b²综上所述,整式的练习题及解答包括了填空题、选择题和解答题,涵盖了整式的简化、展开、分解等运算。

整式练习题及答案

整式练习题及答案

整式练习题及答案一、选择题1、B2、C3、B4、D5、B6、C7、D8、C二、填空题1、-4/3,32、二次四项式,x,-y,1,03、-3a,-3,14、5个5、都是代数式6、m+n7、24a+2a=26a8、(a+b)^2=a^2+2ab+b^2,(a+b)^2-a^2=a^2+2ab+b^2-a^2=2ab+b^2三、解答题1、单项式:ab,-6,1/m,5/2,2x,-p^3q;多项式:m^2-2m+1,x^3+3x,-p^3q;整式:m+n,52x,x^3+3x+372、ab-6.-1/m。

5/2.2x。

-p^3q是单项式;m^2-2m+1.x^3+3x。

-p^3q是多项式;m+n。

52x。

x^3+3x+37是整式。

1、求比a的一半大3的数。

答案:(a/2)+32、求a与b的差的c倍。

答案:c(a-b)3、求a与b的倒数的和。

答案:1/a + 1/b4、求a与b的和的平方的相反数。

答案:-(a+b)^25、当y=3时,单项式-πy^(1/3)n(2n-1)的值为-π3^(1/3)n(2n-1)。

6、满足条件的五次四项式只能是a^5-b^5或a^5+b^5,因为每一项的系数只能为1或-1且不含常数项,同时含有字母a 和b,不含有其他字母。

7、由题意可得:-5x-(2m-1)x+(2-3n)x-1 = ax^0,去掉二次项和一次项后,只剩下常数项-1,所以a=1.代入原式可得:-5x-(2m-1)x+(2-3n)x-1 = x^0,整理得:2m+3n=3.因为m和n都是整数,所以m=1,n=1.8、三种方案调价的结果不一样。

方案(1)和方案(2)都会使商品的售价降低1%,而方案(3)会使商品的售价降低4%。

最后都无法恢复原价。

整式练习题(含答案)

整式练习题(含答案)

七年级整 式训练题一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个@2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式C .-2不是整式D .整式2x+1是一次二项式…5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。

A 、2b a +B 、b a s +C 、b s a s +D 、b s a s s+29.下列单项式次数为3的是( )×3×4 C.41x 3y ^10.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, , a 个 个 个 个11.下列整式中,单项式是( )A.3a +1 -y D.21+x12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )]A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、519.系数为-21且只含有x 、y 的二次单项式,可以写出( ) ¥A .1个B .2个C .3个D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ;2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式;4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ;6._____和_____统称整式.^7.单项式21xy 2z 是_____次单项式. 8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 . 9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有10.x+2xy +y 是 次多项式.11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ;14.n 是整数,用含n 的代数式表示两个连续奇数 ;15.42234263y y x y x x --+-的次数是 ;16.当x =2,y =-1时,代数式||||x xy -的值是 ;"17.当t = 时,31t t +-的值等于1;18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次.21.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________. 25.多项式x 2y +xy -xy 2-53中的三次项是____________.>26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。

整式练习题(含答案)

整式练习题(含答案)

七年级整 式训练题一.判断题 (1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( )(4)x 3+y 3是6次多项式.( )(5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个2.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是( )A .整式abc 没有系数B .2x +3y +4z 不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、x a 523+D 、-20056.下列多项式中,是二次多项式的是( )A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。

A 、2b a +B 、b a s +C 、b s a s +D 、b s a s s+29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3yD.52x10.下列代数式中整式有( )x 1, 2x +y , 31a 2b , πy x -, xy 45, 0.5 , a A.4个 B.5个 C.6个D.7个11.下列整式中,单项式是( ) A.3a +1 B.2x -y C.0.1 D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -113.下列说法正确的是( )A .x(x +a)是单项式B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1 B .2 C .3 D .416.单项式-232xy 的系数与次数分别是( ) A .-3,3 B .-21,3 C .-23,2 D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式18.已知:32y x m -与n xy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、519.系数为-21且只含有x 、y 的二次单项式,可以写出( ) A .1个 B .2个 C .3个 D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ;18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次.20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次.21.多项式x 3y 2-2xy 2-43xy -9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = . 23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________. 25.多项式x 2y +xy -xy 2-53中的三次项是____________.26.当a=____________时,整式x 2+a -1是单项式.27.多项式xy -1是____________次____________项式.28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。

整式练习题及答案

整式练习题及答案

整式练习题及答案整式练习题及答案数学是一门需要不断练习的学科,而整式是数学中的重要概念之一。

整式是由常数、变量及它们的乘积与幂次的和或差组成的代数式。

在学习整式的过程中,练习题是必不可少的。

下面将给出一些整式练习题及其答案,希望能够帮助大家更好地理解和掌握整式的相关知识。

1. 将下列各式化为最简整式:a) 3x + 2y - 5x + 4yb) 2a^2 - 3b^2 + 4a^2 + b^2c) 5x^3 - 2x^2 + 3x^3 + 4x^2解答:a) 3x + 2y - 5x + 4y = -2x + 6yb) 2a^2 - 3b^2 + 4a^2 + b^2 = 6a^2 - 2b^2c) 5x^3 - 2x^2 + 3x^3 + 4x^2 = 8x^3 + 2x^22. 计算下列各式的值:a) 2x^2 + 3y^2,其中x = 2,y = 1b) 4a^3 - 2b^3,其中a = 3,b = 2c) 5x^2 - 3y^2,其中x = -1,y = 2解答:a) 2(2)^2 + 3(1)^2 = 2(4) + 3(1) = 8 + 3 = 11b) 4(3)^3 - 2(2)^3 = 4(27) - 2(8) = 108 - 16 = 92c) 5(-1)^2 - 3(2)^2 = 5(1) - 3(4) = 5 - 12 = -73. 将下列各式进行合并化简:a) 3x^2 - 2x + 4x^2 + 5x - 7b) 2a^3 + 3a^2 - 4a^3 - 5a^2 + 6a^3c) 5x^2 + 2x - 3x^2 - 4x + 7解答:a) 3x^2 - 2x + 4x^2 + 5x - 7 = 7x^2 + 3x - 7b) 2a^3 + 3a^2 - 4a^3 - 5a^2 + 6a^3 = 4a^3 - 2a^2c) 5x^2 + 2x - 3x^2 - 4x + 7 = 2x^2 - 2x + 74. 将下列各式进行展开:a) (2x + 3y)^2b) (3a - 4b)(3a + 4b)c) (5x - 2y)(5x + 2y)解答:a) (2x + 3y)^2 = (2x + 3y)(2x + 3y) = 4x^2 + 6xy + 6xy + 9y^2 = 4x^2 + 12xy + 9y^2b) (3a - 4b)(3a + 4b) = (3a)^2 - (4b)^2 = 9a^2 - 16b^2c) (5x - 2y)(5x + 2y) = (5x)^2 - (2y)^2 = 25x^2 - 4y^2通过以上的练习题,我们可以加深对整式的理解和运用。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减第1课时 代数式课标要求1.掌握用字母表示数,建立符号意识.2.会列代数式表示简单的数量关系,会正确书写代数式,会求代数式的值.3.在数学活动中,体会抽象概括的数学思想方法和“特殊⇔一般”相互转化的辨证关系. 中招考点用字母表示数,列代数式,正确书写代数式,求代数式的值.典型例题例1 某市出租车收费标准为:起步价5元,3千米后每千米价1.2元,则乘坐出租车走x(x ﹥3)千米应付______________元.分析:因为x ﹥3,所以应付费用分为两部分,一部分为起步价5元,另一部分为走(x-3)千米应付的1.2(x-3)元.解:[])3(2.15-+x注意:和、差形式的代数式要在单位前把代数式括起来.例2 下列代数式中,书写正确的是( )A. ab ·2B. a ÷4C. -4×a ×bD. xy 213E. mn 35 F. -3×6 分析:A :数字应写在字母前面 B :应写成分数形式,不用“÷”号 C :数与字母相乘,字母与字母相乘时,“×”号省略 D :带分数要写成假分数 E 、F 书写正确.解:E 、F.例3 下列各题中,错误的是( )A. 代数式.,22的平方和的意义是y x y x +B. 代数式5(x+y)的意义是5与(x+y)的积C. x 的5倍与y 的和的一半,用代数式表示为25y x +D. 比x 的2倍多3的数,用代数式表示为2x+3分析:选项C 中运算顺序表达错误,应写成)5(21y x + 友情提示:数学语言有文字语言、符号语言、图形语言.进行数学思维时,同学们要学会恰当使用各种语言推理分析,各种语言的互译是一种数学基本功.例4 当x=1时,代数式13++qx px 的值为2005,求x=-1时,代数式13++qx px 的值.分析:当x=1时,13++qx px ==++1q p 2005,p+q=2004,当x=-1时,13++qx px =-=+-1q p -(p+q )+1=-2004+1=-2003.解:当x=1时,13++qx px ==++1q p 2005 ∴ p+q=2004∴ 当x=-1时,13++qx px =-1+-q p=-(p+q )+1=-2004+1 =-2003.提示:“整体”思想在数学解题中经常用到,请同学们在解题时恰当使用.例5 下图是一个数值转换机的示意图,请你用x 、y 表示输出结果,并求输入x 的值为3,y 的值为-2时的输出结果.解:输出结果用x 、y 表示为: 223y x + 当x=3,y=-2时, 223y x +=2)2(323-+⨯ =-1.提示:弄清图中运算顺序.例6 某餐饮公司为大庆路沿街20户居民提供早餐方便,决定在路旁建立一个快餐店P ,点P 选在何处,才能使这20户居民到P 点的距离总和最小?分析:面对复杂的问题,应先把问题“退”到比较简单的情形:如图1,如果沿街有2户居民,很明显点P 设在p 1、、、p 2之间的任何地方都行.. p 1 .p . p 2 图1 . p 1、 . p 2(p ). p 3图2如图2,如果沿街有3户居民, 点P 应设在中间那户居民、p 2门前.------以此类推,沿街有4户居民,点P 应设在第2、3户居民之间的任何位置,沿街有5户居民,点P 应设在的第3户门前,------沿街有n 户居民:当n 为偶数时,点P 应设在第2n 、12+n 户居民之间的任何位置;当n 为奇数时,点P 应设在第21+n 户门前. 解:根据以上分析,当n=20时,点P 应设在第10、11户居民之间的任何位置.思维驿站: 请同学们认真体会“特殊⇔一般”的辨证关系,掌握化归的思想方法,学会把复杂的问题化为简单的情形来解决.强化练习一、填空题1. 代数式2a-b 表示的意义是_____________________________.2. 列代数式:⑴设某数为x,则比某数大20%的数为_______________.⑵a 、b 两数的和的平方与它们差的平方和________________.3. 有一棵树苗,刚栽下去时,树高 2.1米,以后每年长0.3米,则n 年后的树高为________________,计算10年后的树高为_________米.4. 某音像社对外出租光盘的收费方法是:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后第n 天(n >2的自然数)应收租金_________________________元.5. 观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------请你将猜想到的规律用自然数n(n ≥1)表示出来______________________.6. 一个两位数,个位上的数是a ,十位上的数字比个位上的数小3,这个两位数为_________,当a=5时,这个两位数为_________.二、选择题1. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( )A. 0.7a 元B.0.3a 元C.a 310 元D. a 710元 2. 根据下列条件列出的代数式,错误的是( )A. a 、b 两数的平方差为a 2-b 2B. a 与b 两数差的平方为(a-b)2C. a 与b 的平方的差为a 2-b 2D. a 与b 的差的平方为(a-b)23. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为( )A. –2005B. 2005C. -1D. 14. 笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需( )A. ( mx+ny )元B. (m+n)(x+y)C. (nx+my )元D. mn(x+y) 元5. 当x=-2,y=3时,代数式4x 3-2y 2的值为( )A. 14B. –50C. –14D. 50三、解答题1. 已知代数式3a 2-2a+6的值为8, 求1232+-a a 的值. 2. 当a=-1,b=-21,c=211时,求代数式b 2-4ac 的值,并指出求得的这个值是哪些数的平方. 3. 人在运动时的心跳速率通常和人的年龄有关.如果用a 表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220-a). ⑴ 正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少? ⑵ 一个45岁的人运动时10秒心跳的次数为22次,请问他有危险吗?为什么? 反馈检测一、填空题(每小题5分,共25分)1. 某机关原有工作人员m 人,现精简机构,减少20%的工作人员,则剩下_____人.2. 结合生活经验作出具体解释:a-b__________________________________.3. 甲以a 千米/小时、乙以b 千米/小时(a >b )的速度沿同一方向前进,甲在乙的后面8千米处开始追乙,则甲追上乙需_____________小时.4. 若梯形的上底为a ,下底为b ,高为h ,则梯形的面积为____________;当a=2cm ,b=4cm ,h=3cm 时,梯形的面积为____________.5. 按下列程序计算x=3时的结果__________.二、选择题(每小题5分,共25分)1. 下列式子中符合代数式的书写格式的是( )A. x ·y 21B.n m 3÷C.4y x -D.ab 432 2. 一个长方形的周长是45cm ,一边长acm ,这个长方形的面积为( )cm 2 A.2)45(a a - B.245a C.)245(a - D.)245(a a - 3. 代数式x 2-7y 2用语言叙述为( )A.x 与7y 的平方差B.x 的平方减7的差乘以y 的平方C.x 与7y 的差的平方D. x 的平方与y 的平方的7倍的差4. 当a=-2,b=4时,代数式))((22b ab a b a ++-的值是( )A.56B.48C. –72D.725. 一个正方体的表面积为54 cm 2,它的体积是( )cm 3A. 27B.9C.827 D. 36 三、解答题(每题10分,共50分)1. 列代数式⑴ 若一个两位数十位上的数是a ,个位上的数是b ,这个两位数是_________.若一个三位数百位上的数为a,十位上的数是b ,个位上的数c ,这个三位数是_________. ⑵ 某品牌服装以a 元购进,加20%作为标价.由于服装销路不好,按标价的八五折出售,降价后的售价是__________元,这时仍获利________________________元.⑶电影院第一排有a 个座位,后面每排比前一排多2个座位,则第x 排的座位有____________个.⑷A 、B 两地相距s 千米,某人计划a 小时到达,如果需要提前2小时到达,每小时需多走___________________千米.2. 已知代数式32++x x 的值为7,求代数式7332++x x 的值.3. 当41=+-b a b a 时,求代数式ba b a b a b a -+-+-)(2的值. 4. 若0)3(12=++-y x ,求21xy xy --的值.5. 给出下列程序:若输入x=1时,输出的值为-2,求输入x=-2时,输出的值是多少?第2课时 整式的加减课标要求1. 了解单项式、多项式、整式的有关概念,弄清它们与代数式之间的联系和区别.2. 理解同类项的概念,会判断同类项,熟练合并同类项.3. 掌握去括号法则、添括号法则,能准确地进行去括号与添括号.4. 熟练地进行整式的加减运算.中招考点单项式、多项式、整式的有关概念,同类项的概念,去括号法则、添括号法则,整式的加减运算.典型例题例1 判断下列各代数式是否是单项式.如果不是,请简要说明理由;如果是,请指出它的系数和次数:⑴ a+2 ⑵ x 1 ⑶ 2r π ⑷ b a 223- ⑸ m ⑹ -3×104t 分析:同学们要弄清题中涉及到的几个概念,即:数与字母的乘积组成的代数式叫做单项式(单独一个数或一个字母也是单项式);单项式中的数字因数叫做这个单项式的系数;单项式中所有字母的指数和叫做这个单项式的次数.解:⑴ 不是.因为原代数式中出现了加法运算. ⑵ 不是.因为原代数式是1与x 的商. ⑶ 是.它的系数是π,次数是2. ⑷是.它的系数是-23,次数是3. ⑸是.它的系数是1,次数是1. ⑹是.它的系数是-3×104,次数是1.注意:圆周率π是常数;当一个单项式的系数是1或-1、次数是1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数,如⑷中b a 223-. 例2 指出多项式223542x y y x +-的项、次数,是几次几项式,并把它按x 降幂排列、按y 的升幂排列.分析:解本题的关键是要弄清几个概念:多项式的项、次数,按某一字母降幂排列、按某一字母的升幂排列.解:多项式223542x y y x +-的项有:2x 3y,-4y 2,5x 2; 次数是4;是四次三项式; 按x 降幂排列为:2x 3y+5x 2- 4y 2;按y 的升幂排列为:5x 2+2x 3y- 4y 2.提示:多项式的次数不是所有项的次数之和,而是次数最高项的次数;多项式的每一项都包括它前面的符号.例 3 请写出-2ab 3c 2的两个同类项_______________.你还能写多少个?________.它本身是自己的同类项吗?___________.当m=________,3.8c b a m m -2是它的同类项?分析:本题是一道开发题,给同学们很大的思维空间,对同类项的正确理解是解题的关键. 解:2.1ab 3c 2 、-6ab 3c 2等; 还能写很多(只要 在ab 3c 2前面添加不同的系数);它本身也是自己的同类项;m=-1.∵1=m 且2-m=3∴m=-1.例4 如果关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,求m 、n 的值.分析:本题的“题眼”——多项式-3x 2+mx+nx 2-x+3的值与x 无关,这一条件说明了:关于字母x 的二次项系数、一次项系数都为零.解:∵ -3x 2+mx+nx 2-x+3=(-3+n )x 2+(m-1)x+3∴ -3+n=0,m-1=0∴ m=1,n=3.例5 a >0>b >c ,且c b a +〉 化简c b b a c b a c a ++--++++分析:求绝对值首先要判断代数式是正数或0或负数.本题中可用赋值法、数形结合法判断a+c 、a+b+c 、a-b 、b+c 的符号.解:如图知,a 、b 、c 在数轴上的位置.∵ a >0,b <0,c <0,c b a +〉∴ a+c >0,a+b+c >0,a-b >0,b+c <0∴ c b b a c b a c a ++--++++=(a+c )+(a+b+c )-(a-b )-(b+c )=a+c+a+b+c-a+b-b-c=a+b+c.反思总结:解含有字母的题目通常在字母取值范围赋值,可以把抽象问题直观化.强化练习一、填空题 1. 单项式323y x -的系数是_______,次数是_________. O . a . b . c .2. 多项式124332+-y x xy 的次数是______,三次项系数是________.3. 把多项式723322---y x y x xy 按x 升幂排列是_________________.4. 下列代数式:523,,41,3,2,1213,4332232y x a x y x bc a x m m x ----+--.其中单项式有_______________________________,多项式有___________________________.5. 多项式274a ab -b 2-8ab 2+5a 2b 2-9ab+ab 2-3中,________与-8ab 2是同类项,5a 2b 2与_______是同类项,是同类项的还有_____________________________.6. 3a-4b-5的相反数是_______________.二、选择题1. 如果多项式521)2(24-+--x x x a b 是关于x 的三次多项式,那么( ) A. a=0,b=3 B. a=1,b=3 C. a=2,b=3 D. a=2,b=12. 如果0233=+xyx By Axy ,则A+B=( ) A. 2 B. 1 C. 0 D. –13. 下列计算正确的是( )A. 3a-2a=1B. –m-m=m 2C. 2x 2+2x 2=4x 4D. 7x 2y 3-7y 3x 2=0 4. 在3a-2b+4c-d=3a-d-( )的括号里应填上的式子是( )A. 2b-4cB. –2b-4cC. 2b+4cD. –2b+4c5. 如果一个多项式的次数是4,那么这个多项式任何一项的次数应( )A. 都小于4B. 都不大于4C. 都大于4D. 无法确定三、解答题1. 如果0.65x 2y 2a-1 与–0.25x b-1y 3是同类项,求a,b 的值.2. 先化简,再求值.b a a b ba ab b a 2222254325.0315.0-++-,其中a=-5,b=-3. 3. 把多项式6.041312123-+-b b b 写成一个三次多项式与一个二次三项式之差. 4. 计算:63)(41)(21y x y x y x y x --++++- 反馈检测一、填空题(每小题5分,共25分)1. 在一次募捐活动中,某校平均每名同学捐款a 元,结果一共捐款b 元,则式子ab 可解释为_________________________________________________________. 2. 在某地,人们发现蟋蟀叫的次数与温度有某种关系.用蟋蟀1分钟叫的次数除以7,然后再加上3,就可以近似地得到该地当时的温度(0C ).设蟋蟀1分钟叫的次数为n,用代数式表示该地当时的温度为_______0C ;当蟋蟀1分钟叫的次数为100时,该地当时的温度约为________0C (精确到个位).3. k=______时,-12341+k y x 与9332y x 的和是单项式. 4. 在括号内填上适当的项:(a+b-c)(a-b+c)=[][](_______)(________)-+a a .5. 多项式32327453.0xy y x y x ---的次数是____,常数项为_____,四次项为_______.二、选择题(每小题5分,共25分)1. 某宾馆的标准间每个床位标价为m 元,旅游旺季时上浮x%,则旅游旺季时标准间的床位价为( )元.A.mx%B.m+x%C.m(1+x%)D.m(1-x%).2. 用代数式表示“a 与-b 的差”,正确的是( )A.b-aB.a-bC.-b-aD.a-(-b)3. 当x=-2,y=3时,代数式4x 3-2y 2的值是( )A.14B.-50C.-14D.504. 下列运算正确的是( )A.3a+2b=5abB.3a 2b-3ba 2=0C.3x 2+2x 3=5x 5D.5y 2-4y 2=15. 下列说法中,错误的是( )A.单项式与多项式统称为整式B.单项式x 2yz 的系数是1C.ab+2是二次二项式D.多项式3a+3b 的系数是3三、解答题(每题10分,共50分)1. ⑴ 若b a =,请指出a 与b 的关系. ⑵ 若25a 4b 4是某单项式的平方,求这个单项式.2. 化简求值:4a 2b-2ab 2-3a 2b+4ab 2,其中a=-1,b=2.3. 在计算代数式(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x=0.5,y=-1时,甲同学把x=0.5错抄成x=-0.5,但他计算的结果也是正确的.试说明理由,并求出这个结果.4. 你一定知道小高斯快速求出:1+2+3+4+…+100=5050的方法.现在让我们比小高斯走得更远,求1+2+3+4+…+n=_______________.请你继续观察:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…求出:13+23+33+…+n 3=_______________________.5. 如果A=3x 2-xy+y 2,B=2x 2-3xy-2y 2,那么2A-3B 等于多少?《整式的加减》综合检测(A )一、填空题(每题3分,共30分)1.光明奶厂1月份产奶m 吨,2月份比1月份增产15%,则2月份产奶______吨.2.代数式6a 表示_____________________________________________.3.单项式-4πxy 2的系数是_______,次数是__________.4.多项式365922-+-y x xy xy 的二次项是___________.5.三个连续偶数中间一个是2n ,第一个是______,第三个是_______,这三个数的平方和是_____________(只列式子,不计算)6.若2a 3b-0.75ab k +3×105是五次多项式,则k=__________.7.单项式-5x m+3y 4与7x 5y3n-1是同类项,则n m =_____,这两个单项式的和是___________. 8.2ab+b 2+__________=3ab-b 2 .9.一长方形的一边长为2m+n,比另一边多m-n (m >n ),则长方形的周长是____________.10.x 是两位数,y 是三位数,y 放在x 左边组成的五位数是______________.二、选择题(每题4分,共20分)1. 下列说法中,正确的是( )A.若ab=-1,则a 、b 互为相反数B.若3=a ,则a=3C.-2不是单项式D.-xy 2的系数是-12. 多项式522--a a 的项是( )A.2a 2,-a,-3B. 2a 2,a,3C. 2a 2,-a,3D. 2a 2,a,-33. 下列代数式5.2,1,2,1,22--+-+yx a x x x x ,其中整式有( )个 A.4 B.3 C.2 D.14. 若a <0, 则2a+5a 等于( )A.7aB.-7aC.-3aD.3a 5. 看下表,则相应的代数式是( )A.x+2B.2x-3C.3x-10D.-3x+2 三、解答题(每小题10分,共50分) 1.已知211211-=⨯,----=⨯,3121321则=+)1(1n n ________. 计算:)1(1431321211++---+⨯+⨯+⨯n n 探究:)12)(12(1751531311+-+---+⨯+⨯+⨯n n . 2. 已知A=3a 2-2a+1 B=5a 2-3a+2 C=2a 2-4a-2, 求A-B-C. 3. 如果关于x 的多项式21424-+x mx 与3x n +5x 是同次多项式,求4322123-+-n n n 的值.4. 化简5a 2-[])3(2)25(222a a a a a ---+(用两种方法)5. 按下列要求给多项式-a 3+2a 2-a+1添括号. ⑴ 使最高次项系数变为正数; ⑵ 使二次项系数变为正数;⑶ 把奇次项放在前面是“-”号的括号里,其余的项放在前面是“+”号的括号里.《整式的加减》综合检测(B )一、填空题(每题3分,共30分)1根据生活经验,对代数式a-2b 作出解释:_____________________________________. 2.请写出所有系数为-1,含有字母x 、y 的三次单项式_________________________. 3.如果多项式x 4-(a-1)x 3+5x 2+(b+3)x-1不含x 3和x 项,则a=_____,b=___________. 4.试写出一个关于x 的二次三项式,使二次项系数为2,常数项为-5,一次项系数为3 , 答案是_______________________.5.指出代数式-a 2bc 2和a 3x 2的共同点,例如:都含字母a ,.①________________,②_____________.6.如果x 与2y 互为相反数,则.____________2=+yx7.一个多项式加上-5+3x-x 2得到x 2-6,这个多项式是___________,当x=-1时,这个多项式的值是________.8.代数式-3+(x-a)2的最小值为_______,这时x=_______.9.把多项式2a-b+3写成以2a 为被减数的两个式子的差的形式是___________________. 10.五·一广场内有一块边长为a 米的正方形草坪,经过统一规划后,南北向要加长2米,而东西向要缩短2米.改造后的长方形的面积为___________平方米. 二、选择题(每题4分,共20分) 1. 下面列出的式子中,错误的是( )A.a 、b 两数的平方和:(a+b)2B.三数x 、y 、z 的积的3倍再减去3:3xyz-3C. a 、b 两数的平方差:a 2-b 2 D. a 除以3的商与4的和的平方:(43+a)2 2. 下列各组单项式中是同类项的为( )A.3xy,3xyzB.2ab 2c,2a 2bc C.-x 2y 2,7y 2x 2D. 5a,-ab 3. 下列代数式a+bc,5a,mx 2+nx+p,-x.,1,5xyz,nm,其中整式有( )个 A.7 B.6 C.5 D.4 4. 一个正方形的边长减少10%,则它的面积减少( )A.19%B.20%C.1%D.10% 5. 当m 、n 都为自然数时,多项式a m+b n+2m+2的次数是( )A.2m+n+2B.m+2C.m 或nD.m 、n 中较大的数 三、解答题(每小题10分,共50分)1. 先化简,再求值:(4x 2-3x) +(2+4x-x 2) - (2x 2+x+1), 其中x= -2 . 2. 已知x 2+y 2=7,xy= -2. 求5x 2-3xy-4y 2-11xy-7x 2+2y 2的值.3. 已知A=2x 2+3xy-2x-1, B= -x 2+xy-1, 且3A+6B 的值与x 无关,求y 的值. 4. 若0)23(22=++-b b a ,求:63)(31)(41)(21b a b a b a b a b a -+++--++-值. 5. 规定一种新运算:a *b= ab+a-b, 求 a *b+(b-a)*b.第三部分 《整式的加减》代数式强化练习参考答案一、1.2a 与b 的差 2.⑴(1+10%)x ⑵(a+b)2+(a-b)23. 2.1+0.3n 5.14.1.6+0.5(n-2)5.n 2+n =n(n+1) 6.10(a-3)+a 25 二、1.D 2.C 3.C 4.A 5.B三、1. ∵3a 2-2a +6=8 2. b 2-4ac=(-21)2-4×(-1)×23=425∴ 3a 2-2a=2 ∵(±25)2=425∴1232=-a a ∴425是±25的平方. ∴.2111232=+=+-a a3. ⑴b=0.8(220-14)=164.8答:正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数164次. ⑵b=0.8(220-45)=140, ∵22×6=132 132<140 ∴他没有危险. 反馈检测参考答案一、1.(1-20%)m 2.答案不唯一 3.b a -8 4.2)(h b a +,9cm 25.15 二、1C 2D 3B 4C 5A三、1.⑴ 10a+b,100a+10b+c ⑵ (1+20%)a ·85%,0.2a ⑶ a+(x-1) ⑷ (asa s --2) 2.19 3.-3.54. -5 5.4. 强化练习参考答案 一1. 32-, 4 2. 4, 3 3. –7+2xy 2-x 2y-x 3y 34. 523,41,15.03;,3,4332322y x x y x m m a bc a x --+---- 5. ab 2;-7a 2b 2;4ab 与-9ab6. –3a+4b+5 .二、1.C 2.C 3.D 4.A 5.B 三、1. 2,3 2.30,315122-+ab b a 3. )6.04121(2123+--b b b 4. y x 411211+. 反馈检测参考答案一、1. 参加捐款的学生人数 2. (37+n )、17 3. 4 4. b-c,b-c 5. 5;-4;-7xy 3. 二、1.C 2.D 3.B 4.B 5.D三、1. ⑴a=b 或a=-b ⑵±5a 2b 22. a 2b+2ab 2,-63. 提示:(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3) = 2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2 y 3当y=-1时,原式=-2×(-1)3=24. 2)1(+n n ,(1+2+3+4+-----+n )2 =4)1(2)1(222+=⎥⎦⎤⎢⎣⎡+n n n n . 5. 提示:2A-3B=2(3x 2-xy+y 2)-3(2x 2-3xy-2y 2)=6x 2-2xy+2y 2-6x 2+9xy +6y 2=7xy +8y 2.《整式的加减》综合检测(A )一、1.(1+15%)m 2.答案不唯一 3.-4π;3 4.-9xy 5.2n-2;2n+2;(2n-2)2+(2n)2+(2n+2)26.47.925,2x 5y 4 8. ab-2b 29.6m+6n 10.10y+x 二、1.D 2.A 3.B 4.C 5.D 三、1.解:111+-n n ,)1(1431321211++---+⨯+⨯+⨯n n =211-+3121-+---+111+-n n =1-11+n =1+n n.)12)(12(1751531311+-+---+⨯+⨯+⨯n n =)311(21-+)5131(21-+---+)121121(21+--n n =)1211215131311(21+--+---+-+-n n=)1211(21+-n =12+n n.2.解:A-B-C=(3a 2-2a+1) -(5a 2-3a+2 )-(2a 2-4a-2) =3a 2-2a+1-5a 2+3a-2-2a 2+4a+2 =-4a 2+5a+1.3.解:根据题意,若m=0,则n=2; 若m ≠0,则n=4. 当n=2时,4322123-+-n n n =-2当n=4时,4322123-+-n n n =8. 4. 解:方法一(先去小括号):原式=5a 2-[]a a a a a 6225222+--+=5a 2-(4a 2+4a )=a 2-4a. 方法二(先去中括号):原式=5a 2-a 2-(5a 2-2a)+2(a 2-3a) =5a 2-a 2-5a 2+2a +2a 2-6a= a 2-4a. 5.解:⑴ -a 3+2a 2-a+1=-( a 3-2a 2+a -1). ⑵ -a 3+2a 2-a+1=+( -a 3+2a 2-a+1). ⑶ -a 3+2a 2-a+1=-( a 3+a )+( 2a 2+1). 《整式的加减.》综合检测(B )一、1.答案不唯一 2. –xy 2,-x 2y 3. 1,-3 4. 2x 2+3x-5 5. 都是整式、都是单项式、次数都是5 6. 0 7. 2x 2-3x-1,4 8. –3,a9. 2a-(b-3) 10. (a+2)(a-2 )或a 2-4. 二、1.A 2.C 3.B 4.A 5.D.三、1.解:原式=4x 2-3x+2+4x-x 2-2x 2-x-1= x 2+1 ,当x= -2时,原式= (—2)2+1 = 5.2.解:原式= 5x 2-7x 2-3xy-11xy -4y 2+2y 2= -2x 2-14xy-2y 2= -2(x 2+y 2)-14xy ,当x 2+y 2=7,xy= -2时,原式= -2×7-14×(-2) = -14+28 = 14.3.解:3A+6B = 3(2x 2+3xy-2x-1)+6( -x 2+xy-1) = 6x 2+9xy-6x-3 -6x 2+6xy-6 = 15xy-6x-9 = (15y-6)x-9要使此代数式的值与x 无关,只需15y-6=0, 即.52=y 4.解:∵ 0)23(22=++-b b a ,且02≥-b a ,0)23(2≥+b∴ 2a-b=0, 3b+2=0 ∴ b= -32, a= -31. 当b= -32, a= -31时,63)(31)(41)(21ba b a b a b a b a -+++--++- = ())(613121b a -+-+))(3141(b a ++= )(127b a += )3231(127--= 127-.5.解:a*b+(b-a)*b = ab+a-b+(b-a)b+(b-a)-b = ab+a-b+b 2-ab+b-a-b= -b+b 2.。

相关文档
最新文档