备战高考物理复习《电磁感应现象的两类情况》专项推断题综合练习及详细答案
高考物理压轴题专题电磁感应现象的两类情况的经典推断题综合题及详细答案
高考物理压轴题专题电磁感应现象的两类情况的经典推断题综合题及详细答案一、电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B L θθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L+=∆=3.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L vF R=,由平衡条件可得F mgsin θ=,解得2mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.4.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。
高考物理复习《电磁感应现象的两类情况》专项推断题综合练习含答案
高考物理复习《电磁感应现象的两类情况》专项推断题综合练习含答案一、电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
备战高考物理电磁感应现象的两类情况推断题综合题汇编附答案解析
备战高考物理电磁感应现象的两类情况推断题综合题汇编附答案解析一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
备战高考物理电磁感应现象的两类情况推断题综合经典题附答案
备战高考物理电磁感应现象的两类情况推断题综合经典题附答案一、电磁感应现象的两类情况1.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R -222210122BL B L kR v B L +-24nB Lb R '【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =-由欧姆定律得:12E I R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nBLbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B L θθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=3.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。
备战高考物理电磁感应现象的两类情况的推断题综合复习附答案
备战高考物理电磁感应现象的两类情况的推断题综合复习附答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.3.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R - (2) 222210122BL B L kR v B L kR +- (3) 24nB Lb R '【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =- 由欧姆定律得:12EI R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '=电磁铁通过字型线圈右边界时,电路情况如图3所示:nEtφ∆=∆,B Lbφ∆=',32EIR=33Q I t=∆解得:32nB LbQR'=,总的电荷量:123Q Q Q Q=++解得:24nB LbQR'=4.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合附详细答案
高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合附详细答案一、电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EIR r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+ 计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin 372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.3.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.4.如图所示,竖直放置、半径为R 的圆弧导轨与水平导轨ab 、在处平滑连接,且轨道间距为2L ,cd 、足够长并与ab 、以导棒连接,导轨间距为L ,b 、c 、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B 的匀强磁场,均匀的金属棒pq 和gh 垂直导轨放置且与导轨接触良好。
备战高考物理电磁感应现象的两类情况推断题综合练习题附详细答案
(2)求列车能达到的最大速度 vm ;
(3)列车以最大速度运行一段时间后,断开接在“
” 字型线圈上的电源,使线圈
与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)
的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为 Lb 、磁感应强度为
B 、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“
式;
3 从 t 0 时刻开始,当通过电阻 R 的电量 q 2.25C 时,ab 棒正在向右运动,此时撤去
外力 F,此后 ab 棒又运动了 s2 6.05m 后静止 .求撤去外力 F 后电阻 R 上产生的热量 Q.
【答案】(1) F0 0.025N ,方向水平向右(2) f 0.01252 t N ?(3) 0.195J
2 ab 棒与轨道间的最大摩擦力为: fm mg 0.1N F0 0.025N
故前 3s 内导体棒静止不动,由平衡条件得: f BIL
由图知在 0 3s 内,磁感应强度为: B B0 kt 0.2 0.1t
联立解得: f 0.01252 t N(t 3s) ;
3 前 3s 内通过电阻 R 的电量为: q1 I t 0.25 3C 0.75C
导轨上加速 导轨的最右
联立解得 (3)金属棒 pq 进入磁场后在 ab、 导轨上减速运动,金属棒 gh 在 cd、 导轨上加速 运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为
该过程金属棒 gh 产生的热量为 金属棒 pq 到达 cd、 导轨后,金属棒 pq 加速运动,金属棒 gh 减速运动,回路电流逐渐 减小,当回路电流第二次减小为零时,金属棒 pq 与 gh 产生的电动势大小相等,由于此时 金属棒切割长度相等,故两者速度相同均为 v,此时两金属棒均做匀速运动,根据动量守 恒定律有 金属棒 pq 从到达 cd、 导轨道电流第二次减小为零的过程,回路产生的热量为
备战高考物理—电磁感应现象的两类情况的推断题综合压轴题专题复习附详细答案
备战高考物理—电磁感应现象的两类情况的推断题综合压轴题专题复习附详细答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小;(2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J .【解析】【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒 012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL x q r r ∆Φ∆== 解得 1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L v Q R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R 【解析】【分析】【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L v Q Pt R v R=== (2)对于线圈:做匀加速运动,则有S 1=vt /2对于传送带做匀速直线运动,则有S 2=vt故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vt s s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2 送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.3.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
备战高考物理复习《电磁感应现象的两类情况》专项推断题综合练习附详细答案
备战高考物理复习《电磁感应现象的两类情况》专项推断题综合练习附详细答案一、电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧ B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,光滑导线框abfede 的abfe 部分水平,efcd 部分与水平面成α角,ae 与ed 、bf 与cf 连接处为小圆弧,匀强磁场仅分布于efcd 所在平面,方向垂直于efcd 平面,线框边ab 、cd 长均为L ,电阻均为2R ,线框其余部分电阻不计。
有一根质量为m 、电阻为R 的金属棒MN 平行于ab 放置,让它以初速水平向右运动在到达最高点的过程中,ab 边产生的热量为Q 。
求:(1)金属棒MN 受到的最大安培力的大小; (2)金属棒MN 刚进入磁场时,ab 边的发热功率; (3)金属棒MN 上升的最大高度。
高考物理压轴题专题复习——电磁感应现象的两类情况的推断题综合及详细答案
高考物理压轴题专题复习——电磁感应现象的两类情况的推断题综合及详细答案一、电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L =- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgR v B L=(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-3.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。
备战高考物理复习电磁感应现象的两类情况专项推断题综合练及详细答案
备战高考物理复习电磁感应现象的两类情况专项推断题综合练及详细答案一、电磁感应现象的两类情况1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=2.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。
备战高考物理复习电磁感应现象的两类情况专项推断题综合练含详细答案
备战高考物理复习电磁感应现象的两类情况专项推断题综合练含详细答案一、电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.3.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=4.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
备战高考物理电磁感应现象的两类情况推断题综合练习题及答案
备战高考物理电磁感应现象的两类情况推断题综合练习题及答案一、电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B L θθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L+=∆=3.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。
备战高考物理专题复习分类练习 电磁感应现象的两类情况推断题综合解答题及详细答案
备战高考物理专题复习分类练习 电磁感应现象的两类情况推断题综合解答题及详细答案一、电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
备战高考物理复习《电磁感应现象的两类情况》专项推断题综合练习含详细答案
备战高考物理复习《电磁感应现象的两类情况》专项推断题综合练习含详细答案一、电磁感应现象的两类情况1.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在垂直导轨平面的磁场,磁感应强度分布为1()00.60.8()0T x B x T x -<⎧=⎨+≥⎩(取磁感应强度B 垂直斜面向上为正)。
现有一质量为10.3m =kg ,边长均为l =0.5m 的U 形框cdef 固定在导轨平面上,c 点(f 点)坐标为x =0。
U 形框由金属棒de 和两绝缘棒cd 和ef 组成,棒de 电阻为10.2R =Ω。
另有一质量为20.1=m kg ,长为l =0.5m ,电阻为20.2R =Ω的金属棒ab 在离EF 一定距离处获得一沿斜面向下的冲量I 后向下运动。
已知金属棒和U 形框与导轨间的动摩擦因数均为3μ=。
(1)若金属棒ab 从某处释放,且I =0.4N·s ,求释放瞬间金属棒ab 上感应电流方向和电势差ab U ;(2)若金属棒ab 从某处释放,同时U 形框解除固定,为使金属棒与U 形框碰撞前U 形框能保持静止,求冲量I 大小应满足的条件。
(3)若金属棒ab 在x =-0.32m 处释放,且I =0.4N·s ,同时U 形框解除固定,之后金属棒ab 运动到EF 处与U 形框发生完全非弹性碰撞,求金属棒cd 最终静止的坐标。
【答案】(1)感应电流方向从b 到a ;0.1V;(2)0.48N ⋅s ;(3)2.5m 【解析】 【分析】 【详解】(1)金属棒获得冲量I 后,速度为24m/s Iv m == 根据右手定则,感应电流方向从b 到a ; 切割磁感线产生的电动势为1E B lv =其中11B =T ;金属棒ab 两端的电势差为12120.1V ab B lvU R R R ==+(2)由于ab 棒向下运动时,重力沿斜面的分力与摩擦力等大反向,因此在安培力作用下运动,ab 受到的安培力为2212212B l v F m a R R ==+做加速度减小的减速运动;由左手定则可知,cd 棒受到安培力方向沿轨道向上,大小为21212B B l v F R R =+安其中21T B =;因此获得冲量一瞬间,cd 棒受到的安培力最大,最容易发生滑动 为使线框静止,此时摩擦力沿斜面向下为最大静摩擦力,大小为11cos sin m f m g m g μαα==因此安培力的最大值为12sin m g θ; 可得最大冲量为()12122122sin 0.48m m g R R I B B lα+==N·s (3)当I =0.4N·s 时,金属棒获得的初速度为04/v m s =,其重力沿斜面分力与摩擦力刚好相等,在安培力作用下做加速度减小的减速,而U 形框在碰撞前始终处于静止; 设到达EF 时速度为1v ,取沿斜面向下为正,由动量定理得22212012B l vtm v m v R R -=-+ 其中0.32m vt x == 解得12m/s v =金属棒与U 形线框发生完全非弹性碰撞,由动量守恒得()11122m v m m v =+因此碰撞后U 形框速度为20.5m/s v =同理:其重力沿斜面的分力与滑动摩擦力等大反向,只受到安培力的作用,当U 形框速度为v 时,其感应电流为12de ab B lv B lvI R R -=+其中,de B ,ab B 分别为de 边和ab 边处的磁感应强度,电流方向顺时针,受到总的安培力为()2212de ab de abB B l vF B Il B Il R R -=-=+其中,,0.8cd ab B B kl k -== 由动量定理得()24122120k l vtm m v R R -=-++ 因此向下运动的距离为()()12212242m m m v R R s k l ++==此时cd 边的坐标为x =2.5m2.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。
高考物理复习电磁感应现象的两类情况专项推断题综合练附详细答案
高考物理复习电磁感应现象的两类情况专项推断题综合练附详细答案一、电磁感应现象的两类情况1.如图所示,两条平行的固定金属导轨相距L =1m ,光滑水平部分有一半径为r =0.3m 的圆形磁场区域,磁感应强度大小为10.5T B =、方向竖直向下;倾斜部分与水平方向的夹角为θ=37°,处于垂直于斜面的匀强磁场中,磁感应强度大小为B =0.5T 。
金属棒PQ 和MN 的质量均为m =0.lkg ,电阻均为1ΩR =。
PQ 置于水平导轨上,MN 放置于倾斜导轨上、刚好不下滑。
两根金属棒均与导轨垂直且接触良好。
从某时刻起,PQ 棒在水平外力的作用下由静止开始向右运动,当PQ 棒进人磁场1B 中时,即以速度v =16m/s ;匀速穿过该区域。
不计导轨的电阻,PQ 始终在水平导轨上运动。
取210m/s g =,sin370.6,37cos 0.8︒︒==; (1)求MN 棒刚要滑动时,PQ 所处的位置;(2)求从PQ 棒开始运动到MN 棒刚要滑动的过程中通过PQ 棒的电荷量;(3)通过计算,定量画出PQ 棒进人磁场1B 后在磁场中水平外力F 随位移变化的图像。
【答案】(1)0.6m ;(2)9800πC ;(3)【解析】 【分析】 【详解】(1)开始MN 刚好不下滑时,MN 受沿倾斜导轨向上的最大静摩擦力m f ,则sin 37m f mg =︒设PQ 进入磁场1B 后切割磁感线的有效长度为x L ,由法拉第电磁感应定律得PQ 产生的感应电动势为1x E B L v =由闭合电路欧姆定律得整个回路中的感应电流为2E I R=则MN 所受的安培力为2A F B IL =MN 棒刚要向上滑动时,MN 受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有sin 37A m F f mg =+︒联立解得0.6x L =m即MN 棒刚要滑动时,PQ 棒刚好运动到圆形磁场区域的直径位置。
(2)从PQ 棒开始运动到MN 棒刚要滑动的过程中,穿过回路的磁通量的变化量为21192400BS B r ππ∆Φ==⨯=Wb平均感应电动势E t∆Φ=∆ 平均感应电流2E I R=通过PQ 棒的电荷量922800E q I t t R R π∆Φ=∆=∆==C (3)当PQ 棒进入磁场1B 后的位移为x 时,切割磁感线的有效长度为2222()22y L r r x x rx =--=-+回路中的电流为12y B L v I R=受到的安培力为1A y F B IL =由题意知外力为1A y F F B IL ==故有22128 4.82y A B L v F x x R==-+ (00.6)x <<因此PQ 棒所受水平外力F 随位移变化的图像如图所示2.如图所示,在倾角θ=10°的绝缘斜面上固定着两条粗细均匀且相互平行的光滑金属导轨DE 和GH ,间距d =1m ,每条金属导轨单位长度的电阻r 0=0.5Ω/m ,DG 连线水平,且DG 两端点接了一个阻值R =2Ω的电阻。
备战高考物理电磁感应现象的两类情况推断题综合练习题附答案
备战高考物理电磁感应现象的两类情况推断题综合练习题附答案一、电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin 372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=3.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L =-【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-4.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。
备战高考物理专题复习电磁感应现象的两类情况的推断题综合题附答案
备战高考物理专题复习电磁感应现象的两类情况的推断题综合题附答案一、电磁感应现象的两类情况1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。
gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。
当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求:(1)金属棒pq到达圆弧的底端时,对圆弧底端的压力;(2)金属棒pq运动到时,金属棒gh的速度大小;(3)金属棒gh产生的最大热量。
【答案】(1) (2) (3)【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量;解:(1)金属棒pq下滑过程中,根据机械能守恒有:在圆弧底端有根据牛顿第三定律,对圆弧底端的压力有联立解得(2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有对于金属棒pq有对于金属棒gh有联立解得(3)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为该过程金属棒gh产生的热量为金属棒pq到达cd、导轨后,金属棒pq加速运动,金属棒gh减速运动,回路电流逐渐减小,当回路电流第二次减小为零时,金属棒pq与gh产生的电动势大小相等,由于此时金属棒切割长度相等,故两者速度相同均为v,此时两金属棒均做匀速运动,根据动量守恒定律有金属棒pq从到达cd、导轨道电流第二次减小为零的过程,回路产生的热量为该过程金属棒gh产生的热量为联立解得2.如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ = 30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r,现从静止释放杆ab,测得最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨距为L = 2m,重力加速度g取l0m/s2,轨道足够长且电阻不计.求:(1)杆ab下滑过程中流过R的感应电流的方向及R=0时最大感应电动势E的大小;(2)金属杆的质量m和阻值r;(3)当R=4Ω时,求回路瞬时电功率每增加2W的过程中合外力对杆做的功W.【答案】(1)电流方向从M流到P,E=4V (2)m=0.8kg,r=2Ω (3)W=1.2J【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R的电流方向从M流到P据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=3.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
高考物理电磁感应现象的两类情况推断题综合练习题含详细答案
高考物理电磁感应现象的两类情况推断题综合练习题含详细答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-3.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战高考物理复习《电磁感应现象的两类情况》专项推断题综合练习及详细答案一、电磁感应现象的两类情况1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线f f′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒=ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L =-【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-3.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL =由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=4.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。
边界相距 1.2m d =的两个范围足够大的磁场I 、Ⅱ,方向相反且均垂直于金属框架,磁感应强度均为0.5T B =。
导体棒ab 垂直放置在框架上,且可以无摩擦的滑动。
现让棒从MN 上方相距0.5m x =处由静止开始沿框架下滑,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =(此时框架恰能保持静止)。
已知棒与导轨始终垂直并良好接触,棒的电阻0.16R =Ω,质量0.4kg m =,重力加速度210m/s g =,试求:(1)棒由静止开始沿框架下滑到磁场边界MN 处的过程中,流过棒的电量q ; (2)棒运动到磁场Ⅰ、Ⅱ的边界MN 和PQ 时,棒的速度1v 和2v 的大小;(3)通过计算分析:棒在经过磁场边界MN 以后的运动过程中,U 型金属框架能否始终保持静止状态?【答案】(1) 1.25C q =;(2)12m/s v =,24m/s v =;(3)框架能够始终保持静止状态 【解析】 【分析】本题考查导体棒在磁场中的运动,属于综合题。
【详解】 (1)平均电动势为BLxE t t∆Φ==∆∆ 平均电流EI R=则流过棒的电量为BLxq I t R=∆=代入数据解得 1.25C q =。
(2)棒向下加速运动时,U 形框所受安培力沿斜面向下,静摩擦力向上,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =,由平衡条件,有221sin m B L v Mg f Rθ+=解得12m/s v =。
棒经过MN 后做匀加速直线运动,加速度3sin 5m/s a g θ==由22212v v ad -=,解得24m/s v =(3)棒在两边界之间运动时,框架所受摩擦力大小为1sin 1N m f Mg f θ==<方向沿斜面向上棒进入PQ 时,框架受到的安培力沿斜面向上,所受摩擦力大小为2222sin 3N m B L v f Mg f Rθ=-==向沿斜面向下以后,棒做加速度减小的减速运动,最后做匀速运动。
匀速运动时,框架所受安培力为22sin 2N B L v F mg Rθ===安方向沿斜面向上。
摩擦力大小为223sin 1N m B L v f Mg f Rθ=-=<方向沿斜面向下。
综上可知,框架能够始终保持静止状态。
5.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ = 37°角,下端连接阻值为R =2Ω的电阻.磁场方向垂直导轨平面向上,磁感应强度为0.4T .质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.金属棒沿导轨由静止开始下滑.(g=10m/s 2,sin37°=0.6,cos37°=0.8)(1)判断金属棒下滑过程中产生的感应电流方向; (2)求金属棒下滑速度达到5m/s 时的加速度大小; (3)当金属棒下滑速度达到稳定时,求电阻R 消耗的功率. 【答案】(1)由a 到b (2)22/a m s =(3)8P W = 【解析】 【分析】 【详解】(1)由右手定则判断金属棒中的感应电流方向为由a 到b .(2)金属棒下滑速度达到5/m s 时产生的感应电动势为0.4152E BLv V V ==⨯⨯=感应电流为1EI A R==,金属棒受到的安培力为0.4110.4?F BIL N N ==⨯⨯= 由牛顿第二定律得:mgsin mgcos F ma θμθ--=,解得:22/a m s =.(3)设金属棒运动达到稳定时,所受安培力为F ',棒在沿导轨方向受力平衡mgsin mgcos F θμθ=+',解得:0.8F N '=,又:F BI L '=',0.820.41F I A A BL ''===⨯ 电阻R 消耗的功率:28P I R W ='=. 【点睛】该题考查右手定则的应用和导体棒沿着斜面切割磁感线的运动,该类题型综合考查电磁感应中的受力分析与法拉第电磁感应定律的应用,要求的解题的思路要规范,解题的能力要求较高.6.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E 大小;(2)棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域时电流I与时间t的关系式.【答案】(1)0.04 V;(2)0.04 N,I=22Bv tR;【解析】【分析】【详解】⑴在棒进入磁场前,由于正方形区域abcd内磁场磁感应强度B的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E==0.04V⑵当棒进入磁场时,磁场磁感应强度B=0.5T恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e=Blv,当棒与bd重合时,切割有效长度l=L,达到最大,即感应电动势也达到最大e m=BLv=0.2V>E=0.04V根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m==0.2A根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m=i m LB=0.04N在棒通过三角形abd区域时,切割有效长度l=2v(t-1)(其中,1s≤t≤+1s)综合上述分析可知,回路中的感应电流为:i==(其中,1s≤t≤+1s)即:i=t-1(其中,1s≤t≤1.2s)【点睛】注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t图象的含义.7.“801所”设计的磁聚焦式霍尔推进器可作为太空飞船的发动机,其原理如下:系统捕获宇宙中大量存在的等离子体(由电量相同的正、负离子组成)经系统处理后,从下方以恒定速率v1向上射入有磁感应强度为B1、垂直纸面向里的匀强磁场区域Ⅰ内.当栅极MN、PQ 间形成稳定的电场后,自动关闭区域Ⅰ系统(关闭粒子进入通道、撤去磁场B1).区域Ⅱ内有磁感应强度大小为B2、垂直纸面向外的匀强磁场,磁场右边界是直径为D、与上下极板相切的半圆(圆与下板相切于极板中央A).放在A处的放射源能够向各个方向均匀发射速度大小相等的氙原子核,氙原子核经过该区域后形成宽度为D的平行氙粒子束,经过栅极MN、PQ之间的电场加速后从PQ喷出,在加速氙原子核的过程中探测器获得反向推力(不计氙原子核、等离子体的重力,不计粒子之间相互作用于相对论效应).已知极板长RM =2D ,栅极MN 和PQ 间距为d ,氙原子核的质量为m 、电荷量为q ,求:(1)氙原子核在A 处的速度大小v 2; (2)氙原子核从PQ 喷出时的速度大小v 3;(3)因区域Ⅱ内磁场发生器故障,导致区域Ⅱ中磁感应强度减半并分布在整个区域Ⅱ中,求能进入区域Ⅰ的氙原子核占A 处发射粒子总数的百分比.【答案】(1)22B Dq m (2222112284B v qdm B D q m +(3)090FAN ∠= 13 【解析】 【分析】 【详解】(1)离子在磁场中做匀速圆周运动时:2222v B qv m r=根据题意,在A 处发射速度相等,方向不同的氙原子核后,形成宽度为D 的平行氙原子核束,即2D r = 则:222B Dqv m=(2)等离子体由下方进入区域I 后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q ' ,则11Eq B v q ='' 即11E B v =氙原子核经过区域I 加速后,离开PQ 的速度大小为3v ,根据动能定理可知:22321122Uq mv mv =- 其中电压11U Ed B v d ==联立可得2221123284B v qdm B D qv m+=(3)根据题意,当区域Ⅱ中的磁场变为2B '之后,根据2mvr B q =''可知,2r r D '==①根据示意图可知,沿着AF 方向射入的氙原子核,恰好能够从M 点沿着轨迹1进入区域I ,而沿着AF 左侧射入的粒子将被上极板RM 挡住而无法进入区域I .该轨迹的圆心O 1,正好在N 点,11AO MO D ==,所以根据几何关系关系可知,此时090FAN ∠=;②根据示意图可知,沿着AG 方向射入的氙原子核,恰好从下极板N 点沿着轨迹2进入区域I ,而沿着AG 右侧射入的粒子将被下极板SN 挡住而无法进入区域I .22AO AN NO D ===,所以此时入射角度030GAN ∠=.根据上述分析可知,只有060FAG ∠=这个范围内射入的粒子还能进入区域I .该区域的粒子占A 处总粒子束的比例为00601==1803η8.如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .【答案】(1)0Bdv R ;(2)220B d v mR ;(3)2220()B d v v R-;【解析】 【分析】本题的关键在于导体切割磁感线产生电动势E =Blv ,切割的速度(v )是导体与磁场的相对速度,分析这类问题,通常是先电后力,再功能.(1)根据电磁感应定律的公式可得知产生的电动势,结合闭合电路的欧姆定律,即可求得MN 刚扫过金属杆时,杆中感应电流的大小I ;(2)根据第一问求得的电流,利用安培力的公式,结合牛顿第二定律,即可求得MN 刚扫过金属杆时,杆的加速度大小a ;(3)首先要得知,PQ 刚要离开金属杆时,杆切割磁场的速度,即为两者的相对速度,然后结合感应电动势的公式以及功率的公式即可得知感应电流的功率P . 【详解】(1)感应电动势 0E Bdv =感应电流E I R =解得0Bdv I R= (2)安培力 F BId = 牛顿第二定律 F ma =解得220B d v a mR=(3)金属杆切割磁感线的速度0=v v v '-,则感应电动势 0()E Bd v v =-电功率2E P R= 解得2220()B d v v P R -=【点睛】该题是一道较为综合的题,考查了电磁感应,闭合电路的欧姆定律以及电功电功率.对于法拉第电磁感应定律是非常重要的考点,经常入选高考物理压轴题,平时学习时要从以下几方面掌握. (1)切割速度v 的问题切割速度的大小决定了E 的大小;切割速度是由导体棒的初速度与加速度共同决定的.同时还要注意磁场和金属棒都运动的情况,切割速度为相对运动的速度;不难看出,考电磁感应的问题,十之八九会用到牛顿三大定律与直线运动的知识. (2)能量转化的问题电磁感应主要是将其他形式能量(机械能)转化为电能,可由于电能的不可保存性,很快又会想着其他形式能量(焦耳热等等)转化. (3)安培力做功的问题电磁感应中,安培力做的功全部转化为系统全部的热能,而且任意时刻安培力的功率等于系统中所有电阻的热功率. (4)动能定理的应用动能定理当然也能应用在电磁感应中,只不过同学们要明确研究对象,我们大多情况下是通过导体棒的.固定在轨道上的电阻,速度不会变化,显然没有用动能定理研究的必要.9.如图所示,“<”型光滑长轨道固定在水平面内,电阻不计.轨道中间存在垂直水平面向下的匀强磁场,磁感应强度B .一根质量m 、单位长度电阻R 0的金属杆,与轨道成45°位置放置在轨道上,从静止起在水平拉力作用下从轨道的左端O 点出发,向右做加速度大小为a 的匀加速直线运动,经过位移L .求: (1)金属杆前进L 过程中的平均感应电动势.(2)已知金属杆前进L 过程中水平拉力做功W .若改变水平拉力的大小,以4a 大小的加速度重复上述前进L 的过程,水平拉力做功多少?(3)若改用水平恒力F 由静止起从轨道的左端O 点拉动金属杆,到金属杆速度达到最大值v m 时产生热量.(F 与v m 为已知量)(4)试分析(3)问中,当金属杆速度达到最大后,是维持最大速度匀速直线运动还是做减速运动?【答案】(1)22aBL LW +2maL (3)2202122-m m F R mv B v (4)当金属杆速度达到最大后,将做减速运动 【解析】 【详解】(1)由位移﹣速度公式得2aL =v 2﹣0所以前进L 时的速度为v 2aL前进L 过程需时t =2=vaLa a由法拉第电磁感应定律有:tE ∆Φ=∆ =212222B L LB S a BL t L aL ⨯⨯⨯∆==∆(2)以加速度a 前进L 过程,合外力做功W +W 安=maL所以W 安=maL ﹣W以加速度4a 前进L 时速度为8'=v aL =2v合外力做功W F ′+W 安′=4maL由22A B L vF BIL R==可知,位移相同时:F A ′=2F A则前进L 过程W 安′=2W 安所以W F ′=4maL ﹣2W 安=2W +2maL(3)设金属杆在水平恒力作用下前进d 时F A =F ,达到最大速度,由几何关系可知,接入电路的杆的有效长度为2d ,则220(2)2⨯===⨯mA B d v F BIl F R d所以d=22mFR B v 由动能定理有212-=m Fd Q mv 所以:Q =Fd ﹣222021122=2-m m m F R mv mv B v (4)根据安培力表达式,假设维持匀速,速度不变而位移增大,安培力增大,则加速度一定会为负值,与匀速运动的假设矛盾,所以做减速运动。