中考数学模拟试卷+答案解析
2023年中考数学模拟试卷(含解析)
2023年中考数学模拟试卷(含解析)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1 C.πD.﹣52.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣13.下列图形中,属于轴对称图形的是()A. B. C. D.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A .35° B.30° C.25° D.65°6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元7.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是 DF上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.69.如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.610.已知,矩形ABCD中,E为AB上一定点,F为BC上一动点,以EF为一边作平行四边形EFGH,点G,H分别在CD和AD上,若平行四边形EFGH的面积不会随点F的位置改变而改变,则应满足()A.4AD AE =B.2=AD ABC.2AB AE =D.3AB AE=二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.13.因式分解:322x y xy -=________________.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒--.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.21.求不等式组74252154x x x x -<+⎧⎨-<-⎩的整数解.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:分组频数6070x <≤47080x <≤128090x <≤1690100x <≤请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414)25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,0),B(0,1),交反比例函数y=mx(x>0)的图象于点C(3,n),点E是反比例函数图象上的一动点,横坐标为t(0<t<3),EF∥y轴交直线AB于点F,D是y轴上任意一点,连接DE、DF.(1)求一次函数和反比例函数的表达式;(2)当t为何值时,△DEF为等腰直角三角形.26.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,∠ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F 在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.28.如图,二次函数y=﹣16x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A 的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1C.πD.﹣5【答案】A【解析】【分析】先找出无理数,再比较大小即可求解.【详解】选项中的和π,<2<3<π,,故选:A .【点睛】本题考查了无理数的概念以及实数比较大小的知识,找出选项中的无理数是解答本体的关键.2.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣1【答案】A【解析】【分析】根据同底数幂的除法法则进行计算.【详解】解:原式=()3232a a a a -÷÷-==,故选:A .【点睛】本题主要考查同底数幂的除法,熟练掌握运算方法是解题的关键.3.下列图形中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠【答案】D【解析】【分析】由分式与二次根式有意义的条件得函数自变量的取值范围.【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠故选D .【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键.5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.65°【答案】D【解析】【分析】由平行线的性质:两直线平行,内错角相等直接可得答案.【详解】解:∵m ∥n ,∴∠2=∠ABC +∠1=30°+35°=65°.故选:D .【点睛】本题主要考查平行线的性质,准确判断角的位置关系是解题的关键.6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元【答案】B【解析】【分析】设盈利60%的进价为x 元,亏损20%的进价为y 元,根据销售问题的数量关系建立方程求出其解即可.【详解】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1-20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160-150=10元.故选:B.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价-进价的运用,解答时由销售问题的数量关系建立方程是关键.7.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.6【答案】C【解析】【分析】作AD⊥x轴于D,MN⊥x轴于N,设OA=a,根据题意得到OC=72-a,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到关于a的方程,解得a,求得A的坐标,即可求得k的值.【详解】解:作AD⊥x轴于D,MN⊥x轴于N,∵四边形OABC是平行四边形,∴OA=BC,AB=OC,OA∥BC,∴∠BCN=∠AOC=60°.设OA=a,由▱OABC的周长为7,∴OC =72-a ,∵∠AOC =60°,1,22OD a AD a ∴==,1,22A a a ⎛⎫∴ ⎪⎝⎭,∵M 是BC 的中点,BC =OA =a ,∴CM =12a ,又∠MCN =60°,1,44CN a MN a ∴==,∴ON =OC +CN =71732424a a a -+=-,7,2443M a a ⎛⎫∴- ⎪⎝⎭,∵点A ,M 都在反比例函数k y x=的图象上,31722244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2,A ∴,1k ∴=⨯=.故选:C .【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是列出方程求出a 的值.9.如图,直角三角形ACB 中,两条直角边AC =8,BC =6,将△ACB 绕着AC 中点M 旋转一定角度,得到△DFE ,点F 正好落在AB 边上,DE 和AB 交于点G ,则AG 的长为()A.1.4B.1.8C.1.2D.1.6【答案】A【解析】【分析】由勾股定理可求AB=10,由旋转的性质可得∠A=∠D,DM=AM,CM=MF,DE=AB=10,可得AM=MF=CM,可得∠AFC=90°,由锐角三角函数可求AF的长,由直角三角形的性质可求GF的长,即可求AG的长.【详解】解:如图,连接CF,∵AC=8,BC=6,∴AB=,∵点M是AC中点,∴AM=MC=4,∵将△ACB绕着AC中点M旋转一定角度,得到△DFE,∴∠A=∠D,DM=AM,CM=MF,DE=AB=10,∴AM=MF=CM,∴∠MAF=∠MFA,∠MFC=∠MCF,∵∠MAF+∠MFA+∠MFC+∠MCF=180°,∴∠MFA+∠MFC=90°,∴∠AFC=90°,∵12×AB×CF=12×AC×BC,∴CF=24 5,∴AF325 ==,∵∠A=∠D,∠A=∠AFM,∴∠D=∠AFM,又∵∠DFE=90°,∴DG=GF,∠E=∠GFE,∴GF=GE,∴GF=GD=GE=5,∴AG=AF-GF=325-5=75=1.4,故选:A.【点睛】本题考查了旋转的性质,勾股定理,三角形内角和定理,求AF 的长是本题的关键.10.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足()A.4AD AE= B.2=AD AB C.2AB AE = D.3AB AE=【答案】C【解析】【分析】设AB a =,BC b =,BE c =,BF x =,由于四边形EFGH 为平行四边形且四边形ABCD 是矩形,所以AEH CGF ≅△△,BEF DGH ≅△△,根据()2EFGH ABCD AEH EBF S S S S =-+ △△,化简后得()2a c x bc -+,F 为BC 上一动点,x 是变量,()2a c -是x 的系数,根据平EFGH S 不会随点F 的位置改变而改变,为固定值,x 的系数为0,bc 为固定值,20a c -=,进而可得点E 是AB 的中点,即可进行判断.【详解】解:∵四边形EFGH 为平行四边形且四边形ABCD 是矩形,∴AEH CGF ≅△△,BEF DGH ≅△△,设AB a =,BC b =,BE c =,BF x =,∴()2EFGH ABCD AEH EBF S S S S =-+ △△()()11222ab a c b x cx ⎡⎤=---+⎢⎥⎣⎦()ab ab ax bc cx cx =---++ab ab ax bc cx cx=-++--()2a c x bc=-+∵F 为BC 上一动点,∴x 是变量,()2a c -是x 的系数,∵EFGH S 不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴20a c -=,∴2a c =,∴E 是AB 的中点,∴2AB AE =,故选:C .【点睛】本题考查了矩形的性质,平行四边形的性质,掌握矩形的性质是解决本题的关键.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.【答案】75.510⨯【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:755000000 5.510=⨯故答案为:75.510⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.13.因式分解:322x y xy -=________________.【答案】()()211xy x x +-【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】32222(1)2(1)(1)x y xy xy x xy x x -=-=+-,故答案为2(1)(1)xy x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】()88-##(-【解析】【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=512-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x -=,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】本题考查黄金分割,熟知黄金分割和黄金数512-=较长线段:全线段是解答的关键.15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.【答案】12【解析】【分析】用黑色部分的总面积除以正方形的面积即可求得概率.【详解】解:∵正方形的面积为2×2=4cm 2,黑色部分的总面积为2cm 2,∴向正方形区域内随机掷点,点落入黑色部分的概率为2142=,故答案为:12.【点睛】本题考查了几何概率,解决本题的关键是掌握概率公式.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.【答案】()04,【解析】【分析】根据点B 、D 的坐标确定出平移规律,再根据平移规律解答即可.【详解】解:∵点()22B --,的对应点为()12D ,,∴平移规律为向右平移3个单位,向上平移4个单位,∴点()30A -,的对应点C 的坐标为()04,.故答案为:()04,.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF=⎧⎨=⎩∴Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1,1AE GE ∴==∴==∵在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23,∴点F (23,2)把点F 的坐标代入y kx =得:2=23k ,解得k=3②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2,2)把点F 的坐标代入y kx =得:2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).【答案】①③④【解析】【详解】根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB==4,∴cos∠ABE=ABBE=45,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=ABBE=45,∴PF=PB sin∠PBF=45t,∴当0<t≤5时,y=12BQ•PF=12t•45t=25t2,故③小题正确;当t=294秒时,点P在CD上,此时,PD=294﹣BE﹣ED=294﹣5﹣2=14,PQ=CD﹣PD=4﹣14=154,∴45415334AB BQ AE PQ ===,,∴AB BQ AE PQ=,又∵∠A =∠Q =90°,∴△ABE ∽△QBP ,故④小题正确.综上所述,正确的有①③④.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒-+-.【答案】1【解析】【分析】先计算特殊角三角函数值,零指数幂,二次根式的化简,然后根据实数的计算法则求解即可.【详解】解:04cos 45(2022)π︒+-412=⨯-1=-1=【点睛】本题主要考查了特殊角三角函数值,零指数幂,二次根式的化简,实数的混合计算,熟知相关计算法则是解题的关键.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.【答案】2x x +;8【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将280x x +-=变形为28x x +=,即可得出值.【详解】解:232121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x ()2213112x x x x x x x 骣++÷ç=-´çç++-桫()()22112x x x x x -+=´+-2x x =+,∵280x x +-=,∴28x x +=,即原式的值为8.【点睛】本题考查了分式的化简求值,熟悉掌握分式混合运算法则是解题的关键.21.求不等式组74252154x x x x-<+⎧⎨-<-⎩的整数解.【答案】35x -<<【解析】【分析】分别求出每个不等式的解集,找出两个解集的公共部分可得不等式组的解集,进而求出不等式组的整数解即可.【详解】74252154x x x x -<+⎧⎨-<-⎩①②解不等式①得:3x >-,解不等式②得:5x <,∴不等式组的解集为:35x -<<.∴不等式组的整数解为:-2,-1,0,1,2,3,4,【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F.(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.【答案】(1)见解析(2)EF 的长为3.【解析】【分析】(1)由BE ⊥AD 于点E ,CF ⊥AD 于点F 得∠AEB =∠CFA =90°,而∠BAC =90°,根据同角的余角相等可证明∠B =∠FAC ,还有AB =CA ,即可证明△ABE ≌△CAF ;(2)由△ABE ≌△CAF ,根据全等三角形的性质即可求解.【小问1详解】证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );【小问2详解】解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE =CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.【答案】(1)40,72(2)见解析(3)小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为16.【解析】【分析】(1)由成绩在“70<x ≤80”的人数除以所占百分比得出本次知识竞答共抽取七年级同学的人数,即可解决问题;(2)根据成绩在“90<x ≤100”这一组的人数,补全数分布直方图即可解决问题;(3)画树状图,共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,再由概率公式求解即可.【小问1详解】解:本次知识竞答共抽取七年级同学为:12÷30%=40(名),则在扇形统计图中,成绩在“90<x ≤100”这一组的人数为:40-4-12-16=8(名),在扇形统计图中,成绩在“90<x ≤100”这一组所对应的扇形圆心角的度数为:360°×840=72°,故答案为:40,72;【小问2详解】解:将频数分布直方图补充完整如下:【小问3详解】解:画树状图如下:共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,∴小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为21126.【点睛】此题考查的是用树状图法求概率以及频数分布表、频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414≈1.732)【答案】(1)27cm(2)34.6cm【解析】【分析】(1)连接PO,利用垂直平分线的性质得出PA=PO,然后利用勾股定理即可求出PC;(2)过D点作DE⊥OC于E点,过D点作DF⊥PC于F点,根据矩形的性质可知DE=FC,DF=EC,分别在在Rt△DOE和Rt△PDF中利用勾股定理以及锐角三角函数即可求出DE、EO,进而求出PF,即可得解.【小问1详解】连接PO,如图,∵点D为AO中点,且PD⊥AO,∴PD是AO的垂直平分线,∴PA=PO=45cm,∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36(cm),PC===(cm),∴在Rt△POC中,27即PC长为27cm;【小问2详解】过D 点作DE ⊥OC 于E 点,过D 点作DF ⊥PC 于F 点,如图,∵PC ⊥OC ,∴四边形DECF 是矩形,即FC =DE ,DF =EC ,在Rt △DOE 中,∠DOE =180°-∠AOC =180°-120°=60°,∵DO =AD =12AO =12(cm),∴DE =·sin DO DOE ∠=·sin 60DO ︒=(cm),EO =12DO =6(cm),∴FC =DE =cm ,DF =EC =EO +OB +BC =6+24+12=42(cm),∵∠FDO =∠DOE =60°,∠PDO =90°,∴∠PDF =90°-60°=30°,在Rt △PDF 中,PF =·tan 42tan 30423DF PDF ∠=⋅=⨯=o (cm),∴PC =PF +FC =+=,∴PC 34.6cm =≈,即PC 的长度为34.6cm .【点睛】本题考查了解直角三角形的应用、线段垂直平分线的性质、勾股定理、矩形的判定与性质、锐角三角函数等知识,准确作出辅助线构造直角三角形是解题的关键.25.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (2,0),B (0,1),交反比例函数y =m x(x >0)的图象于点C (3,n ),点E 是反比例函数图象上的一动点,横坐标为t (0<t <3),EF ∥y 轴交直线AB 于点F ,D 是y 轴上任意一点,连接DE 、DF .(1)求一次函数和反比例函数的表达式;(2)当t 为何值时,△DEF 为等腰直角三角形.【答案】(1)一次函数表达式为112y x =-+,反比例函数表达式为32y x =-(2)1t =或1103【解析】【分析】(1)先用待定系数法求出一次函数的解析式,则可求出C 点坐标,再利用待定系数法求出反比例函数式即可;(2)分三种情况讨论,即①当∠FDE 为直角时,则△DEF 为等腰直角三角形,根据12DH HE HF EF ===建立方程;②当90EFD ∠=︒时,根据=EF FD 建立方程;③当∠FED 为直角时,和∠FDE 为直角时得到的等式相同;结合t 的范围,分别求出方程的解,即可解决问题.【小问1详解】解:由题意得:201a b b +=⎧⎨=⎩,解得121a b ⎧=-⎪⎨⎪=⎩,∴112y x =-+,∵C 点在一次函数图象上,∴113122n =-⨯+=-,∴132C ⎛⎫- ⎪⎝⎭,,∴13322m xy ⎛⎫==⨯-=- ⎪⎝⎭,∴32y x=-;【小问2详解】由题意得:32E y t =-,112F y t =-+,∴13122F E EF y y t t=-=-++,①如图,当FD ED =时,过D 作DH EF ⊥,∵EDF 是等腰直角三角形,∴2EF DH =,∴131222t t t-++=,整理得:25230t t --=,解得:1t =或35-,∵03t <<,∴1t =;②如图,当90EFD ∠=︒时,=EF FD ,∴13122t t t-++=,整理得:23230t t --=,解得:1103t =或1103,∵03t <<,∴1103t +=;③如图,当90FED ∠=︒时,EF ED =,∵等式同②,∴1103t +=;综上所述,当1t =或13时,DEF 为等腰直角三角形.【点睛】本题主要考查了一次函数的性质、等腰直角三角形的性质、待定系数法求函数表达式等知识点,解题的关键是要注意分类求解,避免有所遗漏.26.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A =2∠BDE ,点C 在AB 的延长线上,∠C =∠ABD .(1)求证:CE 是⊙O 的切线:(2)连接BE ,若⊙O 的半径长为5,OF =3,求EF 的长,【答案】(1)见解析;(2;【解析】【分析】(1)根据圆周角定理和相似三角形的判定和性质即可证明;(2)连接OE ,BE ,AE ,根据圆周角定理和等腰三角形的性质求得∠DFC =∠CBE ,从而可得∠EFB =∠EBF ,于是EF =BE ,再由OB =OE ,可证△OBE ∽△EBF ,即可解答;【小问1详解】证明:如图,连接OE ,。
中考数学考试模拟卷(含答案解析)
中考数学考试模拟卷(含答案解析)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(3分)﹣3的绝对值是()A.﹣B.3 C.D.﹣32.(3分)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.3.(3分)节肢动物是最大的动物类群,目前已命名的种类有120万种以上,将数据120万用科学记数法表示为()A.0.12×106B.1.2×107C.1.2×105D.1.2×1064.(3分)正多边形的每个内角为108°,则它的边数是()A.4 B.6 C.7 D.55.(3分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.6.(3分)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM =35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°7.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣18.(3分)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为()A.B.C.D.9.(3分)若关于x的分式方程:2﹣=的解为正数,则k的取值范围为()A.k<2 B.k<2且k≠0 C.k>﹣1 D.k>﹣1且k≠010.(3分)下列命题:①(m•n2)3=m3n5②数据1,3,3,5的方差为2③因式分解x3﹣4x=x(x+2)(x﹣2)④平分弦的直径垂直于弦⑤若使代数式在实数范围内有意义,则x≥1其中假命题的个数是()A.1 B.3 C.2 D.4二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.[来源:学,科,网]18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是°;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与解析一、选择题1.【分析】应用绝对值的计算方法进行计算即可得出答案.【解答】解:|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120万用科学记数法表示为:1.2×106.故选:D.4.【分析】方法一:根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解;方法二:设多边形的边数为n,然后根据多边形的内角和公式(n﹣2)•180°列方程求解即可.【解答】解:方法一:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,方法二:设多边形的边数为n,由题意得,(n﹣2)•180°=108°•n,解得n=5,所以,这个多边形的边数为5.故选:D.5.【分析】根据“每人出8钱,会多出3钱;每人出7钱,又差4钱”,即可得出关于x,y 的二元一次方程组,此题得解.【解答】解:依题意得:.故选:C.6.【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.7.【分析】根据图象的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.8.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.9.【分析】先解分式方程可得x=2﹣k,再由题意可得2﹣k>0且2﹣k≠2,从而求出k的取值范围.【解答】解:2﹣=,2(x﹣2)﹣(1﹣2k)=﹣1,2x﹣4﹣1+2k=﹣1,2x=4﹣2k,x=2﹣k,∵方程的解为正数,∴2﹣k>0,∴k<2,∵x≠2,∴2﹣k≠2,∴k≠0,∴k<2且k≠0,故选:B.10.【分析】利用幂的运算性质、方差的计算公式、因式分解的方法、垂径定理及二次根式有意义的条件分别判断后即可确定正确的选项.【解答】解:①(m•n2)3=m3n6,故原命题错误,是假命题,符合题意;②数据1,3,3,5的方差为2,故原命题正确,是真命题,不符合题意;③因式分解x3﹣4x=x(x+2)(x﹣2),正确,是真命题,不符合题意;④平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,符合题意;⑤若使代数式在实数范围内有意义,则x≥1,正确,是真命题,不符合题意,假命题有2个,故选:C.二、细心填一填11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b 是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S=AC•BC=m2+6,利用二次函数的性质即可△ABC求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.【分析】先化简各式,然后再进行计算即可解答.【解答】解:•+4|1﹣|sin60°﹣()﹣1=2+4×(﹣1)×﹣2=2+2(﹣1)﹣2=2+6﹣2﹣2=4.【点评】本题考查了特殊角的三角函数值,负整数指数幂,绝对值,估算无理数的大小,二次根式的乘除法,实数的运算,准确熟练地化简各式是解题的关键.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.【分析】先算括号里的异分母分式的减法,再算括号外,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(a﹣)÷=•=•=a(a+2)=a2+2a,,解得:﹣1<a≤2,∴该不等式组的整数解为:0,1,2,∵a≠0,a﹣2≠0,∴a≠0且a≠2,∴a=1,∴当a=1时,原式=12+2×1=1+2=3.【点评】本题考查了分式的混合运算,解一元一次不等式组,准确熟练地进行计算是解题的关键.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)【分析】(1)直接根据概率公式求解即可;(2)画出树状图,共有12个等可能的结果,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的结果有8个,再由概率公式求解即可.【解答】解:(1)吉祥物“冰墩墩”放在区域①的概率是;故答案为:;(2)根据题意画图如下:共有12种等可能的情况数,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域有8种,则吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).【分析】在Rt△BDE中求出ED,再在Rt△ACM中求出AM,最后根据线段的和差关系进行计算即可.【解答】解:如图,过点C、D分别作BE的平行线交BA的延长线于点M、N,在Rt△BDE中,∠BDE=90°﹣45°=45°,∴DE=BE=14m,在Rt△ACM中,∠ACM=60°,CM=BE=14m,∴AM=CM=14(m),∴AB=BM﹣AM=CE﹣AM=20+14﹣14≈10.2(m),答:AB的长约为10.2m.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有200 人;在扇形统计图中,B所对应的扇形的圆心角的度数是108 °;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.【分析】(1)根据A项目的人数和所占的百分比,求出调查的总人数,再用360°乘以B所占的百分比即可得出答案;(2)用总人数减去其它项目的人数,求出C选项的人数,从而补全统计图;(3)用全校的总人数乘以选修篮球和跳绳两个项目的总人数所占的百分比即可.【解答】解:(1)本次调查的学生共有:30÷15%=200(人),在扇形统计图中,B所对应的扇形的圆心角的度数是:360°×=108°;故答案为:200,108;(2)C项目的人数有:200﹣30﹣60﹣20=90(人),补全统计图如下:(3)根据题意得:1200×=900(人),答:估计该校选修篮球和跳绳两个项目的总人数有900人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.【分析】(1)根据题意和题目中的数据,可以分别写出y甲,y乙关于x的函数关系式;(2)根据(1)中的结果和题意,令0.85x=0.7x+90,求出x的值,再求出相应的y的值,即可得到点A的坐标.(3)根据函数图象和(2)中点A的坐标,可以写出选择去哪个体育专卖店购买体育用品更合算.【解答】解:(1)由题意可得,y=0.85x,甲当0≤x≤300时,y乙=x,当x>300时,y乙=300+(x﹣300)×0.7=0.7x+90,则y乙=;(2)令0.85x=0.7x+90,解得x=600,将x=600代入0.85x得,0.85×600=510,即点A的坐标为(600,510);(3)由图象可得,当x<600时,去甲体育专卖店购买体育用品更合算;当x=600时,两家体育专卖店购买体育用品一样合算;当x>600时,去乙体育专卖店购买体育用品更合算.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a ≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,[来源:Z。
中考数学考试模拟卷(带答案解析)
中考数学考试模拟卷(带答案解析)一、选择题(本题包括12道小题,每小题3分,共36分)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE 等于()A.15°B.30°C.45°D.60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y 尺,则符合题意的方程组是()A.B.C.D.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD 等于()A.40°B.50°C.60°D.80°10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根11.如图,正方形ABCD及其内切圆O,随机地往正方形内投一粒米,落在阴影部分的概率是()A.B.1﹣C.D.1﹣12.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=,∠BDC=120°,S=,若反比例函数y=(x<0)的图象经过C,D两点,则k的值是()△BCDA.﹣6B.﹣6 C.﹣12D.﹣12二、填空题(本题包括5道小题,每小题3分,共15分,将答案直接填在答题卡对应题的横线上)13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为.14.(3分)如图,依据尺规作图的痕迹,求∠α的度数°.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.[来源:Z*xx*]19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;[来源:学§科§网]②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.参考答案与解析一、选择题1.【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.11.【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.12.【分析】过点C作CE⊥y轴,延长BD交CE于点F,易证△COE≌△ABD,求得OE=,根据S△BCD=,求得CF=9,得到点D的纵坐标为4,设C(m,),则D(m+9,4),由反比例函数y=(x<0)的图象经过C,D两点,从而求出m,进而可得k的值.【解答】解:过点C作CE⊥y轴,延长BD交CE于点F,∵四边形OABC为平行四边形,∴AB∥OC,AB=OC,∴∠COE=∠ABD,∵BD与y轴平行,∴∠ADB=90°,在△COE和△ABD中,,∴△COE≌△ABD(AAS),∴OE=BD=,∵S△BDC=BD•CF=,∴CF=9,∵∠BDC=120°,∴∠CDF=60°,∴DF=3,点D的纵坐标为4,设C(m,),则D(m+9,4),∵反比例函数y=(x<0)的图象经过C,D两点,∴k=m=4(m+9),∴m=﹣12,∴k=﹣12,故选:C.二、填空题13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为 5 .【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【解答】解:解:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5故答案为:514.(3分)如图,依据尺规作图的痕迹,求∠α的度数60 °.【分析】先根据矩形的性质得出AB∥DC,故可得出∠ABD的度数,由角平分线的定义求出∠EBF的度数,再由EF是线段BD的垂直平分线得出∠BEF的度数,根据三角形内角和定理得出∠BFE的度数,进而可得出结论.【解答】解:∵∠A=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴AB∥DC,∴∠ABD=∠CDB=60°.由作法可知,BF是∠ABD的平分线,∴∠EBF=∠ABD=30°.由作法可知,EF是线段BD的垂直平分线,∴∠BEF=90°,∴∠BFE=90°﹣30°=60°,∴∠α=60°.故答案为:60.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=﹣1 .【分析】用含有AB的代数式表示AD,再根据锐角三角函数的定义进行计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为,9或3 .【分析】题中60°的锐角,可能是∠A也可能是∠B;∠PCB=30°可以分为点P在在线段AB上和P在线段AB的延长线上两种情况;直角三角形中30°角所对的直角边等于斜边的一半,同时借助勾股定理求得AP的长度.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CPA=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CPA=30°.∵∠PCB=30°,∴∠PCB=∠CPA,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为π.【分析】如图,取AB的中点J,首先证明∠APB=90°,推出点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,解直角三角形求出∠CJB=60°可得结论.【解答】解:如图,取AB的中点J,∵AC是直径,∴∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠BAP=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,在Rt△CBJ中,BJ=,BC=3,∴tan∠CJB==,∴∠BJC=60°,∴当C,P两点距离最小时,动点P的运动路径长==π.故答案为:π.【点评】本题考查轨迹,解直角三角形,弧长公式等知识,解题的关键是正确判断出点P的运动轨迹,属于中考常考题型.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,[来源:学科网ZXXK]∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.【分析】(1)根据等腰三角形的性质,直角三角形的两锐角互余以及等量代换得出∠ODB+∠BDE=90°,即OD⊥EC,进而得出EC是切线;(2)根据直角三角形的边角关系可求出OD、CD、AC、OC,再根据相似三角形的性质可求出EC,根据S阴影部分=S△COE﹣S扇形进行计算即可.【解答】(1)证明:如图,连接OD,∵AC=CD,∴∠A=∠ADC=∠BDE,∵∠AOB=90°,∴∠A+∠ABO=90°,又∵OB=OD,∴∠OBD=∠ODB,∴∠ODB+∠BDE=90°,即OD⊥EC,∵OD是半径,∴EC是⊙O的切线;(2)解:在Rt△COD中,由于sin∠OCD=,设OD=4x,则OC=5x,∴CD==3x=AC,在Rt△AOB中,OB=OD=4x,OA=OC+AC=8x,AB=4,由勾股定理得,OB2+OA2=AB2,即:(4x)2+(8x)2=(4)2,解得x=1或x=﹣1(舍去),∴AC=3x=3,OC=5x=5,OB=OD=4x=4,∵∠ODC=∠EOC=90°,∠OCD=∠ECO,∴△COD∽△CEO,∴=,即=,∴EC=,∴S阴影部分=S△COE﹣S扇形=××4﹣=﹣4π=,答:AC=3,阴影部分的面积为.【点评】本题考查切线的判定,扇形面积的计算以及直角三角形的边角关系,掌握切线的判定方法,直角三角形的边角关系以及扇形、三角形面积的计算方法是正确解答的前提.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.【分析】(1)由正方形性质知∠AGE=∠D=90°、∠DAC=45°,据此可得、GE∥CD,利用平行线分线段成比例定理可得;(2)连接AE,只需证△ADG∽△ACE即可得;(3)分两种情况画出图形,证明△ADG∽△ACE,根据相似三角形的判定和性质以及勾股定理即可得出答案.【解答】解:(1)∵四边形ABCD是正方形,四边形CEGF是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴,GE∥CD,∴,∴CE=DG,∴==2;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=、=cos45°=,∴,∴△ADG∽△ACE,∴=,∴=;(3)①如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.【点评】本题是四边形综合题,考查了正方形的判定与性质,直角三角形的性质,相似三角形的判定与性质,勾股定理,熟练掌握相似三角形的判定与性质是解题的关键.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.【分析】(1)求出B、C点坐标,并将其代入y=﹣x2+bx+c,即可求解;(2)过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),PQ=|﹣t2+3t|,由题意可求=×3×|﹣t2+3t|,求出t的值即可求解;(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,由题意可得tan∠OCA=tan ∠BCE==,求出E(4,﹣1),用待定系数求出直线CE的解析式y=x﹣3,联立方程组,可求Q(,﹣).【解答】解:(1)在y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将B、C两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+4x﹣3;(2)令y=0,则﹣x2+4x﹣3=0,解得x=1或x=3,∴A(1,0),∴AB=2,∴S△ABC=×2×3=3,∵S△PBC=S△ABC,∴S△PBC=,过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),∴PQ=|﹣t2+3t|,∴=×3×|﹣t2+3t|,解得t=或t=,∴P点坐标为(,)或(,)或(,)或(,);(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,∵OB=OC,∴∠OCB=45°,∵∠ACQ=45°,∴∠BCQ=∠OCA,∵OA=1,∴tan∠OCA=,∴tan∠BCE==,∵BC=3,∴BE=,∵∠OBC=45°,∴∠EBF=45°,∴EF=BF=1,∴E(4,﹣1),设直线CE的解析式为y=kx+b,∴,解得,∴y=x﹣3,联立方程组,解得(舍)或,∴Q(,﹣).。
初三数学中考模拟试卷,附详细答案【解析版】
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
中考模拟测试 数学卷 含答案解析
一.选择题(共10小题,满分30分,每小题3分)1.方程2019x﹣2019=2019的解为()A.x=1B.x=0C.x=﹣1D.x=22.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°5.下列运算正确的是()A.a2+a2=a4B.(﹣2a3)2=4a6C.(a﹣2)(a+1)=a2+a﹣2D.(a﹣b)2=a2﹣b26.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:月用水量(吨)456813户数45731则关于这20户家庭的月用水量,下列说法正确的是()A.中位数是5B.平均数是5C.众数是6D.方差是67.等边△ABC的边长为a,顶点A在原点,一条高线恰好落在y轴的负半轴上,则第三象限的顶点B的坐标是()A .(a2,−√32a ) B .(−√32a,−12a )C .(−a 2,−√32a )D .(−√32a,12a )8.用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是( ) A .5B .10C .5πD .10π9.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,连接OH ,若OB =4,S 菱形ABCD =24,则OH 的长为( )A .3B .4C .5D .610.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b <0;③4a ﹣2b +c <0;④a +b +2c >0,其中正确结论的个数为( )A .4个B .3个C .2个D .1个二.填空题(共6小题,满分18分,每小题3分) 11.分式方程x−2x=12的解为 .12.计算|﹣2|﹣(﹣1)+30的结果是 .13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是 .14.如图,在平行四边形ABCD 中,AB =2,BC =5.∠BCD 的平分线交AD 于点F ,交BA 的延长线于点E ,则AE 的长为 .15.已知A、B两地之间的路程为3000米,甲、乙两人分别从A、B两地同时出发,相向而行,甲到B地停止,乙到A地停止,出发10分钟后,甲原路原速返回A地取重要物品,取到该物品后立即原路原速前往B地(取物品的时间忽略不计),结果到达B地的时向比乙到达A地的时间晚,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(m)与甲运动的时间x(min)之间的关系如图所示,则乙到达A 地时,甲与B地相距的路程是米.16.如图,边长为√3的正方形ABCD中,点E是BC边上一点,点F是CD边上一点,且BF⊥AE于点G,将△ABE 绕顶点A逆时针旋转°得△AB′E′,使得点B′、E′恰好分别落在AE、CD上,AE′交BF于点H.则四边形B′E′HG的面积为.三.解答题(共9小题,满分72分)17.(6分)先化简,再求值:(x+2−5x−2)÷x−33x2−6x,其中x满足x2+3x﹣1=0.18.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?19.(8分)如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.20.(8分)关于x的方程mx2+(m+2)x+m4=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.21.(8分)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(8分)如图,AB是⊙O的直径,已知BC为⊙O的切线,B为⊙O切点,OC与AD弦互相平行.求证:DC是⊙O的切线.23.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.24.(10分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=45,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.25.(10分)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.答案与解析一.选择题(共10小题,满分27分)1.(3分)方程2019x﹣2019=2019的解为()A.x=1B.x=0C.x=﹣1D.x=2【解答】解:移项合并得:2019x=4038,解得:x=2,故选:D.2.(3分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.3.(3分)我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.4.(3分)如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【解答】解: ∵AB ∥CD , ∴∠C =∠1=45°, ∵∠3是△CDE 的一个外角, ∴∠3=∠C +∠2=45°+35°=80°, 故选:D .5.(3分)下列运算正确的是( ) A .a 2+a 2=a 4B .(﹣2a 3)2=4a 6C .(a ﹣2)(a +1)=a 2+a ﹣2D .(a ﹣b )2=a 2﹣b 2【解答】解:A .a 2+a 2=2a 2,错误;C .(a ﹣2)(a +1)=a 2+a ﹣2a ﹣2=a 2﹣a ﹣2,错误D .(a ﹣b )2=a 2﹣2ab +b 2,错误 故选:B .6.(3分)为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表: 月用水量(吨)4 5 6 8 13 户数45731则关于这20户家庭的月用水量,下列说法正确的是( ) A .中位数是5B .平均数是5C .众数是6D .方差是6【解答】解:A 、根据按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误; B 、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误; C 、6出现了7次,出现的次数最多,则众数是6,故本选项正确; D 、方差是:S 2=120[4(4﹣6)2+5(5﹣6)2+7(6﹣6)2+3(8﹣6)2+(13﹣6)2]=4.1,故本选项错误; 故选:C .7.(3分)等边△ABC 的边长为a ,顶点A 在原点,一条高线恰好落在y 轴的负半轴上,则第三象限的顶点B 的坐标是( ) A .(a2,−√32a ) B .(−√32a,−12a )C .(−a 2,−√32a ) D .(−√32a,12a )【解答】解:如图, ∵等边△ABC 的边长为a , ∴三角形高的长度为√3a2, 又∵过B 点的高线恰好落在y 轴的负半轴上, ∴B 点的坐标为(−√3a2,−12a ). 故选:B .8.(3分)用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是( ) A .5B .10C .5πD .10π【解答】解:设该圆锥底面圆的半径为r , 根据题意得2πr =120π×15180,解得r =5, 即该圆锥底面圆的半径为5. 故选:A .9.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,连接OH ,若OB =4,S 菱形ABCD=24,则OH 的长为( )A .3B .4C .5D .6【解答】解:∵ABCD 是菱形, ∴BO =DO =4,AO =CO ,S 菱形ABCD =AC×BD2=24,∴AC =6,∵AH ⊥BC ,AO =CO =3, ∴OH =12AC =3. 故选:A .10.(3分)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b <0;③4a ﹣2b +c <0;④a +b +2c >0,其中正确结论的个数为( )A .4个B .3个C .2个D .1个【解答】解:∵抛物线开口向下,与y 轴的交点在x 轴上方, ∴a <0,c >0, ∵0<−b2a<1, ∴b >0,且b <﹣2a , ∴abc <0,2a +b <0, 故①不正确,②正确,∵当x =﹣2时,y <0,当x =1时,y >0, ∴4a ﹣2b +c <0,a +b +c >0, ∴a +b +2c >0,故③④都正确, 综上可知正确的有②③④, 故选:B .二.填空题(共6小题,满分18分,每小题3分) 11.(3分)分式方程x−2x=12的解为 x =4 .【解答】解:去分母得:2x ﹣4=x , 解得:x =4,经检验x =4是分式方程的解,故答案为:x =412.(3分)计算|﹣2|﹣(﹣1)+30的结果是 4 .【解答】解:原式=2+1+1=4,故答案为:413.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是14 .【解答】解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为416=14, 故答案为:14. 14.(3分)如图,在平行四边形ABCD 中,AB =2,BC =5.∠BCD 的平分线交AD 于点F ,交BA 的延长线于点E ,则AE 的长为 3 .【解答】解:在平行四边形ABCD 中,AB =2,BC =5,∴CD =AB =2,AD =BC =5,AD ∥BC ,∴∠DFC =∠FCB ,∵CE 平分∠DCB ,∴∠DCF =∠BCF ,∴∠DFC =∠DCF ,∴DC =DF =2,∴AF =3,∵AB ∥CD ,∴∠E =∠DCF ,又∵∠EF A =∠DFC ,∠DFC =∠DCF ,∴∠AEF =∠EF A ,∴AE =AF =3,故答案为:3.15.(3分)已知A 、B 两地之间的路程为3000米,甲、乙两人分别从A 、B 两地同时出发,相向而行,甲到B 地停止,乙到A 地停止,出发10分钟后,甲原路原速返回A 地取重要物品,取到该物品后立即原路原速前往B 地(取物品的时间忽略不计),结果到达B 地的时向比乙到达A 地的时间晚,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (m )与甲运动的时间x (min )之间的关系如图所示,则乙到达A 地时,甲与B 地相距的路程是 250 米.【解答】解:设甲的速度为am /min ,乙的速度为bm /min ,{10(a +b)=3000−2100(4009−20)×(a +b)=3000−20b, 解得,{a =50b =40, 则乙到达A 地时用的时间为:3000÷40=75min ,∴乙到达A 地时,甲与B 地相距的路程是:3000﹣50×(75﹣20)=250m ,故答案为:250.16.(3分)如图,边长为√3的正方形ABCD 中,点E 是BC 边上一点,点F 是CD 边上一点,且BF ⊥AE 于点G ,将△ABE 绕顶点A 逆时针旋转°得△AB ′E ′,使得点B ′、E ′恰好分别落在AE 、CD 上,AE ′交BF 于点H .则四边形B ′E ′HG 的面积为 √38.【解答】解:∵四边形ABCD 为正方形,∴BA =AD ,∠ABC =∠C =∠BAC =∠D =90°,∵△ABE 绕顶点A 逆时针旋转°得△AB ′E ′,∴AB ′=AB ,∠BAE =∠B ′AE ′,∠AB ′E ′=∠ABC =90°,△ABE ≌△AB ′E ′,在Rt △AB ′E ′和Rt △ADE ′中{AE′=AE′AB′=AD, ∴Rt △AB ′E ′≌Rt △ADE (HL ),∴∠B ′AE ′=∠DAE ′,∴∠B ′AE ′=∠DAE ′=∠BAE =13×90°=30°, 在Rt △ABG 中,BG =12AB =√32, 在Rt △BEG 中,GE =√33BG =√33×√32=12, ∵AG ⊥BH ,∠BAG =∠HAG ,∴△ABH 为等腰三角形,∴BG =GH ,∴S △AGH =S △ABG ,∴四边形B ′E ′HG 的面积=S △AB ′E ′﹣S △AGH =S △ABE ﹣S △ABG =S △BGE =12×√32×12=√38.故答案为√38.三.解答题(共9小题,满分72分)17.(6分)先化简,再求值:(x +2−5x−2)÷x−33x 2−6x ,其中x 满足x 2+3x ﹣1=0. 【解答】解:(x +2−5x−2)÷x−33x 2−6x =((x+2)(x−2)−5x−2)÷x−33x(x−2)=x 2−9x−2×3x(x−2)x−3=(x+3)(x−3)x−2×3x(x−2)x−3 =3x 2+9x ,∵x 2+3x ﹣1=0,∴x 2+3x =1,∴原式=3x 2+9x =3(x 2+3x )=3×1=3.18.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A .由父母一方照看;B .由爷爷奶奶照看;C .由叔姨等近亲照看;D .直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有 10 名留守学生,B 类型留守学生所在扇形的圆心角的度数为 144 ;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【解答】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为:10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.19.(8分)如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.【解答】(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,{AD=CD∠ADB=∠CDE BD=ED,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=12∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.20.(8分)关于x的方程mx2+(m+2)x+m4=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.【解答】解:(1)∵关于x的方程mx2+(m+2)x+m4=0有两个不相等的实数根,∴{m≠0△=(m+2)2−4m⋅m4>0,解得:m>﹣1且m≠0.(2)假设存在,设方程的两根分别为x1、x2,则x1+x2=−m+2m,x1x2=14.∵1x1+1x2=x1+x2x1x2=−4(m+2)m=0,∴m=﹣2.∵m>﹣1且m≠0,∴m=﹣2不符合题意,舍去.∴假设不成立,即不存在实数m,使方程的两个实数根的倒数和等于0.21.(8分)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【解答】解:(1)把A点(1,4)分别代入反比例函数y=kx,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=4x的图象上,∴n=4−4=−1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.22.(8分)如图,AB是⊙O的直径,已知BC为⊙O的切线,B为⊙O切点,OC与AD弦互相平行.求证:DC是⊙O的切线.【解答】证明:连接OD,∵AB 是⊙O 的直径,∴OA =OB =OD ,∵BC 是⊙O 的切线,∴∠OBC =90°,∵OC ∥AD ,∴∠A =∠COB ,∠ODA =∠COD ,∵OA =OD ,∴∠A =∠ODA ,∴∠COD =∠COB ,在△COD 和△COB 中,{OC =OC∠COD =∠BOC OD =OB,∴△COD ≌△COB (SAS ),∴∠ODC =∠OBC =90°,∴OD ⊥CD ,∴DC 是⊙O 的切线.23.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.【解答】解:(1)设甲,乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:{3x −2y =162x +6=3y, 解得:{x =12y =10, 则甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)设购买甲型设备m 台,乙型设备(10﹣m )台,则:12m +10(10﹣m )≤110,∴m≤5,∵m取非负整数∴m=0,1,2,3,4,5,∴有6种购买方案.(3)由题意:240m+180(10﹣m)≥2040,∴m≥4∴m为4或5.当m=4时,购买资金为:12×4+10×6=108(万元),当m=5时,购买资金为:12×5+10×5=110(万元),则最省钱的购买方案为,选购甲型设备4台,乙型设备6台.24.(10分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=45,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.【解答】解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=45,∴sinα=35,过点A作AH⊥BC交于点H, AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=45,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或98(舍去a=2),AD=HF=10﹣2﹣4a=7 2;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=110x2−85x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=110x2−85x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα=12ADAE=12x10−y=45,即:5x+8y=80,将上式代入①式并解得:x =394; ③当FC =FD , 则∠FCD =∠FDC =α,而∠ECF =α≠∠FCD ,不成立,故:该情况不存在;故:AD 的长为6和394.25.(10分)如图1,抛物线y =﹣x 2+mx +n 交x 轴于点A (﹣2,0)和点B ,交y 轴于点C (0,2).(1)求抛物线的函数表达式;(2)若点M 在抛物线上,且S △AOM =2S △BOC ,求点M 的坐标;(3)如图2,设点N 是线段AC 上的一动点,作DN ⊥x 轴,交抛物线于点D ,求线段DN 长度的最大值.【解答】解:(1)A (﹣2,0),C (0,2)代入抛物线的解析式y =﹣x 2+mx +n ,得{−4−2m +n =0n =2,解得{m =−1n =2, ∴抛物线的解析式为y =﹣x 2﹣x +2.(2)由(1)知,该抛物线的解析式为y =﹣x 2﹣x +2,则易得B (1,0),设M (m ,n )然后依据S △AOM =2S △BOC 列方程可得:12•AO ×|n |=2×12×OB ×OC ,∴12×2×|﹣m 2﹣m +2|=2,∴m 2+m =0或m 2+m ﹣4=0,解得x =0或﹣1或−1±√172, ∴符合条件的点M 的坐标为:(0,2)或(﹣1,2)或(−1+√172,﹣2)或(−1−√172,﹣2). (3)设直线AC 的解析式为y =kx +b ,将A (﹣2,0),C (0,2)代入得到{−2k +b =0b =2,解得{k =1b =2, ∴直线AC 的解析式为y =x +2,设N (x ,x +2)(﹣2≤x ≤0),则D (x ,﹣x 2﹣x +2), ND =(﹣x 2﹣x +2)﹣(x +2)=﹣x 2﹣2x =﹣(x +1)2+1, ∵﹣1<0,∴x =﹣1时,ND 有最大值1.∴ND 的最大值为1。
2024年湖北省武汉市中考数学复习模拟训练试卷(解析版)
2024年湖北省武汉市中考数学复习模拟训练试卷(解析版)第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)1.2024的相反数是()A.12024B.2024 C.2024−D.12024−【答案】C【分析】本题主要考查了倒数,解题的关键是熟练掌握倒数的定义,“乘积为1的两个数互为倒数”.【详解】解:2024的倒数1 2024.故选:C.2 . 由五个大小相同的正方体搭成的几何体如图所示,从左面看该几何体的形状图是()A.B.C.D.【答案】A【分析】根据从左面看几何体得到的图形,即可进行判断.【详解】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴从左面看该几何体的形状图是:故选:A.3 .下列事件中是必然事件的是()A .抛掷一枚质地均匀的硬币,正面朝上B .随意翻到一本书的某页,这一页的页码是偶数C .打开电视机,正在播放广告D .从两个班级中任选三名学生,至少有两名学生来自同一个班级【答案】D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、掷一枚质地均匀的硬币,正面向上是随机事件;B 、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C 、打开电视机,正在播放广告,是随机事件;D 、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件.故选:D .4. 下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b = 【答案】C【分析】根据整式的减法运算,同底数幂的乘法、除法运算,幂的乘方进行运算求解,然后进行判断即可.【详解】解:A 中4222a a a −=≠,错误,故不符合要求;B 中8424a a a a ÷=≠,错误,故不符合要求;C 中235a a a ⋅=,正确,故符合要求;D 中()3265b b b =≠,错误,故不符合要求;故选C .5. 下列图案中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.【答案】B【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故A选项不合题意;B、既是轴对称图形又是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不合题意;D、不是轴对称图形,是中心对称图形,故D选项不合题意.故选:B.6.已知点A(﹣2,y1),B(﹣1,y2),C(3,y3)都在反比例函数y=3x的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【答案】D【分析】把点A(-2,y1),B(-1,y2),C(3,y3)代入反比例函数的关系式求出y1,y2,y3,比较得出答案.【详解】解:把点A(﹣2,y1),B(﹣1,y2),C(3,y3)代入反比例函数3yx=的关系式得,y1=﹣1.5,y2=﹣3,y3=1,∴y2<y1<y3,故选:D.7 .某学校成立了A、B、C三个志愿者小组,在“学雷锋活动月”,利用周末时间到“残障儿童服务站”举行献爱心活动,如果小明和小刚每人随机选择参加其中一个小组,则他们恰好选到同一个小组的概率是( )A .19B .16C .13D .23【答案】C【分析】画树状图得出所有等可能的结果数以及他们恰好选到同一个小组的结果数,再利用概率公式可得出答案.【详解】解:画树状图如下:共有9种等可能的结果,其中他们恰好选到同一个小组的结果有3种,∴他们恰好选到同一个小组的概率为3193=. 故选:C .8. 如果2210a a −−=,那么代数式242a a a a −⋅ + 的值是( ) A .3−B .1−C .1D .3【答案】B 【分析】先化简所求的式子,再根据2210a a −−=,可以得到221a a −=−,然后代入化简后的式子即可. 【详解】解:242a a a a −⋅ + 2242a a a a −⋅+ ()()2222a a a a a +−⋅+ ()2a a −22a a =−,2210a a −−=, 221a a ∴−=−,∴原式1=−,故选:B .9.如图,ACD 内接于O ,30C ∠=°,AC 为O 的直径,DB 平分ADC ∠交AC 于点E ,交O 于点B ,连接AB .若ABE 的面积为6,则CDE 的面积是( )A .7B .8C .9D .10【答案】C 【分析】连接BC ,设AD a =,根据直角三角形的性质、勾股定理用a 表示出AB 、DC ,证明ABE DCE ∽,根据相似三角形的性质计算即可.【详解】解:如图所示,连接BC ,设AD a =,∵30C ∠=°,AC 为O 的直径, ∴90ADC ABC ∠=∠=°,AC 2a =,∴CD =,∵DB 平分ADC ∠ ∴1452ADB ADC ∠=∠=°, ∵ AB AB =,∴45ACB ∠=° ∴ABC 是等腰直角三角形,∴2AB a ==,∵,ABD ACD AEB CED ∠=∠∠=∠ ∴ABE DCE ∽∴2223ABE CDE S AB S CD == ∵ABE 的面积为6,则CDE 的面积是9,故选:C .10.甲、乙两人以相同路线前往距学校12km 的地方参加帮扶活动,如图2中l l 甲乙、分别表示甲、乙两人前往目的地所行驶的路程()km y 随时间()min t 变化的函数图象, 则68min −内每分钟甲比乙少行驶( )A .0.3kmB .0.4kmC .0.5kmD .0.6km【答案】D 【分析】根据函数图象可知,甲用了30分钟行驶了12千米,乙用()186−分钟行驶了12千米,据此分别计算出他们各自的速度,即每分钟行驶路程.【详解】解:根据函数图象得,甲用了30分钟行驶了12千米,乙用()186−分钟行驶了12千米, 故甲每分钟行驶()21230km 5÷=,乙每分钟行驶()12121km ÷=, 所以每分钟乙比甲多行驶()210.6km 5−=. 故选:D .第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)11.的结果是 .【答案】5【分析】根据二次根式的性质求解即可.5,故答案为:5.12. 学校节行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义实活动中,某班级售书情况如表: 售价 3元 4元 5元 6元数目 14本 11本 10本 15本在该班级所售图书价格组成的一组数据中,中位数是 .【答案】4.5【分析】将这组数据按大小顺序排列,位于正中间的一个数或正中间的两个数的平均值即为中位数.【详解】解:根据题意,总共有50个数,位于正中间是是第25,26个数,即4,5,由此这组数据的中位数是45 4.52+=故答案我为:4.5.13. 如图,某校数学兴趣小组的同学测量校园内一棵树DE 的高度,他们在这棵树的正前方一旗台的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度2m AB =,台阶AC 的坡度为,且B ,C ,E 三点在同一直线上,则树高DE 为 m .(测倾器的高度忽略不计)【答案】6【分析】在Rt ABC △中利用坡比和AB 的长,根据勾股定理即可求得BC 和AC 的长;如图:过点A 作AF DE ⊥于F ,可得四边形ABEF 为矩形,设DE x =,在Rt DCE 中表示出CE 的长度,求出DF 的长度,然后在Rt ADF 中表示出AF 的长度,根据AF BE =代入解方程求出x 的值即可.【详解】解:在Rt ABC △中,∵AB BC =2AB =,∴BC =∴4AC =;如图,过过点A 作AF DE ⊥于F ,则四边形ABEF 为矩形,∴2AFBE EF AB ===,米, 设DE x =,在Rt DCE 中,tan 60DE CE ==°, 在Rt ADF 中, 2DF DE EF x =−=−,∴)2tan 30DF AF x ==−°,∵AFBE BC CE ==+,)2x x −=,解得6x =(米). 故答案为6.14. 我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程s (单位:步)关于善行者的行走时间t 的函数图象, 则两图象交点P 的纵坐标是________.【答案】250【解析】【分析】设图象交点P 的纵坐标是m ,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的35.根据速度关系列出方程,解方程并检验即可得到答案. 【详解】解:设图象交点P 的纵坐标是m ,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的35.∴10035 mm−=,解得250m=,经检验250m=是方程的根且符合题意,∴两图象交点P的纵坐标是250.故答案为:25015.已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①9a﹣3b+c=0;②4a﹣2b+c>0;③方程ax2+bx+c﹣4=0有两个相等的实数根;④方程a(x﹣1)2+b(x﹣1)+c=0的两根是x1=﹣2,x2=2.其中正确结论的个数是 .【答案】4【分析】①根据x=-3时,对应的y=0,代入可得结论;②根据x=-2时,对应的y>0,代入可得结论;③根据顶点坐标中y=4,可得方程ax2+bx+c-4=0有两个相等的实数根;④将x-1替换x,由方程ax2+bx+c=0的两根x1=-3,x2=1,可得结论.【详解】解:①由抛物线的对称性可知:与x轴交于另一点为(-3,0),∴9a-3b+c=0;故①正确;②由图象得:当x=-2时,y>0,∴4a-2b+c>0,故②正确;③∵抛物线的顶点(-1,4),∴方程ax2+bx+c=4有两个相等的实数根,即方程ax2+bx+c-4=0有两个相等的实数根;故③正确;④由题意得:方程ax2+bx+c=0的两根为:x1=-3,x2=1,∴方程a(x-1)2+b(x-1)+c=0的两根是:x-1=-3或x-1=1,∴x1=-2,x2=2,故④正确;综上得:正确结论为: 4个.16.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=_______.解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=13×180°=60°,∴∠ADE=90°-∠AED=30°,∠A'DE=90°-∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴设AB=DC=x,则∵AE2+AD2=DE2,∴2222x x+=+(解得,x1=(负值舍去),x2,三、解答题(共8小题,共72分。
中考仿真模拟测试《数学试卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列实数中,无理数是( )A. 3.14B. 2.12122C. 39D. 237 2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D. 3. 下列计算正确的是( )A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅= D. ()()2111a a a -+--=- 4. 如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A. B. C. D.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒ 7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线解析式为( ) A. 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A. B. 4.5 C. D.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 3B. 62C. 3D. 9210. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 32-B. 3C. 32D. 52二、填空题11. 分解因式:224ax ay -=________.12. 已知正六边形的周长为,则这个正六边形的边心距是_______. 13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 17. 如图,已知ABC ∆,点AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等学生有多少人?20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线.(1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.答案与解析一、选择题1. 下列实数中,无理数是()A. 3.14B. 2.12122C. 39D. 23 7【答案】C【解析】【分析】根据无理数的定义,逐一判断选项,即可得到答案.【详解】∵3.14,2.12122,237是分数,属于有理数,39是无理数,∴C符合题意,故选C.【点睛】本题主要考查无理数的定义,掌握实数的分类以及无理数的定义,是解题的关键.2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.3. 下列计算正确的是()A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅=D. ()()2111a a a -+--=- 【答案】D【解析】【分析】 根据完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,逐一判断选项,即可.【详解】A. ()2222a b a ab b +=++,故本选项错误,B. ()3328a a -=-,故本选项错误,C 426a a a ⋅=,故本选项错误,D. ()()22211(1)1a a a a -+--=--=-,故本选项正确. 故选D .【点睛】本题主要考查完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,熟练掌握上述公式和法则是解题的关键.4. 如图所示,已知AB∥CD,EF 平分∠CEG,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°【答案】C【解析】 【详解】解:∵EF 平分∠CEG ,∴∠CEG=2∠CEF又∵AB ∥CD ,∴∠2=∠CEF=(180°-∠1)÷2=50°,故选:C .5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A.B. C. D.【答案】D【解析】【分析】把()2,4A a 和()2,B a 代入y kx =,结合函数y kx =图象的经过一、三象限,即可得到答案. 【详解】∵正比例函数y kx =图象过点()2,4A a 和()2,B a , ∴422ak a k =⎧⎨=⎩,解得:1k =±, ∵正比例函数y kx =图象的经过一、三象限,∴k >0,∴k=1.故选D .【点睛】本题主要考查正比例函数的待定系数法以及比例系数的几何意义,掌握正比例函数y kx =图象的经过一、三象限,则k >0,是解题的关键.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒【答案】B【解析】【分析】 根据等腰三角形的性质,得∠ABC=∠C ,∠A=40°,由直角三角形的性质得∠ABD=50°,从而得∠BDE=65°,进而即可求解.【详解】∵ABC ∆中,,70AB AC C =∠=︒,∴∠ABC=∠C=70°,∠A=180°-70°=70°=40°,∵BD 是AC 边上的高线,∴∠ADB=90°,∴∠ABD=90°-40°=50°,∵BE BD =,∴∠BDE=∠BED=(180°-50°)÷2=65°,∴ADE ∠=90°-65°=25°.故选B .【点睛】本题主要考查等腰三角形的性质定理,直角三角形的性质定理,掌握等腰三角形的底角相等,直角三角形的两个锐角互余,是解题的关键.7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线的解析式为( ) A 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 【答案】A【解析】【分析】根据一次函数的平移规律:”左加右减,上加下减”,即可得到答案.【详解】将直线1:12L y x =-向左平移个单位长度得到:11(4)1122y x x =+-=+, 故选A .【点睛】本题主要考查一次函数的平移后所得的新一次函数解析式,掌握一次函数的平移规律:”左加右减,上加下减”,是解题的关键.8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A.B. 4.5C.D.【答案】B【解析】【分析】由6OB =,菱形ABCD 的面积为,得OC=4.5,根据直角三角形的性质,即可求解.【详解】∵6OB =,菱形ABCD 的面积为,∴54413.5BOC S =÷=,∵AC ⊥BD ,∴OC=13.5×2÷6=4.5, ∵AE BC ⊥,AO=CO ,∴OE=OC=4.5,故选B .【点睛】本题主要考查菱形的性质定理和直角三角形的性质定理,掌握菱形的对角线互相垂直平分,直角三角形斜边上的中线等于斜边的一半,是解题的关键.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 63B. 2C. 93D. 2【答案】A【解析】【分析】 连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,易得∠AOB=∠COD=90°,∠DAC=∠ACB=45°,从而得∠OAD=∠CAB ,进而得∠OAD=∠AOD ,可得∠AOD=60°,∠BOC=120°,进而即可求解.【详解】连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,∵在四边形ABCD 内接于半径为的O 中,,45AB CD ACB =∠=︒,∴∠AOB=∠COD=2∠ACB=90°,∠DAC=∠ACB=45°,∵OA=OB ,∴∠OAB=45°,∴∠OAD=∠DAC+∠CAO=∠OAB+∠CAO=∠CAB ,又∵∠ACD=12∠AOD ,12ACD BAC ∠=∠, ∴∠AOD=∠BAC ,∴∠OAD=∠AOD ,∴AD=OD ,∵OD=OA ,∴∆AOD 是等边三角形,∴∠AOD=60°,∴∠BOC=360°-90°-90°-60°=120°,∵OC=OC=6,∴∠OCM=30°, ∴CM=32OC=33, ∴BC=2 CM==63.故选A .【点睛】本题主要考查圆的基本性质,熟练掌握圆周角定理以及推论,圆心角定理,垂径定理,等腰三角形的性质定理,是解题的关键.10. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 3 3 C. 32 D. 52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为,与轴交于点,∴A(2,c-4),B(0,c),∵将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键. 二、填空题11. 分解因式:224ax ay -=________.【答案】a(x-2y)( x+2y)【解析】【分析】先提取公因式,再利用平方差公式进行分解因式,即可.【详解】224ax ay -=a(x 2-4y 2)= a(x-2y)( x+2y).故答案是:a(x-2y)( x+2y).【点睛】本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.12. 已知正六边形的周长为,则这个正六边形的边心距是_______.【解析】【分析】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB ,易得∆AOB 是等边三角形,进而即可求解.【详解】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB , ∴∠AOB=60°,OA=OB ,即:∆AOB 是等边三角形,∴∠OAB=60°,∵正六边形的周长为,∴OA=OB =AB=2,∴OC=32OA=3. ∴这个正六边形的边心距是:3.故答案是:3.【点睛】本题主要考查正六边形的性质以及等边三角形的判定和性质定理,掌握等边三角形的性质定理,是解题的关键.13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.【答案】-2【解析】【分析】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,易得∆DAO ~∆ EOB ,从而得2()AOD BOE S AD S OE=,进而得228b k a-=,由ABC ∆的面积为,得1610b a ka -=+,进而得到关于b a 的方程,即可求解. 【详解】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,由题意得:k <0,a <0,b >0, ∴4AOD S =,22BOE k k S ==-,AD=8a -,OE=k b-, ∵AD ∥OE ,OD ∥BE ,∴∠DAO=∠EOB ,∠AOD=∠OBE ,∴∆DAO ~∆ EOB ,∴2()AOD BOE S AD S OE =,即:2842a k k b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,化简得:228a k b =-, ∴228b k a -=, ∵ABC ∆的面积为,∴(b-a )(8a --k b)=18,化简:22810a k b ab kab -=+, ∴21610b ab kab -=+,即:1610b a ka -=+,∴24-8-5=0b b a a ⎛⎫ ⎪⎝⎭,解得:12b a =-或52b a =(不合题意,舍去), ∴228b k a-==-2. 故答案是:-2.【点睛】本题主要考查反比例函数的图象和性质,比例系数的几何意义以及相似三角形的判定和性质定理,根据函数图象上点的坐标特征,三角形的面积公式以及相似三角形的性质,列出方程,是解题的关键. 14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.【答案】45【解析】【分析】 先证明当AP=DP=2时, s in BPC ∠有最大值,过点B 作BE ⊥PC 于点E ,根据勾股定理求出PB=PC=25根据三角形的面积法,求出BE 的值,进而即可得到答案.【详解】设∠APB=x ,∠DPC=y ,∴∠BPC=180°-∠APB -∠DPC=180°-(x+y ),∵当x >0,y >0时,2()0x y ≥, ∴20x y xy +-≥,即:2x y xy +≥x=y 时,2x y xy +=,∴当x=y 时,x+y 有最小值,此时,∠BPC=180°-(x+y )有最大值,即 s in BPC ∠有最大值.∵在正方形ABCD 中,∠A=∠D ,AB=CD ,当∠APB=∠DPC 时,∴∆APB ≅ DPC (AAS ),∴AP=DP=2,∴PB=PC=222425+=,过点B 作BE ⊥PC 于点E ,∵114422BCP S PC BE =⨯⨯=⋅, ∴BE=855, ∴ s in BPC ∠=8545525BE PB ==. 故答案是:45.【点睛】本题主要考查正方形的性质定理,勾股定理,锐角三角函数的定义以及全等三角形的判定和性质定理,证明当点P 是AD 的中点时, s in BPC ∠有最大值,是解题的关键.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 【答案】【解析】【分析】先算负整数指数幂,绝对值以及特殊角三角函数值,再进行加减运算,即可求解.【详解】原式=13931)333⨯-+⨯=3313=.【点睛】本题主要考查实数的混合运算,掌握负整数指数幂的运算法则,求绝对值法则以及特殊角三角函数值,是解题的关键.16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 【答案】-x+1【解析】【分析】先算分式的减法运算,再把除法化为乘法,然后进行约分,即可得到答案.【详解】原式=212111x x x x x x ⎛⎫+-+-+⋅ ⎪+-⎝⎭=221111x x x x x ⎛⎫-+-+⋅ ⎪+-⎝⎭=2(1)111x x x x -+-⋅+- =-(x-1)=-x+1.【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.17. 如图,已知ABC ∆,点在AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】作AD 的垂直平分线交AD 于点O ,以点O 为圆心,OD 长为半径,画圆,交BC 于点P ,即可.【详解】如图所示:∆ADC 的外接圆与BC 的交点P ,即为所求.【点睛】本题主要考查尺规作垂直平分线以及三角形的外接圆,掌握直角三角形的外接圆的圆心是斜边的中点,圆周角定理的推论,是解题的关键.18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.【答案】见详解【解析】【分析】根据平行线的性质得∠A=∠B ,∠CDE=∠DCF ,从而得∠ADE=∠BCF ,再根据ASA ,即可得到结论.【详解】∵//DE CF ,∴∠CDE=∠DCF ,∴∠ADE=∠BCF ,∵//AE BF ,∴∠A=∠B ,又∵AD BC =,∴∆ADE ≅∆BCF (ASA ),∴AE BF =.【点睛】本题主要考查三角形全等的判定和性质定理以及平行线的性质定理,掌握 ASA 证明三角形全等,是解题的关键.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等的学生有多少人?【答案】(1)被调查学生的人数为200人.补全条形统计图见解析;(2)等对应的圆心角的度数为18︒;(3)对政策内容了解程度达到等的学生人数有75人.【解析】【分析】(1)从两个统计图中可得B 组的人数为50人,占调查人数的25%,可求出调查人数,从而计算出A 等人数和D 等人数,补全条形统计图,(2)用360°乘以D 组所占的百分比即可,(3)样本估计总体,用样本中D 组所占的百分比乘以总人数即可.【详解】(1)5020025%=(人) ∴被调查学生的人数为200人.等的人数:20060%120⨯=(人),等的人数:200120502010---=(人),补全条形统计图如下.(2)1036018200⨯︒=︒ ∴等对应的圆心角的度数为18︒. (3)10150075200⨯=(人) ∴对政策内容了解程度达到等的学生人数有75人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据,理清统计图中各个数据之间的关系是解决问题的关键,用样本估计总体是统计中常用的方法.20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.【答案】22m【解析】【分析】延长CD 交AB 的延长线于H ,设DH=xm ,在Rt △DHB 中,利用正切的定义,用x 表示出BH ,在Rt △CAH 中,根据正切的定义,列出关于x 的方程,即可求解.【详解】延长CD 交AB 延长线于H ,则CD ⊥AB ,设DH=xm ,则CH=(x+2)m ,在Rt △DHB 中,tan45°=DH BH, ∴BH=DH tan45°=xm ,∴AH=AB+BH=(x+10)m ,在Rt △CAH 中,tan=CH AH ,即210x x ++=0.75, 解得:x=22, 答:广告牌架下端D 到地面的距离为22m .【点睛】本题主要考查解直角三角形的实际应用,熟练掌握锐角三角函数的定义,添加合适的辅助线,构造直角三角形,是解题的关键.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线. (1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.【答案】(1)2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩;(2)103(小时) 【解析】【分析】(1)当0≤t ≤1时,是正比例函数,用待定系数法进行求解,即可,当1<t ≤10时,是一次函数,用待定系数法求函数的关系式,即可;(2)当0≤t ≤1时,当含药量上升到4微克时,控制病情开始有效,令y=4,代入y=6t ,求出对应的t 值,同理,当1<t ≤10时,求出另一个t 值,他们的差就是药的有效时间.【详解】(1)当0≤t ≤1时,设y=k 1t ,则6=k 1×1,∴k 1=6,∴y=6t .当1<t ≤10时,设y=k 2t+b ,∴226010k b k b =+=+⎧⎨⎩,解得:223203k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴ y=23-t+203, 综上所述:2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩; (2)当0≤t ≤1时,令y=4,即:6t=4,解得:t=23, 当0<t ≤10时,令y=4,即:23-t+203=4,解得:t=4, ∴控制病情的有效时间为:4−23=103(小时). 【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象上的点的坐标特征和待定系数法,是解题的关键.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上的图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.【答案】(1)14;(2)12 【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)∵4中卡片中,只有1张是中心对称图形,∴从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14, 故答案为:14; (2)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果, ∴两次所抽取的卡片恰好都是轴对称图形的概率为:61122=.【点睛】本题主要考查等可能随机事件的概率,学会画树状图,掌握概率公式,是解题的关键. 23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.【答案】(1)见详解;(2)35【解析】【分析】(1)要证EF 是 O 的切线,只要连接OE ,再证∠FEO=90°即可;(2)证明△FEA ∽△FBE ,得出EF AF BF EF =,从而得到AF 的值,进而得到12AE BE =,结合勾股定理得到关于AE 的方程,即可求出AE 的长.【详解】(1)连接OE ,∵∠B 的平分线BE 交AC 于D ,∴∠CBE=∠OBE ,∵EF ∥AC ,∴∠CAE=∠FEA ,∵∠OBE=∠OEB ,∠CBE=∠CAE ,∴∠FEA=∠OEB ,∵AB 是O 的直径,∴∠AEB=90°,∴∠FEO=90°,∴EF 是O 切线;(2)∵∠FEA=∠OEB=∠OBE ,∠F=∠F ,∴∆FEA ~∆FBE , ∴EF AF BF EF =, 即:2EF AF BF =⋅,∴AF×(AF+15)=10×10,解得:AF=5或AF=-20(舍去), ∴51102AE AF BE EF ===, ∵在Rt ∆ABE 中,AE 2+BE 2=AB 2,∴AE 2+(2AE )2=152,∴AE=35.【点睛】本题主要考查切线的判定定理,圆周角定理,相似三角形的判定和性质定理以及勾股定理,掌握切线的判定定理以及相似三角形的判定和性质定理是解题的关键.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.【答案】(1)2 6y x x =--+;(2)(0,6)或(-2,4)或(17-+17-).【解析】【分析】(1)根据待定系数法,即可得到答案;(2)先求出直线AB 的解析式,由平行四边形的性质得AO=MN=3且AO ∥MN ,设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),根据M ,N 的纵坐标相等,列出关于x 的方程,即可求解.【详解】(1)∵抛物线2y x bx c =-++与直线AB 交于点() 3,0A -,点() 1,4B , ∴ 09341b c b c =--+=-++⎧⎨⎩,解得: 16b c =-=⎧⎨⎩, ∴抛物线解析式为:26y x x =--+; (2)设直线AB 的解析式为:y=kx+m , 把() 3,0A -,() 1,4B ,代入得: 034k m k m =-+=+⎧⎨⎩,解得: 13k m ==⎧⎨⎩, ∴直线AB 的解析式为:y=x+3.∵以A O M N 、、、为顶点的四边形是以OA 为边的平行四边形,∴AO=MN=3且AO ∥MN ,∵点M 是轴上方抛物线上一点,点是直线AB 上一点,∴设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),∴26x x --+=x+6或26x x --+=x ,解得:10x =,22x =-,317x =-417x =-令y=0代入26y x x =--+,得:2 60x x --+=,解得:x=-3或x=2,∴抛物线与x 轴的另一个交点坐标为(2,0),∵点M 是轴上方抛物线上一点,∴点M 的横坐标取值范围为:-3<x <2,∴点M 的坐标为:(0,6)或(-2,4)或(17-+,17-+).【点睛】本题主要考查二次函数与一次函数的综合以及平行四边形的性质,掌握待定系数法,函数图象上的点的坐标特征以及平行四边形的对边平行且相等,是解题的关键.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.【答案】(12)AM=2.5,作图见详解;(3)存在PM ,使得PM 平分该空地的面积,AM= 146(米).【解析】【分析】(1)作CD ⊥AB 于点D ,利用等边三角形三线合一的性质和直角三角形的性质求出AD 的长,即可;(2)经过平行四边形对角线的交点的直线将平行四边形的面积分成相等的两部分,当MN ⊥BC 时,MN 最短,过A 作AE ⊥BC 于点E ,根据三角函数的定义,求AE 的长,即是MN 的长,再求出EN 的长,即AM 的长;(3)作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,通过锐角三角函数的定义,求得OD 的值,从而得AOD S ,OBCD S 四边形,在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050,进而求出OM ,即可求出AM 的值,然后得到结论.【详解】(1)如图①,作CD ⊥AB 于点D ,∵ABC ∆为边长为的等边三角形,∴AD=BD ,∴CD 平分ABC ∆的面积,∴(2)连接AC 、BD 交于点O ,过点O 作直线MN ,交AD 于M ,交BC 于N ,如图②,∵四边形ABCD 为平行四边形,∴OA=OC ,AD ∥BC ,∴∠CAD=∠ACB ,∵∠AOM=∠CON ,∴△AOM ≌△CON (ASA ),∴S △AOM =S △CON ,同理可得:△OMD ≌△ONB ,△AOB ≌△COD ,∴S △OMD =S △ONB ,S △AOB =S △COD ,∴S △AOM +S △AOB +S △BON =S △CON +S △COD +S △OMD ,即:MN 将四边形ABCD 分成面积相等的两部分,当MN ⊥BC 时,MN 最短,如图③所示,过A 作AE ⊥BC 于点E ,在Rt △ABE 中,∵∠ABC=60°,∴sin60°=AE AB,∴AE=2× ∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴∴此时MN 的长度为∵AE ∥MN ,AO=CO ,∴EN=CN ,∵BE=12AB=3, ∴CE=BC-BE=8-3=5,∴EN=2.5,∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴四边形AENM 是矩形,即:AM=EN=2.5;(3)存在PM ,使得PM 平分该空地的面积,理由如下:作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,如图④, ∵点P 是AC 的中点,∴点P 在直线EF 上,∵160AB =(米),120BC =(米),90ABC ∠=︒,∴=200(米),AD=12AC=100(米), ∵tan ∠BAC =34OD BC AD AB ==, ∴OD=34AD=75(米),∴11007537502AOD S =⨯⨯=(平方米), ∵112016096002ABC S =⨯⨯=(平方米), ∴960037505850OBCD S =-=四边形(平方米),∴图形OBCP 的面积比图形AOP 的面积多2100平方米,∴在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050(平方米),即可.∵sin ∠BAC=35OD BC OA AC ==, ∴OA=53OD=53×75=125(米), ∴OP=OA=125(米),过点M 作MN ⊥EF 于点N ,∴12OP ∙MN=1050,即:MN=2100÷125=845(米), ∵MN ∥AC ,∴∆AOD ~∆MON ,∴AD AO MN MO =,即:100125845MO =,解得:MO=21(米), ∴AM=AO+MO=125+21=146(米),∵AM <AB ,∴存在PM ,使得PM 平分该空地的面积,此时,AM= 146(米).【点睛】本题主要等边三角形的性质,平行四边形的性质,圆的基本性质,三角函数的定义以及相似三角形的判定和性质,熟练掌握垂径定理,三角函数的定义和相似三角形的性质,合理添加辅助线,构造直角三角形和相似三角形,是解题的关键.。
2023年中考数学模拟考试试题含答案解析
2023年中考数学模拟试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a23.(3分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外4.(3分)如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个5.(3分)设有反比例函数,(x1,y1)、(x2,y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>﹣1D.k<﹣16.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)据相关报道,近5年中国农村年均脱贫1370万人.1370万可用科学记数法表示为.8.(3分)不等式组的解集是.9.(3分)分解因式:x3﹣x=.10.(3分)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=度.11.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为.12.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO =2,则满足题意的OC长度为整数的值可以是.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:+=1.(2)计算:14.(6分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.15.(6分)如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图①中作线段BC的中点P;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC.16.(6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.17.(6分)深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为人,m=,n=;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.四、(本大题共3小题,每小题8分,共24分)18.(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.20.(8分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.22.(9分)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y =2x﹣4,求此“路线”L的解析式;(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.六、(本大题共12分)23.(12分)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证:设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.(1)用含α的式子表示角的度数:θ3=,θ4=,θ5=;(2)图1﹣图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想:设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正多边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α(0°<α<°);(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.2023年中考数学模拟试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a2【分析】根据单项式的乘法法则,积的乘方的性质,合并同类项的法则,计算后直接选取答案.【解答】解:(﹣2a)•a﹣(﹣2a)2,=﹣2a2﹣4a2,=﹣6a2.故选:C.【点评】本题考查积的乘方,单项式的乘法,要注意符号的运算,是同学们容易出错的地方.3.(3分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.【点评】本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.4.(3分)如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个【分析】根据题意,主视图以及俯视图都是由3个小正方形组成,利用空间想象力可得出该几何体由4或5个小正方形组成.【解答】解:根据本题的题意,由主视图可设计该几何体如图:想得到题意中的俯视图,只需在图(2)中的A位置添加一个或叠放1个或两个小正方形,故组成这个几何体的小正方形的个数为4个或5个.故选:C.【点评】本题考查了由几何体的视图获得几何体的方法.在判断过程中要寻求解答的好思路,不要被几何体的各种可能情况所困绕.5.(3分)设有反比例函数,(x1,y1)、(x2,y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>﹣1D.k<﹣1【分析】若x1<0<x2时,则对应的两个点(x1,y1)、(x2,y2)分别位于两个不同的象限,当y1>y2时,反比例系数一定小于0,从而求得k的范围.【解答】解:根据题意得:k+1<0;解得:k<﹣1.故选:D.【点评】本题容易出现的错误是,简单利用y随x的增大而减小,而错误的认为反比例系数是正数,忘记反比例函数的性质,叙述时的前提是:在每个象限内.6.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.【点评】本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)据相关报道,近5年中国农村年均脱贫1370万人.1370万可用科学记数法表示为 1.37×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1370万=13700000=1.37×107,故答案为:1.37×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)不等式组的解集是x>.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.10.(3分)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=90度.【分析】根据三角形的内心的定义知内心是三角形三角平分线的交点,根据三角形内角和定理可以得到题目中的三个角的和.【解答】解:∵点P是△ABC的内心,∴PB平分∠ABC,PA平分∠BAC,PC平分∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴∠PBC+∠PCA+∠PAB=90°,故答案为:90°【点评】本题考查了三角形的内心的性质,解题的关键是正确的理解三角形的内心的定义,是三角形三内角的平分线的交点.11.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为(6053,2).【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+12×504=6053,∴P2017(6053,2),故答案为(6053,2).【点评】本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.12.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO =2,则满足题意的OC长度为整数的值可以是2,3,4.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.【点评】本题考查了垂径定理、等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角、弧、弦间的关系.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:+=1.(2)计算:【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:(1)方程两边同乘以(x+2)(x﹣2),得(x﹣2)2+4=x2﹣4,解得:x=3,检验:当x=3时,(x+2)(x﹣2)=5≠0,则x=3是原分式方程的解;(2)原式=3﹣1+2=4.【点评】此题考查了解分式方程,以及实数的运算,解分式方程利用了转化的思想,解分式方程注意要检验.14.(6分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.【分析】(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.【解答】解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.【点评】此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.15.(6分)如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图①中作线段BC的中点P;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC.【分析】(1)在图①中作线段BC的中点P即可;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC即可.【解答】解:(1)如解图①所示,点P即为所求;(2)如解图②所示,MN即为所求.【点评】本题考查了作图﹣复杂作图,解决本题的关键是综合运用全等三角形的判定与性质、线段垂直平分线的性质、等腰三角形的判定与性质准确画图.16.(6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A的坐标为(2,0),∴AO=2,在直角三角形OAB中,AO2+OB2=AB2,即22+OB2=(),∴OB=3,∴B(0,3);(2)∵△ABC的面积为4∴4=BC×OA,即4=BC×2,∴BC=4,∴OC=BC﹣OB=4﹣3=1,∴C(0,﹣1),设l2的解析式为y=kx+b,则,解得,直线L2所对应的函数关系式为y=x﹣1.【点评】本题主要考查了两条直线的交点问题和坐标与图形的性质、三角形的面积,属于基础题,解题的关键是掌握勾股定理以及待定系数法.17.(6分)深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为200人,m=20,n=0.15;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有1500人.【分析】(1)根据频数÷频率,求得采访的人数,根据频率×总人数,求得m的值,根据30÷200,求得n的值;(2)根据m的值为20,进行画图;(3)根据0.1×15000进行计算即可.【解答】解:(1)此次采访的人数为100÷0.5=200(人),m=0.1×200=20,n=30÷200=0.15;(2)如图所示;(3)高度关注东进战略的深圳市民约有0.1×15000=1500(人).【点评】本题主要考查了条形统计图以及频数与频率,解决问题的关键是掌握:频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=.解题时注意,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.四、(本大题共3小题,每小题8分,共24分)18.(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)【分析】如图,作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.【解答】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=8×4=32(米),∴AD=CD=16(米),BD=AB•cos30°=16(米),∴BC=CD+BD=(16+16)米,则BH=BC•sin30°=(8+8)米.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值42,3(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2,3.(2)根据题意得:=,解得:m=2,所以m的值为2.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(8分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.【分析】(1)过点C作CE⊥AB于点E,根据HL证Rt△AOD≌Rt△BEC,求出OA=BE =2,即可求出C的坐标,代入反比例函数的解析式求出k即可;(2)得出B′的坐标是(6,m),代入反比例函数的解析式,即可求出答案.【解答】解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中∵,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3),∵设反比例函数的解析式y=,根据题意得:3=,解得k=12,∴反比例函数的解析式;答:点C坐标是(4,3),反比例函数的解析式是y=.(2)将等腰梯形ABCD向上平移m个单位后得到梯形A′B′C′D′,∴点B′(6,m),∵点B′(6,m)恰好落在双曲线y=上,∴当x=6时,y==2,即m=2.【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,全等三角形的性质和判定,等腰梯形的性质的应用,通过做此题培养学生运用性质进行计算的能力,题型较好,难度也适中.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC,根据翻折的性质求出OM,CD⊥OA,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA、AF、GB,根据等弧所对的圆周角相等可得∠BAG=∠AFG,然后根据两组角对应相等两三角相似求出△AGE和△FGA相似,根据相似三角形对应边成比例可得=,从而得到GE•GF=AG2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC,∵沿CD翻折后,点A与圆心O重合,∴OM=OA=×2=1,CD⊥OA,∵OC=2,∴CD=2CM=2=2=2;(2)证明:∵PA=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴PC===2,∵OC=2,PO=2+2=4,∴PC2+OC2=(2)2+22=16=PO2,∴∠PCO=90°,∴PC是⊙O的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH∴△OGE∽△FGH∴=∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.22.(9分)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y =2x﹣4,求此“路线”L的解析式;(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.【分析】(1)找出直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(2)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论.【解答】解:(1)令直线y=mx+1中x=0,则y=1,即直线与y轴的交点为(0,1);将(0,1)代入抛物线y=x2﹣2x+n中,得n=1.∵抛物线的解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y=mx+1中,得:0=m+1,解得:m=﹣1.答:m的值为﹣1,n的值为1.(2)将y=2x﹣4代入到y=中有,2x﹣4=,即2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3.∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2).令“带线”l:y=2x﹣4中x=0,则y=﹣4,∴“路线”L的图象过点(0,﹣4).设该“路线”L的解析式为y=m(x+1)2﹣6或y=n(x﹣3)2+2,由题意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2,解得:m=2,n=﹣.∴此“路线”L的解析式为y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.(3)令抛物线L:y=ax2+(3k2﹣2k+1)x+k中x=0,则y=k,即该抛物线与y轴的交点为(0,k).抛物线L:y=ax2+(3k2﹣2k+1)x+k的顶点坐标为(﹣,),设“带线”l的解析式为y=px+k,∵点(﹣,)在y=px+k上,∴=﹣p+k,解得:p=.∴“带线”l的解析式为y=x+k.令“带线”l:y=x+k中y=0,则0=x+k,解得:x=﹣.即“带线”l与x轴的交点为(﹣,0),与y轴的交点为(0,k).∴“带线”l与x轴,y轴所围成的三角形面积S=|﹣|×|k|,∵≤k≤2,∴≤≤2,∴S===,当=1时,S有最大值,最大值为;当=2时,S有最小值,最小值为.故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为≤S≤.【点评】本题考查了反比例函数与一次函数的交点问题已经二次函数的应用,解题的关键是:(1)根据“一带一路”关系找出两函数的交点坐标;(2)根据直线与反比例函数的交点设出抛物线的解析式;(3)找出“带线”l与x轴、y轴的交点坐标.本题属于中档题,(1)(2)难度不大;(3)数据稍显繁琐,解决该问时,借用三角形的面积公式找出面积S与k之间的关系式,再利用二次函数的性质找出S的取值范围.六、(本大题共12分)23.(12分)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证:设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.(1)用含α的式子表示角的度数:θ3=60°﹣α,θ4=α,θ5=36°﹣α;(2)图1﹣图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想:设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正多边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α(0°<α<°);(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.【分析】(1)由正三角形的性质得α+θ3=60°,再由正方形的性质得θ4=45°﹣(45°﹣α)=α,最后由正五边形的性质得θ5=108°﹣36°﹣36°﹣α=36°﹣α;(2)存在,如在图1中直线A0H垂直且平分的线段A2B1,△A0A1A2≌△A0B1B2,推得A2H=B1H,则点H在线段A2B1的垂直平分线上;由A0A2=A0B1,则点A0在线段A2B1的垂直平分线上,从而得出直线A0H垂直且平分的线段A2B1。
中考仿真模拟考试《数学卷》附答案解析
6000(1﹣x)2=3600
解得:x1= ,x2= (不合题意,舍去),
∴生产1t甲种药品成本的年平均下降率为 .
故选:A.
【点睛】本题主要考查了一元二次方程的实际应用,熟练掌握相关方法是解题关键.
9.如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为( )
A.2- B. C. D.1
10.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是( )
(1)对任意实数k,函数与x轴有两个交点
(2)当x≥﹣k时,函数y的值都随x的增大而增大
(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上
(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点
22.阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣ ,x1x2= .
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m= ,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于 ?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
6.抛物线y=2(x﹣2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是()
A.x=2B.x=﹣1C.x=5D.x=0
7.已知点A(﹣1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是( )
中考模拟考试 数学卷 含答案解析
A.
B.
C.
D.
二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)
11. 27 的立方根是________.
12.如图,在平面直角坐标系中,点 B 在 y 上, OA AB ,反比例函数 y k x 0 的图像经过点 A ,若
x ABO 的面积是 4 ,则 k 的值为___.
A. 30
B. 40
C. 60
7.在体育模拟考试中,某班 25 名男生的跳绳成绩如下表所示:
成绩/次 160 165 170 175 180
2
3
58
4
2
则这些同学跳绳成绩的中位数,众数分别是( )
A. 175,180
B. 175,190
C. 180,180
D. 180 ,190
碗多少元时,每天的牛肉汤营业额最大?最大营业额是多少元? 八、(本题满分 14 分)
23.如图,正方形 ABCD 边长为 2, E 、F 分别是 AD 、CD 上两动点,且满足 AE DF , BE 交 AF 于点 G .
(1)如图 1,判断线段 BE 、 AF 的位置关系,并说明理由;
(2)在(1)的条件下,连接 DG ,直接写出 DG 的最小值为
D. 无解
【详解】∵ x2 5x 6 的值为 0 2x 6
∴ x2 5x 6 0 , 2x 6 0 x2 5x 6 0 (x 2)(x 3) 0
解得 x=2 或 x=3
又∵ 2x 6 0 , x 3
∴x=2 故选:B 【点睛】本题考查了分式方程为 0 的条件:分式的分子为 0,且分母不为 0.
(1)请在平面直角坐标系中做出 ABC 绕原点 O 逆时针旋转 90 后得到 △A1B1C1 (点 A, B,C 的对应点分
中考数学模拟考试卷(附答案解析)
中考数学模拟考试卷(附答案解析)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1. |﹣2023|的结果是( ) A .12023B .2023C .−12023D .﹣20232. 一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A. B. C. D.3. 月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为( ) A .38.4×104B .3.84×105C .0.384×106D .3.84×1064.在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标 为( ) A. ()0,2-B. ()0,2C. ()6,2-D. ()6,2--5.下列运算正确的是( ) A .3xy ﹣xy =2 B .x 3•x 4=x 12 C .x ﹣10÷x 2=x ﹣5D .(﹣x 3)2=x 66.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为( ) A .40,42B .42,43C .42,42D .42,417. 如图,Rt △ABC 中,∠ABC =90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C8.已知关于x的分式方程xx−2−4=k2−x的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k ≠﹣29. 如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.AEEC =EFCDB.EFCD=EGABC.AFFD=BGGCD.CGBC=AFAD10.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 把多项式a 3﹣4a 分解因式,结果是 .12. 在平面直角坐标系中,△ABC 和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是 .13. 如图,△ABC 内接于⊙O ,MH ⊥BC 于点H ,若AC =10,AH =8,⊙O 的半径为7,则AB = .14. 我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 . 三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(8分)(1)计算:0|12sin 45(2020)︒--+-;(2)解不等式组:(1)3,29 3.x x -->⎧⎨+>⎩16.(8分)先化简,再求值:÷(1﹣),其中a=5.17.(10分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.18. (8分)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运較火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B处的平均速度(结果精确到1米/秒,参考数据:√3≈1.732,√2≈1.414).19.(10分)如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围.20.(10分)如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分∠BAC ,DE ⊥AC ,垂足为E .(1)试判断直线DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,∠BAC =60°,求线段EF 的长.B卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)21. 当x=12.代数式(x+1)(x﹣1)+x(2﹣x),的值为________.22. 已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是.23.如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形In,则In的面积是.24.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且△ABP的面积是△AOB的面积的2倍,则点P的横坐标为.25. 如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为.二、解答题(本大题共3个小题,共30分解答过程写在答题卡上)26.(9分)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.27.(9分)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC =EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.28.(12分)如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线223y x bx c =-++过点B 且与直线相交于另一点53,24C ⎛⎫⎪⎝⎭.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,当PAO BAO ∠=∠时,求点P 的坐标;(3)点5(,0)02N n n ⎛⎫<<⎪⎝⎭在x 轴的正半轴上,点(0,)M m 是y 轴正半轴上的一动点,且满足90MNC ︒∠=.①求m 与n 之间的函数关系式;②当m 在什么范围时,符合条件的N 点的个数有2个?参考答案与解析A 卷第Ⅰ卷(选择题,共30分)一、选择题 1. 【答案】B【解析】根据绝对值的性质直接解答即可. |﹣2023|=2023 2. 【答案】A【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.从正面看所得到的图形为A 选项中的图形. 3. 【答案】B【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 38.4万=384000=3.84×105 4.【答案】A【解析】先根据点向右平移3个单位点的坐标特征:横坐标加3,纵坐标不变,得到点P '的坐标,再根据关于x 轴的对称点的坐标特征:横坐标不变,纵坐标变为相反数,得到对称点的坐标即可.∵将点()3,2P -向右平移3个单位, ∴点P '的坐标为:(0,2),∴点P '关于x 轴的对称点的坐标为:(0,-2). 5.【答案】D【解析】分别根据合并同类项法则,同底数幂的乘法法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.A .3xy ﹣xy =2xy ,故本选项不合题意;B .x 3•x 4=x 7,故本选项不合题意;C .x ﹣10÷x 2=x ﹣12,故本选项不合题意;D .(﹣x 3)2=x 6,故本选项符合题意.6.【答案】C【解析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为42+422=427. 【答案】D【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC=∠BAC 即可.【解析】由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AEB+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确.8.【答案】B【分析】表示出分式方程的解,根据解为正数确定出k的范围即可.【解析】分式方程xx−2−4=k2−x,去分母得:x﹣4(x﹣2)=﹣k,去括号得:x﹣4x+8=﹣k,解得:x=k+83,由分式方程的解为正数,得到k+83>0,且k+83≠2,解得:k>﹣8且k≠﹣2.9. 【分析】根据平行线分线段成比例性质进行解答便可.【解析】∵EF∥BC,∴AFFD =AEEC,∵EG∥AB,∴AEEC =BGGC,∴AFFD =BGGC,故选:C.10.【答案】C【解析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.抛物线开口向下,a<0,对称轴为x=−b2a=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=−b2a=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,第Ⅱ卷(非选择题,共70分)二、填空题11. 【答案】a(a+2)(a﹣2).【解析】首先提公因式a,再利用平方差进行二次分解即可.原式=a(a2﹣4)=a(a+2)(a﹣2).12. 【解析】(4,8)或(﹣4,﹣8).【分析】利用关于原点对称的点的坐标,把A点横纵坐标分别乘以2或﹣2得到其对应点A1的坐标.【解析】∵△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,而点A的坐标为(2,4),∴点A对应点A1的坐标为(2×2,2×4)或(﹣2×2,﹣2×4),即(4,8)或(﹣4,﹣8).13. 【答案】565.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.【解析】作直径AD,连接BD,∵AD为直径,∴∠ABD=90°,又AH⊥BC,∴∠ABD=∠AHC,由圆周角定理得,∠D=∠C,∴△ABD∽△AHC,∴ABAH =ADAC,即AB8=1410,解得,AB=56514. 【答案】{x+y=250x+10y=30.【分析】根据“现用30钱,买得2斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【解析】依题意,得:{x+y=250x+10y=30.故答案为:{x+y=250x+10y=30.三、解答题15.(8分)(1)计算:0|12sin45(2020)︒--+-;(2)解不等式组:(1)3, 29 3.xx-->⎧⎨+>⎩【答案】(1)0;(2)-3<x<-2【解析】(1)原式1212-⨯+=0;(2)(1)3 293xx-->⎧⎨+>⎩①②,解不等式①得:x<-2,解不等式②得:x>-3,∴不等式组的解集为:-3<x<-2.16.(8分)先化简,再求值:÷(1﹣),其中a=5.【答案】a+2,7.【解析】根据分式的混合运算法则把原式化简,代入计算即可.÷(1﹣)=÷(﹣)=•=a+2,当a=5时,原式=5+2=7.17.(10分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.【答案】见解析。
中考数学模拟考试卷(有答案解析)
中考数学模拟考试卷(有答案解析)一、选择题1.9的算术平方根是()A. ±3B. 3C. −3D. √32.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,数据499.5亿用科学记数法应表示为()A. 4.995×1010B. 49.95×1010C. 0.4995×1011D. 4.995×1011图象上,则y1,y2,y3的大小关系为()3.已知(−2,y1),(−3,y2),(2,y3)在反比例函数y=−0.8xA. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y24.某班篮球爱好小组10名队员进行定点投篮练习,每人投篮20次,将他们投中的次数进行统计,制成如表:投中次数121315161718人数123211则关于这10名队员投中次数组成的数据,下列说法错误的是()A. 平均数为15B. 中位数为15C. 众数为15D. 方差为55.利用配方法将二次函数y=x2+2x+3化为y=a(x−ℎ)2+k(a≠0)的形式为()A. y=(x−1)2−2B. y=(x−1)2+2C. y=(x+1)2+2D. y=(x+1)2−26.下列关于x的方程中一定没有实数根的是()A. x2−x−1=0B. 4x2−6x+9=0C. x2=−xD. x2−mx−2=07.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF//BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;∠A;②∠BOC=90°+12③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是()A. ①②③B. ①②④C. ②③④D. ①③④8.平行四边形、矩形、菱形、正方形都具有的是()A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线互相垂直且相等9.如图,已知⊙O的弦AB、CD相交于点P,PA=4cm,PB=3cm,PC=6cm,EA切⊙O于点A,AE与CD的延长线交于点E,若AE=2√5cm,则PE的长为()A. 4cmB. 3cmC. 5cmD. √2cm10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC的边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则y与x函数关系的图象大致是()A. B. C. D.二、填空题11.分解因式:x2﹣9y2=.12.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN 交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为.14.如图,A、B是函数y=(x>0)图象上两点,作PB∥y轴,PA∥x轴,PB与PA交于点P,若S△BOP=2,则S△ABP=.15.如图,△ABO中,以点O为圆心,OA为半径作⊙O,边AB与⊙O相切于点A,把△ABO绕点A逆时针旋转得到△AB'O',点O的对应点O'恰好落在⊙O上,则sin∠B'AB的值是.三、解答题16.解方程:x2+2x﹣3=0(公式法)17.某校760名学生参加植树活动,要求每人植树的范围是2≤x≤5棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:2棵;B:3棵;C:4棵;D:5棵,将各类的人数绘制成扇形统计图(如图2)和条形统计图(如图1).回答下列问题:(1)补全条形统计图;(2)被调查学生每人植树量的众数、中位数分别是多少?(3)估计该校全体学生在这次植树活动中共植树多少棵?18.在坐标系中作出函数y=x+2的图象,根据图象回答下列问题:(1)方程x+2=0的解是;(2)不等式x+2>1的解;(3)若﹣2≤y≤2,则x的取值范围是.19.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=3cm,DE=cm,求⊙O直径的长.20.某中学计划购买A、B两种学习用品奖励学生,已知购买一个A比购买一个B多用20元,若用400元购买A的数量是用160元购买B数量的一半.(1)求A、B两种学习用品每件各需多少元?(2)经商谈,商店给该校购买一个A奖品赠送一个B奖品的优惠,如果该校需要B奖品的个数是A奖品个数的2倍还多8个,且该学校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A奖品?21.在平面直角坐标系xOy中,二次函数y=ax2+bx+4(a<0)的图象与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C,直线BC与对称轴于点D.(1)求二次函数的解析式.(2)若抛物线y=ax2+bx+4(a<0)的对称轴上有一点M,以O、C、D、M四点为顶点的四边形是平行四边形时,求点M的坐标.(3)将抛物线y=ax2+bx+4(a<0)向右平移2个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点,当以D、E、F、G四点为顶点的四边形是菱形时,求点F的坐标.22.如图1,在正方形ABCD中,E为边AD上的一点,连结CE,过D作DF⊥CE于点G,DF交边AB于点F.已知DG=4,CG=16.(1)EG的长度是.(2)如图2,以G为圆心,GD为半径的圆与线段DF、CE分别交于M、N两点.①连结CM、BM,若点P为BM的中点,连结CP,求证∠BCP=∠MCP.②连结CN、BN,若点Q为BN的中点,连结CQ,求线段CQ的长.参考答案与解析一、选择题1.B试题分析:根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.∵32=9,∴9的算术平方根是3.故选:B.2.A解:499.5亿=49950000000=4.995×1010,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.3.A解:当x=−2时,y1=−0.8−2=615;当x=−3时,y2=−0.8−3=415;当x=2时,y3=−0.82=−0.4,所以y1>y2>y3.故选:A.分别把x=−2、−3、2代入反比例函数解析式计算出y1,y2,y3的值,从而得到它们的大小关系.4.D解:这组数据的平均数为12+13×2+15×3+16×2+17+1810=15,故A选项正确,不符合题意;将数据从小到大排列,第5第6个数都是15,中位数为15+152=15,故B选项正确,不符合题意;15出现的次数最多,众数为15,故C选项正确,不符合题意;方差为110×[(12−15)2+2×(13−15)2+3×(15−15)2+2×(16−15)2+(17−15)2+(18−15)2]= 3.2,故D选项错误,符合题意;故选:D.依次根据加权平均数、中位数、众数及方差的定义求解即可.5.C解:y=x2+2x+3=(x+1)2+3−1=(x+1)2+2.故选:C.化为一般式后,利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).6.B解:A、△=5>0,方程有两个不相等的实数根;B、△=−108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.A【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°+12∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=12mn,故④错误.【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°−12∠A,∴∠BOC=180°−(∠OBC+∠OCB)=90°+12∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF//BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE⋅OM+12AF⋅OD=12OD⋅(AE+AF)=12mn;故④错误;故选:A.8.A解:A、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B、对角线互相垂直是菱形、正方形具有的性质;C、对角线相等是矩形和正方形具有的性质;D、对角线互相垂直且相等是正方形具有的性质.故选:A.9.A试题分析:首先根据相交弦定理得PA⋅PB=PC⋅PD,得PD=2.设DE=x,再根据切割线定理得AE2=ED⋅EC,即x(x+8)=20,x=2或x=−10(负值舍去),则PE=2+2=4.∵PA⋅PB=PC⋅PD,PA=4cm,PB=3cm,PC=6cm,∴PD=2;设DE=x,∵AE2=ED⋅EC,∴x(x+8)=20,∴x=2或x=−10(负值舍去),∴PE=2+2=4.故选A.10.D解:当点P在AB上时,△BDP是等腰直角三角形,故BD=x=DP,∴△BDP的面积y=12×BD×DP=12x2,(0≤x≤2)当点P在AC上时,△CDP是等腰直角三角形,BD=x,故CD=4−x=DP,∴△BDP的面积y=12×BD×DP=12x(4−x)=−12x2+2x,(2<x≤4)∴当0≤x≤2时,函数图象是开口向上的抛物线;当2<x≤4时,函数图象是开口向下的抛物线,故选:D.先根据点P在AB上时,得到△BDP的面积y=12×BD×DP=12x2,(0≤x≤2),再根据点P在AC上时,△BDP的面积y=12×BD×DP=−12x2+2x,(2<x≤4),进而得到y与x函数关系的图象.二、填空题11.解:x2﹣9y2=(x+3y)(x﹣3y).12.解:树状图如下所示,由上可得,一共有4种可能性,其中数字之积为偶数的可能性有3种,∴数字之积为偶数的概率为:,故答案为:.13.解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.故答案为:6.14.解:如图,延长BP交x轴于N,延长AP交y轴于M,设点M的纵坐标为m,点N的横坐标为n,∴AM⊥y轴,BN⊥x轴,又∠MON=90°,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO=S△BNO=3,∵S△BOP=2,∴S△PMO=S△PNO=1,∴S矩形OMPN=2,∴mn=2,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=||,∴S△ABP=×2|n|×||=4,故答案为:4.15.解:由旋转得OA=O′A,∠OAB=∠O′AB′,∴OA=O′A=OO′,∴△OO′A是等边三角形,∴∠O′AO=60°,∵边AB与⊙O相切于点A,∴∠OAB=∠O′AB′=90°,∴∠B'AB=60°,∴sin∠B'AB=.故答案为:.三、解答题16.解:△=22﹣4×(﹣3)=16>0,x=,所以x1=1,x2=﹣3.17.解:(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人),补全统计图如下:(2)∵植3棵的人数最多,∴众数是3棵,把这些数从小到大排列,中位数是第10、11个数的平均数,则中位数是=3(棵).(3)这组数据的平均数是:×(4×2+8×3+4×6+5×2)=3.3(棵),3.3×760=2508(棵).答:估计这760名学生共植树2508棵.18.解:y=x+2列表如下:图象如下图所示:(1)由图形可得,方程x+2=0的解是x=﹣2,故答案为x=﹣2;(2)由图象可得,不等式x+2>1的解是x>﹣1,故答案为x>﹣1;(3)若﹣2≤y≤2,则x的取值范围是﹣4≤x≤0,故答案为﹣4≤x≤0.19.(1)证明:如图1,连接OD,∵AC是⊙O的直径,∴∠ADC=∠BDC=90°,∵E是BC的中点,∴ED=EC,∴∠EDC=∠ECD,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠ECD=90°,∴∠EDC+∠ODC=90°,∵OD为半径,∴DE是⊙O的切线;(2)解:如图2,∵DE是Rt△BDC斜边上的中线,DE=cm,CD=3cm,∴BC=2DE=cm,∴BD===(cm),∵∠A+∠ACD=∠BCD+∠ACD=90°,∴∠BCD=∠A,∵∠BDC=∠CDA=90°,∴△BDC ∽△CDA ,∴,即,∴AC =(cm ), ∴⊙O 直径的长cm .20.解:(1)设A 种学习用品每件x 元钱,则B 种学习用品每件(x ﹣20)元钱,由题意得:=×, 解得:x =25,经检验,x =25是原方程的解,且符合题意,则x ﹣20=5,答:A 种学习用品每件25元钱,则B 种学习用品每件5元钱;(2)设该校可购买y 个A 奖品,则可购买(2y +8﹣y )个B 奖品,由题意得:25y +5(2y +8﹣y )≤670,解得:y ≤21,答:该校最多可购买21个A 奖品.21.解:(1)将点A (﹣2,0)和点B (4,0)代入抛物线解析式y =ax 2+bx +4(a <0),∴{4a −2b +4=016a +4b +4=0,解得{a =−12b =1, ∴抛物线解析式为y =−12x 2+x +4.(2)由(1)知抛物线解析式为y =−12x 2+x +4=−12(x ﹣1)2+92,∴抛物线的对称轴为:直线x =1,令x =0,则y =0,∴C (0,4),∴直线BC 的解析式为:y =﹣x +4,OC =4,∴D (1,3).∵点M 在对称轴上,∴DM ∥OC ,若以O 、C 、D 、M 四点为顶点的四边形是平行四边形,则OC =DM ,∴|3﹣y M |=4,解得y M =﹣1或7.∴点M 的坐标为(1,﹣1)或(1,7).(3)将抛物线y =−12(x ﹣1)2+92向右平移2个单位得到新抛物线y ′=−12(x ﹣3)2+92, 令−12(x ﹣1)2+92=−12(x ﹣3)2+92,解得x =2,∴E (2,4),∴DE =√2,若以D 、E 、F 、G 四点为顶点的四边形是菱形,则△DEF 是等腰三角形,需要分情况讨论,当DE =DF 时,如图1,以点D 为圆心,DE 长为半径作圆,圆与直线x =3无交点,不存在点F ; 当ED =EF 时,如图1,以点E 为圆心,DE 长为半径作圆,圆与直线x =3交于点F ;设点F (3,n ),∴(2﹣3)2+(4﹣n )2=2,解得n =3或n =5(此时D ,E ,F 三点共线,不符合题意),∴F (3,3).当FD =FE 时,作DE 的垂直平分线交直线x =3于点F ,则有(2﹣3)2+(4﹣n )2=(1﹣3)2+(3﹣n )2,解得n =2.此时F (3,2).综上,点F 的坐标为(3,3)或(3,2).22.(1)解:∵四边形ABCD 为正方形,∴∠ADC =90°,∴∠EDG +∠CDG =90°,∵DF ⊥CE ,∴∠DGE =∠CGD =90°,∠DCG +∠CDG =90°,∴∠EDG =∠DCG ,∴△DGE ∽△CGD ,∴EG DG =DG CG ,即EG 4=416,解得:EG =1,故答案为:1;(2)①证明:如图2,连接CM 、BM 、CP ,∵点G 为DM 的中点,CG ⊥DM ,∴CM =CD ,∵CD =CB ,∴CB =CM ,∵点P 为BM 的中点,∴∠BCP =∠MCP ;②解:如图3,连接BN 、CQ ,过点Q 作QH ⊥CD 于H ,连接NH 并延长交BC 的延长线于L ,过点N 作NK ⊥CD 于K ,在Rt △CGD 中,DG =4,CG =16,则CD =√CG 2+DG 2=4√17,∵CG =16,GN =4,∴CN =16﹣4=12,∵∠CGD =∠CKN =90°,∠NCK =∠DCG ,∴△CKN ∽△CGD ,∴CN CD =CK CG =NK DG ,即4√17=CK 16=NK 4, 解得:CK =48√1717,NK =12√1717, ∵QH ⊥CD ,∠DCB =90°,NK ⊥CD ,∴NK ∥QH ∥BC ,∵NQ =QB ,∴KH =HC =12KC =24√1717,QH =12×(KN +BC )=40√1717, ∴CQ =√CH 2+QH 2=8√2.。
中考综合模拟考试 数学卷 含答案解析
(2)顺次连接 、 、 、 ,设四边形 的面积为 ,求出 与自变量 之间的函数关系式,并求 的最小值.
22.如图,直线y=﹣ x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣ x2+bx+c经过A、B两点,与x轴的另一个交点为C.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上 点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的关系式,并求出PQ与OQ的比值的最大值;
【答案】 .
【解析】
【分析】
根据零次幂和负指数幂的运算法则计算即可.
【详解】原式=1﹣ = .
故答案为: .
【点睛】本题考查零次幂与负指数幂,熟记 , ,是解题的关键.
12.写出一个满足 的整数a的值为_____.
【答案】答案不唯一:2、3、4.
【解析】
【分析】
根据算术平方根性质估计两个无理数的大小,即1< < = 5,便可得出答案.
∴- =-1,a+b+c=0,
∴b=2a,c=-3a,
∵a>0,
∴b>0,c<0,
∴abc<0,故①错误,
∵抛物线对称轴x=-1,经过(1,0),
可知抛物线与x轴还有另外一个交点(-3,0)
∴抛物线与x轴有两个交点,
∴b2-4ac>0,故②正确,
∵抛物线与x轴交于(-3,0),
∴9a-3b+c=0,故③正确,
19.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.
(1)从2015年到2017年,该地投入异地安置资金 年平均增长率为多少?
中考模拟考试 数学试卷 附答案解析
二、空题(本大题共8个小题,每小题3分,满分24分)
11.点P(a,a-3)在第四象限,则a的取值范围是_____.
12.已知函数y=(m﹣1)x+m2﹣1 正比例函数,则m=_____.
13.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()
一、选择题.(本大题共10个小题,每小题3分,满分30分)
1.有一直角三角形 两边长分别为3和4,则第三边长是()
A.5B.5或 C. D.
2.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()
A.33B.-33C.-7D.7
3. 在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()
根据平行四边形的判定方法逐项判断即可.
【详解】解:A、AB∥CD,AD=BC,如等腰梯形,不能判断是平行四边形,故本选项错误;
B、∠B=∠C,∠A=∠D,不能判断是平行四边形,如等腰梯形,故本选项错误;
C、AB=CD,CB=AD,两组对边分别相等,可判断是平行四边形,正确;
D、AB=AD,CD=BC,两组邻边分别相等,不能判断是平行四边形;
考点:点的平移.
4.函数 中自变量x的取值范围是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据二次根式中的被开方数非负数的性质进行计算,即可得到答案.
【详解】由二次根式中的被开方数非负数的性质可得 ,则 ,故选择B.
【点睛】本题考查函数自变量的取值范围,解题的关键是知道二次根式中的被开方数非负数.
∴线段EF的长不改变.
中考仿真模拟检测《数学试卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题共10个小题,每小题3分,共30分)1. 3-的倒数是( )A. B. 13C.13- D. 3-2. 在函数y=1x-中,x的取值范围是()A. x≥1B. x≤1C. x≠1D. x<03. 下列运算正确的是( )A. x3·x3=2x6B. (-2x2)2=-4x4C. (x3)2=x6D. x5÷x=x54. 下列图形中,既轴对称图形又是中心对称图形有()A. 1个B. 2个C. 3个D. 4个5. 下列各式中,计算正确的是( )A. -2-3=-1B. -2m²+m²=-m²C. 3÷5445⨯=3÷1=3 D. 3a+b=3a6. 一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A. 3,3,0.4B. 2,3,2C. 3,2,0.4D. 3,3,27. 某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确是( )A. 100(1+2x%)2=120B. 100(1+x2)2=120C. 100(1-x%)2=120D. 100(1+x%)2=1208. 命题:①对顶角相等;②相等的角是对顶角;③在同一平面,垂直于同一条直线的两条直线平行;④平行于同一条直线的两条直线垂直.其中真命题有A. 1个B. 2个C. 3个D. 4个9. 如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )A. 5B. 6C. 2D. 310. 如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A. 2B. 54C.53D.75二、填空题(共8小题;共24分)11. 计算(2+1)(2-1)的结果为_____.12. 分解因式:2a2﹣8b2=________.13. 已知某水库容量约为112000立方米,将112000用科学记数法表示为.14. 如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15. 如图,在平面直角坐标系中,函数y=kx(x>0,常数k>0)的图象经过点A(1,2),B(m,n),(m>1),过点B作y轴的垂线,垂足为C.若△ABC的面积为2,则点B的坐标为____________.16. 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.17. 如图,在矩形ABCD 中,AB=5,BC=103,一圆弧过点B 和点C ,且与AD 相切,则图中阴影部分面积________.18. 如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2.则 cos ∠MCN=________.三、解答题(共9小题;共72分)19. 计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a ﹣b)﹣a(a ﹣b)20. (1)解分式方程: 2216124x x x --=+- (2)先化简,再求值: 222111x x x x x ++---,其中x 满足不等式组 1030x x -≥⎧⎨-<⎩且x 整数. 21. 已知:如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:DC=CF .22. 萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:(1)这次调查中,一共调查了名学生,图1中C类所对应的圆心角度数为 ;(2)请补全条形统计图;(3)在非常喜欢外教的5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.23. 如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.24. 小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?25. (2011贵州安顺,23,10分)如图,已知反比例函数图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.26. 如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=22,BC=2,求⊙O的半径.27. 已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.(1)求证:四边形ABCD是矩形;(2)如果AE=EG,求证:AC2=BC•BG.答案与解析一、选择题:(本大题共10个小题,每小题3分,共30分)1. 3-的倒数是( )A. B. 13 C. 13- D. 3- 【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C2. 在函数中,x 的取值范围是( )A. x≥1B. x≤1C. x≠1D. x <0【答案】A【解析】分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数.详解:根据题意可得:x -1≥0, 解得:x≥1, 故选A .点睛:本题主要考查的是二次根式的性质,属于基础题型.明确二次根式的性质是解决这个问题的关键. 3. 下列运算正确的是( )A. x 3·x 3=2x 6B. (-2x 2)2=-4x 4C. (x 3)2=x 6D. x 5÷x =x 5 【答案】C【解析】试题分析:A.333+36x x =x =x ⋅,故A 错误;B.()()()222224-2x =-2x =4x ⋅,故B 错误;C.()23326x =x =x ⨯,故C 正确;D.55-14x x=x =x ÷,故D 错误.考点:幂的运算4. 下列图形中,既是轴对称图形又是中心对称图形有 ( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】 中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解: 只有图2和图3既是轴对称又是中心对称图形.故,选B【点睛】本题考查中心对称图形和轴对称图形,本题属于基础应用题,只需学生熟练掌握中心对称图形和轴对称图形的定义,即可完成.5. 下列各式中,计算正确的是( )A. -2-3=-1B. -2m²+m²=-m²C. 3÷5445⨯=3÷1=3 D. 3a+b=3a 【答案】B【解析】分析:根据有理数的计算法则以及合并同类项的法则即可得出正确答案.详解:A 、-2-3=-5,故错误;B 、原式=2m -,故正确;C 、原式=444835525⨯⨯=,故错误;D 、不是同类项,无法进行加法计算, 故本题选B .点睛:本题主要考查的是有理数的计算法则和合并同类项的法则,属于基础题型.明确计算法则是解决这个问题的关键.6. 一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A. 3,3,0.4B. 2,3,2C. 3,2,0.4D. 3,3,2 【答案】A【解析】 试题分析:依题意得:1(2433)35x ++++=,解得:x =3,把原数据由小到大排列为:2,3,3,3,4,所以中位数为3,众数为3,方差为:15(1+0+1+0+0)=0.4,故答案选A.考点:中位数;众数;方差.7. 某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确是( )A. 100(1+2x%)2=120B. 100(1+x 2)2=120C. 100(1-x%)2=120D. 100(1+x%)2=120【答案】D【解析】分析:根据涨价前的价格×(1+涨价率)涨价次数=涨价后的数量得出方程.详解:根据题意可得:()21001x%120+=,故选D .点睛:本题主要考查的是一元二次方程的应用,属于基础题型.根据题意得出等量关系是解决这个问题的关键.8. 命题:①对顶角相等;②相等角是对顶角;③在同一平面,垂直于同一条直线的两条直线平行;④平行于同一条直线的两条直线垂直.其中真命题有A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】试题分析:①③正确;②相等的角不一定就是对顶角,也有可能是内错角、同位角等,④平行于同一条直线的两条直线互相平行考点:概念的掌握点评:本题难度不大,考查的是学生对于知识概念的一些掌握程度9. 如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A. 5B. 6C. 2D. 3【答案】C【解析】 【详解】试题解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB•DH=32O ,∴DH=16,在Rt △ADH 中,AH=22AD DH -=12, ∴HB=AB ﹣AH=8,在Rt △BDH 中,BD=2285+=DH BH ,设⊙O 与AB 相切于F ,连接AF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH ,∴=OA OF BD BH, ∴100885=F , ∴OF=25.故选C .考点:1.切线的性质;2.菱形的性质.10. 如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A. 2B. 54C. 53D. 75【答案】D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,2222247555 BC BE⎛⎫-=-=⎪⎝⎭.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.二、填空题(共8小题;共24分)11. 计算22-1)的结果为_____.【答案】1【解析】利用平方差公式进行计算即可. 【详解】原式=(2)2﹣1 =2﹣1 =1, 故答案为1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式. 12. 分解因式:2a 2﹣8b 2=________. 【答案】2(2)(2)a b a b -+ 【解析】 【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解即可. 【详解】2a 2﹣8b 2=2(a 2﹣4b 2)=2(a +2b )(a ﹣2b ). 故答案为2(a +2b )(a ﹣2b ).【点睛】本题考查了提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.13. 已知某水库容量约为112000立方米,将112000用科学记数法表示为 . 【答案】1.12×105. 【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数且为这个数的整数位数减1,,由于112000亿有6位,所以可以确定n=6﹣1=5.即112000=1.12×105. 考点:科学记数法.14. 如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃. 考点:1.有理数大小比较;2.有理数的减法. 15. 如图,在平面直角坐标系中,函数y=kx(x >0,常数k >0)的图象经过点A (1,2),B (m ,n ),(m >1),过点B 作y 轴的垂线,垂足为C .若△ABC 的面积为2,则点B 的坐标为____________.【答案】1(4,)2B 【解析】考点:反比例函数综合题. 分析:由于函数ky x(x >0常数k >0)的图象经过点A(1,2),把(1,2)代入解析式即可确定k=2,依题意BC=m ,BC 边上的高是2-n="2-"2m,根据三角形的面积公式得到关于m 的方程,解方程即可求出m ,然后把m 的值代入y=2x,即可求得B 的纵坐标,最后就求出点B 的坐标. 解:∵函数y=kx(x >0常数k >0)的图象经过点A(1,2), ∴把(1,2)代入解析式得2=1k , ∴k=2,∵B(m ,n)(m >1), ∴BC=m ,当x=m 时,n=2m,∴BC边上的高是2-n=2-2m,而S△ABC=12m(2-2m)=2,∴m=3,∴把m=3代入y=2x,∴n=23,∴点B的坐标是(3,23).故填空答案:(3,23 ).16. 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.【答案】24π.【解析】底面半径为3cm,则底面周长=6πcm,侧面面积=12×6π×8=24πcm2.17. 如图,在矩形ABCD中,AB=5,BC=103,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为________.【答案】753﹣100 3【解析】设圆弧圆心为O,与AD切于E,连接OE交BC于F,连接OB、OC,设圆的半径为x,则OF=x-5,由勾股定理得,OB2=OF2+BF2,即x 2=(x-5)2+(53 )2解得,x=10, 则∠BOF=60°,∠BOC=120°, 则阴影部分面积为:矩形ABCD 的面积-(扇形BOCE 的面积-△BOC 的面积)2120101103510353602π⨯⨯=⨯-+⨯⨯1007533π=-故答案是:1007533π-. 18. 如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2.则 cos ∠MCN=________.【答案】1314【解析】 【分析】连接AC ,通过三角形全等,求得∠BAC=30°,从而求得BC 的长,然后根据勾股定理求得CM 的长,连接MN ,过M 点作ME ⊥CN 于E ,则△MNA 是等边三角形求得MN=2,设NE=x ,表示出CE ,根据勾股定理即可求得ME ,然后求得tan ∠MCN .【详解】∵AB=AD=6,AM :MB=AN :ND=1:2, ∴AM=AN=2,BM=DN=4, 连接MN ,连接AC ,∵AB ⊥BC ,AD ⊥CD ,∠BAD=60° 在Rt △ABC 与Rt △ADC 中,AB ADAC AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ADC (HL ) ∴∠BAC=∠DAC=12∠BAD=30°,MC=NC , ∴BC=12AC , ∴AC 2=BC 2+AB 2,即(2BC )2=BC 2+AB 2, 3BC 2=AB 2, ∴BC=23,在Rt △BMC 中,CM=22224(23)27BM BC +=+=∵AN=AM ,∠MAN=60°, ∴△MAN 是等边三角形, ∴MN=AM=AN=2,过M 点作ME ⊥CN 于E ,设NE=x ,则CE=27-x ,∴MN 2-NE 2=MC 2-EC 2,即4-x 2=(7)2-(7-x )2, 解得:7, ∴7-7137 ∴223217MN NE -=,∴cos ∠MCN=1377131427CECM==.考点:1.全等三角形的判定与性质;2.三角形的面积;3.角平分线的性质;4.含30度角的直角三角形;勾股定理.三、解答题(共9小题;共72分)19. 计算:(1)|﹣6|+(﹣2)37)0; (2)(a+b)(a ﹣b)﹣a(a ﹣b) 【答案】(1)-1;(2)ab ﹣b 2.【解析】分析:(1)、根据绝对值、立方和零次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据平方差公式和多项式的乘法计算法则将括号去掉,然后进行合并同类项. 详解:(1)、原式=6﹣8+1=﹣1; (2)、原式=a 2﹣b 2﹣a 2+ab=ab ﹣b 2.点睛:本题主要考查的是实数的计算以及整式的乘法,属于基础题型.在去括号的时候,如果括号前面为负号,则去掉括号后括号里面的每一项都要变号. 20. (1)解分式方程:2216124x x x --=+- (2)先化简,再求值: 222111x x xx x ++---,其中x 满足不等式组 1030x x -≥⎧⎨-<⎩且x 为整数. 【答案】(1) 原方程无解;(2)11x -,1. 【解析】分析:(1)、首先进行去分母将分式方程转化为整式方程,从而求出整式方程的解,然后对解进行检验,看是否使分式的分母为零;(2)、将分式进行通分,然后根据减法的计算法则将分式进行化简;求出不等式组的解,然后选择出合适的x 的值代入化简后的分式进行计算得出答案. 详解:(1)、解:去分母得: , 解方程得:检验:当 时,∴是原方程增根, ∴ 原方程无解(2)、解:==解不等式组得: 1≤x <3 .∵x 为整数, ∴x =1或x =2. 当x =1时,原式无意义, ∴ 当x =2时,原式=1.点睛:本题主要考查的是分式的化简和解分式方程,属于基础题型.求出分式的公分母是解题的前提条件. 21. 已知:如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:DC=CF .【答案】见解析 【解析】分析:根据平行四边形的性质、中点的性质以及对顶角证明出△ABE和△FCE全等,从而得出AB=CF,根据平行四边形的性质得出AB=CD,从而得出答案.详解:证明:∵四边形ABCD是平行四边形,∴CD∥AB,AB=CD,∴∠DFA=∠FAB;∵E为BC中点,∴EC=EB,∴在△ABE与△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∴DC=CF.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于基础题型.证明出三角形全等是解题的关键.22. 萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:(1)这次调查中,一共调查了名学生,图1中C类所对应的圆心角度数为 ;(2)请补全条形统计图;(3)在非常喜欢外教5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.【答案】(1)40;54°;(2)补全条形统计图见解析;(3)树状图或列表见解析,P(一男一女)=3 5【解析】试题分析:(1)通过D类型有4人占比10%即可得到调查的人数;然后根据条形图得到C类的人数,通过占比求得相应圆心角的度数;(2)用调查的总人数减去A、B、D类的人数得到C类的人数,补全图形即可;(3)通过列表法即可求得概率.试题解析:(1)一共调查了4÷10%=40人,40-8-22-4=6,360°×640=54°,故填:40;54°;(2)补全条形统计图,如图所示:(3)列表:男1 男2 男3 女1 女2 男1 √√男2 √√男3 √√女1 √√√女2 √√√所有等可能的情况有20种情况,其中一男一女的情况有12种,则P(一男一女)=35.23.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.24. 小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?【答案】(1)每个篮球80元,每个足球50元;(2)最多可以买33个篮球.【解析】试题分析:(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元,列出方程组,求解即可;(2)设买m个篮球,则购买(60-m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.试题解析:(1)设每个篮球x元,每个足球y元,由题意得,23310 {52500 x yx y+-+=,解得:80 {50xy==,答:每个篮球80元,每个足球50元; (2)设买m个篮球,则购买(60-m)个足球,由题意得,80,m+50(60-m)≤4000,解得:m≤3313,∵m为整数,∴m最大取33,答:最多可以买33个篮球.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.25. (2011贵州安顺,23,10分)如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x 轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.【答案】(1)∵点A(-1,m)在第二象限内,∴AB = m,OB = 1,∴即:,解得,∴A (-1,4),∵点A (-1,4),在反比例函数的图像上,∴4 =,解得,∵反比例函数为,又∵反比例函数的图像经过C(n,)∴,解得,∴C (2,-2),∵直线过点A (-14),C (2,-2)∴解方程组得 ∴直线的解析式为; (2)当y = 0时,即解得,即点M (1,0) 在中,∵AB = 4,BM = BO +OM =" 1+1" = 2,由勾股定理得AM =. 【解析】试题分析:(1)根据点A 的横坐标与△AOB 的面积求出AB 的长度,从而得到点A 的坐标,然后利用待定系数法求出反比例函数解析式,再利用反比例函数解析式求出点C 的坐标,根据点A 与点C 的坐标利用待定系数法即可求出直线y=ax+b 的解析式;(2)根据直线y=ax+b 的解析式,取y=0,求出对应的x 的值,得到点M 的坐标,然后求出BM 的长度,在△ABM 中利用勾股定理即可求出AM 的长度.试题解析:(1)∵点A(-1,m )在第二象限内,∴AB=m ,OB=1,∴S △ABO =12AB•BO=2, 即:12×m×1=2, 解得m=4,∴A (-1,4),∵点A (-1,4),在反比例函数y =k x 的图象上, ∴4=1k , 解得k=-4,∴反比例函数为y=-4x又∵反比例函数y=-4x的图象经过C(n ,-2) ∴-2=4-n , 解得n=2,∴C (2,-2),∵直线y=ax+b 过点A (-1,4),C (2,-2)∴4{22a b a b-+-+==, 解方程组得2{2a b -==, ∴直线y=ax+b 的解析式为y=-2x+2;(2)当y=0时,即-2x+2=0,解得x=1,∴点M 的坐标是M(1,0),在Rt △ABM 中,∵AB=4,BM=BO+OM=1+1=2,由勾股定理得AM=2222=42=25AB BM ++.26. 如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且∠ACB =∠DCE .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若tan ∠ACB 2,BC =2,求⊙O 的半径. 【答案】(1)相切(2)64【解析】【分析】(1)连接OE .欲证直线CE 与⊙O 相切,只需证明∠CEO =90°,即OE ⊥CE 即可;(2)在直角三角形ABC 中,根据三角函数的定义可以求得AB 2,然后根据勾股定理求得AC 6同理知DE =1;在Rt △COE 中,利用勾股定理可以求得CO 2=OE 2+CE 2,即6-r) 2=r 2+3,从而易得r 的值;【详解】解:(1)直线CE与⊙O相切理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AEO+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.(2)∵tan∠ACB=22ABBC=,BC=2,∴AB=BC•tan∠ACB2,∴AC6;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB 2,∴DE=DC•tan∠DCE=1;在Rt△CDE中,CE223CD DE+=连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即6-r) 2=r2+3解得:r=6 427. 已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.(1)求证:四边形ABCD是矩形;(2)如果AE=EG,求证:AC2=BC•BG.【答案】(1)见解析;(2)见解析.【解析】【详解】分析:(1)、因为四边形ABCD是平行四边形,所以只要证明∠BAD=90°,即可得到四边形ABCD 是矩形;(2)、连接AG,由平行四边形的性质和矩形的性质以及结合已知条件可证明△BCG∽△ABC,再由相似三角形的性质:对应边的比值相等即可证明AC2=BC•BG.详解:(1)、解:证明:∵BE⊥AC,∴∠AFB=90°.∴∠ABE+∠BAF=90°.∵∠ABE=∠CAD.∴∠CAD+∠BAF=90°.即∠BAD=90°.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)、解:连接AG.∵AE=EG,∴∠EAG=∠EGA,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABG=∠BGC,∴∠CAD=∠BGC,∴∠AGC=∠GAC,∴CA=CG,∵AD∥BC,∴∠CAD=∠ACB,∴∠ACB=∠BGC,∵四边形ABCD是矩形,∴∠BCG=90°,∴∠BCG=∠ABC,∴△BCG∽△ABC,∴AC BCBG CG,∴AC2=BC•BG.点睛:本题考查了平行四边形的性质、矩形的判断和性质、等腰三角形的判断和性质以及相似三角形的判断和性质,题目的综合性较强,难度中等,熟记相似三角形的各种判断方法是解题的关键.。
中考数学仿真模拟测试题(附答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
中考仿真模拟考试 数学试卷 含答案解析
【解析】
【详解】解:∵△ABC沿DE折叠,使点A与点B重合,
∴EA=EB,
∵∠C=90°,AC=8,BC=6,
∴CE=CA-AE=8-BE,在Rt△BCE中,
∵
∴BE= ,故选D.
考点:1.折叠问题;2.勾股定理.
7. 数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()
故③正确.
故选B.
考点:一次函数的应用.
10.如图,一次函数y=k1x+b的图象与反比例函数y= 的图象相交于A(2,3),B(6,1)两点,当k1x+b< 时,x的取值范围为()
A.x<2B.2<x<6C.x>6D.0<x<2或x>6
【答案】D
【解析】
分析:根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.
【详解】解:2019的相反数的倒数是
故选B.
【点睛】此题考查的是求一个数的相反数和倒数,掌握相反数的定义和倒数的定义是解决此题的关键.
2.”厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )
A. B. C. D.
4.下列运算正确的是( )
A. B. C. D.
5.某校四个环保小组一天收集废纸的数量分别为:10,x,9,8,(单位千克)已知这组数据的众数与平均数相等,则这组数据的中位数是()
A.8 5B.9C.9.5D.8
6.下图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()
中考数学模拟考试卷(带答案解析)
中考数学模拟考试卷(带答案解析)一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在直线l上的点是()A.点A B.点B C.点C D.点D2.我国第十四个五年规划和2035年远景目标纲要中阐释了“坚持农业农村优先发展,全面推进乡村振兴”的具体目标;坚持最严格的耕地保护制度,实施高标准农田建设工程,建成10.75亿亩集中连片高标准农田.下列关于10.75亿的说法正确的是()A.10.75亿是精确到亿位B.10.75亿是精确到十亿位C.10.75亿用科学记数法表示为a×10n,则a=1.075,n=9D.10.75亿用科学记数法表示为a×10n,则a=10.75,n=83.计算:a3÷a=()A.a2B.a3C.a4D.24.将一副三角板按如图所示的方式摆放,则∠1=()A.45°B.60°C.65°D.75°5.对于:①x2﹣4=(x﹣2)2;②﹣x2+1=(x+1)(1﹣x);③x3+2x﹣4=(x+2)2;④x2﹣x+1=(x﹣1)2.其中因式分解正确的是()A.①③B.②③C.①④D.②④6.如图,是某几何体的展开图,AD=16π,则r=()A.2B.4C.8D.167.下列关于x的方程中,一定有两个不相等实数根的是()A.x2﹣kx+2021=0B.x2+kx﹣2021=0C.x2﹣2021x+k=0D.x2+2021x﹣k=08.嘉淇所在的社团,两年来人员没有变化,嘉淇计算了目前社团人员年龄的方差为1,则两年前该社团人员年龄的方差为()A.1B.2C.3D.59.如图,是一个闭合电路,其电源电压为定值,电流I(A)是电阻R(Ω)的反比例函数.当R=4Ω时,I=3A.若电阻R增大2Ω,则电流I为()A.1A B.2A C.3A D.5A10.如图,在▱ABCD中,AB=3,以点B为圆心,任意长为半径画弧,分别与AB,BC交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠ABC内部相交于点G,作射线BG,交AD 边于点H.若cos∠ABH=,则BH的长为()A.2B.3C.4D.611.不等式组的解集为x<1,则m的取值不可能是()A.﹣4B.﹣3C.﹣2D.﹣112.如图,在3×4的正方形网格图中.小正方形的边长为1,△ABC的顶点均在格点上,则下列关于△ABC 的说法不正确的是()A.是直角三角形B.tan B=1C.面积为5D.BC边上的高为13.在一个大正方形上,按如图的方式粘贴面积分别为12,10的两个小正方形,粘贴后,这两个小正方形重合部分的面积为3,则空白部分的面积为()A.8B.19C.6D.2﹣614.如图,M是⊙O上一个定点,将直角三角板的30°角顶点与点M重合,两边与⊙O相交,设交点为A,B,绕点M顺时针旋转三角板,直至其中一个交点与点M重合时停止旋转,设AB=y,旋转角为a,下列能反映y与a关系的为()A.B.C.D.15.如图,△ABC中,BC=6,BD是中线,E是BD上一点,作射线AE,交BC于点F,若BE=2DE,则FC=()A.2B.2.5C.3D.3.516.如图,矩形OABC中,A(﹣3,0),C(0,2),抛物线y=﹣2(x﹣m)2﹣m+1的顶点M在矩形OABC内部或其边上,则m的取值范围是()A.﹣3≤m≤0B.﹣3≤m≤﹣1C.﹣1≤m≤2D.﹣1≤m≤0二.填空题(本大题有3个小题,共10分.17小题2分;18~19小题各有2个空,每空2分)17.计算:(﹣1)﹣2=.18.对于代数式M:(1+)÷,(m为整式).(1)当m=a+1时,化简M的结果为;(2)若化简M的结果为,则m=.19.如图,在△ABC中,∠C=90°,∠A=30°,BC=2,P是AC边上一点,连接PB,将△PBC绕点B 顺时针旋转,得到△DBE,点C,P的对应点分别是点E,D,点E在AB边上.(1)若P是AC的中点,则DB=;(2)若PC=1,则点D到AC的距离为.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.已知:整式A=2x+1,B=2x﹣1.(1)化简A﹣2B;(2)若无论x为何值,A•B+k(k为常数)的值都是正数,求k的取值范围.21.如图,数轴上,点A,B表示的数分别为a,b,点P为负半轴上任意一点,它表示的数为x.(1)计算的值;(2)在a,b,x中,其中一个数是另两个数的平均数,求x的值;(3)嘉琪认为:当﹣2≤x<0时,PO+PA<AB,则以PO,PA,AB的长为边长不能构成三角形.若以PO,PA,AB的长为边长能构成三角形,请直接写出x的取值范围.22.某校九年级共有360名学生,某次数学测验后,小明随机抽取了40名学生的成绩进行统计,并绘制了频数分布直方图(数据分成5个组:①50≤x<60,②60≤x<70,③70≤x<80,④80≤x<90,⑤90≤x ≤100),如图.已知成绩在80≤x<90这一组的是:80,81,82,82,83,85,86,86,86,87,88,89.(1)在80≤x<90这一组中,这些数据的众数为;(2)求抽取的这40名学生的成绩的中位数;(3)在60≤x<70,70≤x<80这两组中随机抽取一个成绩,记录下来再放回,然后在这两组中随机抽取一个成绩,用画树状图法求两次抽到的成绩都在70≤x<80这一组的概率;(4)请你估计该校九年级这360名学生中,数学成绩x≥85的有多少人.23.如图,射线AM⊥AB,O是AM上的一点,以O为圆心,OA长为半径,在AM上方作半圆AOC,BE 与半圆相切于点D,交AM于点E,EF⊥BO于点F.(1)求证:BA=BD;(2)若∠ABE=60°;①判断点F与半圆AOC所在圆的位置关系,并说明理由;②若AB=,直接写出阴影部分的面积.24.如图,直线y=﹣2x+4与x轴交于点A,与y轴交于点B,点P为射线AO上的一点(点P不与点A重合),BC是△ABP的中线,点C,C′关于BP对称,设点P的横坐标为m.(1)求点A,B的坐标,若∠APB=45°,求PB所在直线的解析式;(2)若BC=BA,求m的值;(3)若点C′在x轴下方,直接写出m的取值范围.25.某水果商计划从生产基地运回一批水果,所需运费为基础运费与载重运费两部分的和,基础运费为每次500元,载重运费为每吨每小时6元.经验表明,若运回水果20吨,路上恰好需要6小时,运回的水果全部批发完后,每吨水果能获得毛利润478元;若运输时每增加2吨水果,路上就会延长1小时,每延长1小时,每吨水果的毛利润会降低20元.设运回水果为x吨(20≤x≤30),路上所用时间为t小时,所需运费为y元,全部批发后水果商获得总净利润为w元(净利润=毛利润﹣所需运费).(不考虑损耗)(1)用含x的式子表示t为;(2)①求y与x的函数关系式;②若某一次运费为1652元,则这次运回了多少吨水果?(3)一次运回多少吨水果,水果商获得的总的净利润最大?总的最大净利润是多少?26.如图1和图2,在矩形ABCD中,AB=6,BC=8,点K在CD边上,点M,N分别在AB,BC边上,且AM=CN=2,点P从点M出发沿折线MB﹣BN匀速运动,点E在CD上随P移动,且始终保持PE ⊥AP;点Q从点D出发沿DC匀速运动,点P,Q同时出发,点Q的速度是点P的一半,点P到达点N停止,点Q随之停止.设点P移动的路程为x.(1)当点P在MB上时,求点Q,E的距离(用含x的式子表示);(2)当x=5时,求tan∠PQC的值;(3)若PB=EC,求x的取值范围;(4)已知点P从点M到点B再到点N共用时20秒,若CK=,请直接写出点K在线段QE上(包括端点)的总时长.参考答案与解析一、选择题1.【分析】根据图中各点的位置可得答案.解:如图,在直线l上的点是点B.故选:B.2.解:10.75亿是精确到百万位,用科学记数法表示为1.075×109;故选:C.3.【分析】直接利用同底数幂的除法运算法则计算得出答案.解:a3÷a=a2.故选:A.4.解:∠1=30°+(90°﹣45°)=75°;故选:D.5.解:①x2﹣4=(x+2)(x﹣2),原因式分解错误;②﹣x2+1=(x+1)(1﹣x),原因式分解正确;③x2+4x+4=(x+2)2,x3+2x﹣4不能因式分解,原因式分解错误;④x2﹣x+1=(x﹣1)2,原因式分解正确.其中因式分解正确的是②④;故选:D.6.解:由图可知,该几何体是圆柱;∵AD=16π;∴底面圆的圆周长是16π;故2πr=16π,解得r=8.故选:C.7.【分析】先求出Δ的值,再比较出其与0的大小即可求解.解:A、Δ=(﹣k)2﹣4×1×2021)=k2﹣8084,可能小于等于0,不一定有两个不相等的实数根,不符合题意;B、Δ=k2﹣4×1×(﹣2021)=k2+8084>0,一定有两个不相等的实数根,符合题意;可能小于等于0,不一定有两个不相等的实数根,不符合题意;C、Δ=(﹣2021)2﹣4×1×k=20212﹣4k,可能小于等于0,不一定有两个不相等的实数根,不符合题意;D、Δ=20212﹣4×1×(﹣k)=20212+4k,可能小于等于0,不一定有两个不相等的实数根,不符合题意.故选:B.8.解:∵目前社团人员年龄的方差为1,而2年前,每个人的年龄均减小2,数据的波动程度不变;∴两年前该社团人员年龄的方差为1;故选:A.9.解:设I=,当R=4Ω时,I=3A时;则3=;解得:U=12;故I=;若电阻R增大2Ω,则电流I为:I==2(A).故选:B.10.解:作AK⊥BH于K;由题意得BH平分∠ABC;∴∠ABH=∠HBC;∵四边形ABCD是平行四边形;∴AD∥BC;∴∠AHB=∠HBC;∴∠ABH=∠AHB;∴AB=AH;∴BH=2BK;∵cos∠ABH=;∴BK=2;∴BH=4;故选:C.11.解:解不等式3x﹣1<2,得:x<1;解不等式﹣2x≥m,得:x≤﹣;∵不等式组的解集为x<1;∴﹣≥1;解得m≤﹣2;故选:D.12.解:由题图知:AC==;AB==;BC==.∵AC2+AB2=BC2;∴△ABC是直角三角形,故选项A正确;∵tan B==1;∴选项B正确;∵S△ABC=AB×AC=;∴BC边上的高==.故选项C正确,选项D错误.故选:C.13.解:∵两个小正方形面积分别为12,10;∴两个小正方形的边长分别为=2,;∴两个小正方形重合部分的边长为2+﹣大正方形的边长;∴两个小正方形的重合部分是正方形;∵两个小正方形重合部分的面积为3;∴重合部分的边长为;∴大正方形的边长是2+﹣=+;∴空白部分的面积为(+)2﹣(12+10﹣3)=2﹣6.故选:D.14.解:由题意可知,∠AMB=30°;∴线段AB的长度是不变的;即随着旋转角a的变化,y的值是一个定值.故选:A.15.【分析】先根据重心的性质得到点E为△ABC的重心,则AF为BC边上的中线,于是可得到FC的长.解:∵BD是中线,BE=2DE;∴点E为△ABC的重心;∴AF为BC边上的中线;∴FC=BF=BC=×6=3.故选:C.16.【分析】先求出顶点坐标,再确定顶点横、纵坐标的取值范围,解不等式组即可.解:∵抛物线y=﹣2(x﹣m)2﹣m+1;∴顶点M(m,﹣m+1);∵A(﹣3,0),C(0,2),顶点M在矩形OABC内部或其边上∴;解得:﹣1≤m≤0.故选:D.二.填空题17.解:原式==1;故答案为:1.18.解:(1)当m=a+1时;原式=(1+)•=(+)•=•=a+1.故答案为:a+1.(2)由题意可知:m=(•﹣1)(a﹣1)=[•﹣1](a﹣1)=(﹣1)(a﹣1)=a﹣(a﹣1)=a﹣a+1=1;故答案为:1.19.解:(1)∵∠C=90°,∠A=30°,BC=2;∴AB=2BC=4,AC=BC=2;∵P是AC的中点;∴CP=AC=;∴BP===;由旋转的性质可知,BD=BP=;故答案为:.(2)如图,过点D作DH⊥AC于H,交AB于点F.∵∠EDF=∠A=30°,DE=PC=1;∴EF=DE•tan30°=,DF=2EF=;∴AF=AB﹣BE﹣EF=4﹣2﹣=2﹣;∵DH∥BC;∴=;∴=;∴HF=1﹣.∴DH=HF+DF=+1;故答案为:+1.三、解答题20.【分析】(1)把相应的整式代入,再利用单项式乘多项式的法则,以及合并同类项的法则进行运算即可;(2)利用多项式乘多项式的法则进行运算,并结合条件进行分析即可.解:(1)A﹣2B=(2x+1)﹣2(2x﹣1)=2x+1﹣4x+2=﹣2x+3;(2)A•B+k=(2x+1)(2x﹣1)+k=4x2﹣1+k;∵无论x为何值时,4x2≥0;若A•B+k的值是正数,则﹣1+k>0;解得:k>1.21.解:(1)由题意,得:a=﹣2,b=1;∴===1;(2)若=﹣2,解得x=﹣5;若=x,解得x=﹣;(3)x<﹣;由题意知PO=﹣x,AB=3;①当﹣3≤x<﹣2时,PO+PA=﹣x﹣2﹣x=﹣2x﹣2;令﹣2x﹣2>3,解得x<﹣;∴当﹣3≤x<﹣时,能构成三角形;②当x<﹣3时,PA+AB=﹣2﹣x+3=1﹣x>PO,能构成三角形.综上,x<﹣.22.【分析】(1)根据众数的定义求解即可;(2)先得出80≤x<90这一组之前的成绩个数为2+8+8=18,在80≤x<90这一组之后的成绩的个数为10,再根据中位数的定义求解即可;(3)画树状图表示出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可;(4)用总人数乘以样本中成绩x≥85的人数所占比例即可.解:(1)在80≤x<90这一组中,这些数据的众数为86;故答案为:86;(2)在80≤x<90这一组之前的成绩个数为2+8+8=18;在80≤x<90这一组之后的成绩的个数为10;∴中位数是80≤x<90这一组中第2个和第3个成绩的平均数,即=81.5(分);(3)由于这两组的人数相同,所以随机抽取一个成绩,抽到每个组的可能性相等;画树状图如下:由树状图知共有4种等可能结果,其中符合题意的只有1种结果;∴两次抽到的成绩都在70≤x<80这一组的概率为;(4)由题意得,在抽取的40名学生的成绩中,x≥85的有17人,估计九年级这360名学生中,成绩x ≥85的有×360=153(人).23.【分析】(1)由切线长定理可得出答案;(2)①证明△OBA≌△OEF(AAS),由全等三角形的性质得出OF=OA,则可得出答案;②连接OD,则OD⊥BE,由直角三角形的性质求出OD的长,根据扇形的面积公式和三角形的面积公式可得出答案.【解答】(1)证明:∵AM⊥AB;∴BA是半圆的切线,切点为A;又∵BE与半圆相切于点D;∴BA=BD;(2)解:①点F在半圆AOC所在的圆上,理由如下:∵∠ABE=60°;∴∠BEA=30°;又∵OBA=∠OBE=∠ABE=30°;∴∠OBE=∠OEB;∴OB=OE;又∵∠AOB=∠FOE,∠A=∠F=90°;∴△OBA≌△OEF(AAS);∴OF=OA;∴点F在半圆AOC所在的圆上;②连接OD,则OD⊥BE;∵OB=OE;∴DE=BD=AB=;∵∠OBA=30°;∴OD=OA=AB•tan30°==1;∴S阴影=S△COE﹣S扇形COD==.24.解:(1)把x=0代入y=﹣2x+4,得到y=4.把y=0代人y=﹣2x+4,得x=2.∴A(2,0),B(0,4);若∠APB=45°,则点P在轴的负半轴上,且OP=OB=4.∴P(﹣4,0);设PB所在直钱的解析式y=kx+b;∴,解得.∴PB所在直钱的解析式为y=x+4;(2)若BC=BA;∵BO⊥CA;∴CO=OA;∵A(2,0);∴C(﹣2,0);∴AC=4,CO=OA=2;∵BC是△ABP的中线;∴PC=AC=4;∴OP=OC+PC=2+4=6;∴点P(﹣6,0);∴m=﹣6;(3)0<m<2.理由:当点P在x轴负半轴上时.点C′在x轴上方;点P与原点O重合时.点C′在x轴上,点P在点O,A之间时,点C在x轴下方.∴0<m<2.25.【分析】(1)根据运回水果20吨,路上恰好需要6小时,运输时每增加2吨水果,路上就会延长1小时,列出t与x的关系式;(2)①根据运费为基础运费与载重运费两部分的和,基础运费为每次500元,载重运费为6tx列出函数关系式即可;②把1652代入①中解析式解方程即可;(3)根据净利润=毛利润﹣运费,列出函数关系式,由函数性质求最值即可.解:(1)由题意得:t=6+×1=x﹣4(20≤x≤30);故答案为:x﹣4(20≤x≤30);(2)①由题意得:y=500+6t•x=500+6x(x﹣4)=3x2﹣24x+500;∴y=3x2﹣24x+500(20≤x≤30);②当y=1652时,3x2﹣24x+500=1652;解得x1=24,x2=﹣16(舍去);∴x=24;答:这次运回了24吨水果.(3)由(1)得,运回x吨后,延长了小时;每吨利润为478﹣20×=﹣10x+678(元);则w=(﹣10x+678)⋅x﹣y=﹣10x2+678x﹣3x2+24x﹣500=﹣13x2+702x﹣500=﹣13(x﹣27)2+8977;∵﹣13<0;∴x=27时,w有最大值,最大值为8977;∴当一次运回27吨水果时,净利润最大,总的最大净利润为8977元.26.解:(1)由题意,DE=AP=2+x,DQ=MP=x;∴QE=DE﹣DQ=2+x﹣x=2+x;(2)当x=5时,点P在线段BN上,BP=5﹣4=1,PC=8﹣1=7;QC=6﹣DQ=6﹣=;∴tan∠PQC===2;(3)①当点P在线段MB上时,四边形PBCE是矩形;∴PB=CE;此时0≤x≤4.②当点P在BN上时∵PE⊥AP;∴∠APB+∠EPC=90°;∵∠APB+∠PAB=90°;∴∠PAB=∠EPC;∵∠B=∠C=90°;若PB=EC,则△APB≌△PEC;∴AB=PC,即PC=6;∴BP=2;∴x=BM+BP=6;综上所述,满足条件的x的取值范围为:0≤x≤4或x=6;(4)由题意,点P的运动速度为=单位长度/秒,点Q的运动速度为长度单位/秒.如图2中,设BP=m,EC=y,则PC=8﹣m;∵△ABP∽△BCE;∴=;∴=;∴y=﹣(m﹣4)2+;∵﹣<0;∴m=4时,y有最大值,最大值为;当点Q运动到K时,t=(6﹣)÷=;当点E运动到K时,y=;由=(﹣m2+8m);解得m=4±;∴两次运动到K的时间分别为(4+4﹣)÷=16﹣2或(4+4+)÷=16+2;∴点E先运动到K;∴第一次K在线段QE上时,时间=(4+4﹣)÷﹣(4﹣)÷=16﹣2﹣=(﹣2)秒;第二次K在线段QE上时,时间=(4+4+)÷﹣=16+2﹣=(+2)秒;∴总时间=﹣2++2=14(秒).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷一.选择题1.﹣5的相反数是()A. B. C. ﹣5 D. 52.计算(﹣a3)2的结果是()A. a5B. ﹣a5C. a6D. ﹣a63.若函数y=kx的图象经过点(﹣1,2),则k的值是()A. ﹣2B. 2C. ﹣D.4.如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A. 150°B. 130°C. 100°D. 50°5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.6.如图,点A为反比例函数y=﹣图象上一点,过点A作AB⊥x轴于点B,连结OA,则△ABO的面积为()A. 16B. 8C. 4D. 27.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠BAC=30°,则∠B等于()A. 20°B. 30°C. 50°D. 60°8.一个不透明布袋中有红球10个,白球2个,黑球x个,每个球除颜色外都相同,从中任取一个球,取得的球是红球的概率是,则x的值为()A. 5B. 4C. 3D. 29.如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC为底的等腰三角形,且△BCD与△BAC相似,则CD的长为()A. B. 2 C. 4 ﹣4 D.10.如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P、点Q同时从点B出发,点P以2cm/s 的速度沿B→A→C运动,终点为C,点Q以1cm/s的速度沿B→C运动,当点P到达终点时两个点同时停止运动,设点P,Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=﹣t2+ t(4≤t≤7);③线段PQ的长度的最大值为;④若△PQC与△ABC相似,则t= 秒.其中正确的是()A. ①②④B. ②③④C. ①③④D. ①②③二.填空题11.分解因式:x2﹣16=________12.不等式组的解集是________.13.一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为________米.14.已知一组数据a1,a2,a3,a4的平均数是2017,则另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数是________.15.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为________.16.如图,在矩形ABCD中,AB=3,BC=2,点F是BC的中点,点E是边AB上一点,且BE=2,连结DE,EF,并以DE,EF为边作▱EFGD,连结BG,分别交EF和DC于点M,N,则=________.三.解答题17.计算:24÷(﹣2)3﹣3.18.解方程:= .19.如图,已知在△ABC中,点D,E,F分别在BC,AB,AC边上.(1)当点D,E,F分别为BC,AB,AC边的中点时,求证:△BED≌△DFC;(2)若DE∥AC,DF∥AB,且AE=2,BE=3,求的值.20.3月5日是学雷锋日,某校组织了以“向雷锋同志学习”为主题的小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以下信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共1200份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?21.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF 的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若tanC= ,⊙O的半径为2,求DE的长.22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.23.综合题(1)【问题提出】如图1.△ABC是等边三角形,点D在线段AB上.点E在直线BC上.且∠DEC=∠DCE.求证:BE=AD;(2)【类比学习】如图2.将条件“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变.判断线段AB,BE,BD之间的数量关系,并说明理由.(3)【扩展探究】如图3.△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在线段AB的反向延长线上,点E在直线BC上,且∠DEC=∠DCE,【类比学习】中的线段AB、BE、BD 之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出线段AB,BE,BD之间的数量.24.如图,抛物线y=ax2+ x+1(a≠0)与x轴交于A,B两点,其中点B坐标为(2,0).(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=﹣x上的动点,当直线OP平分∠APB时,求点P的坐标;(3)如图2,在(2)的条件下,点C是直线BP上方的抛物线上的一个动点,过点C作y 轴的平行线,交直线BP于点D,点E在直线BP上,连结CE,以CD为腰的等腰△CDE的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】相反数【解析】【解答】﹣5的相反数是5,故答案为:D.【分析】只有符号不同的两个数互为相反数.2.【答案】C【考点】幂的乘方与积的乘方【解析】【解答】(﹣a3)2=a6.故答案为:C.【分析】先判断结果的符号,然后再依据幂的乘方法则进行计算即可.3.【答案】A【考点】正比例函数的图象和性质【解析】【解答】把点(﹣1,2)代入正比例函数y=kx,得:2=﹣k,解得:k=﹣2.故答案为:A.【分析】将点(-1,2)代入函数的解析式可得到关于k的方程,从而可求得k的值.4.【答案】B【考点】平行线的性质【解析】【解答】如图所示,∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°.故答案为:B.【分析】先依据平行线的性质求得∠1的同位角的度数,然后依据邻补角的定义求解即可.5.【答案】B【考点】中心对称及中心对称图形【解析】【解答】A、不是中心对称图形,A不符合题意;B、是中心对称图形,B符合题意;C、不是中心对称图形,C不符合题意;D、不是中心对称图形,D不符合题意;故答案为:B.【分析】将一个图形绕着某个点旋转180°,旋转后能够完全重合,则给图形为中心对称图形.6.【答案】D【考点】反比例函数系数k的几何意义【解析】【解答】设点A的坐标为(a,),∵AB⊥x轴于点B,∴△ABO是直角三角形,∴△ABO的面积是:=2,故答案为:D.【分析】依据反比例函数k的几何意义可得到△AOB的面积=|k|求解即可.7.【答案】B【考点】切线的性质【解析】【解答】∵AB为圆O的切线,∴OA⊥AB,∴∠OAB=90°,又∠BAC=30°,∴∠OAC=90°﹣30°=60°又∵OA=OC,∴△OAC为等边三角形,∴∠AOB=60°,则∠B=90°﹣60°=30°.故答案为:B.【分析】首先依据切线的性质可得到∠OAB=90°,接下来,可证明△OAC为等边三角形,最后,依据直角三角形两锐角互余求解即可.8.【答案】C【考点】概率公式【解析】【解答】根据题意得:= ,解得:x=3,则x的值为3;故答案为:C.【分析】根据题意可求得球的总数为10+2+x,然后依据概率公式列方程求解即可.9.【答案】D【考点】等腰三角形的性质,相似三角形的性质【解析】【解答】∵△ACD是以AC为底的等腰三角形,∴AD=CD,∵△BCD与△BAC相似,∴= ,设CD=x,BD=y,∴= = ,∴,解得:x=2y,∴y= ,∴x= ,∴CD= ,故答案为:D.【分析】依据等腰三角形的定义可得到AD=CD,然后再依据相似三角形对应边成比例得到,设CD=x,BD=y,然后可得到y与x之间的函数关系式.10.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】由图2可得到t=4时,y= 48 5 ,∴AB=2×4=8cm,∵∠A=90°,BC=10cm,∴AC=6cm,故①正确;②当P在AC上时,如图3,过P作PD⊥BC于D,此时:=7,∴4≤t≤7,由题意得:AB+AP=2t,BQ=t,∴PC=14﹣2t,sin∠C= ,∴= ,∴PD= ,∴y=S△BPQ= BQ•PD= t =﹣;故②正确;③当P与A重合时,PQ最大,如图4,此时t=4,∴BQ=4,过Q作GH⊥AB于H,sin∠,∴,∴QH= ,同理:BH= ,∴AH=8﹣= ,∴PQ= = = ;∴线段PQ的长度的最大值为;故③不正确;④若△PQC与△ABC相似,点P只有在线段AC上,分两种情况:PC=14﹣2t,QC=10﹣t,i)当△CPQ∽△CBA,如图5,则,∴,解得t=﹣8不合题意.ii)当△PQC∽△BAC时,如图5,∴,∴,t= ;∴若△PQC与△ABC相似,则t= 秒,故④正确;其中正确的有:①②④.故答案为:A.【分析】①由图2可知:t=4时,点P到达点A,故此可得到AB的长,然后依据勾股定理可求得AC的长,从而可对①作出判断;当P在AC上时,过P作PD⊥BC于D,先求得PC 的长(用含t的式子表示),然后利用锐角三角函数的定义可求得PD的长,最后,依据三角形的面积公式进行解答即可;③过Q作GH⊥AB于H,先依据锐角三教函数的定义得到QH的长,同理可得到BH的长,最后,依据勾股定理可求得PQ的长,④若△PQC与△ABC 相似,点P只有在线段AC上,分两种情况:当△CPQ∽△CBA,当△PQC∽△BAC时,然后依据相似三角形的对应边成比例的性质求解即可.二.<b >填空题</b>11.【答案】(x+4)(x﹣4)【考点】平方差公式【解析】【解答】解:x2﹣16=(x+4)(x﹣4).【分析】依据平方差公式进行分解即可.12.【答案】﹣2<x≤1【考点】解一元一次不等式组【解析】【解答】解:解不等式x﹣1≤0,得:x≤1,解不等式2x+4>0,得:x>﹣2,则不等式组的解集为﹣2<x≤1,故答案为:﹣2<x≤1.【分析】先分别求得两个不等式的解集,然后再依据同大取大、同小取小,小大大小中间找出,大大小小找不着确定出不等式组的解集即可.13.【答案】2【考点】解直角三角形的应用-坡度坡角问题【解析】【解答】解:如图.Rt△ABC中,tanA= ,AB=10.设BC=x,则AC=2x,∴x2+(2x)2=102,解得x=2 (负值舍去).即此时小球距离地面的高度为2 米.【分析】依据坡度的定义可得到tanA=,设BC=x,则AC=2x,然后依据勾股定理可列出关于x的方程,从而可求得x的值,于是可得到BC的长.14.【答案】2018【考点】算术平均数【解析】【解答】解:由题意(a1+a2+a3+a4)=2017,∴a1+a2+a3+a4=8068,∴另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数= ==2018,故答案为2018.【分析】先依据均数的定义求得a1+a2+a3+a4的值,然后再求得a1+3,a2﹣2,a3﹣2,a4+5的值,最后依据平均数公式求解即可.15.【答案】﹣1或5【考点】二次函数的最值,二次函数图象上点的坐标特征【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故答案为﹣1或5.【分析】依据二次函数的性质可知若h<1≤x≤3,x=1时,y取得最小值5;若1≤x≤3<h,当x=3时,y取得最小值5,然后依据题意列方程求解即可.16.【答案】【考点】平行四边形的性质,矩形的性质,正方形的判定,相似三角形的判定与性质【解析】【解答】解:∵矩形ABCD中,AB=3,BC=2,点F是BC的中点,∴BF=1,AD=2,又∵BE=2,∴AE=BF=1,DE= =FG,又∵∠A=∠EBF=90°,∴△ADE≌△BEF,∴∠ADE=∠BEF,DE=EF,又∵∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=90°,∴四边形DEFG是正方形,∴∠EFG=90°,DG=DE= ,如图,过B作BH⊥EF于H,∵Rt△ABF中,EF= = ,∴BH= = ,∴Rt△BFH中,HF= = ,∵BH∥FG,∴△BHM∽△GFM,∴= = = ,∴FM= ×FH= ,∴EM=EF﹣FM= ﹣= ,∵EB∥DN,EM∥DG,∴∠EBM=∠DNG,∠EMB=∠DGN,∴△EBM∽△DNG,∴= = = .故答案为:.【分析】首先证明△ADE≌△BEF,依据全等三角形的性质可得到DE=EF,然后再证明四边形DEFG是正方形,则DG=DE= ,过B作BH⊥EF于H,依据勾股定理可得到EF的长,然后利用面积法可求得BH的长,接下来,再证明△BHM∽△GFM,依据相似三角形对应边成比例可求得FM的长,最后,再证明△EBM∽△DNG,从而可得到问题的答案.三.<b >解答题</b>17.【答案】解:原式=24÷(﹣8)﹣3=﹣3﹣3=﹣6.【考点】有理数的混合运算【解析】【分析】先算乘方,然后再计算除法,最后,再计算减法即可.18.【答案】解:去分母得:3x=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】方程两边同时乘以x(x-2),将分式方程转化为整式方程,接下来,求得整式方程的解,最后,再进行检验即可.19.【答案】(1)证明:∵点D,E,F分别为BC,AB,AC边的中点,∴DE和DF为△ABC的中位线,∴DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,∴△BED≌△DFC(2)解:DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,四边形AEDF为平行四边形,∴△BED∽△DFC,DF=AE=2,DE=AF,∴= = ,∴= ,∴= .【考点】全等三角形的判定与性质,平行线分线段成比例【解析】【分析】(1)依据三角形的中位线定理可得到DE∥AC,DF∥AB,然后依据平行线的性质可证明∠BDE=∠C,∠B=∠CDF,最后,再依据SAS证明△BED≌△DFC即可;(2)首先证明△BED∽△DFC,然后依据相似三角形的性质求解即可.20.【答案】(1)解:12÷10%=120(份),即本次抽取了120份作品.80分的份数=120﹣6﹣24﹣36﹣12=42(份),它所占的百分比=42÷120=35%.60分的作品所占的百分比=6÷120=5%;(2)解:1200×(30%+10%)=1200×40%=480(份)答:该校学生比赛成绩达到90分以上(含90分)的作品有480份.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)先依据条形统计图和扇形统计图可得到成绩为100分的频数以及所占的百分比,然后依据总数=频数÷百分比可求得总件数,然后再依据条形统计图可得到80分的频数,最后,再依据各部分所占的百分比即可;(2)先求得得分达到90分的百分比,最后,依据频数=总数×百分比求解即可.21.【答案】(1)证明:连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线(2)解:∵tanC= ,∴∠C=30°,又∵OE=2,∴OC=4,AC=6,在Rt△OCE中,tanC= ,∴CE=2 ,在Rt△ACD中,cosC= ,CD=3∴DE=CD﹣CE=3 ﹣2 = .【考点】角平分线的性质,切线的判定与性质,解直角三角形【解析】【分析】(1)连接OE.依据等腰三角形的性质和角平分线的定义可得到∠OEA=∠DAE,从而可证明OE∥AD,然后依据平行线的性质可证∠OEC=90°;(2)先依据特殊锐角三角函数值可求得∠C=30°,然后可求得AC=6,依据特殊锐角三教函数值可求得CE和CD的长,最后依据DE=CD﹣CE求解即可.22.【答案】(1)解:设y与x的函数关系式为:y=kx+b,当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=8x;当20≤x时,把(20,160),(40,288)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=6.4x+32.综上可知:y与x的函数关系式为y=(2)解:∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=326(元)【考点】一元一次不等式组的应用,一次函数的应用【解析】【分析】(1)0≤x≤20时,y是x的正比例函数,设y=kx,将点(20,160)代入计算即可,当20≤x时,y是x的一次函数将把(20,160),(40,288)代入y=kx+b求解即可;(2)依据B种苗的数量不超过35棵,但不少于A种苗的数量列出关于x的不等式组可求得x的取值范围,然后依据总费用W与x之间函数关系式,最后依据一次函数的性质求解即可.23.【答案】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD(2)解:EB=AB+BD;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD,∴EB=AB+BD(3)解:BE=3DB﹣3AB.理由:作DF∥BC交CA的延长线于F,如图3所示,则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC+∠DCE=180°,∵△ABC是等腰三角形,∴∠ABC=∠ACB,∴∠ADF=∠AFD=∠ABC,∵∠DEC=∠DCE,∴DE=DC,∠FDC+∠DEC=180°,∵∠DEC+∠DEB=180°,∴∠FDC=∠DEB,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,DB=CF,∵CF=AC+AF=AB+AF,∴DB=AB+AF,过点A作AG⊥DF于G,∵AF=AD,∴DF=2FG,在Rt△AFG中,∠AFG=90°﹣∠FAG=90°﹣∠BAC=30°,∴FG= AF,∴EB=DF=2FG= AF,∴AF= EB∴DB=AB+ BE,即:BE=3DB﹣3AB.【考点】全等三角形的判定与性质【解析】【分析】(1)作DF∥BC交AC于F,首先证明△ABC是等边三角形,然后再由AAS 证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,即可得出结论;(3)作DF∥BC交CA的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,再利用含30°的直角三角形的性质即可得出结论.24.【答案】(1)解:把B(2,0)代入y=ax2+ x+1,可得4a+1+1=0,解得a=﹣,∴抛物线解析式为y=﹣x2+ x+1,令y=0,可得﹣x2+ x+1=0,解得x=﹣1或x=2,∴A点坐标为(﹣1,0)(2)解:若y=﹣x平分∠APB,则∠APO=∠BPO,如图1,若P点在x轴上方,PB与y轴交于点A′,由于点P在直线y=﹣x上,可知∠POA=∠POA′=45°,在△APO和△A′PO中,∴△APO≌△A′PO(ASA),∴AO=A′O=1,∴A′(0,1),设直线BP解析式为y=kx+b,把B(2,0)、A′(0,1)两点坐标代入可得,解得,∴直线BP解析式为y=﹣x+1,联立,解得,∴P点坐标为(﹣2,2);若P点在x轴下方时,如图2,∠BPO≠∠APO,即此时没有满足条件的P点,综上可知P点坐标为(﹣2,2)(3)解:存在,如图3,作CH⊥PB于点H,∵直线PB的解析式为y=﹣x+1,∴F(0,1),tan∠BFO= = =2,∵CD∥y轴,∴∠BFO=∠CDF,tan∠CDF=tan∠BFO= =2,∴CH=2DH,设DH=t,则CH=2t,CD= t,∵△CDE是以CD为腰的等腰三角形,∴分两种情况:①若CD=DE时,则S△CDE= DE•CH= t•2t= ,②若CD=CE时,则ED=2DH=2t,∴S△CDE= DE•CH= •2t•2t=2t2,∵2t2<t2,∴当CD=DE时△CDE的面积比CD=CE时大,设C(x,﹣x2+ x+1),则D(x,﹣x+1),∵C在直线PB的上方,∴CD= =(﹣x2+ x+1)﹣(﹣x+1)=﹣=﹣,当x=1时,CD有最大值为,即t= ,t= ,∴S△CDE= = × = ,存在以CD为腰的等腰△CDE的面积有最大值,这个最大值是.【考点】二次函数的应用【解析】【分析】(1)将点B坐标代入到抛物线的解析式可求得a的值,令y=0,得到关于x的方程,然后解关于x的一元二次方程即可;(2)当点P在x轴上方时,连接BP交y轴于点A′,然后证明△APO≌△A′PO,依据全等三角形的性质可得到AO=A′O=1,从而可求得A′坐标,然后利用待定系数法可求得直线BP的解析式,联立直线y=-x,可求得P点坐标;当点P在x轴下方时,画图可知:∠BPO≠∠APO,即此时没有满足条件的P点;(3)过C作CH⊥DE于点H,由直线BP的解析式可求得点F的坐标,结合条件可求得tan ∠BFO和tan∠CDF,可分别用DH表示出CH和CD的长,分CD=DE和CD=CE两种情况,分别用t表示出△CDE的面积,再设出点C的坐标,利用二次函数的性质可求得△CDE的面积的最大值.。