化学电源
4.1.2 化学电源(教学课件)—高中化学人教版(2019)选择性必修一(共29张PPT)
2.判断电池优劣的主要标准
(1)比能量:单位质量或单位体积所能输出电能的多少,单位是(W·h)·kg-1或 (W·h)·L-1。 (2)比功率:单位质量或单位体积所能输出功率的大小,单位是W·kg-1或W·L-1。 (3)电池可储存时间的长短。
2.把A、B、C、D四种金属浸在稀硫酸中,用导线两两相连可以组成各种 原电池,若A、B相连时,阴离子移向A;C、D相连时,D上有气泡逸出;A、 C相连时,A极减轻;D插入B的盐溶液中有B析出。则四种金属的活泼性顺 序由大到小排列为( C) A.A>B>C>D B.A>C>B>D C.A>C>D>B D.B>D>C>A
电解质:H2SO4溶液
②充电过程: 2PbSO4(s)+2H2O(l)=Pb(s)+PbO2(s)+2H2SO4 接电源负极
阴极: PbSO4 (s) +2e- =Pb(s) + SO42- 还原反应
阳极:
接电源正极
PbSO4 (s)+2H2O -2e- = PbO2(s) + 4H++ SO42-
A.当有22.4LO2被还原时,溶液中有4mol Li+向多孔碳电极移动 B.可将有机电解液改为水溶液 C.金属锂作正极,发生氧化反应 D.电池总反应为4Li+O2+2H2O=4LiOH
电解液使用非水液态有机电解质:LiPF6+二乙烯碳酸酯(EC)+二甲基 碳酸酯(DMC)。
反应过程:充电时,Li+从 钴酸锂 晶体中脱嵌,由 正 极回到 负 极,嵌入石 墨中。放电时,Li+从石墨中脱嵌移向 正 极,嵌入钴酸锂晶体中,这样在放 电、充电时,锂离子往返于电池的正极、负极之间完成化学能与电能的相互 转化。
常见化学电源
5.新型燃料电池
(2)甲醇燃料电池 ) • • • • • • • 碱性介质 碱性介质 正极: 正极: 3O2 + 12e– + 6H2O → 12OH– 负极: 负极: 2CH3OH - 12e– + 16OH – → 2CO32 – +12H2O 总反应式: 总反应式: 2CH3OH + 3O2 + 4OH– = 2CO32 – +6 H2O
• • • • • • •
酸性介质: 性介质: 正极: 正极: O2 + 4H+ +4e¯== 2H2O; 负极: 负极: 2H2-4e-==4H+ 总电池反应: 总电池反应: 2H2+O2=2H2O
5.新型燃料电池
(2)甲醇燃料电池 ) • 直接甲醇燃料电池是质子交换膜燃料电 池的一种变种, 池的一种变种,它直接使用甲醇而勿需预 先重整。甲醇在阳极转换成二氧化碳, 先重整。甲醇在阳极转换成二氧化碳,质 子和电子, 子和电子,如同标准的质子交换膜燃料电 池一样, 池一样,质子透过质子交换膜在阴极与氧 反应,电子通过外电路到达阴极,并做功。 反应,电子通过外电路到达阴极,并做功。
• 该电池用取之不尽的海水为电解液,靠空气中 该电池用取之不尽的海水为电解液, 的氧使铝不断氧化而产生电流。 的氧使铝不断氧化而产生电流。1991年,我国 年 首创以铝-空气 海水为能源的新型电池, 空气-海水为能源的新型电池 首创以铝 空气 海水为能源的新型电池,用作 航海标志灯已研制成功。 航海标志灯已研制成功。该电池以取之不尽的 海水为电解液, 海水为电解液,靠空气中的氧使铝不断氧化而 产生电流。这种海水电池的能量比“干电池” 产生电流。这种海水电池的能量比“干电池” 高20~50倍。 ~ 倍 • 1991年我国首创以铝-空气-海水电池作为能 年我国首创以铝- 年我国首创以铝 空气- 源的新型海水标志灯,以海水为电解质, 源的新型海水标志灯,以海水为电解质,靠空 气中的氧气使铝不断氧化而产生电流, 气中的氧气使铝不断氧化而产生电流,只要把 灯放入海水中数秒钟,就会发出耀眼的白光。 灯放入海水中数秒钟,就会发出耀眼的白光。
高三化学选择性必修一第2课时 化学电源
多孔石墨电极
以石墨为电极材料
介质
液
态 酸性
电 解
碱性
质 中性
电池反应: 2H2 +O2 = 2H2O
负极反应
正极反应固 传导O2- Nhomakorabea态 熔 融 电
碳酸盐
(正极 同时充
解 入O2和
质 CO2)
探究学习
分析氢氧燃料电池的工作原理,稀硫酸做离子导体, 写出电极反应式。
负极:2H2 - 4e- = 4H+ 正极:O2 + 4H+ + 4e- = 2H2O
负极:2H2+2CO32- -4e- = 2H2O+ 2CO2 正极:O2 + 4e- + 2CO2= 2CO32-
探究学习
除了氢气外,甲烷、甲醇和乙醇等也可用作燃料 电池的负极反应物。氢氧燃料电池是目前最成熟的燃 料电池。
燃料电池的电极不参与反应,电池的正、负极反 应物分别是氧化剂和燃料。燃料电池具有能量利用效 率高、可连续使用和污染轻等优点,已成为一种发展 前景十分广阔的化学电源。
正极:2O2+8e-+4H2O=8OH-
1
-4
+4
CH4+2O2=CO2+2H2O
总:CH4+2O2+2OH-=CO32-+2H2O
小试身手
写出下列甲烷燃料电池的电极反应式:
(1)酸性条件 正极反应式:_2_O__2_+__8_H_+__+__8_e-__=_4_H_2_O___________; 负极反应式:_C__H_4_-__8_e_-_+__2_H__2_O_=_C__O_2_+__8_H_+_____。
化学电源
化学电源的主要性能
电池容量是评价电池性能的重要指标,可通过 放电曲线测定。 电池容量和放电条件相关,放电条件一般指: 放电电流、放电深度、放电形式、放电期间电 池的温度等。
化学电源的主要性能
对给定的电池,由于欧姆内阻和极化内阻的存 在,电池容量、放电电压和电池的使用寿命随放电 电流增加而减小,只有当电池以很小电流放电时才 能接近理论电压和理论容量。
化学电源的主要性能
电池的工作电压(V): 电池有电流流过时正、负电极的端电压。 它随输出电流的大小、放电深度和温度等变化
而变化。电流流过电池时,会产生电化学极化、
浓差极化和欧姆极化等,使电池的工作电压总低 于开路电势。
化学电源的主要性能
表征电池放电时电压特性的术语: 额定电压:电池工作时公认的标准电压。 如:锌锰电池:1.50V;镉镍电池:1.20V 中点电压:电池放电期间的平均电压。 截止电压:电池放电终止时的电压值,是放电倍率的
化学电源的主要性能
自放电:指电池由于一些自发过程的进行引起的电
池容量的损失。
过充电:对二次电池,若充电时间过长,电池可能
出现过充电,此时会出现新的电极反应,如水的电
解等,会影响电池的寿命。
一般,只要不经常过充电,对电池的性能影响不大。
化学电源的主要性能
电池在贮存和使用过程都会出现自放电,主要原因: 1)不期望的副反应的发生,如铅酸电池的正极发生 2)电池内部变化导致的接触问题; 3)活性物质的再结晶; 4)电池的负极大多数使用活泼金属,可能发生阳极 溶解; 5)无外接负载时电池在电解质桥上的放电。
根据放电倍率的大小分类:
低倍率:<0.5C;
高倍率:3.5-7C;
中倍率:0.5-3.5C;
(完整版)常见化学电源(电极反应式书写)
常见化学电源1、银—锌电池:(电解质溶液:KOH溶液)总反应:Zn + Ag2O=2Ag + ZnO正极:负极:2、Ni—Cd电池:(电解质溶液:KOH溶液)总反应:Cd +2 NiO(OH) + 2H2O=Cd(OH)2 + 2Ni(OH)2正极:负极3、铅蓄电池:(电解质溶液:硫酸)总反应:Pb + PbO2 + 2H2SO4=2PbSO4 + 2H2O正极:负极4、锌锰干电池(1)酸性(电解质:NH4Cl等)总反应:Zn + 2NH4Cl=ZnCl2 + 2 NH3 + H2正极:负极(2碱性(电解质KOH)总反应式:负极:正极:5、锂电池:(正极材料为LiMnO2)总反应:Li + MnO2=LiMnO2正极:负极6、氢-氧电池:总反应:2H2 + O2=2H2O(1)电解质溶液若为硫酸:正极:________________________________,负极:________________________________(2)电解质溶液若为KOH溶液:正极:________________________________,负极:________________________________7、甲烷电池:(电解质溶液:KOH溶液)总反应:CH4 +2 KOH + 2O2=K2CO3 + 3H2O正极:负极8、乙烷电池: (电解质溶液:KOH溶液)总反应:2C2H6 + 8KOH +7O2=4K2CO3 + 10H2O正极:负极9、甲醇燃料电池(40%KOH溶液)负极:正极:总反应式:10、Fe—Ni电池(爱迪生电池):(电解质溶液:KOH溶液)总反应:Fe + NiO2 + 2H2O=Fe(OH)2 + Ni(OH)2正极:负极11、铝—空气海水电池:(电解质溶液:海水)总反应:4Al + 6H2O + 3O2=4A l(O H)3正极:负极12、熔融盐电池:(电解质:熔融Li2CO3、Na2CO3)总反应:2CO + O2=2CO2正极:负极13、反应式为:的原电池。
常见化学电源
常见化学电源1、干电池(1)电极负极:Zn 正极:碳棒(2)电解质溶液:NH4Cl(淀粉糊)(3)电极反应负极:Zn-2e-=Zn2+正极:2MnO2+2NH4++2e-=Mn2O3+NH3+H2O 2、铅蓄电池(1)电极材料负极:Pb 正极:PbO2(2)电解质溶液:H2SO4(3)电极反应式负极:Pb -2e-+ SO42-= PbSO4正极: PbO2 + SO42- + 4H+ + 2e- = PbSO4 + 2H2O 3、银锌电池(钮扣电池)(1)电极材料负极:Zn 正极:Ag2O(2)电解质溶液:KOH溶液(3)电极反应式负极:Zn -2e-+2OH-= ZnO+H2O正极: Ag2 O+ 2e- + H2O =2Ag + 2OH-3、氢氧燃料电池(1)碱性电解质溶液①电极材料负极:Pt 正极:Pt②电解质溶液:KOH溶液③电极反应式负极:2H2 -4e-+4OH-= 4H2O正极: O2+ 4e- +2H2O =4OH-(2)酸性电解质溶液①电极材料负极:Pt 正极:Pt②电解质溶液: H2SO4溶液③电极反应式负极:2H2 -4e--= 4H+正极: O2+ 4e- +4H+=2H2O5、海水电池(1)电极材料负极:Al 正极:石墨(2)电解质溶液:海水(3)电极反应式负极:Al -3e-=Al3+正极: O2+ 4e- + 2H2O =4OH-6、甲烷燃料电池(1)电极材料负极:Pt 正极:Pt(2)电解质溶液:KOH溶液(3)电极反应式负极:CH4 -8e-+10OH-= CO32-+7H2O 正极: O2+ 4e- + 2H2O =4OH-。
应用电化学课件第三章化学电源
要点二
详细描述
质子交换膜燃料电池以质子交换膜为媒介,通过电化学反 应产生电能。在电池中,氢气在阳极被氧化成氢离子和电 子,氢离子通过质子交换膜传递到阴极,与氧气和电子反 应生成水。电子通过外电路传递形成电流,为外部负载提 供电力。质子交换膜燃料电池具有较高的能量密度和效率 ,且工作温度较低,因此被广泛应用于汽车、便携式电源 等领域。
甲醇燃料电池
总结词
甲醇燃料电池是一种以甲醇为燃料,通 过电化学反应产生电能的装置。
VS
详细描述
甲醇燃料电池以甲醇为燃料,通过电化学 反应产生电能。甲醇在阳极被氧化生成甲 醛和电子,电子通过外电路传递形成电流 ,为外部负载提供电力。同时,在阴极上 ,氧气与电子和水反应生成水。
磷酸燃料电池
总结词
磷酸燃料电池是一种以磷酸为电解质,通过 电化学反应产生电能的装置。
应用电化学课件第三章化学 电源
目录
• 化学电源概述 • 一次电池 • 二次电池 • 燃料电池 • 化学电源的应用
01
化学电源概述
定义与分类
定义
化学电源是一种将化学能直接转 化为电能的装置,也称为电池。
分类
根据工作原理和特点,化学电源 可分为一次电池、二次电池、燃 料电池等类型。
工作原理与特点
和充电效率较低,且存在一定的环境污染问题。
镍镉电池
总结词
镍镉电池是一种可充电的二次电池,具有较高的能量密度和自放电率较低的优点,但存在记忆效应和重金属污染 问题。
详细描述
镍镉电池由正极、负极、电解液和隔膜组成,正极为氢氧化镍,负极为镉。在充电过程中,正极上的氢氧化镍发 生还原反应,负极上的镉发生氧化反应。镍镉电池的优点包括较高的能量密度、自放电率较低、可快速充电以及 较好的耐过充过放能力。然而,其存在记忆效应和重金属污染问题,且镉资源有限。
化学电源
铅蓄电池
• Pb——PbO2——H2SO4溶液
负极(Pb):Pb+SO42-—2e 正极(PbO2): PbO2+SO42- + 4H++2e
-=PbSO4
-=PbSO4+2H2O
总反应: Pb+PbO2+2H2SO4=2PbSO4 + 2H2O
碱性锌锰电池
• Zn——MnO2——KOH溶液
负极(Zn):Zn+2OH —2e = Zn(OH)2
化学电源
化学电源的分类
1.一次电池(如干电池):用过后不能复原 • 例如:干电池—— Zn- Mn普通干电池
2.二次电池(如蓄电池):充电后能继续使用 • 例如:银锌纽扣电池 铅蓄电池 3.燃料电池:常见的燃料电池有氢氧燃料电 池、甲烷燃料电池、铝-空气燃料电池、熔 融盐燃料电池等。
氢氧燃料电池
总反应:CH4+2O2+2KOH=K2CO3+3H2O
甲醇—空气燃料电池
两极分别通入CH3OH、O2 ;电解质:KOH溶液
负极:2CH3OH+16OH --12e =2CO32-+12H2O 正极:3O2+ 6H2O+12e =12OH
总反应:
2CH3OH+3O2+4OH =2CO32-+6H2O
正极(MnO2):
2MnO2+2H2O+2e =2MnO(OH)+2OH
总反应: Zn+2MnO2+2H2O= 2MnO(OH)+ Zn(OH)2
甲烷燃料电池
• 两极分别通入CH4、O2 ; 电解质:KOH溶液
负极:CH4+10OH —8e =CO32-+7H2O 正极:2O2+4பைடு நூலகம்2O+8e =8OH
化学电源相关知识点总结
化学电源相关知识点总结化学电源的基本原理是利用化学反应发生电子流动,从而产生电流。
其中最常见的化学电源是化学电池,它是一种将化学能转换为电能的装置。
常见的化学电池有干电池、碱性电池、锂离子电池等。
化学电源的工作原理是通过化学反应来产生电能。
在化学反应中,正极和负极会发生氧化还原反应,产生电子流动。
这些电子流动被引导到外部电路中,从而产生电流。
化学反应的速率和产生的电能取决于正极和负极的化学性质,以及电解质的导电性能。
化学电源的效率取决于多个因素,包括正极和负极的化学性质、电解质的导电性能、电池的设计参数等。
通过优化化学反应和电池设计,可以提高化学电源的能量密度和循环寿命。
化学电源的分类:1. 依据用途分类:(1)电动力源(2)电信号源(3)电热源(4)电光源(5)辅助电源2. 依据化学电源的构造不同方式分类:(1)蓄电池(又称化学电池)(2)燃料电池3. 依据原理或工作方式划分:(1)原电池、二次电池(2)原电池:也称干电池,使用后不能复原;(3)二次电池:使用后可通过外界电源复原;(4)生物电池:利用生物体内基液化学能转移到电能;(5)太阳能电池:利用光能转换为电能;(6)燃料电池:利用化合物的燃烧产生电能;化学电源的组成:1. 正极(正极材料、正极集流体和正极的连接线)2. 负极(负极材料、负极集流体和负极的连接线)3. 电解质(导电道、填液和隔膜)4. 包装(密封部件和外壳)化学电源的工作原理:化学电源是一种化学能转换为电能的装置。
它是通过化学反应来产生电能,并通过外部电路将这种能量输出。
化学电源的工作原理主要是利用正极和负极之间的氧化还原反应,从而产生电子流动。
这种电子流动被引导到外部电路中,从而产生电流。
化学电源的工作过程:1. 正极发生氧化反应,释放出电子,形成氧化物离子;2. 电子沿着外部电路流动到负极;3. 负极发生还原反应,接受电子,形成还原物质;4. 正极和负极之间的离子通过电解质进行传递,完成氧化还原反应;5. 通过外部电路流动的电子和离子重新结合,形成原料,化学反应再次开始。
化学电源知识点汇总总结
化学电源知识点汇总总结一、化学电源的基本概念和原理化学电源是利用化学反应产生的电能的装置,也称为化学电池。
化学电源的原理是通过化学反应将化学能转化为电能,从而产生电流。
化学电源主要包括化学电池和燃料电池两种类型。
1. 化学电池化学电池是一种将化学能转化为电能的装置,它由正极、负极和电解质组成。
正极和负极之间通过电解质隔膜隔开,当正极和负极连通时,化学反应发生,产生电流。
化学电池的工作原理是在正负极之间发生氧化还原反应,从而产生电流。
2. 燃料电池燃料电池是一种利用氢气或其他可燃气体与氧气进行氧化还原反应产生电能的装置。
燃料电池的工作原理是通过将氢气与氧气在催化剂的作用下进行反应,产生电流。
二、化学电源的分类化学电源主要包括化学电池和燃料电池两种类型,根据不同的工作原理和应用领域可以进一步进行分类。
1. 原电池和二次电池原电池是一次性使用的化学电池,其化学反应发生后无法逆转。
二次电池则是可以重复充放电的化学电池,例如铅酸蓄电池和锂离子电池等。
2. 燃料电池的类型燃料电池可以根据使用的燃料和氧化剂的不同进行分类,常见的燃料电池包括氢氧燃料电池、甲醇燃料电池、固体氧化物燃料电池等。
三、化学电源的应用化学电源作为一种高效的能源转化装置,广泛应用于各个领域。
1. 电动汽车随着环保意识的提高,电动汽车逐渐成为替代传统燃油车的首选。
电动汽车采用电池组作为动力来源,其中包括锂离子电池、镍氢电池等。
2. 便携式电子设备化学电源被广泛应用于便携式电子设备,例如手机、笔记本电脑、数码相机等。
这些设备通常采用锂离子电池或锂聚合物电池。
3. 家用电器化学电源也被应用于一些家用电器,例如手提吸尘器、电动工具、无线电话等。
这些设备通常采用镍镉电池、镍氢电池等。
4. 航空航天领域燃料电池在航空航天领域有着广泛的应用前景,可以用于飞机、无人机和宇宙飞船等。
5. 新能源领域燃料电池也被广泛应用于新能源领域,例如太阳能和风能的储能系统,通过燃料电池将太阳能和风能转化为电能。
化学与物理电源
化学与物理电源一、化学电源化学电源是一种通过化学反应产生电能的装置,广泛应用于日常生活和工业生产中。
常见的化学电源有干电池和蓄电池。
干电池是一种便携式化学电源,内部由正负极、电解质和隔离膜等组成。
当外部电路连接到干电池上时,化学反应开始进行,正极的金属离子向负极移动,产生电流。
干电池的优点是体积小、重量轻、使用方便,适用于移动设备和小型电子产品。
然而,干电池的能量密度较低,不能充电,使用寿命有限。
蓄电池是一种可充电的化学电源,内部由正负极、电解质和隔离膜等组成。
蓄电池与干电池类似,但在电解质中添加了可逆反应物质,可以通过外部电源反向充电。
蓄电池的优点是能够重复充放电,使用寿命较长。
蓄电池广泛应用于汽车、太阳能电池板等领域。
二、物理电源物理电源是一种通过物理现象产生电能的装置,常见的物理电源有太阳能电池和风力发电机。
太阳能电池是利用光电效应将太阳能转化为电能的装置。
太阳能电池由多层半导体材料组成,当阳光照射到太阳能电池上时,光子激发半导体中的电子,使电子从价带跃迁到导带,形成电流。
太阳能电池的优点是清洁环保、可再生,适用于户外照明和太阳能发电系统。
风力发电机是利用风能转化为机械能,再由发电机将机械能转化为电能的装置。
风力发电机由风轮和发电机组成,当风力推动风轮转动时,发电机内的线圈产生感应电流,形成电能。
风力发电机的优点是可再生、无污染,适用于大型发电场和离网发电。
总结:化学电源和物理电源都是人们日常生活和工业生产中不可或缺的能源装置。
化学电源通过化学反应产生电能,包括干电池和蓄电池;物理电源通过物理现象产生电能,包括太阳能电池和风力发电机。
不同的电源具有各自的优点和适用范围,为人类的生活和工作提供了便利和可持续的能源支持。
常见化学电源及工作原理
常见化学电源及工作原理1.一次电池(1)碱性锌锰干电池负极反应:Zn+2OH--2e-===Zn(OH)2;正极反应:2MnO2+2H2O+2e-===2MnOOH+2OH-;总反应:Zn+2MnO2+2H2O===2MnOOH+Zn(OH)2。
(2)锌银电池负极反应:Zn+2OH--2e-===Zn(OH)2;正极反应:Ag2O+H2O+2e-===2Ag+2OH-;总反应:Zn+Ag2O+H2O===Zn(OH)2+2Ag。
(3)锂电池Li-SOCl2电池可用于心脏起搏器,该电池的电极材料分别为锂和碳,电解液是LiAlCl4-SOCl2,电池总反应可表示为4Li+2SOCl2===4LiCl+SO2↑+S。
其中负极材料是Li,电极反应式为4Li-4e-===4Li+,正极反应式为2SOCl2+4e-===SO2↑+S+4Cl-。
2.二次电池铅蓄电池是最常见的二次电池,负极材料是Pb,正极材料是PbO2。
总反应为Pb(s)+PbO2(s)+2H2SO4(aq)放电2PbSO4(s)+2H2O(l)。
充电特别提醒可充电电池充电时原来的负极连接电源的负极作阴极;同理,原来的正极连接电源的正极作阳极,简记为负连负,正连正。
3.氢氧燃料电池氢氧燃料电池是目前最成熟的燃料电池,分为酸性和碱性两种。
种类酸性碱性负极反应式2H2-4e-===4H+2H2+4OH--4e-===4H2O正极反应式O2+4e-+4H+===2H2O O2+2H2O+4e-===4OH-电池总反应式2H2+O2===2H2O(1)碱性锌锰干电池是一次电池,其中MnO2是催化剂,可使锌锰干电池的比能量高、可储存时间长(×)错因:MnO2是正极反应物,不是催化剂。
(2)可充电电池中的放电反应和充电反应互为可逆反应(×)错因:可充电电池放电时是自发的原电池反应,充电时是非自发的电解池反应,条件不同。
(3)二次电池充电时,二次电池的阴极连接电源的负极,发生还原反应(√)(4)氢氧燃料电池在碱性电解质溶液中负极反应式为2H2-4e-===4H+(×)错因:碱性环境下负极反应式为H2+2OH--2e-===2H2O。
第06讲 化学电源(教师版)
一、化学电源的分类与优劣判断1. 分类:化学电源可以分为一次电池、二次电池和燃料电池等。
2. 优劣判断(1)比能量:单位质量或单位体积所能输出电能的多少,单位是(W·h)/kg 或(W·h)/L 。
(2)比功率:单位质量或单位体积所能输出功率的大小,单位是W/kg 或W/L 。
(3)电池可储存时间的长短。
二、一次电池(干电池)一次电池,也叫做干电池,放电后不可再充电。
常见的一次电池有普通锌锰干电池、碱性锌锰干电池、纽扣式银锌电池等。
1. 普通锌锰干电池常见的锌锰干电池的构造如图所示。
其中,石墨棒作正极,氯化铵糊作电解质溶液,锌筒作负极。
这种电池放电之后不能充电(内部的氧化还原反应无法逆向进行),属于一次电池。
总反应Zn + 2MnO 2 + 2NH 4+ === Zn 2+ + 2MnO(OH) + 2NH 3↑第06讲 化学电源知识导航知识精讲2. 碱性锌锰干电池用KOH电解质溶液代替NH4Cl做电解质时,电池的比能量和放电电流都能得到显著的提高。
Zn + 2OH-﹣2e-==Zn(OH)23. 纽扣式锌银电池锌银扣式电池,以锌为负极,银的氧化物为正极,氢氧化钾(或钠)溶液为电解液的纽扣状微型原电池Zn+Ag2O+ H2O === Zn(OH)2+2Ag三、二次电池有些电池放电时所进行的氧化还原反应,在充电时可以逆向进行,使活性物质获得再生,从而实现放电(化学能转化为电能)与充电(电能转化为化学能)的循环。
这种充电电池属于二次电池,也叫充电电池或蓄电池。
常见的充电电池有铅酸蓄电池、镍氢电池、锂离子电池等,目前汽车上使用的大多是铅蓄电池。
1. 铅蓄电池Pb+PbO2+2H2SO42PbSO4+2H2O正极充电总反应2PbSO4 + 2H2O === Pb + PbO2 +4H+ + 2SO42- 阴极PbSO4+2e-===Pb+ SO42-阳极PbSO4+2H2O-2e-===PbO2+4H++ SO42-2. 锂离子电池工作原理Li1-x CoO2 + Li x C6 LiCoO2 + 6C放电总反应Li1-x CoO2 + Li x C6 === LiCoO2 + 6C 负极正极充电总反应LiCoO2 + 6C === Li1-x CoO2 + Li x C6阴极阳极三、燃料电池燃料电池是一种连续地将燃料(如氢气、甲烷、乙醇)和氧化剂(如氧气)的化学能直接转化为电能的电化学反应装置,具有清洁、安全、高效等特点。
化学电源
判断:
电池工作时,电子由正极通过外 电池工作时,
电路流向负极。 电路流向负极。 错 外电路中每通过 外电路中每通过0.2mol的电子, 的电子, 的电子 锌的质量理论上减少6.5g。对 锌的质量理论上减少 。
随着用电器朝着 小型化、 小型化、多功能化发 展的要求,对电池的 展的要求, 发展也提出了小型化、 发展也提出了小型化、 多功能化发展的要求。 多功能化发展的要求。 体积小、性能好的碱性锌- 体积小、性能好的碱性锌-锰电池应运 而生。 而生。这类电池的重要特征是电解液由原来 的中性变为离子导电性更好的碱性, 的中性变为离子导电性更好的碱性,负极也由 锌片改为锌粉,反应面积成倍增长, 锌片改为锌粉,反应面积成倍增长,使放电电 流大幅度提高。 流大幅度提高。
锂电池是一代新型高能电池,它以质量轻、 锂电池是一代新型高能电池,它以质量轻、能量高而受 到了普遍重视,目前已研制成功多种锂电池, 到了普遍重视,目前已研制成功多种锂电池,某种锂电池 下列说法正确的是( 的总反应为Li 的总反应为Li + MnO2=LiMnO2,下列说法正确的是( B ) Li是正极 是正极, A、 Li是正极,电极反应为Li - e- = Li+ Li是负极 是负极, B、 Li是负极,电极反应为Li - e- = Li+ Li是负极 是负极, C、 Li是负极,电极反应为MnO2 + e- = MnO2 – Li是负极 是负极, D、 Li是负极,电极反应为Li -2e- = Li2+
铅蓄电池
新型燃料电池
燃料电池不是把还原剂、氧化剂物质全 燃料电池不是把还原剂、 部贮藏在电池内,而是在工作时, 部贮藏在电池内,而是在工作时,不断从外 界输入, 界输入,同时将电极反应产物不断排出电池
化学电源
二、化学电池 普通锌锰干电池 一次电池 碱性锌锰电池 银锌纽扣电池 铅蓄电池
化学电源 二次电池 银锌蓄电池
锂离子电池 燃料电池 氢氧燃料电池等
1. 银锌钮扣电池 电极分别为Ag2O和Zn
电解质溶液为KOH 负极:Zn +2OH--2e- =Zn(OH)2
正极:Ag2O + H2O+ 2e- =2Ag+2OH- 总反应: Zn+Ag2O+H2O=Zn(O,在电池内部担 负着传递正负极之间电 荷的作用
对电解质的要求是
• 1) 稳定性强,因为电解质长期保存在电池 内部,所以必须具有稳定的化学性质,使 储藏期间电解质与活性物质界面的电化学 反应速率小,从而使电池的自放电容量损 失减小; 2) 比电导高,溶液的欧姆压降小,使电池 的放电特性得以改善。对于固体电解质, 则要求它只具有离子导电性,而不具有电 子导电性。
化学电源
zwj
化学电源俗称电池,是一种能将化学能 直接转变成电能的装置,它通过化学反 应,消耗某种化学物质,输出电能。常 见的电池大多是化学电源。它在国民经 济、科学技术、军事和日常生活方面均 获得广泛应用。
化学电源在实现能量的转换过程 中,必须具有两个必要的条件:
一. 组成化学电源的两个电极上进行的氧 化还原过程,必须分别在两个分开的区 域进行,这一点区别于一般的氧化还原 反应。 二. 两电极的活性物质进行氧化还原反应 时所需电子必须由外线路传递,这一点 区别于金属腐蚀过程的微电池反应。
电池外壳
• 电池外壳作为容器,应耐腐蚀,具有一定 的强度
3.工作原理(以锌—铜原电池为例,如图所示)
电极名称 电极材料 电极反应 反应类型 电子流向
负极 Zn ____ Zn→Zn2++2e- __________________
化学电源
化学电源化学电源(Battery):又称电池,是将氧化-还原反应的化学能直接转变为电能的装置。
化学电源对外电路供给能量的过程称为放电(discharge)过程,反之则称为充电(charge)过程。
化学电源的分类¾原电池:又称为一次电池,放电后不能用充电的方式使之复原。
¾蓄电池:又称为二次电池,充电后可使之复原,能多次充放电,循环使用。
¾储备电池:在储存期内电极活性物质不与电解质接触,或电解质处于固态;使用时借助动力源或水作用于电解质使电池激活。
¾燃料电池:¾电化学电容器:任何化学电源都包括四个基本部分:电极(正极和负极)、电解质、隔膜和外壳化学电源的原理对于化学电源来说,电池反应的自由能变化是电能的来源。
由能斯特公式计算出的是平衡状态下的电动势。
由于极化作用,电池放电时的电压总是低于其平衡电动势。
Typical discharge curve of a battery活化极化:与发生在电极/电解质界面上的电化学氧化还原反应的动力学因素有关。
欧姆极化:与单个电池组件的电阻及电池组件之间连接问题产生的电阻相关联。
浓度极化:取决于电池工作时物质传输的限制。
电池的电性能和储能性能实用的电池对电性能、储存性能、机械性能、密封性能以及几何形状都有一定的要求,而首要的是具有良好的电性能和储存性能。
¾开路电压和工作电压没有通电时电池的电压称为开路电压,等于两电极之间的电位差。
只有可逆电池的开路电压才等于电池电动势,一般电池的开路电压总小于电池的电动势。
开路电压取决于正、负极材料的本性、电解质和温度。
工作电压又称闭路电压,是指电池有电流流过时的端电压,它随输出电流的大小、放电深度和温度等变化而变化。
当有电流流过电池时,会产生电化学极化、浓差极化和欧姆极化等,使得电池的工作电压总低于开路电压。
z额定电压:是指电池工作时公认的标准电压。
z中点电压:是指电池放电期间的平均电压。
应用电化学---第三章 化学电源
3.电流和反应速率 反应速率等于电流强度,可以直接从电流表 读出。电流的大小,就是充电或者放电速率 的大小。 由于电池存在内阻,当有电流流过时,电池 的放电电压下降,电极上的活性物质来不及 反应,使电池容量的下降。对于电池反应, 能承受的充、放电电流的大小反映了电池反 应的可逆性。为降低电极反映的极化、提高 电池所能承受的电流,电极一般做成多孔扩 散电极。
放电深度:电池放电量占其额定容量的百分 数。 理想的电池在整个放电过程中应该保持一个 恒定的工作电压,但大多数电池只有在较低 的放电深度时才保持平稳的工作电压。 放电深度大时电池能放出较多的容量,但考 虑到电池的工作性能,一般情况下电池放电 深度只为额定容量的20%一40%。
电池放电一段时间后搁臵时,开路电压会 上升。图3.2为电池连续放电和间隙放电时 的放电曲线。依图可见,间隙放电时的容 量要较连续放电时为大。特别当以大电流 放电时,间隙放电会使电池容量有较大的 提高。
给电池外加一负载并接通外电路时,外线 路中有电流通过,电池对外做电功,其工 作电压为:
Rp,RΩ分别是极化内阻和欧姆内阻,E,V 分别使电池电动势和电池工作电压
电池内阻R =Rp + RΩ ,
极化内阻是由于电化学极化和浓差极化而 引起的,所以极化内阻的大小与电极材料 的本质、电池的结构、制造工艺和工作电 流的大小等有关。为降低极化内阻,电极 一般做成多孔电极以提高电极的表面积, 并选择具有高交换电流密度的活性物质。
电池的负极一般选用较活泼的金属,而正 极一般选用金属氧化物,电极材料的选择 和评价原则前面已经介绍,后面还要针对 电池来具体讲授。表3.1列出了电池常用的 一些负极材料的性能。
添加剂:包括能提高电极导电性能的导电剂 (如金属粉和碳粉)、增加活性物质粘结力的 粘结剂(如聚四氟乙烯和聚乙烯)、延缓金属 电极腐蚀的缓蚀剂等。 集电器:由于活性物质通常是构成一种糊状 电极,需要用集电器来作为支持体,集电器 通常是一个金属栅板或导电的非金属棒(如碳 棒),以提供电子传导的路线,集电器重量应 轻,化学稳定性应好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负极:Zn + 2OH- - 2e- = Zn(OH)2 正极:2MnO2+2H2O+2e-=2MnOOH+2OH-
3、银-锌电池
4、锂电池
锂亚硫酰氯电池(Li-SOCl2):8Li+3SOCl2=6LiCl+Li2SO3+2S 负极: 8Li-8e-=8Li+ ;正极:3SOCl2+8e-=6Cl-+SO32-+2S 。
铅蓄电池的优缺点简析:
缺点:比能量低、笨重、废弃电池污染环境 优点:可重复使用、电压稳定、使用方便、安全可 靠、价格低廉
其它二次电池:镍镉电池、镍氢电池、锂离子电池
、聚合物锂离子蓄电池……
2、镉镍电池
负极材料:Cd 正极材料:涂有NiO(OH)
电解质:KOH溶液
总反应式:
2NiO(OH)+Cd+2H2O
普通干电池 碱性锌锰电池 锌银纽扣电池 铅蓄电池
锌银蓄电池
镍镉电池
锂离子电池
氢气、甲醇、天 然气、煤气与氧 气组成燃料电池
电池发明的小故事
1791年他在解剖时在实验 室将悬有去了皮的青蛙腿的 铜钩挂在铁架台上,发现蛙 腿会有肌肉抽搐的现象。伽 伏尼认为动物的组织会产生 电流,而金属是传递电流的 导体。
锌筒 石墨棒
NH4Cl、ZnCl2 和 H2O等
MnO2和C
负
正
极:Zn -
2e-=
Zn2+
普通锌-锰干电池的结构
极:2MnO2 + 2e-+2NH4+= 2MnOOH+ 2NH3↑
优点:制作简单、价格便宜。 缺点:放电时间短,电压下降快。寿命短,不能充电。
2、碱性锌锰干电池
负极:Zn 正极:MnO2 电解质溶液:KOH
2、甲烷燃料电池
(电解质溶液:KOH)
总反应式: CH4+2O2+2KOH=K2CO3+3H2O
正极:2O2 + 4H2O + 8e- = 8OH负极:CH4+10OH-–8e- = CO32-+7H2O
3、甲醇燃料电池
(电解质溶液:KOH)
2CH3OH+4OH-+3O2=2CO32-+6H2O 正极:3O2 + 6H2O + 12e- = 12OH负极:2CH3OH+16OH- –12e- =2CO32-+12H2O
②负极-可燃性气体失电子,正极-助燃性气体得电子. ③电极反应考虑电解质溶液.
氢氧燃料电池:2H2 + O2 = 2H2O ,氧元素由零价 变为负二价,电解质环境不同则最终产物不同
固体氧化物:O2 +4e- = 2O2KOH溶液:O2 + 2H2O + 4e- = 4OH稀硫酸: O2 + 4H+ + 4e- = 2H2O 熔融Na2CO3: O2 + 2CO2 + 4e- = 2CO32-
复杂电极 反应式
=
总反应式
-
较简单一极 电极反应式
1、仅有一个电极材料参与反应的原电池: 负极:M-xe=Mx+ 正极:析氢或吸氧或析出不活泼金属
练习:Mg-Al-HNO3浓中 Al
是正极,
Mg-Al-NaOH中
Mg 是负极 Mg 是正极
Al 是负极
A
Cu
C
1.简单原电池电极方程式的书写
①判断右边原电池的正、负极,并写出电极 反应式。
总反应: O2 + 2H2 = 2H2O
固体氧化物燃料电池是一种采用固体氧化物作为电解质的燃料电
池。该电池中的固体氧化物电解质是一种特殊的固体电解质,能
够允许氧离子通过。其工作原理是在负极通入燃料,在正极通入 氧气,而氧气所形成的氧离子能够通过氧化物电解质。某燃料电 池使用固体氧化物作为电解质,在一极通入一氧化碳,在另一极 通入氧气,请根据原电池的工作原理,写出电极反应式和总反应
一般电极反应式的书写
列物质 标得失
按照负极发生氧化反应,正极 发生还原反应,判断出电极反 应物,找出得失电子的数量 电极产物在电解质溶液中应能 稳定存在。配平后的电极反应 式要遵循电荷、元素、得失电 子守恒。 在得失电子相等时,将两电极 反应式相加,与总反应式对照 验证
看环境 配守恒
两式加 验总式
复杂电极反应式的书写 总体思路:
选修4
化学反应原理
第二节 化学电源
第四章电化学基础
普通锌锰电池碱Βιβλιοθήκη 电池镍氢电池 镍 镉 电 池
锂离子电池
小型高性能燃料电池
化学电池
将化学能转换成电能的装置
电池
太阳能电池 将太阳能转换成电能的装置
原子能电池 将放射性同位素自然衰变时产 生的热能通过热电转换器转变 为电能的装置
用途广泛的电池
用于汽车的铅蓄电池和燃料电池
(意大利生物 学家伽伏尼)
他从独特的角度认为电 流是由两种不同的金属产 生的,经过一系列的实验 ,终于在1800年成功研制 了世界上第一个能产生稳 (法国物理定电流的电池(见下图) 学家、化学。
家伏特)
一、一次电池
1、普通锌锰干电池
电池的负极是Zn,正极是MnO2, 电解质溶液是NH4Cl和ZnCl2
用途广泛的电池
太阳能电池和原子能电池
1、化学电池与其它能源相比有哪些优点? 2、判断电池的优劣标准主要是什么?
3、目前化学电池主要分哪几大类?
一次电池 电池中的反应物质 消耗到一定程度,就不能再 次利用。
化 学 电 池 二次电池又称充电电池或蓄 电池。放电后经充电可使电 池中的活性物质获得重生, 恢复工作能力,可多次重复 使用。 燃料电池 是一种连续地将燃 料和氧化剂的化学能直接转 化成电能的化学电源,又称 连续电池。
方程式。
作业
1.教材p78习题 2.试吧p69-72,做完红笔改错,自行更正。
正极:总反应-负极反应
6H2O +6e- =6OH—+ 3H2↑
2、两个电极均参与反应的原电池(如蓄电池,银锌电池) ① 电极材料:金属为负极,金属化合物为正极. ② 电子得失均由两电极本身发生. ③电极反应需考虑电解质溶液的参与.
3、电极材料本身均不参与反应的电池(燃料电池)
①两电极材料均为惰性电极.
O2 + 4H+ + 4e-= 2H2O 2H2 - 4e- = 4H+ O2 + 2H2O + 4e-= 4OH-
中性
负极
碱性 正极
2H2 +4OH-- 4e- = 4H2O
O2 + 2H2O + 4e-= 4OH-
燃料电池的规律
①燃料做负极,助燃剂氧气为正极 ②电极材料一般不参加化学反应,只起传导电子的 作用。
燃料电池与前几种电池的差别:
①氧化剂与还原剂在工作时不断补充; ②反应产物不断排出; ③能量转化率高(超过80%),普通的只有30%,有利于 节约能源。 缺点:体积较大、附属设备较多 优点:能量转换率高、清洁、对环境好 其它燃料电池:烃、肼、甲醇、氨、煤气燃料电池……
书写化学电池电极反应方程式的思路与方法
用途:质轻、高能(比能量高)、高工作效率、高稳定电压、工 作温度宽、高使用寿命,广泛应用于军事和航空领域。
二、二次电池
正负极材料
正极:PbO2 负极:Pb
1、铅蓄电池
铅蓄电池的充放电过程:
电解质:H2SO4溶液
Pb(s)+PbO2(s)+2H2SO4(aq)
放电
充电
2PbSO4(s)+2H2O(l)
FeCl3溶液
Cu+2FeCl3 =CuCl2 +2FeCl2
拆成离子方程式 Cu : + 2Fe3+ = Cu2+ + 2Fe2+ 根据化合价升降判断正负极 负极: Cu 失电子 Cu - 2e- = Cu2+ 正极: Fe3+得电子 2Fe3+ + 2e- = 2Fe2+
②请写出右边原电池的电极方程式。
4、熔融盐氢氧燃料电池
熔融碳酸盐燃料电池是由多孔陶瓷阴极、多孔陶瓷电解
质隔膜、多孔金属阳极构成的燃料电池。其电解质是熔
融态碳酸盐(在阴极充入CO2气作助燃剂)。
反应原理如下:
正极: O2 + 2CO2 + 4e - =2CO32负极: 2H2 + 2CO32- - 4e- = 2CO2 + 2H2O
放电 充电
2Ni(OH)2+ Cd(OH)2
练习:试写出电池放电的电极反应式: 负极:Cd-2e-+2OH-=Cd(OH)2 正极:2NiO(OH)+2e-+2H2O=2Ni(OH)2+2OH-
锂离子电池
三、燃料电池
介质 酸性
电池反应: 2H2 + O2= 2H2O 负极 正极 负极 正极
2H2 - 4e- = 4H+
总反应方程式: 2Al + 2NaOH + 2H2O = 2NaAlO2 + 3H2↑ 拆成离子方程式: 2Al + 2OH- + 2H2O = 2AlO2 + 3H2↑
-
A
Mg
Al
NaOH溶液
根据化合价升降判断正负极 负极:Al,失e2Al - 6e- = 2Al3+ 2Al3+ + 8OH- =2AlO2- + 4H2O 负极总反应: 2Al +8OH- -6e- =2AlO2- + 4H2O