鲁教版五四制七年级数学下册第五单元评价检测 (2)

合集下载

鲁教版(五四制)地理七年级下册 第五章 中国的地理差异 单元测试19(原卷版)

鲁教版(五四制)地理七年级下册 第五章 中国的地理差异 单元测试19(原卷版)

鲁教版(五四制)地理七年级下册第五章中国的地理差异单元测试一、选择题1.关于我国人口的叙述,正确的是()A.占世界的30%B.西北多,东南少C.人口地理界线是黑河—-腾冲一线D.人口基数小,增长慢2.下列关于我国北方地区与南方地区自然环境差异的描述,正确的是()。

A.北方地区1月平均气温在0 ℃以上,南方地区在0 ℃以下B.北方地区、南方地区冬季河流都不结冰,河流终年可以行船C.北方地区植被以温带落叶阔叶林为主,南方地区则以亚热带常绿阔叶林为主D.北方地区地形多以高原为主,南方地区多以平原为主3.下列语句中描述的地区,位于北方地区的是()A.上有天堂,下有苏杭B.天苍苍,野茫茫,风吹草低见牛羊C.地高天寒,雪山连绵D.山环水绕,沃野千里读“某地蜂农东线放蜂线路示意图”完成下面小题。

4.蜂农放蜂线路经过的区域()A.主要经过东部沿海的省份B.地形以盆地高原为主C.位于少数民族集中分布的地区D.主要经过人口密度较小的区域5.为了充分利用外地蜜,蜂农需要频繁转场放蜂。

影响蜂农迁移时间的主要因素是()A.地形B.降水C.气温D.市场6.“橘生淮南则为橘,橘生淮北则为积”,造成这种现象的地理界线是A.秦岭一淮河B.大兴安岭一太行山一巫山—雪峰山C.长江D.400mm等降水量线读我国四大地理区域示意图,完成下列各题。

7.与℃、℃两大地理区域分界线,大致吻合的是()A.干旱地区和湿润地区分界线B.季风区与非季风区分界线C.外流区与内流区分界线D.亚热带与暖温带分界线8.9.关于四大地理区域优势能的叙述,正确的是()A.区域℃主要是煤炭和石油B.区域℃主要是石油和水能C.区域℃主要是地热能和核能D.区域℃主要是水能和石油10.11.中央电视台于2012年5月底开始播出的《远方的家——北纬30°中国行》节目,向世界展现了北纬30°沿线神奇的自然风光、风土人情等。

下图所示的剖面图中,属于我国北纬30°沿线的是()A.B.C.D.12.我国古代诗词歌赋中,有许多是描述地理规律、地理景观的名词佳句。

鲁教版(五四制)数学七年级上册期中 达标测试卷(含答案)

鲁教版(五四制)数学七年级上册期中 达标测试卷(含答案)

期中达标测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上.在下列苏州园林的窗户简图中,不是轴对称图形的是()A B C D 2.如果将一副三角尺按图1方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°图1 图2 图33.图2是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角4.如图3,在四边形ABCD中,AB=AD,CB=CD,AC,BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对5.图4为由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD2等于()A.a2+b2B.a2-b2C.222a b-D.222a b+图4 图56.某木材市场上木棒规格与对应价格如下表:小明的爷爷要做一个三角形木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场购买一根木棒,则小明的爷爷至少带的钱数为()A.10 B.15 C.20 D.257.如图5,已知△ABC中,CD⊥AB,垂足为D,CE平分∠ACD交AD于点E,若CD=12,BC=13,且△BCE的面积为48,则点E到AC的距离为()A.5 B.3 C.4 D.18.图6-①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图6-②所示的“数学风车”,则这个风车的外围周长是()A.148 B.100 C.196 D.144图6 图7 图89.如图7,在△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为()A.27°B.59°C.69°D.79°10.如图8,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的有()A.①B.①②C.①②③D.①②④二、填空题(本大题共6小题,每小题4分,共24分)11.如图9,△ACF≌△DBE,若AD=11,BC=3,则线段AB的长为.图9 图10 图1112.如图10,一条船从海岛A处出发,向正北方向航行8海里到达海岛B处,从C处望海岛A,A在C的南偏东42°方向上;从B处望灯塔C,C在B的北偏西84°方向上,则海岛B 到灯塔C的距离是海里.13.如图11,有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,且使AC⊥BC,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE.经测量EC,DC的长度分别为300 m,400 m,则A,B之间的距离为m.14.如图12,在△ABC中,AD为中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.图12 图13 图1415.图13是放在地面上的一个长方体盒子,其中AB=18 cm,BC=12 cm,BF=10 cm,点M在棱AB上,且AM=6 cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为cm.16.如图14,在△ABC中,AI平分∠BAC,BI平分∠ABC,点O是AC,BC的垂直平分线的交点,连接AO,BO,若∠AIB=α,则∠AOB的大小为.三、解答题(本大题共7小题,共66分)17.(6分)如图15,已知△ABC是等边三角形,D是BC边的中点,点E在AC的延长线上,且∠CDE=30°.若AD=5,求DE的长.图15 图1618.(8分)如图16,MN为我国领海线,MN以西为我国领海,以东为公海.上午9时50分我国缉私艇A发现在其正东方向有一走私艇C正以每小时16海里的速度偷偷向我国领海驶来,便立即通知距其6海里,正在MN上巡逻的缉私艇B密切注意,且已知A和C两艇的距离是10海里,缉私艇B与走私艇C的距离为8海里,若走私艇C 的速度不变,最早在什么时间进入我国领海?19.(8分)如图17,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠B=39°,求∠CAD的度数;(2)若点E在边AC上,EF∥AB交AD的延长线于点F.试说明:AE=FE.图17 图1820.(8分)如图18,三角形纸片ABC中,∠C=90°,AC=BC=2,D为BC的中点,折叠三角形纸片使点A与点D重合,EF为折痕,求AF的长.21.(10分)如图19,△ABC的顶点A,B,C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短;(3)在直线l上找一点Q,使点Q到边AC,BC的距离相等.图1922.(12分)如图20,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,交BC于点D,交AB于点E.(1)试说明:△ABC为直角三角形;(2)求DE的长.图2023.(14分)如图21,在△ABC中,AM是△ABC的中线,MP平分∠AMB,MQ平分∠AMC,且BP⊥MP于点P,CQ⊥MQ于点Q,连接PQ.试说明:(1)MP⊥MQ;(2)△BMP≌△MCQ.图21期中达标测试卷参考答案:一、1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A 9.D 10.D二、11.4 12.8 13.500 14.2 15.20 16.4α-360°三、17.解:因为△ABC是等边三角形,D是BC边的中点,所以AD⊥BC,∠DAC=12∠BAC=30°.因为∠ACB=60°,∠CDE=30°,所以∠E=30°,所以∠DAC=∠E,所以DE=AD =5.18.解:设MN与AC相交于点E,则∠BEC=90°.因为AB2+BC2=62+82=102=AC2,所以△ABC为直角三角形,且∠ABC=90°.由于MN⊥CE,所以走私艇C进入我领海的最近距离是CE.由S△ABC=12AB×BC=12AC×BE,得BE=4.8.由勾股定理,得CE2+BE2=BC2,所以CE=6.4,所以6.4÷16=0.4(h)=24(min).9时50分+24分=10时14分.所以走私艇C最早在10时14分进入我领海.19.解:(1)因为AB=AC,AD⊥BC于点D,所以∠BAD=∠CAD,∠ADC=90°.因为∠B=39°,所以∠BAD=∠CAD=90°-39°=51°.(2)因为AB=AC,AD⊥BC于点D,所以∠BAD=∠CAD.因为EF∥AC,所以∠F=∠BAD.所以∠BAD=∠F,所以AE=FE.20.解:因为BC=2,D为BC的中点,所以CD=1.由折叠的性质,得AF=DF.所以CF=AC-AF=2-DF.在Rt△CDF中,由勾股定理,得DF2=CF2+CD2,即DF2=(2-DF)2+12,解得DF=54.所以AF=54.21.解:(1)如图所示,△A1B1C1即为所求作的三角形;(2)如图所示,连接A1B交直线l于点P,点P即为所求作的点;(3)如图所示,由网格的特征易知射线CC1为∠ACB的平分线,其与直线l交于点Q,点Q即为所求作的点.22.解:(1)在△ABC中,AB=4,AC=3,BC=5,因为42+32=52,即AB2+AC2=BC2,所以△ABC是直角三角形.(2)连接CE.因为DE是BC的垂直平分线,所以EC=EB.设AE=x,则EC=4-x,所以x2+32=(4-x)2,解得x=78,即AE=78.所以BE=4-78=258.因为BD=12BC=5 2,所以DE2=BE2-BD2=(258)2-(52)2=22564,所以DE=158.23.解:(1)因为MP平分∠AMB,MQ平分∠AMC,所以∠AMP=12∠AMB,∠AMQ=1 2∠AMC,所以∠PMQ=∠AMP+∠AMQ=12∠AMB+12∠AMC=12(∠AMB+∠AMC)=12×180°=90°,所以MP⊥MQ.(2)由(1)知,MP⊥MQ.因为BP⊥MP,所以BP∥QM,∠BPM=90°,∠CQM=90°,所以∠PBM=∠QMC.因为AM是△ABC的中线,所以BM=MC.在△BMP和△MCQ中,∠BPM=∠MQC,∠MBP=∠CMQ,BM=MC,所以△BMP≌△MCQ.。

2018-2019学年鲁教版(五四制)七年级数学下册期中测试题含答案

2018-2019学年鲁教版(五四制)七年级数学下册期中测试题含答案

2018-2019学年七年级数学下册期中检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.下列命题:①对顶角相等;②同位角相等;③若|a|=a,则a一定是正数;④在同一平面内的三条直线a,b,c,若a∥b,a⊥c,则么b⊥c,其中是真命题的有( )(A)①②③④ (B)①④(C)①②④(D)①③④2.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°, ∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )(A)15° (B)60° (C)120° (D)135°3.第21届世界杯足球赛于2018年6月14日至7月15日在俄罗斯举行.赛前有球迷预测,德国队夺冠的概率是90%,对他的说法理解正确的是( )(A)德国队一定会夺冠(B)德国队一定不会夺冠(C)德国队夺冠的可能性很大(D)德国队夺冠的可能性很小4. 二元一次方程组的解是( )(A) (B)(C) (D)5. 下列事件中,属于必然事件的是( )(A)明天太阳从北边升起(B)实心铅球投入水中会下沉(C)篮球队员在罚球线投篮一次,投中(D)抛出一枚硬币,落地后正面向上6.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是( )(A)(B)(C)(D)7. 如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是( )(A)50°(B)70°(C)80°(D)110°8.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( )(A)4 (B)3 (C)2 (D)19. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若∠1=55°,则∠2的度数是( )(A)50°(B)45°(C)40°(D)35°10. 夏季来临,某超市试销A,B两种型号的风扇,两周内共销售30台,销售收入5 300元,A型风扇每台200元,B型风扇每台150元,问A,B 两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为( )(A)(B)(C)(D)11.甲、乙两布袋都装有红、白两种小球,两袋球总数相同,两种小球仅颜色不同,甲袋中,红球个数是白球个数的2倍,乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( )(A) (B) (C) (D)12. 阅读理解,a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d-b×c,例如=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组的解可以利用2×2阶行列式表示为:其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是( )(A)D==-7(B)D x=-14(C)D y=27(D)方程组的解为二、填空题(每小题4分,共24分)13.命题“互补的两个角一定是一个锐角一个钝角”是假命题,可举出反例为: .14. 在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.15.若二元一次方程组的解为则a-b= .16. 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.17.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E,F分别是矩形ABCD的两边AD,BC上的点,且EF∥AB,点M,N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是.18.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠A n-1BC的平分线与∠A n-1CD的平分线交于点A n.设∠A=α.则∠A1= ;∠A n= .三、解答题(共78分)19.(8分) 用消元法解方程组时,两位同学的解法如下: 解法一:由①-②,得3x=3.解法二:由②,得3x+(x-3y)=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”;(2)请选择一种你喜欢的方法,完成解答.20.(8分) 如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE 交AB于点H,GE平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.21.(10分)将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P(偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?22.(10分) 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.23.(10分)如图是两个完全一样的转盘,均被分为一半红色与一半蓝色,甲、乙两人利用它们做游戏.游戏规则为同时转动两个转盘,如果两个指针所停区域的颜色相同,那么甲获胜;如果两个指针所停区域的颜色不相同,那么乙将获胜.有人认为甲获胜的情况有两种:都是红色或都是蓝色,而乙获胜的情况只有一种:一红一蓝,因此甲获胜的可能性大.你认为这种说法正确吗?这个游戏公平吗?说说你的理由.24.(10分) 在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观.以下是小明和妈妈的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.25.(10分)小明和小刚做摸纸牌游戏,如图,两组相同的纸牌,每组两张,纸面数字分别是2和3,将两组纸牌背面朝上,洗匀后从每组纸牌中各摸出一张,称为一次游戏.当两张纸牌牌面数字之和为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由.26.(12分)(1)如图(1),有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C.△ABC中,∠A=30°,则∠ABC+∠ACB= ,∠XBC+∠XCB= ; (2)如图(2),改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.2018-2019学年七年级数学下册期中检测试题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.下列命题:①对顶角相等;②同位角相等;③若|a|=a,则a一定是正数;④在同一平面内的三条直线a,b,c,若a∥b,a⊥c,则么b⊥c,其中是真命题的有( B )(A)①②③④ (B)①④(C)①②④(D)①③④2.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°, ∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( A )(A)15° (B)60° (C)120° (D)135°3.第21届世界杯足球赛于2018年6月14日至7月15日在俄罗斯举行.赛前有球迷预测,德国队夺冠的概率是90%,对他的说法理解正确的是( C )(A)德国队一定会夺冠(B)德国队一定不会夺冠(C)德国队夺冠的可能性很大(D)德国队夺冠的可能性很小4. 二元一次方程组的解是( B )(A) (B)(C) (D)解析:两式相加,得2x=0,所以x=0;两式相减,得2y=4,所以y=2.所以.故选B.5. 下列事件中,属于必然事件的是( B )(A)明天太阳从北边升起(B)实心铅球投入水中会下沉(C)篮球队员在罚球线投篮一次,投中(D)抛出一枚硬币,落地后正面向上解析:明天太阳从北边升起是不可能事件,A错误;实心铅球投入水中会下沉是必然事件,B正确;篮球队员在罚球线投篮一次,投中是随机事件,C错误;抛出一枚硬币,落地后正面向上是随机事件,D错误;故选B.6.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是( C )(A)(B)(C)(D)解析:小华随机出手一次共有三种可能结果:胜,输,平,所以小华获胜的概率是.故选C.7. 如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是( C )(A)50°(B)70°(C)80°(D)110°解析:因为a∥b,∠1=50°,所以∠BAD=50°.因为AD平分∠BAC,所以∠BAC=2×50°=100°,所以∠2= 180°-100°=80°.故选C.8.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( C )(A)4 (B)3 (C)2 (D)1解析:设5人一组的有x个,6人一组的有y个,根据题意,得5x+6y=40,其非负整数解有当x=2时,y=5;当x=8时,y=0,故有2种分组方案.故选C.9. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若∠1=55°,则∠2的度数是( D )(A)50°(B)45°(C)40°(D)35°解析:由题意可得∠1=∠3=55°,∠2=∠4=90°-55°=35°.故选D.10. 夏季来临,某超市试销A,B两种型号的风扇,两周内共销售30台,销售收入5 300元,A型风扇每台200元,B型风扇每台150元,问A,B 两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为( C )(A)(B)(C)(D)解析:由A,B两种型号的风扇两周内共销售30台,可列方程x+y=30;由两种型号的风扇两周内销售收入5 300元,可列方程200x+150y=5 300,故得方程组为.故选C.11.甲、乙两布袋都装有红、白两种小球,两袋球总数相同,两种小球仅颜色不同,甲袋中,红球个数是白球个数的2倍,乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( A )(A) (B) (C) (D)解析:因为甲袋中,红球个数是白球个数的2倍,所以设白球为4x个,则红球为8x个,所以两种球共有12x个,因为乙袋中,红球个数是白球个数的3倍,且两袋中球的数量相同,所以红球为9x个,白球为3x个,所以混合后摸出红球的概率为=.故选A.12. 阅读理解,a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d-b×c,例如=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组的解可以利用2×2阶行列式表示为:其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是( C )(A)D==-7(B)D x=-14(C)D y=27(D)方程组的解为解析:因为所以D===2×(-2)-3×1=-7,D x===1×(-2)-1×12=-14,D y===2×12-1×3=21,因为所以方程组的解为所以说法错误的是C,故选C.二、填空题(每小题4分,共24分)13.命题“互补的两个角一定是一个锐角一个钝角”是假命题,可举出反例为: 两个直角也互为补角.14.(2018成都)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是 6 .解析:设盒子中装有黄色乒乓球有x个,根据概率公式,可得=,解得x=6.15.(2018枣庄)若二元一次方程组的解为则a-b=.解析:①+②得:(x+y)+(3x-5y)=3+4,所以4x-4y=7,所以x-y=,因为x=a,y=b,所以a-b=x-y=.16. 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为20 尺,竿子长为15 尺.解析:设索长为x托,竿子长为y托,由题知解得所以索长4托,竿子长3托,因为1托为5尺,所以索长为20尺,竿子长为15尺.17.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E,F分别是矩形ABCD的两边AD,BC上的点,且EF∥AB,点M,N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是.解析:矩形ABFE与△ABM具有相同的底边,矩形的高与三角形的高相等,所以矩形ABFE的面积是三角形ABM面积的2倍,所以矩形面积为阴影部分面积的2倍;同理矩形EFCD的面积是矩形中阴影部分面积的2倍,所以飞镖落在阴影部分的概率是.18.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠A n-1BC的平分线与∠A n-1CD的平分线交于点A n.设∠A=α.则∠A1= α ;∠A n= α.解析:因为A1B是∠ABC的平分线,A1C是∠ACD的平分线,所以∠A1BC=∠ABC,∠A1CD=∠ACD,又因为∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,所以(∠A+∠ABC)=∠ABC+∠A1,所以∠A1=∠A.因为∠A=α,所以∠A1=α,同理可得∠A2=∠A1=×α=α,所以∠A n=α.三、解答题(共78分)19.(8分) 用消元法解方程组时,两位同学的解法如下:解法一:由①-②,得3x=3.解法二:由②,得3x+(x-3y)=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”;(2)请选择一种你喜欢的方法,完成解答.解:(1)解法一中的计算有误(标记略).(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2.所以原方程组的解是20.(8分) 如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE 交AB于点H,GE平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.解:因为在△EFG中,∠EFG=90°,∠E=35°,所以∠EGF=90°-∠E=55°.因为GE平分∠FGD,所以∠EGD=∠EGF=55°.因为AB∥CD,所以∠EHB=∠EGD=55°.又因为∠EHB=∠EFB+∠E,所以∠EFB=∠EHB-∠E=55°-35°=20°.21.(10分)将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P(偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?解:(1)P(偶数)=.(2)能组成的两位数为:86,76,87,67,68,78;恰好为“68”的概率为.22.(10分) 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.解:(1)因为在Rt△ABC中,∠ACB=90°,∠A=40°,所以∠ABC=180°-∠ACB-∠A=50°,所以∠CBD=130°,因为BE是∠CBD的平分线,所以∠CBE=∠CBD=65°.(2)因为∠ACB=90°,所以∠CEB=90°-65°=25°,因为DF∥BE,所以∠F=∠CEB=25°.23.(10分)如图是两个完全一样的转盘,均被分为一半红色与一半蓝色,甲、乙两人利用它们做游戏.游戏规则为同时转动两个转盘,如果两个指针所停区域的颜色相同,那么甲获胜;如果两个指针所停区域的颜色不相同,那么乙将获胜.有人认为甲获胜的情况有两种:都是红色或都是蓝色,而乙获胜的情况只有一种:一红一蓝,因此甲获胜的可能性大.你认为这种说法正确吗?这个游戏公平吗?说说你的理由.解:不正确,这个游戏公平.因为一红一蓝也有两种情形,即左边转盘指针停在红色区域而右边转盘停在蓝色区域,与左边转盘停在蓝色区域而右边转盘停在红色区域.因此,甲、乙两人获胜的可能性是相同的.24.(10分) 在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观.以下是小明和妈妈的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.解:设小明班上参观禁毒教育基地的男生x人,女生y人,根据题意得解得答:小明班上参观禁毒教育基地的男生有35人,女生有20人.25.(10分)小明和小刚做摸纸牌游戏,如图,两组相同的纸牌,每组两张,纸面数字分别是2和3,将两组纸牌背面朝上,洗匀后从每组纸牌中各摸出一张,称为一次游戏.当两张纸牌牌面数字之和为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由.解:不公平.两张纸牌牌面数字之和共有四种情况:2+2,2+3,3+2,3+3,其和分别为偶数、奇数、奇数、偶数,所以P(和为奇数)==.P(和为偶数)==,故小明所得分值为2×=1,小刚所得分值为1×=.所以游戏对相同概率下得分少的小刚不公平.26.(12分)(1)如图(1),有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C.△ABC中,∠A=30°,则∠ABC+∠ACB= ,∠XBC+∠XCB= ;(2)如图(2),改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.解:(1)因为∠A=30°,所以∠ABC+∠ACB=150°;因为∠X=90°,所以∠XBC+∠XCB=90°.(2)不变化.因为∠A=30°,所以∠ABC+∠ACB=150°;因为∠X=90°,所以∠XBC+∠XCB=90°,所以∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)- (∠XBC+∠XCB)=150°-90°=60°.。

最新鲁教版七年级数学下册(五四制)电子课本课件【全册】

最新鲁教版七年级数学下册(五四制)电子课本课件【全册】

第七章 二元一次方程组
最新鲁教版七年级数学下册(五四 制)电子课本课件【全册】
最新鲁教版七年级数学下册(五四 制)电子课本课件【页 0132页 0147页 0181页 0183页 0202页 0247页 0295页 0315页 0366页 0444页 0466页 0499页 0534页
第七章 二元一次方程组 2 解二元一次方程组 4 二元一次方程与一次函数 综合与实践 哪一款“套餐”更合适? 1 定义与命题 3 基本事实与定理 5 平行线的性质定理 第九章 概率初步 2 频率的稳定性 第十章 三角形的有关证明 2 等腰三角形 4 线段的垂直平分线 第十一章 一元一次不等式和一元一次不等式组 2 不等式的基本性质 4 一元一次不等式 6 一元一次不等式组

鲁教版七年级数学下册(五四制)电子课本课件【全册】

鲁教版七年级数学下册(五四制)电子课本课件【全册】

第七章 二元一次方程组
鲁教版七年级数学下册(五四制)电 子课本课件【全册】
1 二元一次方程组
鲁教版七年级数学下册(五四制)电 子课本课件【全册】
鲁教版七年级数学Байду номын сангаас册(五四制) 电子课本课件【全册】目录
0002页 0010页 0035页 0082页 0110页 0132页 0154页 0165页 0207页 0249页 0269页 0320页 0382页 0431页 0464页 0502页
第七章 二元一次方程组 2 解二元一次方程组 4 二元一次方程与一次函数 综合与实践 哪一款“套餐”更合适? 1 定义与命题 3 基本事实与定理 5 平行线的性质定理 第九章 概率初步 2 频率的稳定性 第十章 三角形的有关证明 2 等腰三角形 4 线段的垂直平分线 第十一章 一元一次不等式和一元一次不等式组 2 不等式的基本性质 4 一元一次不等式 6 一元一次不等式组

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。

七年级下册数学单元测试卷及答案鲁教版

七年级下册数学单元测试卷及答案鲁教版

七年级下册数学单元测试卷及答案鲁教版本次七年级下册数学单元测试由鲁教版出版社出版,针对学生对课本知识的掌握情况,使用了有效的评估方式,旨在帮助学生检验学习成果,为下一步学习指明方向。

本文为大家介绍七年级下册数学单元测试卷及答案鲁教版。

下面是七年级下册数学单元测试卷及答案鲁教版:一、试卷结构1. 七年级下册数学试卷一共八大题,总分100分:A. 分段函数1题,10分;B. 直线与圆1题,10分;C. 相似三角形1题,10分;D. 等差或等比数列1题,10分;E. 正多边形1题,10分;F. 空间几何1题,15分;G. 三角形1题,15分;H. 扩展应用1题,20分。

二、答案1. 分段函数题和答案:问题:已知函数f(x)= {-2x+1,x<3;x-3,x≥3,(1)求函数f(x);(2)求曲线y=f(x)的焦点;(3)若 x+y= -1,求一组解;答案:(1)-2x+1,x-3;(2)F(0,-1);(3) x=-2,y=3.2. 直线与圆题和答案:问题:已知直线y=2x-2,圆C:(x-1)²+(y-2)²=25(1)求圆C的方程;(2)求直线y=2x-2与圆C的位置关系;(3)若直线与圆C相切,求圆心与相切点到直线的距离。

答案:(1)(x-1)² +(y-2)²=25;(2)相交一点;(3)d=√13/2.3. 相似三角形题和答案:问题:已知两个三角形,ABC的顶点坐标分别为A(2,1),B(-4,3),C(3,-5),而A′B′C′的顶点坐标分别为A′(2,-3),B′(-4,-1),C′(3,7).(1)求AB:AB′的倍数;(2)判断两个三角形ABC和A′B′C′是否相似.答案:(1) 1:2;(2)相似.4. 等差或等比数列题和答案:问题:已知数列{an},a1=1,a2=-2,a3=-5,an=2.a(n-1)+3.a(n-2).(1)求数列{an}的通项公式;(2)判断数列{an}是等差数列还是等比数列.答案:(1) an = 2(1)n-3(-2)n-1+3(-5)n-2;(2)等比数列.5. 正多边形题和答案:问题:已知多边形□ABCD的顶点A,B,C,D分别坐标为(2.2),(-1.-1),(-4.4),(3.4)(1)求多边形□ABCD的面积;(2)判断ABCD是凸多边形还是凹多边形;答案:(1) S = 20;(2)凸多边形.6. 空间几何题和答案:问题:已知空间四点A(2,0,1),B(-1,1,-1),C(-2,-3,4),D(4,1,5).(1)求这四点的夹角;(2)求这四点组成的平面ABCD的法向量;答案:(1) θ=167.49°;(2)n=(-3,4,4).7. 三角形题和答案:问题:已知∆ABC满足:A(1,2),B(1,-2),C(-2,0);(1)求∆ABC的面积;(2)若∆ABC的角A,B,C都是锐角,求余弦定理的三个等式的值;答案:(1) S=6;(2)cosA=3/4,cosB=-3/4,cosC=5/4.8. 扩展应用题和答案:问题:小明、小芳和小华分别从小明家、小芳家、小华家出发沿着线段KN 去商场,小明、小芳、小华的速度分别为:V1=30Km/h、V2=50Km/h、V3=45Km/h。

鲁教版(五四制)数学七年级上册第五章综合素质评价卷(word、含答案)

鲁教版(五四制)数学七年级上册第五章综合素质评价卷(word、含答案)

第五章综合素质评价一、选择题(每题3分,共36分)1.点P(-4,-3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°3.点P(3+a,a+1)在y轴上,则点P的坐标为()A.(2,0) B.(0,-2) C.(0,2) D.(-2,0) 4.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3) B.(-2,1) C.(-2,-2.5) D.(3,-2)5.已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m+n的值为() A.1 B.-1 C.0 D.36.在平面直角坐标系中,点M在第四象限,它到x轴、y轴的距离分别为12和4,则点M的坐标为()A.(4,-12) B.(-4, 12) C.(-12,4) D.(-12,-4) 7.象棋在中国有着悠久的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为()A.(-3,3) B.(0,3) C.(3,2) D.(1,3)8.如图,将长为3的长方形ABCD放在平面直角坐标系中(AB⊥x轴),若点D的坐标为(6,3),则点A的坐标为()A.(5,3) B.(4,3) C.(4,2) D.(3,3)9.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.310.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将△BDE 翻折,点B落在点B′处,则点B′的坐标为()A.(1,1) B.(2,1)C.(1.5,1) D.(1.5,1.5)11.在平面直角坐标系中,对于平面内任意一点(a,b),规定以下三种变换:①△(a,b)=(-a,b);②O(a,b)=(-a,-b);③Ω(a,b)=(a,-b).按照以上变换有:△(O(1,2))=(1,-2),那么O(Ω(3,4))等于()A.(3,4) B.(3,-4)C.(-3,4) D.(-3,-4)12.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2 023的坐标是()A.(1 010,0) B.(1 010,1)C.(1 011,0) D.(1 011,1)二、填空题(每题3分,共18分)13.在平面直角坐标系中,点Q(-2,6)关于y轴对称的点Q′的坐标是________.14.如图,点O,M,A,B,C在同一平面内.若规定点A的位置记为(50,20°),点B的位置记为(30,60°),则点C的位置应记为__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________________.17.在平面直角坐标系中,将点A′(-b,-a)称为点A(a,b)的“关联点”.例如点B′(-2,-1)是点B(1,2)的“关联点”.如果一个点和它的“关联点”在同一象限内,那么这个点在第________象限.18.已知平面直角坐标系内一点A(-1,2),O为坐标原点,点C是y轴上一点,且△AOC是等腰三角形,则点C的坐标是________________.三、解答题(19题8分,20题9分,21题10分,24题15分,其余每题12分,共66分)19.如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点C(60°,-30)和点D(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420 m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系.(2)李华同学是用什么来描述牡丹园的位置的?(3)请用张明同学所用的方法,描述出公园内其他地方的位置.21.已知点P(2x,3x-1)是平面直角坐标系内的点.(1)若点P在第三象限,且到两坐标轴的距离和为11,求x的值;(2)已知点A(3,-1),点B(-5,-1),点P在直线AB的上方,且到直线AB的距离为5,求x的值.22.△ABC 在平面直角坐标系中的位置如图所示.(1)写出A ,B ,C 三点的坐标.(2)若△ABC 各顶点的纵坐标不变,横坐标都乘-1,请你在同一坐标系中描出对应的点A ′,B ′,C ′,并依次连接这三个点,所得的△A ′B ′C ′与△ABC 有怎样的位置关系?(3)求△ABC 的面积.23.已知当m ,n 都是实数,且满足2m =8+n 时,称P ⎝⎛⎭⎪⎫m -1,n +22为“开心点”.例如点A (5,3)为“开心点”.理由如下:令m -1=5,n +22=3,解得m =6,n =4,所以2m =2×6=12,8+n =8+4=12,所以2m =8+n .所以点A (5,3)是“开心点”.(1)判断点B (4,10)是否为“开心点”,并说明理由.(2)若点M (a ,2a -1)是“开心点”,请判断点M 在第几象限?并说明理由.24.已知A(-3,0),C(0,4),点B在x轴上,且AB=4.(1)求点B的坐标,在平面直角坐标系中画出△ABC,并求出△ABC的面积.(2)在y轴上是否存在点P,使得以A,C,P为顶点的三角形的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.(3)在y轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请画出点Q的位置,并直接写出点Q的坐标;若不存在,请说明理由.答案一、1.C 2.D 3.B 4.D 5.A 6.A7.D 8.D 9.C 10.B 11.C 12.C二、13.(2,6) 14.(34,110°)15.二16.(3,0)或(9,0) 设点P 的坐标为(x ,0),根据题意得12×4×|6-x |=6,解得x =3或x =9,所以点P 的坐标为(3,0)或(9,0).17.二或四18.(0,5)或(0,-5)或(0,4)或⎝ ⎛⎭⎪⎫0,54 三、19.解:(1)(-75°,-15)表示南偏东75°距O 点15 m 处;(10°,-25)表示南偏西10°距O 点25 m 处.(2)如图.20.解:(1)张明同学是以中心广场为原点、正东方向为x 轴正方向、正北方向为y 轴正方向建立平面直角坐标系的,图略.(2)李华同学是用方向和距离来描述牡丹园的位置的.(3)用张明同学所用的方法,描述如下:中心广场(0,0),音乐台(0,400),望春亭(-200,-100),游乐园(200,-400),南门(100,-600).21.解:(1)当点P 在第三象限时,点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x .故1-3x -2x =11,解得x =-2.(2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53.22.解:(1)A (3,4),B (1,2),C (5,1).(2)图略.△A ′B ′C ′与△ABC 关于y 轴对称.(3)S △ABC =3×4-12×2×2-12×2×3-12×1×4=5.23.解:(1)点B (4,10)不是“开心点”.理由如下:令m -1=4,n +22=10,解得m =5,n =18,则2m =2×5=10,8+n =8+18=26,所以2m ≠8+n ,所以点B (4,10)不是“开心点”.(2)点M 在第三象限.理由如下:令m -1=a ,n +22=2a -1, 所以m =a +1,n =4a -4.因为点M (a ,2a -1)是“开心点”,所以2m =8+n ,即2a +2=8+4a -4,解得a =-1,所以2a -1=-3,所以M (-1,-3),所以点M 在第三象限.24.解:(1)因为点B 在x 轴上,所以设点B 的坐标为(x ,0).因为A (-3,0),AB =4,所以|x -(-3)|=4,解得x =-7或x =1.所以点B 的坐标为(-7,0)或(1,0).在平面直角坐标系中画出△ABC 如图①所示,所以S △AB ₁C =[(-3)-(-7)]×42=8,S △AB ₂C =[1-(-3)]×42=8. 综上所述,△ABC 的面积为8.(2)在y 轴上存在点P ,使得以A ,C ,P 为顶点的三角形的面积为9. 设点P 的坐标为(0,y ),当点P 在点C 的上方时,S △ACP =(y -4)×|-3|2=9,解得y =10; 当点P 在点C 的下方时,S △ACP =(4-y )×|-3|2=9, 解得y =-2.综上所述,点P 的坐标为(0,10)或(0,-2).(3)在y 轴上存在点Q ,使得△ACQ 是等腰三角形.如图②,点Q 的坐标为(0,9)或(0,-4)或⎝ ⎛⎭⎪⎫0,78或(0,-1).。

2022年鲁教版(五四制)六年级数学下册第五章基本平面图形章节测评试卷(含答案解析)

2022年鲁教版(五四制)六年级数学下册第五章基本平面图形章节测评试卷(含答案解析)

六年级数学下册第五章基本平面图形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC 与射线CD 是同一条射线.其中结论正确的有( )A .1个B .2个C .3个D .4个2、若α∠的补角是130︒,则α∠的余角是( ) A .30B .40︒C .120︒D .150︒3、若一个角为45°,则它的补角的度数为( ) A .55°B .45°C .135°D .125°4、下列说法错误的是( ) A .两点之间,线段最短B .经过两点有一条直线,并且只有一条直线C .延长线段AB 和延长线段BA 的含义是相同的D .射线AB 和射线BA 不是同一条射线5、已知α∠与β∠满足23180βα∠∠+=︒,下列式子表示的角:①90β︒-∠;②3302α︒+∠;③12αβ∠+∠;④2αβ∠+∠中,其中是β∠的余角的是( )A .①②B .①③C .②④D .③④6、如图,BOC ∠在AOD ∠的内部,且20BOC ∠=︒,若AOD ∠的度数是一个正整数,则图中所有角...的度数之和可能是( )A .340°B .350°C .360°D .370°7、如图,∠AOB ,以OA 为边作∠AOC ,使∠BOC =12∠AOB ,则下列结论成立的是( )A .AOC BOC ∠=∠B .AOC AOB ∠<∠C .AOC BOC ∠=∠或2AOC BOC ∠=∠D .AOC BOC ∠=∠或3AOC BOC ∠=∠8、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点B ,若45ABE ∠=︒,30GBH ∠=︒,那么FBC ∠的度数为( )A.10︒B.15︒C.25︒D.309、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是()A.两点确定一条直线B.经过一点有无数条直线C.两点之间,线段最短D.一条线段等于已知线段10、如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠β+∠AOB=∠AOCD.∠AOC也可用∠O来表示第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、90°-32°51′18″=______________.2、同一直线上有两条线段,AB CD (A 在B 的左边,C 在D 的左边),M ,N 分别是,AB CD 的中点,若5cm MN =,7cm BC =,则AD =_________cm .3、如图,已知点C 为AB 上一点,112cm,2AC CB AC ==,D ,E 分别为AC ,AB 的中点,则DE 的长为_________cm .4、如图,在AOB ∠的内部有3条射线OC 、OD 、OE ,若52AOC ∠︒=,14BOE BOC ∠=∠,14BOD AOB ∠=∠,则DOE ∠=__________︒.5、南偏西25°:_________北偏西70°:_________南偏东60°:_________三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB 、CD 相交于点O ,AB CD ⊥,90EOF ∠=︒.(1)若30COE ∠=︒,则BOF ∠= __________.(2)从(1)的时刻开始,若将EOF ∠绕O 以每秒15的速度逆时针旋转一周,求运动多少秒时,直线AB 平分EOF ∠.(3)从(1)的时刻开始,若将EOF ∠绕O 点逆时针旋转一周,如果射线OP 是COE ∠的角平分线,请直接写出此过程中AOP ∠与BOF ∠的数量关系.(不考虑OE 与AB 、CD 重合的情况) 2、将一副三角板放在同一平面内,使直角顶点重合于点O .(1)如图①,若155AOB ∠=︒,则DOC ∠=_______︒,DOC ∠与AOB ∠的关系是_______; (2)如图②,固定三角板BOD 不动,将三角板AOC 绕点O 旋转到如图所示位置. ①(1)中你发现的DOC ∠与AOB ∠的关系是否仍然成立,请说明理由;②如图②,若70BOC ∠=︒,在BOC ∠内画射线OP ,设(050)∠=︒<<BOP x x ,探究发现随着x 的值的变化,图中以O 为顶点的角中互余角的对数也变化.请直接写出以O 为顶点的角中互余角的对数有哪几种情况?并写出每一种情况相应的x 的取值或取值范围.3、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.(1)燕山前进二小在燕山前进中学的 方向,距离大约是 m . (2)燕化附中在燕山向阳小学的 方向.(3)小辰从燕山向阳小学出发,沿正东方向走200m ,右转进入岗南路,沿岗南路向南走150m ,左转进入迎风南路,沿迎风南路向正东方向走450m 到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.4、如图①.直线DE 上有一点O , 过点O 在直线DE 上方作射线OC , 将一直角三角板AOB (其中45OAB ∠=)的直角顶点放在点O 处, 一条直角边OB 在射线 OE 上, 另一边OA 在直线DE 的上方,将直角三角形绕着点O 按每秒15的速度顺时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到图②的伩置时, 射线OB 恰好平分COE ∠, 此时, AOC ∠与AOD ∠ 之间的数量关系为____________.(2)若射线OC 的位置保持不变, 且120COD ∠=,①在旋转过程中,是否存在某个时刻,使得射线OB , 射线OC , 射线OE 中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出t 的值; 若不存在, 请说明理由; ②在旋转过程中, 当边AB 与射线OD 相交时, 如图③, 请直接写出BOC AOD ∠∠-的值____________.5、如图1,在数轴上点A 表示数a ,点B 表示数b ,O 为原点,AB 表示点A 和点B 之间的距离,且a ,b 满足()2520a b a +++=.(1)若T 为线段AB 上靠近点B 的三等分点,求线段OT 的长度;(2)如图2,若Q 为线段AB 上一点,C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),运动的时间为t s .若C 、D 运动到任意时刻时,总有2QD AC =,请求出AQ 的长;(3)如图3,E 、F 为线段OB 上的两点,且满足2BF EF =,4OE =,动点M 从A 点、动点N 从F 点同时出发,分别以3个单位/s ,1个单位/s 的速度沿直线AB 向右运动,是否存在某个时刻使得EM BN AE +=成立?若存在,求此时MN 的长度;若不存在,说明理由.-参考答案-一、单选题 1、A 【解析】 【分析】根据直线、线段、射线的区别逐项分析判断即可 【详解】解:①图中只有直线BD ,1条直线,原说法错误; ②图中共有2×3+1×2=8条射线,原说法错误;③图中共有6条线段,即线段,,,,,AB AC AD BC BD CD ,原说法是正确的; ④图中射线BC 与射线CD 不是同一条射线,原说法错误. 故正确的有③,共计1个故选:A.【点睛】本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.2、B【解析】【分析】直接利用一个角的余角和补角差值为90°,进而得出答案.【详解】解:∵∠α的补角等于130°,∴∠α的余角等于:130°-90°=40°.故选:B.【点睛】本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.3、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵一个角为45°,∴它的补角的度数为18045135︒-︒=︒.故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键. 4、C 【解析】 【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断. 【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB 和延长线段BA 的含义是不同的,故该项符合题意;D. 射线AB 和射线BA 不是同一条射线,故该项不符合题意; 故选:C . 【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键. 5、B 【解析】 【分析】将每项加上β∠判断结果是否等于90°即可. 【详解】解:①∵90β︒-∠+β∠=90°,故该项是β∠的余角; ②∵23180βα∠∠+=︒, ∴2036βα∠︒-=∠,∴3302α︒+∠+β∠=90°+56α∠,故该项不是β∠的余角;③∵2036βα∠︒-=∠,∴12αβ∠+∠+β∠=90°,故该项是β∠的余角;④∵2036βα∠︒-=∠,∴2αβ∠+∠+β∠=120°+23∠α,故该项不是β∠的余角; 故选:B . 【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键. 6、B 【解析】 【分析】根据角的运算和题意可知,所有角的度数之和是∠AOB +∠BO C +∠COD +∠AOC +∠BOD + ∠AOD ,然后根据20BOC ∠=︒,AOD ∠的度数是一个正整数,可以解答本题. 【详解】解:由题意可得,图中所有角的度数之和是∠AOB +∠BOC +∠COD +∠AOC +∠BOD +∠AOD=3∠AOD+∠BOC ∵20BOC ∠=︒,AOD ∠的度数是一个正整数, ∴A、当3∠AOD+∠BOC =340°时,则AOD ∠=3203︒,不符合题意; B 、当3∠AOD+∠BOC =3×110°+20°=350°时,则AOD ∠=110°,符合题意;C、当3∠AOD+∠BOC=360°时,则AOD∠=3403︒,不符合题意;D、当3∠AOD+∠BOC=370°时,则AOD∠=3503︒,不符合题意.故选:B.【点睛】本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.7、D【解析】【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=∠BOC;当OC在∠AOB外部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.8、B【解析】【分析】根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.【详解】解:∵∠ABE=45°,∴∠CBE=45°,∴∠CBG=45°,∵∠GBH=30°,∴∠FBG=60°,∴∠FBC=∠FBG-∠CBG=60°-45°=15°.【点睛】此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.9、C【解析】【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.10、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.二、填空题1、57842'''︒【解析】【分析】根据度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减,可得答案.【详解】解:90°-32°51′18″=89°60′-32°51′18″=89°59′60″-32°51′18″′=57°8′42″. 故答案为:57°8′42″.【点睛】本题考察了度分秒的换算,度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减.1°=60′,1′=60″.2、17【解析】【分析】根据A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,得出AM =BM ,CN =DN ,当点B 在点C 的右边时满足条件,分三种情况,当点B 在NM 上,设AM =BM =x ,得出BN =MN -BM =5-x ,ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当MN 在BC 上,设AM =BM =x ,CM =7-x , 得出ND =CN =12-x ,可求AD =AM +MN +ND =x +5+12-x =17;当点C 在MN 上,设AM =BM =x ,MC =BM -BC =x -7,得出CN =DN =MN -MC =5-(x -7)=12-x ,可求AD =AM +MN +ND =x +5+12-x =17即可.【详解】解:∵A 在B 的左边,C 在D 的左边,M ,N 分别是,AB CD 的中点,∴AM =BM ,CN =DN ,当点B在点C的右边时满足条件,分三种情况:当点B在NM上,设AM=BM=x,∴BN=MN-BM=5-x,∴CN=BC+BN=7+5-x=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,∴BN=x-5,CM=7-x,∴CN=CM+MN=7-x+5=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,∴MC=BM-BC=x-7,∴CN=DN=MN-MC=5-(x-7)=12-x,∴AD=AM+MN+ND=x+5+12-x=17;综合得AD=17.故答案为17.【点睛】本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.3、3【解析】【分析】AC,得到CB=6cm,求得AB=18cm,根据D、E分别为AC、AB的中点,分别根据AC=12cm,CB=12求得AE,AD的长,利用线段的差,即可解答.【详解】AC,解:∵AC=12cm,CB=12∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵D、E分别为AC、AB的中点,AB=9cm,∴AE=12AC=6cm,AD=12∴DE=AE﹣AD=3cm.故答案为3.【点睛】本题考查了线段的中点和线段的和差,熟知各线段之间的和、差及倍数关系是解答此题的关键.4、13【解析】【分析】先用含∠BOE 的代数式表示出∠AOB ,进而表示出∠BOD ,然后根据∠DOE =∠BOD -∠BOE 即可得到结论.【详解】解:∵∠BOE =14∠BOC , ∴∠BOC =4∠BOE ,∴∠AOB =∠AOC +∠BOC =52°+4∠BOE ,∴∠BOD =14∠AOB =13+∠BOE , ∴∠DOE =∠BOD -∠BOE =13,故答案为:13.【点睛】本题考查了角的和差倍分计算,正确的识别图形是解题的关键.5、 射线OA 射线OB 射线OC【解析】略三、解答题1、 (1)30°(2)11或23秒 (3)1902AOP BOF ∠=︒+∠或1902AOP BOF ∠=︒-∠ 【解析】【分析】(1)根据AB CD ⊥,30COE ∠=︒,利用余角性质得出∠EOB =90°-∠COE =90°-30°=60°,根据90EOF ∠=︒,利用余角性质得出∠BOF =90°-∠EOB =90°-60°=30°即可;(2)解分两种情形,OA 平分EOF ∠,得出1452EOA EOF ∠=∠=︒,904545FOC ∠=︒-︒=︒,设运动t秒时 根据运动转过的角度列方程15304590t =++,OB 平分EOF ∠,1452EOB EOF ∠=∠=︒,根据运动转过的角度列方程153027045t =++,解方程即可;(3)分四种情况OE 在∠COB 内,OE 在∠AOC 内,OE 在∠AOD 内,OE 在∠DOB 内,根据射线OP 是COE ∠的角平分线∠COP =∠EOP ,利用角的和差计算即可.(1)解:∵AB CD ⊥,30COE ∠=︒,∴∠EOB =90°-∠COE =90°-30°=60°,∵90EOF ∠=︒,∴∠BOF =90°-∠EOB =90°-60°=30°,故答案是:30°;(2)解分两种情形,情况一∵OA 平分EOF ∠, ∴1452EOA EOF ∠=∠=︒,∴904545FOC ∠=︒-︒=︒,设运动t 秒时,OA 平分EOF ∠,根据题意得:15304590t =++,解得:11t =;情况二∵OB平分EOF∠,∴1452EOB EOF∠=∠=︒,设运动t秒时,OB平分EOF∠,根据题意得:153027045t=++,解得:23t=;综上:运动11或23秒时,直线AB平分EOF∠;(3)解:∵射线OP是COE∠的角平分线∴∠COP=∠EOP,∠AOC=∠EOF=90°,∴∠AOP=90°+∠COP=90°+∠POE,∵∠COE=∠BOF,∴∠POE=11=22COE BOF∠∠,∴1902AOP BOF∠=︒+∠,∵∠COE=∠BOF,射线OP是COE∠的角平分线,∴∠POC=11=22COE BOF∠∠,∴∠AOP=90°-∠COP=90°-11=9022COE BOF∠︒-∠,∴1902AOP BOF∠=︒-∠,∵∠COE=90°+∠COF=∠BOF,射线OP是COE∠的角平分线,∴∠POC=11=22COE BOF∠∠,∴∠AOP=90°-∠COP=90°-11=9022COE BOF∠︒-∠,∴1902AOP BOF∠=︒-∠,∵∠COE=90°+∠BOE=∠BOF,射线OP是COE∠的角平分线,∴∠POC=11=22COE BOF∠∠,∴∠AOP=90°+∠COP=90°+11=9022COE BOF∠︒+∠,∴1902AOP BOF∠=︒+∠;综上:1902AOP BOF∠=︒+∠或1902AOP BOF∠=︒-∠.【点睛】本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.2、 (1)25 ,互补(2)①成立 ,理由见解析;②共有3种情况,当x =35时,互余的角有4对;当x =20时,互余的角有6对;当0< x <50且x ≠35和20时,互余的角有3对【解析】【分析】(1)利用周角的定义可得360,AOBBOD COD AOC 再求解,COD 即可得到答案; (2)①利用180,AODCOD BOD 结合角的和差运算即可得到结论;②先利用70,BOC ∠=︒ 90,AOC BOD 求解20,70,COD AOD 再分三种情况讨论:如图,当35BOP x 时,则35,COP 如图,当20BOP x 时,则50,70,COP DOP 如图,当050x 且35,20x x 时,从而可得答案. (1)解:90,90,155,AOC BOD AOB而360,AOB BODCOD AOC 360909015525,COD 15525180,AOB COD故答案为:25, 互补(2)解:①成立,理由如下:90,AOC BOD 180,AOC BOD180,AOD COD BOD180.COD AOB②70,BOC 90,AOC BOD 907020,902070,COD AOD 如图,当35BOP x 时,则35,COP所以图中以O 为顶点互余的角有:,AOD COD ;,BOC COD ;,BOP DOP ;,COP DOP 共4对;如图,当20BOP x 时,则50,70,COP DOP所以图中以O 为顶点互余的角有:,AOD COD ;,BOC COD ;,BOP DOP ;,BOP AOD ;,DOC DOP ;,BOP BOC 共6对;如图,当050x 且35,20x x 时,所以图中以O 为顶点互余的角有:,AOD COD ;,BOC COD ;,BOP DOP 共3对.【点睛】本题考查的是几何图形中角的和差运算,互余与互补的含义,熟练的运用互余与互补的概念判断余角与补角,清晰的分类讨论是解本题的关键.3、 (1)正西,100(2)南偏东77°(3)见解析【解析】【分析】(1)根据图中位置解决问题即可.(2)根据图中位置解决问题即可.(3)根据题意画出路线即可.(1)燕山前进二小在燕山前进中学的正西方向,距离大约是100m .故答案为:正西,100.(2)燕化附中在燕山向阳小学的南偏东77︒方向故答案为:南偏东77︒.(3)小辰行走的路线如图:【点睛】本题考查作图-应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.4、 (1)AOC AOD∠=∠(2)①2t=;②30︒【解析】【分析】(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC=90°,∠BOE+∠AOD=90°,利用等角的余角性质得出∠AOC=∠AOD即可;(2)①存在,根据120COD∠=,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.(1)解:∵OB平分∠COE,∴∠COB=∠EOB,∵∠AOB=90°,∴∠BOC+∠AOC=90°,∠BOE+∠AOD=90°,∴∠AOC=∠AOD,故答案为:∠AOC=∠AOD;(2)解:①存在,∵120COD∠=,∴∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边OB在射线OE上,∠EOB=∠BOC=11603022COE∠=⨯︒=︒,则15°t=30°,∴t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∴∠EOB=2∠EOC=120°>90°,∴当OC平分∠EOB时,∠EOB不是锐角舍去,当OE 平分∠BOC 时,∠EOB =∠EOC =60°,∴∠BOC =2∠EOC =120°>90°,当OE 平分∠BOC 时,∠BOC 不是锐角舍去,综上,所有满足题意的t 的取值为2,②如图∵∠COD =120°,当AB 与OD 相交时,∵∠BOC=∠COD -∠BOD=120°-∠BOD,∠AOD=∠AOB -∠BOD=90°-∠BOD,∴()1209030BOC AOD BOD BOD ∠∠-=︒-∠-︒-∠=︒,故答案为:30°.【点睛】本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.5、 (1)5(2)5(3)存在,9或0【解析】【分析】(1)根据绝对值的非负性及偶次方的非负性求出a =-5,b =10,得到AB =10-(-5)=15,由T 为线段AB 上靠近点B 的三等分点,得到BT =5,根据OT=OB-BT 求出结果;(2)由运动速度得到BD =2QC ,由C 、D 运动到任意时刻时,总有2QD AC =,得到BQ =2AQ ,即可求出AQ ;(3)先求出BF=4,EF =2,AE =9.当03m ≤≤时,得到9-3m +4-m =9,当34m <≤时,得到3m-9+4-m =9;当m >4时,得到3m-9+m-4=9,解方程即可.(1) 解:∵()2520a b a +++=,∴a +5=0,b +2a =0,∴a =-5,b =10,∴点A 表示数-5,点B 表示数10,∴AB =10-(-5)=15,∵T 为线段AB 上靠近点B 的三等分点,∴BT =5,∴OT=OB-BT =5;(2)解:∵C 、D 两点分别从Q 、B 出发以54个单位/s ,52个单位/s 的速度沿直线BA 向左运动(C 在线段AQ 上,D 在线段BQ 上),∴BD =2QC ,∵C 、D 运动到任意时刻时,总有2QD AC =,∴BQ =2AQ ,∵BQ +AQ =15,∴AQ =5;(3)解:∵2BF EF =,4OE =,∴BF=4,EF =2,AE =9,设点M 运动ms ,当03m ≤≤时,如图,∵EM=9-3m ,BN =4-m ,EM BN AE +=,∴9-3m +4-m =9,解得m =1,∴MN =9-3m +2+m =9;当34m <≤时,如图,∵EM=3m-9,BN=4-m,EM BN AE+=,∴3m-9+4-m=9,解得m=7(舍去);当m>4时,如图,∵EM=3m-9,BN=m-4,EM BN AE+=,∴3m-9+m-4=9,解得m=112;∴MN=15-3m+m-4=0;综上,存在,此时MN的长度为9或0.【点睛】此题考查数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,数轴上动点问题,一元一次方程,正确掌握数轴上两点间的距离公式是解题的关键.。

初中数学鲁教版(五四制)七年级下册第十章 三角形的有关证明5 角平分线-章节测试习题(2)

初中数学鲁教版(五四制)七年级下册第十章 三角形的有关证明5 角平分线-章节测试习题(2)

章节测试题1.【答题】如图,Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB=12,CD=3,则△DAB的面积为()A. 12B. 18C. 20D. 24【答案】B【分析】根据角的平分线的性质解答即可.【解答】解:过D作DE⊥AB于E. ∵∠C=90°,BD平分∠ABC交AC于点D,∴DE=DC=3,∴△DAB的面积=AB•ED=×12×3=18选B.2.【答题】如图,AE平分∠CAB,CD∥AB交AE于点D,若∠C=120°,则∠EAB的大小为()A. 30°B. 35°C. 40°D. 45°【答案】A【分析】根据角的平分线的性质解答即可.【解答】解:∵CD∥AB,∠C=120°,∴∠BAC=60°,∵AE为∠CAB的平分线,∴∠EAB=∠BAC=30°.选A.3.【答题】如图,△ABC中,∠C=90,∠B=40.AD是∠BAC的平分线,则∠ADB的度数为()A. 65B. 105C. 100D. 115【答案】D【分析】根据角的平分线的性质解答即可.【解答】∵∠C=90,∠B=40,∴∠BAC=90°-40°=50°.∵AD是∠BAC的平分线,∴∠CAD=,∴∠ADB=C+∠CAD=90°+25°=115°.选D.4.【答题】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DA平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的是()A. 4个B. 3个C. 2个D. 1个【答案】B【分析】根据角的平分线的性质解答即可.【解答】根据题中条件,结合图形及角平分线的性质得到:∵AD平分∠BAC∴∠DAC=∠DAE∵∠C=90°,DE⊥AB∴∠C=∠E=90°∵AD=AD∴△DAC≌△DAE∴∠CDA=∠EDA∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC∴BE+AC=AB∴④BE+AC=AB正确;∵∠BDE=90°-∠B,∠BAC=90°-∠B∴∠BDE=∠BAC∴②∠BAC=∠BDE正确.选B.5.【答题】如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=2,AB=6,则△ABD的面积是()A. 4B. 6C. 8D. 12【答案】B【分析】根据角的平分线的性质解答即可.【解答】解:作DE⊥AB于E,由基本作图可知,AP平分∠CAB,∵AP平分∠CAB,∠C=90∘,DE⊥AB,∴DE=DC=2,∴△ABD的面积选B.6.【答题】如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC长是A. 9B. 8C. 7D. 6【答案】D【分析】根据角的平分线的性质解答即可.【解答】作DF⊥AC于点F,∵AD平分∠BAC,DE⊥AB,∴DE=DF,∴S△ABC=S△ADB+S△ADC=AB·DE+AC·DF=DE(AB+AC)=10,即×2×(4+AC)=10,∴AC=6.选D.方法总结:本题关键在于将△ABC分割成两个三角形的面积之和,通过角平分线的性质可得两个三角形的高相等.7.【答题】如图,∠POB=∠POA,PD⊥OA于D,PE⊥OB于E,下列结论错误的是()A. PD=PEB. OD=OEC. PD=ODD. ∠DPO=∠EPO【答案】C【分析】根据角的平分线的性质解答即可.【解答】解:∵∠POB=∠POA,PD⊥OA,PE⊥OB,在△PEO和△PDO中∴△PEO≌△PDO,∴OD=OE,∠DPO=∠EPO,即选项A. B.D都正确,根据已知不能推出PD=OD,即选项C错误;选C.方法总结:角平分线上的点到角两边的距离相等.8.【答题】如图,在△ABC中,点D在边BC上,若∠BAD=∠CAD,AB=6,AC=3,S△ABD=3,则S△ACD=()A. 3B. 6C.D.【答案】C【分析】根据角的平分线的性质解答即可.【解答】过D作DP⊥AC交AC的延长线于P,DQ⊥AB于Q,∵∠BAD=∠CAD,∴DP=DQ,∵S△ABD=AB•DQ=•DQ=3,∴DQ=1,∴DP=1,∴S△ACD=AC•DP=,选C.9.【答题】如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是()A. 25B. 84C. 42D. 21【答案】C【分析】根据角的平分线的性质解答即可.【解答】连接OA,作OE⊥AB于E,OF⊥AC于F,又∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=4,OD=OF=4,∴S△ABC=S△AOB+S△BOC+S△AOC=•OE•AB+ •OD•BC+ •OF•AC= ×4×(AB+BC+AC)= ×4×21=42,选C.10.【答题】如图,平分,于点,,则点到的距离是().A.B.C.D.【答案】B【分析】根据角的平分线的性质解答即可.【解答】∵且于点.∴点到的距离为.∵平分.∴点到的距离为.选B.11.【答题】如图,BD是∠ABC的角平分线,AD⊥AB,AD=3,BC=5,则△BCD的面积为()A. 7.5B. 8C. 10D. 15【答案】A【分析】根据角的平分线的性质解答即可.【解答】作DE⊥BC于E,根据角平分线的性质,由BD是∠ABC的角平分线,AD⊥AB,DE⊥BC,求出DE=DA=3,根据三角形面积公式计算S△BCD=×BC×DE=7.5,选A.12.【答题】如图,点O是△ABC的两外角平分线的交点,下列结论:①OB=OC;②点O到直线AB、AC的距离相等;③点O到△ABC的三边所在直线的距离相等;④点O在∠A的平分线上,正确的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据角的平分线的性质解答即可.【解答】解:如图,过点O作OE⊥AB于E,作OF⊥BC于F,作OG⊥AC于G,∵点O是△ABC的两外角平分线的交点,∴OE=OG,OF=OG,∴OE=OF=OG,∴点O在∠B的平分线上,故②③④正确,只有点G是AC的中点时,BO=CO,故①错误,综上所述,说法正确的是②③④.选C.方法总结:过点O作OE⊥AB于E,作OF⊥BC于F,作OG⊥AC于G,根据角平分线上的点到角的两边的距离相等可得OE=OF=OG,再根据到角的两边距离相等的点在角的平分线上解答.13.【答题】如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有().A. 1个B. 2个C. 3个D. 4个【答案】D【分析】根据角的平分线的性质解答即可.【解答】∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,在Rt△CDE和Rt△BDF中,,∴Rt△CDE≌Rt△BDF(HL),故①正确;∴CE=AF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正确;∵Rt△CDE≌Rt△BDF,∴∠DBF=∠DCE,∴A、B、C、D四点共圆,∴∠BDC=∠BAC,故③正确;∠DAE=∠CBD,∵Rt△ADE≌Rt△ADF,∴∠DAE=∠DAF,∴∠DAF=∠CBD,故④正确;综上所述,正确的结论有①②③④共4个. 选D.14.【答题】如图,在△ABC中,∠C=90°,AC=AE,AD是∠CAB的角平分线,DE⊥AB 于点E,若AB=6cmcm,则△DEB的周长是()A. 5cmB. 6cmC. 7cmD. 8cm【答案】B【分析】根据角的平分线的性质解答即可.【解答】解:∵AD是∠CAB的角平分线,DE⊥AB,∠C=90°,∴DC=DE,AC=AE,∴△DEB的周长=DE+BE+BD=BE+DC+BD=BE+BC=BE+AE=AB=6cm.选B.15.【答题】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB. 其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据角的平分线的性质解答即可.【解答】∵AD平分∠BAC∴∠DAC=∠DAE∵∠C=90°,DE⊥AB∴∠C=∠E=90°∵AD=AD∴△DAC≌△DAE∴∠CDA=∠EDA∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC∴BE+AC=AB∴④BE+AC=AB正确;∵∠BDE=90°-∠B,∠BAC=90°-∠B∴∠BDE=∠BAC∴②∠BAC=∠BDE正确.选C.16.【答题】如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB于点F,若ED=EF,则∠AEC的度数为()A. 60°B. 62°C. 64°D. 66°【答案】D【分析】根据角的平分线的性质解答即可.【解答】∵∠B=42°,AD⊥BC,∴∠BAD=48°,∵ED=EF,AD⊥BC,EF⊥AB,∴∠BAE=∠DAE=24°,∴∠AEC=∠B+∠BAE=66°,选D.17.【答题】如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,若BC=18,DE=8,则△BCE的面积等于()A. 36B. 54C. 63D. 72【答案】D【分析】根据角的平分线的性质解答即可.【解答】解:过E作EF⊥BC于F,∵CD是AB边上的高,BE平分∠ABC,交CD于点E,DE=8,∴DE=EF=8,∵BC=18,∴×BC×EF=×18×8=72,选D.18.【答题】如图,在Rt△ABC中,∠C=90°,BD是∠ABC的角平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是()A. B. C. mn D. 2mn【答案】B【分析】根据角的平分线的性质解答即可.【解答】作DM⊥AB,垂足为M,∵∠C=90°,BD是∠ABC的平分线,∴DM=DC,∵CD=n,AB=m,∴△ABD的面积=mn.故选择B.19.【答题】如图,在△ABC中,AD是它的角平分线,AB = 8cm, AC = 6cm,则S△ABD: S△ACD=()A. 4 : 3B. 3 : 4C. 16 : 9D. 9 : 16【答案】A【分析】根据角的平分线的性质解答即可.【解答】过点D分别作DE⊥AB,DF⊥AC,垂足分别为E、F,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABD=DE·AB,S△ADC=DF·AC,AB = 8cm, AC = 6cm,∴S△ABD:S△ACD =AB:AC=8:6=4:3,选A.20.【答题】如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE的度数是()A. 62°B. 31°C. 28°D. 25°【答案】C【分析】根据角的平分线的性质和全等三角形的判定和性质解答即可.【解答】如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴2∠BAE+2∠ABE=180°,即∠BAE+∠ABE=90°∴∠AEB=90°,∴∠BEC=90°﹣∠AED=62°,∴Rt△BCE中,∠CEB=62°,∴∠CBE=28°,∴∠ABE=∠CBE=28°.选C.。

鲁教版(五四制)七年级数学上册第二章达标测试卷含答案

鲁教版(五四制)七年级数学上册第二章达标测试卷含答案

鲁教版(五四制)七年级数学上册第二章达标测试卷一、选择题(每题3分,共36分)1.第24届冬奥会于2022年2月4日~2月20日在北京和张家口举办.下列四个图形分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()2.下列图案中,有且只有三条对称轴的是()3.在Rt△ABC中,∠C=90°,∠B=30°,AB=10 cm,则AC的长度为() A.10 cm B.20 cm C.5 cm D.15 cm 4.如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B′的度数为()A.110°B.70°C.90°D.30°5.如图是一张等边三角形纸片,剪去一个角后得到一个四边形,则∠1+∠2的度数是()A.180°B.220°C.240°D.300°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在() A.AC,BC两边上的高的交点处B.AC,BC两边上的中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图所示,那么哥哥球衣上的号码实际是()A.25 B.52 C.55 D.228.如图,将长方形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD按箭头方向向下对折,然后剪下一个小三角形.将纸片打开,则打开后的图形是()9.如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,连接AE,AF,若△AEF的周长为2,则BC的长是()A.2 B.3 C.4 D.无法确定10.如图,在△ABC中,AI,BI,CI分别平分∠BAC,∠ABC,∠ACB,且ID⊥BC,垂足为点D.若△ABC的周长为34 cm,ID=3 cm,则△ABC的面积为()A.51 cm2B.54 cm2C.56 cm2D.34 cm2 11.如图,AD⊥BC,BD=CD,∠E=∠CAE,△ABD的周长为12,DE=8,则△ADE的面积为()A.48 B.24 C.20 D.1612.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°二、填空题(每题3分,共18分)13.如图,已知OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为________.14.如图,在4×4的正方形网格中已将四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,则不符合条件的小正方形是__________.(填序号)15.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为________.16.在等腰三角形ABC中,AB=AC,腰AB上的高与AC的夹角为40°,则该等腰三角形顶角的度数为____________.17.如图,在长方形ABCD中,AD=5,AB=7.1,BE是∠ABC的平分线,把△ADE沿AE折叠,DE恰好落在BE上,点D的对应点为D′,D′E的长为________.18.如图,∠ABC=30°,点D是∠ABC内的一点,且DB=9,若点E,F分别是射线BA,BC上异于点B的动点,则△DEF的周长的最小值是________.三、解答题(19,20题每题8分,22题10分,24题16分,其余每题12分,共66分)19.如图,∠A=90°,E为BC上一点,点A和点E关于BD对称,点B和点C关于DE对称,求∠ABC和∠C的度数.20.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC 的三等分点.”你同意他的说法吗?请说明理由.21.在3×3的正方形网格图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出这样的△DEF.22.如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,试说明:DE⊥AB.23.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.24.如图,已知BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.(1)AD与CE相等吗?请说明理由;(2)若∠BCD=75°,求∠ACE的度数;(3)若∠BCE=α,∠ACE=β,则α,β之间满足一定的数量关系,请直接写出这个结论.答案一、1.C2.D3.C4.A5.C6.C7.A8.D9.A10.A点拨:过点I作IE⊥AB于点E,IF⊥AC于点F.因为AI,BI,CI分别平分∠BAC,∠ABC,∠ACB,所以IE=IF=ID=3 cm,所以S△ABC=S△IAB+S△IBC+S△IAC=12AB×3+12BC×3+12AC×3=32(AB+BC+AC)=32×34=51(cm2).11.D12.D点拨:如图,作点A关于BC和CD的对称点A′,A″,连接A′A″,交BC于点E,交CD于点F,连接AE,AF,则A′A″的长即AEF周长的最小值.连接AC.因为∠ABC+∠BCA+∠BAC=180°,∠ADC+∠DCA+∠DAC=180°,∠ABC=90°,∠ADC=90°,∠BCA+∠DCA=50°,所以∠BAC+∠DAC=130°,即∠DAB=130°.所以∠A′+∠A″=180°-∠DAB=50°.又易知∠A′=∠EAA′,∠FAD=∠A″,所以∠EAA′+∠FAD=50°.所以∠EAF=130°-50°=80°.二、13.614.①15.48°16.50°或130°点拨:当顶角为锐角时,如图①,因为CD⊥AB,所以∠CDA=90°.因为∠ACD=40°,所以∠A=90°-∠ACD=90°-40°=50°;当顶角为钝角时,如图②,因为CE⊥AB,所以∠CEA=90°.因为∠ACE=40°,所以∠CAE=90°-∠ACE=90°-40°=50°.所以∠BAC=180°-50°=130°.所以该等腰三角形顶角的度数为50°或130°.17.2.118.9点拨:如图,作点D关于射线BA,BC的对称点M,N.连接MN,与射线BA,BC分别交于点E,F,连接DE,DF,则此时△DEF的周长最小,最小的值是MN的长.连接BM,BN.因为点D,M关于射线BA对称,所以BM=BD,∠ABM=∠ABD.同理可得∠NBC=∠DBC,BN=BD.所以∠MBN=2∠ABC=60°,BM=BN.所以MN=BM=BD=9.所以△DEF的周长的最小值是9.三、19.解:因为点A和点E关于BD对称,所以∠ABD=∠EBD,所以∠ABC=2∠EBD.又因为点B和点C关于DE对称,所以∠EBD=∠C,所以∠ABC=2∠C.因为∠A=90°,所以∠ABC+∠C=2∠C+∠C=90°,所以∠C=30°,所以∠ABC=2∠C=60°.20.解:同意.理由如下:如图,连接OE,OF.由题意知BE=OE,CF=OF,∠OBC=∠OCB=30°,所以∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∠BOC=120°.易得∠EOF=60°,∠OEF=60°,∠OFE=60°.所以△OEF是等边三角形.所以OE=OF=EF.所以EF=BE=CF.所以E,F是BC的三等分点.21.解:如图.22.解:(1)如图,AE 即为所作.(2)如图,因为AE 平分∠BAC , 所以∠CAE =∠DAE . 在△ACE 和△ADE 中,⎩⎨⎧AC =AD ,∠CAE =∠DAE ,AE =AE ,所以△ACE ≌△ADE (SAS), 所以∠ADE =∠C =90°, 所以DE ⊥AB .23.解:(1)因为AD ⊥BC ,CE ⊥AB ,所以∠AEF =∠CEB =∠CDF =90°,所以∠AFE +∠EAF =90°,∠CFD +∠ECB =90°. 又因为∠AFE =∠CFD , 所以∠EAF =∠ECB . 在△AEF 和△CEB 中,⎩⎨⎧∠AEF =∠CEB ,AE =CE ,∠EAF =∠ECB ,所以△AEF ≌△CEB (ASA). (2)由△AEF ≌△CEB ,得EF =EB , 所以∠EBF =∠EFB .在△ABC 中,AB =AC ,AD ⊥BC , 所以BD =CD .所以FB =FC . 所以∠FBD =∠FCD .因为∠EFB =180°-∠BFC =∠FBD +∠FCD =2∠FBD , 所以∠EBF =2∠FBD ,11 即∠ABF =2∠FBD .24.解:(1)AD =CE .理由如下:因为BD 为△ABC 的角平分线,所以∠ABD =∠CBE . 在△ABD 和△EBC 中,⎩⎨⎧BA =BE ,∠ABD =∠EBC ,BD =BC ,所以△ABD ≌△EBC (SAS),所以AD =CE .(2)因为BD =BC ,∠BCD =75°,所以∠BDC =∠BCD =75°,所以∠DBC =180°-75°×2=30°.因为BD 为△ABC 的角平分线,所以∠ABD =∠DBC =30°.由(1)知△ABD ≌△EBC ,所以∠BAD =∠BEC .因为∠BAD +∠ABD +∠ADB =180°,∠BEC +∠ACE +∠EDC =180°,∠ADB =∠EDC ,所以∠ACE =∠ABD =30°.(3)2α-β=180°.。

鲁教版五四制七年级数学下册第二单元评价检测.docx

鲁教版五四制七年级数学下册第二单元评价检测.docx

单元评价检测第二章(45分钟 100分)一、选择题(每小题4分,共28分)1.下列几何图形中,一定是轴对称图形的有( )(A)1个(B)2个(C)3个(D)4个2.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( )(A)13 (B)17 (C)22 (D)17或223.如图,AD=BC=BA,那么∠1与∠2之间的关系是( )(A)∠1=2∠2 (B)2∠1+∠2=180°(C)∠1+3∠2=180°(D)3∠1-∠2=180°4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于点F,若∠F=30°,DE=1,则EF的长是( )(A)3 (B)2 (C)√3(D)15.如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是( )(A)AB=BE (B)AD=DC(C)AD=DE (D)AD=EC6.如图,在△ABC中,AB=AC,AB+BC=8,将△ABC折叠,使得点A落在点B处,折痕DF分别与AB,AC交于点D,F,连接BF,则△BCF的周长是( )(A)8 (B)16 (C)4 (D)107.如图,△ABP和△DCP是两个全等的等边三角形,且PA⊥PD,有以下4个结论:①∠PBC=15°;②AD∥BC;③直线PC⊥AB;④四边形ABCD是轴对称图形.其中正确的结论有( )(A)1个(B)2个(C)3个(D)4个二、填空题(每小题5分,共25分)8.自身为轴对称图形的汉字可以组成一些词语,如“苹果”,请你也写出两个这样的词语________.9.如图,镜子中的实际号码是______.10.如图,在△ABC中,∠B与∠C的平分线交于点O,过O点作DE∥BC,分别交AB,AC于点D,E,若AB=5,AC=4,则△ADE的周长是_______.11.如图,在△ABC中,∠ACB=90°,CD是AB上的高,∠BAC的平分线为AF,AF与CD交于点E,则△CEF是________三角形.12.如图,等边三角形ABC中,D,E分别为AB,BC边上的两个动点,且总使AD=BE,=________.AE与CD交于点F,AG⊥CD于点G,则F GAF三、解答题(共47分)13.(10分)现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.14.(12分)如图,将矩形纸片ABCD按如下顺序折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③),沿GH折叠,使点C落在DH上的C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小.(2)图⑥中的△GCC′是正三角形吗?请说明理由.15.(12分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)试说明△ADE≌△BFE.(2)连接EG,判断EG与DF的位置关系,并说明理由.16.(13分)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?答案解析1.【解析】选C.轴对称图形有:扇形、等腰梯形、菱形.2.【解析】选C.①当4为腰时,4+4<9,故此种情况不存在;②当9为腰时,9-4<9<9+4,符合题意,故此三角形的周长=9+9+4=22.3.【解析】选B.因为AB=BC,所以∠1=∠BCA,因为AB=AD,所以∠B=∠2,因为∠1+∠B+∠ACB=180°,所以2∠1+∠2=180°.4.【解析】选B.如图,在Rt△FDB中,因为∠F=30°,所以∠FBD=60°,在Rt△ABC中,因为∠ACB=90°,∠ABC=60°,所以∠A=30°,在Rt△AED中,因为∠A=30°,DE=1,所以AE=2.连接EB.因为DE是AB的垂直平分线,所以EB=AE=2,所以∠EBD=∠A=30°,因为∠ABC=60°,所以∠EBC=30°,因为∠F=30°,所以EF=EB=2.5.【解析】选B.由折叠知AB=BE,AD=DE,∠DEB=∠A=90°,所以∠DEC=∠DEB=90°,由等腰直角△ABC得∠C=45°,所以∠CDE=45°,所以DE=EC,所以AD=EC.6.【解析】选A.由折叠可得FB=FA,所以△BCF的周长=BC+CF+FB=BC+CF+FA=BC+AC,因为AB=AC,所以△BCF的周长=BC+AB=8.7.【解析】选D.由题意知PB=PC,∠APB=∠ABP=∠BAP=∠DPC=∠DCP=∠CDP= 60°,∠PAD=∠PDA=45°,AB=AP=BP=DP=CP=CD,所以∠BPC=360°-60°-60°-90°=150°,所以∠PCB=∠PBC=15°,∠ADC+∠BCD=105°+75°=180°,所以AD∥BC,∠ABC+∠PCB=75°+15°=90°,所以直线PC⊥AB.四边形是轴对称图形,其对称轴为过点P且与AD垂直的直线.所以四个结论都正确.8.【解析】从轴对称的特点出发,具有轴对称性质的字有大、日、田、木、目、中、众、晶、森、林等.组成词语可以为森林、日本、黄山等.答案:森林、日本(答案不惟一)9.【解析】因为镜子中的号码与实际号码关于镜面对称,所以实际号码为3265. 答案:326510.【解析】因为OB平分∠ABC,所以∠ABO=∠CBO.因为DE∥BC,所以∠DOB=∠CBO,所以∠DOB=∠ABO,所以BD=DO.同理,CE=EO,则DE=DO+EO=BD+CE,所以△ADE的周长=AB+AC=9,因此,△ADE的周长是9.答案:911.【解析】因为∠CEF=∠AED=90°-∠BAF ,∠CFE=90°-∠CAF. 又AF 平分∠BAC ,所以∠BAF=∠CAF , 所以∠CEF=∠CFE ,所以CE=CF , 所以△CEF 是等腰三角形. 答案:等腰12.【解析】因为AD=BE ,所以CE=BD , 因为△ABC 为等边三角形,所以△CAE ≌△BCD ,所以∠DCB=∠CAE , 所以∠AFG=∠CAF+∠ACF =∠DCB+∠ACF=60°,因为AG ⊥CD ,所以∠FAG=30°,所以F G AF =12. 答案:1213.【解析】图案如图所示:14.【解析】(1)连接BB ′,由折叠知,EF 是线段BC 的对称轴,所以BB ′= B ′C.又因为BC=B ′C ,所以△B ′BC 是等边三角形,所以∠BCB ′=60°. (2)是正三角形.理由如下:由折叠知,GH是线段CC′的对称轴,所以GC′=GC,根据题意,GC平分∠BCB′,∠BCB′=30°,所以∠GCB=∠GCB′=12所以∠GCC′=∠BCD-∠BCG=60°,所以△GCC′是正三角形.15.【解析】(1)因为AD∥BC,所以∠ADE=∠BFE.因为E是AB的中点,所以AE=BE,又∠FEB=∠DEA,所以△ADE≌△BFE.(2)EG与DF的位置关系是EG⊥DF.因为∠GDF=∠ADF,又因为∠ADE=∠BFE,所以∠GDF=∠BFE,所以GD=GF.由(1)得,DE=EF,所以EG⊥DF.16.【解析】(1)①△BPD≌△CQP.理由如下:因为t=1秒,所以BP=CQ=3×1=3(厘米),因为AB=10厘米,点D为AB的中点,所以BD=5厘米.—————————— 新学期 新成绩 新目标 新方向 ——————————桑水 又因为PC=BC-BP ,BC=8厘米,所以PC=8-3=5(厘米),所以PC=BD.又因为AB=AC ,所以∠B=∠C ,所以△BPD ≌△CQP.②因为v P ≠v Q ,所以BP ≠CQ ,又因为△BPD 与△CQP 全等,∠B=∠C ,则BP=PC=4,CQ=BD=5,所以点P ,点Q 运动的时间t=BP 3=43秒,所以v Q =C Q t =543=154(厘米/秒). (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得154x=3x+2×10,解得x=803秒. 所以点P 共运动了803×3=80厘米. 因为80=2×28+24,所以点P ,点Q 在AB 边上相遇, 所以经过803秒点P 与点Q 第一次在边AB 上相遇.初中数学试卷桑水出品。

2020鲁教版七年级数学下册(五四制)电子课本课件【全册】

2020鲁教版七年级数学下册(五四制)电子课本课件【全册】

第七章 二元一次方程组
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
1 二元一次方程组
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
2 解二元一次方程组
2 证明的必要性
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
3 基本事实与定理
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
4 平行线的判定定理
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
3 二元一次方程组的应用
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
4 二元一次方程与一次函数
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
*5 三元一次方程组
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
2020鲁教版七年级数学下册(五四 制)电子课本课件【全学下册(五四 制)电子课本课件【全册】
第八章 平行线的有关证明
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
1 定义与命题
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】
2020鲁教版七年级数学下册(五四 制)电子课本课件【全册】目录
0002页 0075页 0107页 0136页 0150页 0182页 0235页 0256页 0292页 0323页 0350页 0378页 0413页 0429页 0444页 0461页
第七章 二元一次方程组 2 解二元一次方程组 4 二元一次方程与一次函数 综合与实践 哪一款“套餐”更合适? 1 定义与命题 3 基本事实与定理 5 平行线的性质定理 第九章 概率初步 2 频率的稳定性 第十章 三角形的有关证明 2 等腰三角形 4 线段的垂直平分线 第十一章 一元一次不等式和一元一次不等式组 2 不等式的基本性质 4 一元一次不等式 6 一元一次不等式组

2020-2021学年最新鲁教版五四制六年级数学上册《有理数及其运算》单元测试题及答案解析-精编试题

2020-2021学年最新鲁教版五四制六年级数学上册《有理数及其运算》单元测试题及答案解析-精编试题

单元评价检测(二)第二章(45分钟100分)一、选择题(每小题4分,共28分)1.与-3互为倒数的是( )A.-13B. -3 C.13D.32. -|-2|的值为( )A.-2B.2C.12D.-123.如果a的倒数是-1,那么a2013等于( )A.1B.-1C.2 013D.-2 0134.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.25.下列各组数中,相等的是( )A.-1与(-4)+(-3)B.|−3|与-(-3)C.324与916D.(-4)2与-166.山东省第二十三届省运会于2014年9月16日在兖州开幕.兖州市体育馆建筑面积22866m2,容纳观众5500人,游泳网球馆建筑面积22917m2,容纳观众2822人,总投资4.5亿元,承办网球、柔道、行业体协组篮球比赛项目.其中4.5亿用科学计数法表示为( )A.4.5×108B.0.45×109C.4.5×109D.0.45×10107.观察图中正方形四个顶点所标的数字的规律,可知2013应标在( )A.第503个正方形的左下角B.第503个正方形的右下角C.第504个正方形的左上角D.第504个正方形的右下角二、填空题(每小题5分,共25分)8.比较大小:-34-23(用“>”“<”或“=”填空).9.已知:a,b互为相反数,c,d互为倒数,m的倒数等于它本身,则cdm+(a+b)m-|m|的结果为.10.定义新运算“⊕”,a⊕b=13a-4b,则18⊕(-2)= .11.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是.12.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如表:十进位制0 1 2 3 4 5 6 …二进位制0 1 10 11 100 101 110 …写成十进位制数为.三、解答题(共47分)13.(12分)计算:(1)(23−14−38+524)×48.(2)25-3×[32+2×(-3)]+5.(3)-|1-2|-(-2)-22.(4)9915×(-8).1614.(12分)为庆祝建校60周年,我校有370名学生参加学校广场的组花活动.每个学生都有六种不同颜色的翻花;若丁一和王欢同学的每朵翻花质量如下(单位:g) 599 596 605 606 594 601598 609 604 598 602 600(1)请你用简单方法,计算丁一和王欢同学的翻花的总质量.(2)若每克纸的成本是0.05元,每人还需要能放下六朵翻花的一个走轮包,每个走轮包240元,做一朵翻花的手工费8元,请你根据丁一和王欢的平均费用,估算370名学生的总费用(精确到万位).15.(10分)有8箱橘子,以每箱15kg为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:kg):1.2,-0.8,2.3,1.7,-1.5,-2.7,2,-0.2,则这8箱橘子的总重量是多少?, 16.(13分)有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=12从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.(1)计算:a2,a3,a4,a5的值.(2)这排数有什么规律?由你发现的规律,计算a2014的值.单元评价检测(二)第二章 (45分钟 100分)一、选择题(每小题4分,共28分) 1.与-3互为倒数的是 ( ) A.-13B. -3C.13D.3【解析】选A.因为-3×(−13)=1,所以-3的倒数是-13. 2. -|-2|的值为 ( ) A.-2B.2C.12D.-12【解析】选A.-|-2|=-2.3.如果a的倒数是-1,那么a2013等于( )A.1B.-1C.2 013D.-2 013【解析】选B.因为a的倒数是-1,所以a=-1,所以a2013=(-1)2013=-1.4.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.2【解析】选C.A,B两选项不是负数,故排除,C选项是负整数,符合要求;D选项是负分数,排除,故选C.5.下列各组数中,相等的是( )A.-1与(-4)+(-3)B.|−3|与-(-3)C.324与916D.(-4)2与-16【解析】选B.|−3|与-(-3)的结果都是3.6.山东省第二十三届省运会于2014年9月16日在兖州开幕.兖州市体育馆建筑面积22866m2,容纳观众5500人,游泳网球馆建筑面积22917m2,容纳观众2822人,总投资4.5亿元,承办网球、柔道、行业体协组篮球比赛项目.其中4.5亿用科学计数法表示为( )A.4.5×108B.0.45×109C.4.5×109D.0.45×1010【解析】选A.4.5亿=450 000 000=4.5×100 000 000=4.5×108.7.观察图中正方形四个顶点所标的数字的规律,可知2013应标在( )A.第503个正方形的左下角B.第503个正方形的右下角C.第504个正方形的左上角D.第504个正方形的右下角【解析】选D.通过已知图形可知,每四个数一循环,又2013÷4=503……1,则2013在第504个正方形上,又余数为1,则与第1个正方形中1所对应的位置相同,即在右下角.二、填空题(每小题5分,共25分)8.比较大小:-34-23(用“>”“<”或“=”填空).【解析】因为|−34|=34=912,|−23|=23=812,且912>8 12,所以-34<-23.答案:<9.已知:a,b 互为相反数,c,d 互为倒数,m 的倒数等于它本身,则cdm +(a+b)m-|m|的结果为 .【解析】由题意得,a+b=0,cd=1,m=1或-1. 当m=1时,cdm+(a+b)m-|m|=11+0×1-|1|=0;当m=-1时,cdm+(a+b)m-|m|=1−1+0×(-1)-|-1|=-2. 答案:0或-2【易错提醒】倒数等于它本身的数有两个分别是1和-1,解答本题时要分类讨论,不能有遗漏.10.定义新运算“⊕”,a ⊕b=13a-4b,则18⊕(-2)= .【解析】18⊕(-2)=13×18-4×(-2)=6+8=14.答案:1411.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是.【解析】从前面四个等式可知,左边是几个奇数的和,右边是这几个奇数个数的平方,而1+3+5+…+2013是1007个奇数的和,所以所求式子的值为10072=1 014 049.答案:1 014 04912.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如表:十进位制0 1 2 3 4 5 6 …二进位制0 1 10 11 100 101 110 …请将二进位制10101010写成十进位制数为.【解析】10101010=1×27+0×26+1×25+0×24+1×23+0×22+1×2+0×20=128+32+8+2=170. 答案:170三、解答题(共47分)13.(12分)计算:(1)(23−14−38+524)×48.(2)25-3×[32+2×(-3)]+5.(3)-|1-2|-(-2)-22.(4)991516×(-8).【解析】(1)原式=23×48-14×48-38×48+524×48=32-12-18+10=12.(2)原式=25-3×[9+(-6)]+5=25-3×3+5=25-9+5=21.(3)原式=-|-1|+2-4=-1+2-4=1-4=-3.(4)原式=(100−116)×(-8)=100×(-8)+116×8=-800+12=-79912.14.(12分)为庆祝建校60周年,我校有370名学生参加学校广场的组花活动.每个学生都有六种不同颜色的翻花;若丁一和王欢同学的每朵翻花质量如下(单位:g) 599 596 605 606 594 601598 609 604 598 602 600(1)请你用简单方法,计算丁一和王欢同学的翻花的总质量.(2)若每克纸的成本是0.05元,每人还需要能放下六朵翻花的一个走轮包,每个走轮包240元,做一朵翻花的手工费8元,请你根据丁一和王欢的平均费用,估算370名学生的总费用(精确到万位).【解析】(1)600×12+12=7212(g).(2)(7212×0.05+12×8+240×2)÷2×370=173271≈17(万元),所以370名学生的总费用约是17万元.15.(10分)有8箱橘子,以每箱15kg 为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:kg):1.2,-0.8,2.3,1.7,-1.5,-2.7,2,-0.2,则这8箱橘子的总重量是多少?【解析】1.2+(-0.8)+2.3+1.7+(-1.5)+(-2.7)+2+(-0.2)=1.2-0.8+2.3+1.7-1.5-2.7+2-0.2=(2.3+1.7+2)+(-0.8-2.7-1.5)+(1.2-0.2)=6-5+1=2(kg).则15×8+2=122(kg).答:这8箱橘子的总重量是122kg. 16.(13分)有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=12,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.(1)计算:a 2,a 3,a 4,a 5的值.(2)这排数有什么规律?由你发现的规律,计算a 2014的值.【解析】(1)a 2=11−12=2,a 3=11−2=-1,a 4=11−(−1)=12,a 5=11−12=2. (2)这排数的规律是:按12,2,-1三个数循环, 因为2014除以3的余数是1,所以a 2014=12.【知识归纳】解答循环数规律题的方法1.计算几个数的值,从中找出循环的数据个数.2.用要求的数据序数除以循环数据的个数,余数为1则是循环数据中的第1个数;余数为2则是循环数据中的第2个数,…,若整除,则是循环数据中的最后一个数.。

鲁教版七年级数学第五章《位置与坐标》单元评价测试

鲁教版七年级数学第五章《位置与坐标》单元评价测试

山东省东营市广饶县实验中学七年级数学第五章《位置与坐标》单元评价测试(鲁教版)班级姓名成绩(时间:90分钟分值:120分)一、选择题(每题3分,共30分)1. 点(-2,1)所在的象限是()(A)第一象限(B)第二象限(C)第三象限(D)第四象限2. 点M(2,﹣3)关于y轴的对称点N的坐标是( )A.(﹣2,﹣3) B.(﹣2,3)C.(2,3) D.(﹣3,2)3.设点在轴上,且位于原点的左侧,则下列结论正确的是()A.,为一切数B.,C.为一切数,D.,4. 若点在第三象限,则应在()A.第一象限B.第二象限C.第三象限D.第四象限5.已知点,在轴上有一点点与点的距离为5,则点的坐标为()A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)6. 在平面直角坐标系中,若点P(x﹣2,x)在第二象限,则x的取值范围为( )A.x>0 B.x<2 C.0<x<2 D.x>27. 若点P()的坐标满足xy=0,则点P的位置是()A.在轴上B.在轴上C.是坐标原点D.在轴上或在轴上8. 在平面直角坐标系中有A,B两点,若以点B为原点建立直角坐标系,则点A的坐标为(2,3);若以点A为原点建立直角坐标系(两直角坐标系x轴、y轴方向一致),则点B的坐标是() (A)(-2,-3) (B)(-2,3)(C)(2,-3) (D)(2,3)9.已知在坐标平面内有一点,若,那么点的位置在()A.在第一象限B.不在轴上C.不在轴上D.不在坐标轴上10. 把点P1(2,﹣3)向右平移3个单位长度再向下平移2个单位长度到达点P2处,则P2的坐标是( )A.(5,﹣1)B.(﹣1,﹣5) C.(5,﹣5)D.(﹣1,﹣1)二、填空题(每个题4分,共32分)11. 已知点是第二象限的点,则的取值范围是.12.已知点A(a-1,a+1)在x轴上,则a等于______.13. 一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________.14.已知点P在第四象限,且到x轴的距离为2,到y轴的距离为3,则点P的坐标为__________.15. 点和点关于轴对称,而点与点关于轴对称,那么 _______ ,_______ ,点和点的位置关系是__________.16. 第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是________.17.已知在直角坐标系中,,,△为等边三角形,则点的坐标是_______ .18.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2006次,点P依次落在点P1,P2,P3,P4,…,P2006的位置,则P2006的横坐标x2006=__________.三、解答题(共58分)19.(10分)以直角三角形的直角顶点C为坐标原点,以CA所在直线为x轴,以CB所在直线为y 轴,建立直角坐标系,如图所示,标出点A,B,C的坐标,并求:R t△ABC的周长为多少?Rt△ABC的面积为多少?20.(11分)在直角坐标系中描出下列各组点,并组各组的点用线段依次连接起来.(1)(1,0),(6,0),(6,1),(5,0),(6,﹣1),(6,0);(2)(2,0),(5,3),(4,0);(3)(2,0),(5,﹣3),(4,0).观察所得到的图形像什么?如果要将此图形向上平移到x轴上方,那么至少要向上平移几个单位长度?21.(12分)如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.22.(12分)三角形ABC为等腰直角三角形,其中∠A=90°,BC长为6.(1)建立适当的直角坐标系,并写出各个顶点的坐标.(2)将(1)中各顶点的横坐标不变,将纵坐标都乘-1,与原图案相比,所得的图案有什么变化?(3)将(1)中各顶点的横坐标都乘-2,纵坐标保持不变,与原图案相比,所得的图案有什么变化?23.(13分)24.(8分)如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由③能得到④吗?为什么?(3)由对称性③可得①、②三角形,顶点坐标各是什么?。

2020-2021学年鲁教版(五四制)七年级数学下期中复习试卷含答案

2020-2021学年鲁教版(五四制)七年级数学下期中复习试卷含答案

鲁教五四新版七年级下册数学期中复习试卷一.选择题(共12小题,满分48分,每小题4分)1.方程组的解为,则被遮盖的前后两个数分别为()A.1、2B.1、5C.5、1D.2、42.下列四个命题:①±4是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有()个.A.1B.2C.3D.43.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°4.下列说法正确的是()A.篮球队员在罚球线上投篮一次,则“投中”是随机事件B.明天的降水概率为40%,则“明天下雨”是确定事件C.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是必然事件D.a是实数,则“|a|≥0”是不可能事件5.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.6.某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x,负的场数为y,则可列方程组为()A.B.C.D.7.池塘中放养了鲤鱼2000条,鲢鱼若干条,在几次随机捕捞中,共捕到鲤鱼200条,鲢鱼300条,估计池塘中原来放养了鲢鱼()A.10000条B.2000条C.3000条D.4000条8.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠D FB=∠CGE.其中正确的结论是()A.②③B.①②④C.①③④D.①②③④9.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.32°B.45°C.60°D.64°10.下列各题中合并同类项,结果正确的是()A.3a+2b=5ab B.4x2y﹣2xy2=2xyC.7a+a=7a2D.5y2﹣3y2=2y211.已知直线y=kx+2与直线y=x交于点P,且点P的横坐标为2,下列结论:其中正确的是()①关于x的方程kx+2=0的解为x=3;②对于直线y=kx+2,当x<3时,y>0;③方程组的解为,A.①②B.①③C.②③D.①②③12.把一副三角板放在水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.90°B.105°C.120°D.135°二.填空题(共6小题,满分24分,每小题4分)13.方程组的解是.14.有6张看上去无差别的卡片,上面分别写着0,π,,,0.1010010001,﹣随机抽取1张,则取出的数是无理数的概率是.15.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为.16.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.17.把命题“对顶角相等”改写成“如果…那么…”的形式:.18.将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是;(2)2022应排在A,B,C,D,E中的位置上.三.解答题(共7小题,满分78分)19.(6分)如图,已知,AB⊥BC,AD∥BC,∠BAC=∠D=60°.(1)试求∠C和∠DEC的度数;(2)说明直线AC与DE的关系,并说明理由.20.(15分)解方程组(1);(2);21.(9分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?22.(12分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.23.(12分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.(12分)如图:已知在平面直角坐标系中点A(a,b)点B(a,0),且满足|2a﹣b|+(b﹣4)2=0.(1)求点A、点B的坐标.(2)已知点C(0,b),点P从B点出发沿x轴负方向以1个单位每秒的速度移动.同时点Q从C点出发,沿y轴负方向以2个单位每秒的速度移动,某一时刻,如图所示且S阴=S四边形OCAB,求点P移动的时间?(3)在(2)的条件下,AQ交x轴于M,作∠ACO,∠AMB的角平分线交于点N,判断是否为定值,若是定值求其值;若不是定值,说明理由.25.(12分)快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1故选:C.2.解:①∵4是64的立方根,∴①是假命题;②∵5是25的算术平方根,∴②是真命题;③∵如果两条直线都与第三条直线平行,那么这两条直线也互相平行,∴③是真命题;④∵在平面直角坐标系中,与两坐标轴距离都是2的点有且只有4个,∴④是假命题;真命题的个数有2个,故选:B.3.解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.4.解:A.篮球队员在罚球线上投篮一次,则“投中”是随机事件,此选项正确;B.明天的降水概率为40%,则“明天下雨”是随机事件,此选项错误;C.任意抛掷一枚质地均匀的硬币10次,则“5次正面朝上”是随机事件,此选项错误;D.a是实数,则“|a|≥0”是必然事件,此选项错误;故选:A.5.解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.6.解:依题意得:.故选:C.7.解:由题意可得,2000÷×=2000×=3000(条),即估计池塘中原来放养了鲢鱼3000条,故选:C.8.解:∵EG∥BC,∴∠CEG=∠BCA,∵CD平分∠ACB,∴∠BCA=2∠DCB,∴∠CEG=2∠DCB,故①正确,∵CG⊥EG,∴∠G=90°,∴∠GCE+∠CEG=90°,∵∠A=90°,∴∠BCA+∠ABC=90°,∵∠CEG=∠ACB,∴∠ECG=∠ABC,∵∠ADC=∠ABC+∠DCB,∠GCD=∠ECG+∠ACD,∠ACD=∠DCB,∴∠ADC=∠GCD,故②正确,假设AC平分∠BCG,则∠ECG=∠ECB=∠CEG,∴∠ECG=∠CEG=45°,显然不符合题意,故③错误,∵∠DFB=∠FCB+∠FBC=(∠ACB+∠ABC)=45°,∠CGE=45°,∴∠DFB=∠CG E,故④正确,故选:B.9.解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故选:D.10.解:(A)原式=3a+2b,故A错误;(B)原式=4x2y﹣2xy2,故B错误;(C)原式=8a,故C错误;故选:D.11.解:当x=2时,y=x=,则P(2,),把P(2,)代入y=kx+2得2k+2=,解得k=﹣,∴直线y=kx+2的解析式为y=﹣x+2,当y=0时,﹣x+2=0,解得x=3,∴关于x的方程kx+2=0的解为x=3,所以①正确;当y>0,﹣x+2>0,解得x<3,所以②正确;∵直线y=kx+2与直线y=x交点为P(2,),∴方程组的解为,所以③正确.故选:D.12.解:作直线OE平行于直角三角板的斜边.可得:∠A=∠AOE=60°,∠C=∠EOC=45°,故∠1的度数是:60°+45°=105°.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:将x=1代入x+y=5,∴y=4,∴方程组的解为:,故答案为:,14.解:在0,π,,,0.1010010001,﹣中,无理数有π,,共2个,∴取出的数是无理数的概率是=;故答案为:.15.解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=(180°﹣70°)=55°,∵∠A=55°,∴∠ADE=∠EDA′=180°﹣55°﹣55°=70°,∴∠A′DB=180°﹣140°=40°,故答案为40°.16.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.17.解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.18.解:(1)观察发现:峰n中,A位置的绝对值可以表示为:5n﹣3;B位置的绝对值可以表示为:5n﹣2;C位置(峰顶)的绝对值可以表示为:5n﹣1;D位置的绝对值可以表示为:5n;E位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×405﹣3,∴2022应排在A的位置.故答案为:(1)24;(2)A.三.解答题(共7小题,满分78分)19.解:如图所示:(1)∵AB⊥BC,∴∠B=90°,又∵∠BAC=60°,∠BAC+∠C=90°,∴∠C=30°,又∵AD∥BC,∴∠D=∠DEC,(2)AC⊥DE,理由如下,∵∠D=60°,又∵∠DEC +∠C +∠EFC =180°,∴∠EFC =90°,∴AC ⊥DE .20.解:(1),①×2+②得:﹣9y =﹣9,解得:y =1,把y =1代入②得:x =1, 则方程组的解为; (2)方程组整理得:, ①×2+②得:11x =22,解得:x =2,把x =2代入①得:y =3, 则方程组的解为. 21.解:公平.画树状图得:从表中可以得到:P 积为奇数==,P 积为偶数==, ∴小明的积分为×2=,小刚的积分为×1==.22.解:∵EF ∥AD ,AD ∥BC ,∴EF ∥BC ,∴∠ACB +∠DAC =180°,∵∠DAC =120°,∴∠ACB =60°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.23.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.24.解:(1)∵|2a﹣b|+(b﹣4)2=0.∴2a﹣b=0,b﹣4=0,∴a=2,b=4,∴点A的坐标为(2,4)、点B的坐标(2,0);(2)方法一:如图2,设P点运动时间为ts,则t>2,所以P点坐标为(2﹣t,0),Q 点坐标为(0,4﹣2t),设直线AQ的解析式为y=kx+4﹣2t,把A(2,4)代入得2k+4﹣2t=4,解得k=t,∴直线AQ的解析式为y=tx+4﹣2t,直线AQ与x轴交点坐标为(,0),∴S阴影=(+t﹣2)×4+××(2t﹣4),而S阴=S四边形OCAB,∴(+t﹣2)×4+××(2t﹣4)=×2×4,整理得t2﹣3t=0,解得t1=0(舍去),t2=3,∴点P移动的时间为3s;方法二:过P点作PM⊥AC于M,QN⊥AB于N,如图,易得四边形OPMC和四边形ACQN都为矩形,S阴影=S矩形OPMC+S矩形ACQN﹣S△AMC﹣S△AQN=4(t﹣2)+2×2t﹣×t×4﹣×2t×2,∵S阴=S四边形OCAB,∴4(t﹣2)+2×2t﹣×t×4﹣×2t×2=×2×4,解得t=3;(3)为定值.理由如下:如图3,∵∠ACO,∠AMB的角平分线交于点N,∴∠ACN=45°,∠1=∠2,∵AC∥BP,∴∠CAM=∠AMB=2∠1,∵∠ACN+∠CAM=∠N+∠1,∴45°+2∠1=∠N+∠1,∴∠N=45°+∠1,∵∠AMB=∠APB+∠PAQ,∴∠APB+∠PAQ=2∠1,∵∠AQC+∠OMQ=90°,而∠OMQ=2∠1,∴∠AQC=90°﹣2∠1,∴==.25.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。

鲁教版(五四制)七年级数学下册10

鲁教版(五四制)七年级数学下册10
c.通过数形结合,引导学生发现勾股定理,并解释其含义。
-设计意图:培养学生的探究能力和团队合作精神,使学生在实践中掌握新知。
3.深化理解:
a.设计具有层次性的练习题,让学生在解答过程中巩固勾股定理的运用。
b.创设实际问题,引导学生运用直角三角形的知识解决问题,提高学生的应用能力。
c.组织课堂讨论,让学生分享解题思路和方法,互相学习,共同提高。
b.调查生活中直角三角形的应用,如测量物体的高度、距离等,并以报告的形式呈现调查结果。
c.结合本节课所学,尝试解决一个与直角三角形相关的实际项目,如建筑设计、地理测量等。
3.创新题:
a.鼓励学生运用勾股定理,发现并证明一个与直角三角形相关的性质或定理。
b.学生可以团队合作,共同完成一个与直角三角形相关的创新设计,如制作一个直角三角形模型,并解释其应用价值。
2.培养学生勇于探索、敢于挑战的精神,增强学生面对困难时的自信心。
3.通过直角三角形在实际生活中的应用,让学生认识到数学与生活的紧密联系,培养学生的应用意识。
4.渗透数学文化,让学生了解勾股定理的历史背景,体会数学的博大精深,增强民族自豪感。
本章节教学设计以直角三角形为核心,围绕知识与技能、过程与方法、情感态度与价值观三个方面展开。在教学过程中,注重培养学生的观察、思考、合作能力,提高学生的数学素养,使学生真正感受到数学的魅力和价值。
二、学情分析
七年级下册的学生在数学学习方面已经具备了一定的基础,掌握了三角形的基本概念和性质,能够进行简单的几何计算。在此基础上,学生对直角三角形的学习将更加深入。然而,学生对勾股定理的理解和应用可能还不够熟练,需要在实际操作中进一步巩固。此外,学生在解决实际问题时,可能缺乏将数学知识应用于生活的意识,需要引导和培养。

鲁教版五四制七年级数学下册第五单元评价检测

鲁教版五四制七年级数学下册第五单元评价检测

单元评价检测第五章(45分钟 100分)一、选择题(每小题4分,共28分)1.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为( )①实验楼的坐标是3;②实验楼的坐标是(3,3);③实验楼的坐标为(4,4);④实验楼在校门的东北方向上,距校门200√2m.(A)1个(B)2个(C)3个(D)4个2.点(-2,1)所在的象限是( )(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将△ABC向左平移5个单位后,A点的对应点A′的坐标是( )(A)(0,5) (B)(-1,5)(C)(9,5) (D)(-1,0)4.对任意实数x,点P(x,x2-2x)一定不在( )(A)第一象限(B)第二象限(C)第三象限(D)第四象限5.在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴正方向的夹角为α,则用[ρ,α]表示点P的极坐标,显然,点P的极坐标与它的坐标存在一一对应关系.例如:点P的坐标为(1,1),则其极坐标为[√2,45°].若点Q 的极坐标为[4,60°],则点Q的坐标为( )(A)(2,2√3) (B)(2,-2√3)(C)(2√3,2) (D)(2,2)6.如果长方形ABCD的中心与平面直角坐标系的原点重合,且点A和点B的坐标分别为(-2,3)和(2,3),则矩形ABCD的面积为( )(A)32 (B)24 (C)16 (D)87.在平面直角坐标系中有A,B两点,若以点B为原点建立直角坐标系,则点A 的坐标为(2,3);若以点A为原点建立直角坐标系(两直角坐标系x轴、y轴方向一致),则点B的坐标是( )(A)(-2,-3) (B)(-2,3)(C)(2,-3) (D)(2,3)二、填空题(每小题5分,共25分)8.已知点A(a-1,a+1)在x轴上,则a等于______.9.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC 沿y轴翻折到第一象限,则点C的对应点C′的坐标是________.10.点A(7,-3)关于y轴的对称点是B,则线段AB的长是________.11.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是________.12.如图中线段的端点坐标是(1,0),(3,2),纵坐标保持不变,横坐标分别变为原来的2倍,所得的线段与原来相比______________.三、解答题(共47分)13.(10分)以直角三角形的直角顶点C为坐标原点,以CA所在直线为x轴,以CB所在直线为y轴,建立直角坐标系,如图所示,标出点A,B,C的坐标,并求:Rt△ABC的周长为多少?Rt△ABC的面积为多少?14.(12分)在直角坐标系中描出下列各组点,并将各组的点用线段依次连接起来.(1)(1,0),(6,0),(6,1),(5,0),(6,-1),(6,0);(2)(2,0),(5,3),(4,0);(3)(2,0),(5,-3),(4,0).观察所得到的图形像什么?15.(12分)某地为了城市发展,在现有的四个城市A,B,C,D附近新建机场E.试建立适当的直角坐标系,写出点A,B,C,D,E的坐标.16.(13分)三角形ABC为等腰直角三角形,其中∠A=90°,BC长为6.(1)建立适当的直角坐标系,并写出各个顶点的坐标.(2)将(1)中各顶点的横坐标不变,将纵坐标都乘-1,与原图案相比,所得的图案有什么变化?(3)将(1)中各顶点的横坐标都乘-2,纵坐标保持不变,与原图案相比,所得的图案有什么变化?答案解析1.【解析】选B.因为校门的坐标为(1,1),所以该图象的坐标原点在正方形网格的左下角,所以实验楼的坐标为(3,3),而实验楼在校门的东北方向,由比例尺可得其距离为:√2002+2002=200√2(m),所以②④两个是正确的.2.【解析】选B.点(-2,1)的横坐标在x轴的负半轴上,纵坐标在y轴的正半轴上,所以点(-2,1)在第二象限.3.【解析】选B.因为△ABC向左平移5个单位,所以A(4,5)也向左平移了5个单位得到点A′,所以点A′的坐标为A′(4-5,5),即A′(-1,5).4.【解析】选C.因为x2-2x=x(x-2),当x<0时,x-2<0,此时x(x-2)>0,点在第二象限;当x>0时,x-2可以为正数也可以为负数,此时x(x-2)也可正可负,点P在第一象限或第四象限;根据以上分析,点P一定不在第三象限.5.【解析】选A.点P的极坐标与它的坐标存在一一对应关系.它们之间可以相互转化,经过点Q向x轴作垂线,垂足为B,在直角三角形QOB中OQ=4,∠QOB= 60°,则∠OQB=30°,所以OB=2,由勾股定理求得QB=2√3,所以点Q的坐标为(2,2√3).6.【解析】选B.因为长方形ABCD的中心与平面直角坐标系的原点重合,所以A 与D,B与C关于x轴对称,所以C点坐标为(2,-3),D点坐标为(-2,-3),故AB=4,BC=6,S长方形ABCD=4×6=24.7.【解析】选A.由题意可知由点B得到点A,需把点B先向右平移2个单位长度,再向上平移3个单位长度.而由点A得到点B,则先向左平移2个单位长度,再向下平移3个单位长度,点A的坐标为(0,0),则点B的坐标为(-2,-3).8.【解析】x轴上所有的点的纵坐标为0,所以a+1=0.则有a=-1.答案:-19.【解析】根据点A 的坐标为(-1,4),得到点C 的坐标为(-3,1),从而点C 的对应点C ′的坐标是(3,1).答案:(3,1)10.【解析】关于y 轴对称的点,纵坐标不变,横坐标互为相反数,则点B 的坐标为(-7,-3).则有AB ∥x 轴.所以线段AB 的长为|-7-7|=14.答案:1411.【解析】因为点P(x ,y)在第二象限,所以x<0,y>0,又因为|x|=9,y 2=4,所以x=-9,y=2,所以点P 的坐标是(-9,2).答案:(-9,2)12.【解析】由题意可得线段的两个端点的坐标为(2,0),(6,2),则所得的线段是由原来的线段被横向拉长为原来的2倍得到的.答案:被横向拉长为原来的2倍13.【解析】点A ,B ,C 的坐标分别是:A(4,0),B(0,3),C(0,0),AC=|4-0|=4,CB=|3-0|=3.在Rt △ABC 中:AB 2=CA 2+CB 2,AB=5,△ABC 的周长为AB+CA+CB=5+4+3=12.S △ABC =12CA ·CB=12×4×3=6.14.【解析】描点,连线可得,图案像飞机.15.【解析】答案不惟一,如以点A为坐标原点,水平向右为x轴的正方向,竖直向上为y轴的正方向,则各点的坐标为A(0,0),B(8,2),C(8,7),D(5,6),E(1,8).16.【解析】(答案不惟一)(1)以BC边所在的直线为x轴,BC的中垂线(垂足为BC=3,所以A(0,O)为y轴,建立直角坐标系(如图).因为BC的长为6,所以AO=123),B(-3,0),C(3,0).(2)与原图案关于x轴对称,如图△A3BC.(3)与原图案相比所得的图案在位置上关于y轴对称,被横向拉长了2倍,如图△AB4C4.初中数学试卷灿若寒星制作。

鲁教版英语(五四制)七年级下册_Unit5__单元测试(一)

鲁教版英语(五四制)七年级下册_Unit5__单元测试(一)

Unit5 单元测试(一)一、单项选择1. Please keep the door _________.A. closingB. closeC. closedD. closes2. Thanks for __________me.A. invitationB. inviteC. invitingD. to invite3. Don’t forget ________ her to come to my party.A. tellB. tellsC. tellingD. to tell4. –Will you go shopping with us? –Yes, ________.A. I doB. I’d like toC. I’d love to doD. I’m busy5. _______is today? It’s October 2nd.A. WhenB. What timeC. What dayD. What date6. Could you ask him ________here?A. comesB. comeC. to comeD. coming7. –Would you like to come with us?_____________.A. Great! I’d love to.B. Good, I’d like.C. Yes, I would.D. Sure, I like.8. Thanks a lot _______ helping me _____ my English.A. to, inB. to, withC. for, withD. of, with9. I’m free _________22:00 tonight.A. atB. tillC. /D. on10. –What are you __________ next Wednesday?--I _________do my homework.A. doing, can’tB. do, mayC. does, wantD. doing, have to11. ________go for a walk after dinner? –That’s a good idea.A. How aboutB. Would you likeC. Why don’tD. Why not12. What’s the date? It’s _______.A. SaturdayB. JulyC. August 20th, 2007D. Monday the 11th13. This one is too big. Can you show me ____________one?A. the otherB. otherC. anotherD. others14. It’s ________cold today.A. too muchB. too manyC. much tooD. many too15. Don’t drink ______ water.A. the wholeB. all theC. the allD. whole the16. You can’t go out ________ the bad weather.A. onB. atC. inD. for17. He came back _______ a windy evening.A. inB. onC. atD. to18. Does she _______ finish reading the book today?A. mustB. canC. have toD. need19. This man ________ be his father, I’m sure.A. canB. mayC. mustn’tD. can’t20. He didn’t ______go home so early.A. has toB. had toC. have toD. need二、改为同义句。

2020-2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合达标测评

2020-2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合达标测评

鲁教版2021年度六年级数学下册《第五章基本平面图形》单元综合达标测评(附答案)1.过平面内已知点A作直线,可作直线的条数为()A.0条B.1条C.2条D.无数条2.若线段AB=12cm,点C是线段AB的中点,点D是线段AC的三等分点,则线段BD的长为()A.2cm或4cm B.8cm C.10cm D.8cm或10cm 3.用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°4.如图,点A,B是直线上的两点,则图中分别以A,B为端点的射线的条数为()A.1B.2C.3D.45.下列说法正确的有()个.①把一个角分成两个角的射线叫做这个角的角平分线;②连接C、D两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n边形从其中一个顶点出发连接其余各顶点,可以画出(n﹣3)条对角线,这些对角线把这个n边形分成了(n﹣2)个三角形.A.3B.2C.1D.06.点E在线段CD上,下面的等式:①CE=DE;②DE=CD;③CD=2CE;④CD=DE.其中能表示E是CD中点的有()A.1个B.2个C.3个D.4个7.如图所示,∠AOB是平角,OC是射线,OD、OE分别是∠AOC、∠BOC的角平分线,若∠COE=28°,则∠AOD的度数为()A.56°B.62°C.72°D.124°8.兴泉铁路是江西省兴国县至福建省泉州市正在建设中的国家一级铁路,途中经过三明地界停靠的车站依次是:宁化﹣清流﹣明溪﹣三元区﹣永安﹣大田,那么要为三明境内站点拟制作的火车票有()A.15种B.18种C.30种D.36种9.上午10:00时,钟表的时针与分针的夹角为()A.60°B.90°C.120°D.30°10.在同一平面上,若∠BOA=60°,∠BOC=20°,则∠AOC的度数是()A.80°B.40°C.20°或40°D.80°或40°11.如图,在直角∠AOB的内部作射线OC,若∠AOC=33°24′17″,则∠BOC=.12.如图,从O点引出6条射线OA、OB、OC、OD、OE、OF,且∠AOB=80°,∠EOF =160°,OE、OF分别是∠AOD、∠BOC的平分线.则∠COD的度数为度.13.要把一根细木条固定在墙上,至少需要钉两个钉子,其中蕴含的数学道理是.14.已知点A,B,C在同一条直线上,AB=4cm,BC=5cm,则AC=.15.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,这时有∠BOC=2∠BOE=2,∠COD=∠AOD=,∠DOE=°.16.一个n边形从一个顶点出发引出的对角线可将其分割成5个三角形,则n的值为.17.如图,点B、D在线段AC上,且BD=AB=CD,E、F分别是AB、CD的中点,EF=10cm,则CD=cm.18.如图,将一个圆形的蛋糕等分成六份,则每一份中的角的度数为.19.已知A,B,C三点,过其中每两个点画直线,一共可以画条直线.20.已知∠A=41°18′36″,∠B=36°17′42″;则∠A+∠B=.21.已知:OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠COD=40°.分别求∠AOD和∠BOC的度数.22.如图,已知线段AF长13cm,点B、C、D、E顺次在AF上,且AB=BC=CD,E是DF的中点,CE=5cm,求BE的长.23.已知O为直线AB上一点,过点O向直线AB上方引两条射线OC,OD,且OC平分∠AOD.(Ⅰ)请在图①中∠BOD的内部画一条射线OE,使得OE平分∠BOD,并求此时∠COE 的度数;(Ⅱ)如图②,若在∠BOD内部画的射线OE,恰好使得∠BOE=3∠DOE,且∠COE =70°,求此时∠BOE的度数.24.如图,点O为直线AB上一点,∠BOC=40°,OD平分∠AOC.(1)求∠AOD的度数;(2)作射线OE,使∠BOE=∠COE,求∠COE的度数;(3)在(2)的条件下,作∠FOH=90°,使射线OH在∠BOE的内部,若∠DOF=3∠BOH,求∠AOH的度数.25.如图,点C是线段AB上的一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=12cm,AM=5cm,求BC的长;(2)如果MN=8cm,求AB的长.26.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.27.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜想出MN 的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案1.解:过平面内已知点A作直线,可作直线的条数为无数条,故选:D.2.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.3.解:75°可以用三角板的30°和45°画出,105°可以用三角板的45°和60°画出,110°用一副三角板不能画出,135°可以用三角板的45°和90°画出.故选:C.4.解:以A为端点的射线有2条,以B为端点的射线有2条,共4条,故选:D.5.解:从角的顶点出发,把一个角分成两相等的角的射线叫角的平分线,故①说法错误;连接C、D两点的线段的长度叫两点之间的距离,故②说法错误;两点之间,线段最短,故③说法错误;射线上点的个数和直线上点的个数都是无数个,故④说法错误;n边形从其中一个顶点出发连接其余各顶点,可以画出(n﹣3)条对角线,这些对角线把这个n边形分成了(n﹣2)个三角形,故⑤说法正确.所以法正确的有1个.故选:C.6.解:假设点E是线段CD的中点,则CE=DE,故①正确;当DE=CD时,则CE=CD,点E是线段CD的中点,故②正确;当CD=2CE,则DE=2CE﹣CE=CE,点E是线段CD的中点,故③正确;④CD=DE,点E不是线段CD的中点,故④不正确;综上所述:①、②、③正确,只有④是错误的.故选:C.7.解:∵OE平分∠BOC,∴∠BOC=2∠COE=56°.∴∠AOC=180°﹣∠BOC=124°.∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC=62°.故选:B.8.解:设宁化﹣清流﹣明溪﹣三元区﹣永安﹣大田六站分别用A、B、C、D、E、F表示,则共有线段:AB、AC、AD、AE、AF、BC、BD、BE、BF、CD、CE、CF、DE、DF、EF共15条,所以共需要15种车票.故选:A.9.解:∵10点整,时针指向10,分针指向12,中间相差两大格,钟表12个数字,每相邻两个数字之间的夹角为30°,∴10点整分针与时针的夹角是2×30°=60°.故选:A.10.解:(1)如图所示:当OC边在∠BOA的外部时,∠AOC=∠BOA+∠BOC=60°+20°=80°;(2)如图所示:当OC边在∠BOA的内部时,∠AOC=∠BOA﹣∠BOC=60°﹣20°=40°.故选:D.11.解:∵∠AOB=90°,∠AOC=33°24′17″,∴∠BOC=∠AOB﹣∠AOC=90°﹣33°24′17″=56°35′43″,故答案为:56°35′43″.12.解:设∠AOE=α,∠BOF=β,∵∠AOB=80°,∠EOF=160°,∴∠AOE+∠BOF=360°﹣∠AOE﹣∠BOF=360°﹣80°﹣160°=120°.∵OE、OF分别是∠AOD、∠BOC的平分线.∴∠AOD=2α,∠BOC=2β.∴∠COD=360°﹣∠AOB﹣∠AOD﹣∠BOC=360°﹣80°﹣120°×2=40°.故答案为40.13.解:要把一根细木条固定在墙上,至少需要钉两个钉子,其中蕴含的数学道理是两点确定一条直线,故答案为:两点确定一条直线.14.解:当点C在线段AB的延长线上时,AC=BC+AB=5cm+4cm=9cm;当点C在线段BA的延长线上时,AC=BC﹣AB=5cm﹣4cm=1cm;故则AC=1cm或9cm.故答案为:1cm或9cm.15.解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠BOC=2∠BOE=2∠COE,∠COD=∠AOD=∠AOC,∴∠DOE=∠COE+∠COD=(∠BOC+∠COA)=180°=90°.故答案为:∠COE,∠AOC,90°.16.解:依题意有n﹣2=5,解得n=7.故答案为:7.17.解:由BD=AB=CD,得AB=3BD,CD=4BD.由线段的和差,得AD=AB﹣BD=2BD,AC=AD+CD=2BD+4BD=6BD.由线段AB、CD的中点E、F,得AE=AB=BD,FC=CD=BD=2BD.由线段的和差,得EF=AC﹣AE﹣FC=6BD﹣BD﹣2BD=10,解得:BD=4cm,CD=×4==16cm,故答案为:16.18.解:因为周角的度数是360°,所以每一份中的角的度数为=60°.故答案为:60°.19.解:如图,最多可以画3条直线,最少可以画1条直线,.故答案为:1或3.20.解:∵∠A=41°18′36″,∠B=36°17′42″,∴∠A+∠B=41°18′36″+36°17′42″=77°35′78″=77°36′18″,故答案为:77°36′18″.21.解:∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD,又∵∠COD=40°,∴∠AOD=80°,∠AOC=40°,∵OB平分∠AOC,∴∠BOC=∠AOC=20°.22.解:设AB=BC=CD=x,则BD=2x,∴DF=13﹣3x,∵E是DF的中点,∴DE=(13﹣3x),∵CE=5,∴x+(13﹣3x)=5,∴x=3,∴BC=3,∴BE=BC+CE=8.23.解:(1)∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD,∵OE平分∠BOD,∴∠BOE=∠DOE=∠BOD,又∵∠AOD+∠BOD=180°,∴2∠COD+2∠DOE)=180°,∴∠COD+∠DOE)=90°,即∠DOE=90°,答:此时∠COE的度数为90°;(2)设∠DOE=x,则∠BOE=3x,∵∠AOD+∠BOD=180°,∴∠AOD=180°﹣4x,∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD=90°﹣2x,∵∠COE=70°,∴∠COD+∠DOE=70°,即:90°﹣2x+x=70°,解得,x=20°,∴∠BOE=3x=60°.24.解:(1)∵∠BOC=40°,∴∠AOC=180°﹣∠BOC=140°,∵OD平分∠AOC,∴∠AOD=AOC=70°;(2)①如图1,当射线OE在AB上方时,∠BOE=∠COE,∵∠BOE+∠COE=∠BOC,∴∠COE+∠COE=40°,∴∠COE=24°;②如图2,当射线OE在AB下方时,∠BOE=∠COE,∵∠COE﹣∠BOE=∠BOC,∴∠COE﹣∠COE=40°,∴∠COE=120°;综上所述:∠COE的度数为24°或120°;(3)①如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,设∠BOH=x°,则∠DOF=3x°,∠FOC=∠COD﹣∠DOF=70°﹣3x°,∵∠AOH=∠AOD+∠DOF+∠FOH=70°+3x°+90°=160°+3x°,∠EOH=∠BOC﹣∠COE﹣∠BOH=40°﹣24°﹣x°=16°﹣x°,∴∠FOH=∠FOC+∠COE+∠EOH=70°﹣3x°+24°+16°﹣x°=90°,∴x°=5°,∴∠AOH=160°+3x°=175°;②如图4,当射线OE在AB上方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°﹣x°=180°,解得x°=80°,∵∠COB=40°,∵80°>40°,∴x°=80°不符合题意舍去;③如图5,当射线OE在AB下方,OF在AB上方时,∵∠AOF=∠DOF+∠AOD=3x°+70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°+70°+90°﹣x°=180°,解得x°=10°,∴∠AOH=180°﹣∠BOH=180°﹣x°=170°;④如图6,当射线OE在AB下方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH+∠BOH=90°+x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°+x°=180°,解得x°=40°,∴∠AOH=∠AOF+∠FOH=50°+90°=140°.综上所述:∠AOH的度数为175°或170°或140°.25.解:(1)∵点M是线段AC的中点,∴AC=2AM,∵AM=5cm,∴AC=10cm,∵AB=12cm,∴BC=AB﹣AC=2cm;(2)∵点M是线段AC的中点,点N是线段BC的中点,∴BC=2NC,AC=2MC,∵MN=NC+MC=8cm,∴AB=BC+AC=2MN=2×8=16cm.26.解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.27.解:(1)∵点M、N分别是AC、BC的中点,∴MC=AC=×8cm=4cm,NC=BC=×6cm=3cm,∴MN=MC+NC=4cm+3cm=7cm;(2)MN=acm.理由如下:∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC+NC=AC+BC=AB=acm;(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=bcm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.【解析】(1)将x=2,y=-3代入y=kx-4,得-3=2k-4,
所以k= ,所以一次函数的表达式为y= x-4.
(2)将y= x-4的图象向上平移6个单位得
y= x+2,当y=0时,x=-4,
所以平移后的图象与x轴交点的坐标为(-4,0).
14.【解析】(1)设正比例函数和一次函数表达式分别为y=k1x和y=k2x+3,则-2k1=1,-2k2+3=1,
11.将直线y=x+4沿y轴向下平移2个单位长度,得到的直线经过第________象限.
12.如图,已知A地在B地正南方3km处,甲乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离S(km)与所行的时间t(h)之间的函数关系图象用如图所示的AC和BD给出,当他们行走3h后,他们之间的距离为________km.
7.一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网所用的时间计费;方式B除收月基本费20元外,再以每分0.05元的价格按上网所用时间计费.若上网所用时间为xmin,计费为y元,如图,是在同一坐标系中,分别描述两种计费方式的函数图象,有下列结论:
①图象甲描述的是方式A; ②图象乙描述的是方式B; ③当上网所用时间是500min时,选择方式B省钱.其中,正确结论的个数是()
8.【解析】因为y与x+1成正比例,所以设y=k(x+1),因为x=1时,y=2,所以2=k×2,即k=1,所以y=x+1.则当x=-1时,y=-1+1=0.
答案:0
9.【解析】将点(a,3)代入函数y=2x-1得3=2a-1,解得a=2.
答案:2
10.【解析】设直线AB的表达式为y=kx+b,由题意得,b=4,0=-2k+4,解得k=2,所以一次函数的表达式是y=2x+4.当y=2时,x=m代入表达式得m=-1.
(1)求这两个函数的表达式.
(2)在给出的坐标系中画出这两个函数图象.
(3)求△POQ的面积.
15.(12分)科学研究发现,空气含氧量y(g/m3)与海拔高度x(m)之间近似地满足一次函数关系,经测量,在海拔高度为0m的地方,空气含氧量约为299g/m3;在海拔高度为2000m的地方,空气含氧量约为235g/m3.
三、解答题(共47分)
13.(11分)已知一次函数y=kx-4,当x=2时,y=-3.
(1)求一次函数的表达式.
(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.
14.(12分)已知一个正比例函数和一个一次函数,它们的图象都经过点P(-2,1),且一次函数的图象与y轴相交于Q(0,3).
答案:-1
11.【解析】由题意可知,平移后直线的表达式为y=x+2.
因为k=1>0,b=2>0,
所以直线y=x+2经过第一、二、三象限.
答案:一、二、三
12.【解析】由图象求得AC的表达式为S1=2t,BD的表达式为S2= t+3,当t=3时,S1=6,S2= .
所以两人相距1.5km.
答案:1.5
6.【解析】选D.根据图象知:小敏经过2.8-1.6=1.2小时,走了4.8km,则其速度为4km/h;小聪经过1.6h,走了4.8km,则其速度为3km/h.
7.【解析】选A.根据一次函数图象特点:①图象甲描述的是方式A,正确,②图象乙描述的是方式B,正确,③当上网所用时间为500min时,选择方式B省钱,正确.
(C)- ,2(D)- ,2
3.周一的升旗仪式上,同学们看到匀速上升的旗子,能反映其高度与时间关系的图象大致是()
4.根据如图所示程序计算函数值,若输入的x的值为 ,则输出的函数值为()
(A) (B) (C) (D)
5.下列图形中,可能是一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()
5.【解析】选A.A选项中的一次函数m<0,n>0,则有mn<0,正比例函数mn<0,符合;B选项中一次函数m<0,n>0,则有mn<0,正比例函数mn>0,所以不符合;C选项中m>0,n>0,则有mn>0,正比例函数mn<0,所以不符合;D选项中m>0,n<0,则有mn<0,正比例函数mn>0,所以不符合.
(A)3(B)2(C)1(D)0
二、填空题(每小题5分,共25分)
8.已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.
9.一次函数y=2x-1的图象经过点(a,3),则a=______.
10.如果点(m,2)在连接点A(0,4)和点B(-2,0)的直线上,则m的值是______.
(1)求出y与x的函数关系式.
(2)已知某山的海拔高度为1200m,请你求出该山山顶处的空气含氧量约为多少.
16.(12分)如图,一次函数y=- x+2的图象分别与x轴、y轴交于点A,B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B,C两点直线的表达式.
答案解析
1.【解析】选C.由一次函数的定义知(1)(2)(4)是一次函数.
单元评价检测
第六章
(45分钟100分)
一、选择题(每小题4分,共28分)
1.下列函数(1)y=π2x;(2)y=3x+1;(3)y= ;(4)y=2-3x;(5)y=x3+4中,一次函数有()
(A)1个(B)2个(C)3个(D)4个
2.一次函数y=kx+b的图象如图,则k,b的值是()
ห้องสมุดไป่ตู้(A) ,-2(B) ,-2
2.【解析】选B.由图象知b=-2,把x=3,y=0代入y=kx-2,得k= .
3.【解析】选D.A中,旗子的高度先逐渐升高,到达最高点后,高度逐渐下降,所以不符合题意;B中,旗子的高度始终不变,也不符合题意;C中,随着时间的增大,旗子的高度越来越低,这是降旗的过程,不符合题意.
4.【解析】选B.因为x= 在范围2≤x≤4中,所以把x= 代入y= ,得y= = .
6.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1,l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪的速度分别是()
(A)3km/h和4km/h(B)3km/h和3km/h
(C)4km/h和4km/h(D)4km/h和3km/h
相关文档
最新文档