RCM1583U-A中文资料

合集下载

MAX13085EESA-T中文资料

MAX13085EESA-T中文资料

General DescriptionThe MAX13080E–MAX13089E +5.0V, ±15kV ESD-protect-ed, RS-485/RS-422 transceivers feature one driver and one receiver. These devices include fail-safe circuitry,guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receiver outputs a logic-high if all transmitters on a terminated bus are disabled (high impedance). The MAX13080E–MAX13089E include a hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also feature slew-rate-limited drivers but allow transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E slew rate is pin selectable for 250kbps,500kbps, and 16Mbps.The MAX13082E/MAX13085E/MAX13088E are intended for half-duplex communications, and the MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E are intended for full-duplex communica-tions. The MAX13089E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.The MAX13080E–MAX13089E transceivers draw 1.2mA of supply current when unloaded or when fully loaded with the drivers disabled. All devices have a 1/8-unit load receiver input impedance, allowing up to 256transceivers on the bus.The MAX13080E/MAX13083E/MAX13086E/MAX13089E are available in 14-pin PDIP and 14-pin SO packages.The MAX13081E/MAX13082E/MAX13084E/MAX13085E/MAX13087E/MAX13088E are available in 8-pin PDIP and 8-pin SO packages. The devices operate over the com-mercial, extended, and automotive temperature ranges.ApplicationsUtility Meters Lighting Systems Industrial Control Telecom Security Systems Instrumentation ProfibusFeatures♦+5.0V Operation♦Extended ESD Protection for RS-485/RS-422 I/O Pins±15kV Human Body Model ♦True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility ♦Hot-Swap Input Structures on DE and RE ♦Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission(MAX13080E–MAX13085E/MAX13089E)♦Low-Current Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)♦Pin-Selectable Full-/Half-Duplex Operation (MAX13089E)♦Phase Controls to Correct for Twisted-Pair Reversal (MAX13089E)♦Allow Up to 256 Transceivers on the Bus ♦Available in Industry-Standard 8-Pin SO PackageMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-3590; Rev 1; 4/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide, Pin Configurations, and Typical Operating Circuits appear at end of data sheet.Ordering Information continued at end of data sheet.M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC ).............................................................+6V Control Input Voltage (RE , DE, SLR,H/F , TXP, RXP)......................................................-0.3V to +6V Driver Input Voltage (DI)...........................................-0.3V to +6V Driver Output Voltage (Z, Y, A, B).............................-8V to +13V Receiver Input Voltage (A, B)....................................-8V to +13V Receiver Input VoltageFull Duplex (A, B)..................................................-8V to +13V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Driver Output Current.....................................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 14-Pin Plastic DIP (derate 10.0mW/°C above +70°C)...800mW Operating Temperature RangesMAX1308_EC_ _.................................................0°C to +75°C MAX1308_EE_ _..............................................-40°C to +85°C MAX1308_EA_ _............................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________5DRIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 6_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________70.800.901.501.101.001.201.301.401.60-40-10520-253550958011065125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )0201040305060021345OUTPUT CURRENTvs. RECEIVER OUTPUT-HIGH VOLTAGEM A X 13080E -89E t o c 02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )20104030605070021345OUTPUT CURRENTvs. RECEIVER OUTPUT-LOW VOLTAGEM A X 13080E -89E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.04.44.24.84.65.25.05.4RECEIVER OUTPUT-HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )-40-10520-2535509580110651250.10.70.30.20.40.50.60.8RECEIVER OUTPUT-LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )-40-10520-25355095801106512502040608010012014016012345DRIVER DIFFERENTIAL OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEDIFFERENTIAL OUTPUT VOLTAGE (V)D I F FE R E N T I A L O U T P U T C U R R E N T (m A )2.02.82.43.63.24.44.04.8DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURED I F FE R E N T I A L O U T P U T V O L T A G E (V )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140180160200-7-5-4-6-3-2-1012354OUTPUT CURRENT vs. TRANSMITTEROUTPUT-HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )60402080100120140160180200042681012OUTPUT CURRENT vs. TRANSMITTEROUTPUT-LOW VOLTAGEOUTPUT-LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5.0V, T A = +25°C, unless otherwise noted.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 8_______________________________________________________________________________________21543679810SHUTDOWN CURRENT vs. TEMPERATUREM A X 13080E -89E t o c 10S H U T D O W N C U R R E N T (µA )-40-10520-253550958011065125TEMPERATURE (°C)600800700100090011001200DRIVER PROPAGATION DELAY vs. TEMPERATURE (250kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)300400350500450550600DRIVER PROPAGATION DELAY vs. TEMPERATURE (500kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)1070302040506080DRIVER PROPAGATION DELAY vs. TEMPERATURE (16Mbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (250kpbs AND 500kbps)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (16Mbps)R EC E I V E R P R O P A G AT I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)2µs/div DRIVER PROPAGATION DELAY (250kbps)DI 2V/divV Y - V Z 5V/divR L = 100Ω200ns/divRECEIVER PROPAGATION DELAY(250kbps AND 500kbps)V A - V B 5V/divRO 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________9Test Circuits and Waveforms400ns/divDRIVER PROPAGATION DELAY (500kbps)DI 2V/divR L = 100ΩV Y - V Z 5V/div10ns/div DRIVER PROPAGATION DELAY (16Mbps)DI 2V/divR L = 100ΩV Y 2V/divV Z 2V/div40ns/divRECEIVER PROPAGATION DELAY (16Mbps)V B 2V/divR L = 100ΩRO 2V/divV A 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)Figure 2. Driver Timing Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 10______________________________________________________________________________________Test Circuits and Waveforms (continued)Figure 4. Driver Enable and Disable Times (t DHZ , t DZH , t DZH(SHDN))DZL DLZ DLZ(SHDN)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversTest Circuits and Waveforms (continued)Figure 6. Receiver Propagation Delay Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E/MAX13083E/MAX13086EMAX13081E/MAX13084E/MAX13086E/MAX13087EFunction TablesM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers MAX13082E/MAX13085E/MAX13088EFunction Tables (continued)MAX13089EDetailed Description The MAX13080E–MAX13089E high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuit-ry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all dri-vers disabled (see the Fail-Safe section). The MAX13080E/MAX13082E/MAX13083E/MAX13085E/ MAX13086E/MAX13088E/MAX13089E also feature a hot-swap capability allowing line insertion without erroneous data transfer (see the Hot Swap Capability section). The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflec-tions caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also offer slew-rate limits allowing transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088Es’ driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E’s slew rate is selectable between 250kbps, 500kbps, and 16Mbps by driving a selector pin with a three-state driver.The MAX13082E/MAX13085E/MAX13088E are half-duplex transceivers, while the MAX13080E/MAX13081E/ MAX13083E/MAX13084E/MAX13086E/MAX13087E are full-duplex transceivers. The MAX13089E is selectable between half- and full-duplex communication by driving a selector pin (H/F) high or low, respectively.All devices operate from a single +5.0V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissi-pation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.Receiver Input Filtering The receivers of the MAX13080E–MAX13085E, and the MAX13089E when operating in 250kbps or 500kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 25% due to this filtering.Fail-Safe The MAX13080E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, RO is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiv-er’s differential input voltage is pulled to 0V by the termi-nation. With the receiver thresholds of the MAX13080E family, this results in a logic-high with a 50mV minimumnoise margin. Unlike previous fail-safe devices, the-50mV to -200mV threshold complies with the ±200mVEIA/TIA-485 standard.Hot-Swap Capability (Except MAX13081E/MAX13084E/MAX13087E)Hot-Swap InputsWhen circuit boards are inserted into a hot or powered backplane, differential disturbances to the data buscan lead to data errors. Upon initial circuit board inser-tion, the data communication processor undergoes itsown power-up sequence. During this period, the processor’s logic-output drivers are high impedanceand are unable to drive the DE and RE inputs of these devices to a defined logic level. Leakage currents up to±10µA from the high-impedance state of the proces-sor’s logic drivers could cause standard CMOS enableinputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit board capacitance couldcause coupling of V CC or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver’s driver or receiver.When V CC rises, an internal pulldown circuit holds DElow and RE high. After the initial power-up sequence,the pulldown circuit becomes transparent, resetting thehot-swap tolerable input.Hot-Swap Input CircuitryThe enable inputs feature hot-swap capability. At theinput there are two NMOS devices, M1 and M2 (Figure 9). When V CC ramps from zero, an internal 7µstimer turns on M2 and sets the SR latch, which alsoturns on M1. Transistors M2, a 1.5mA current sink, andM1, a 500µA current sink, pull DE to GND through a5kΩresistor. M2 is designed to pull DE to the disabledstate against an external parasitic capacitance up to100pF that can drive DE high. After 7µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resetsand M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CCdrops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling RE to V CC. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089EMAX13089E ProgrammingThe MAX13089E has several programmable operating modes. Transmitter rise and fall times are programma-ble, resulting in maximum data rates of 250kbps,500kbps, and 16Mbps. To select the desired data rate,drive SRL to one of three possible states by using a three-state driver: V CC , GND, or unconnected. F or 250kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. F or 500kbps operation, drive SRL high or connect it to V CC .F or 16Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX13089E has two pins that invert the phase of the driver and the receiver to cor-rect this problem. F or normal operation, drive TXP and RXP low, connect them to ground, or leave them uncon-nected (internal pulldown). To invert the driver phase,drive TXP high or connect it to V CC . To invert the receiver phase, drive RXP high or connect it to V CC . Note that the receiver threshold is positive when RXP is high.The MAX13089E can operate in full- or half-duplex mode. Drive H/F low, leave it unconnected (internal pulldown), or connect it to GND for full-duplex opera-tion. Drive H/F high for half-duplex operation. In full-duplex mode, the pin configuration of the driver and receiver is the same as that of a MAX13080E. In half-duplex mode, the receiver inputs are internally connect-ed to the driver outputs through a resistor-divider. This effectively changes the function of the device’s outputs.Y becomes the noninverting driver output and receiver input, Z becomes the inverting driver output and receiver input. In half-duplex mode, A and B are still connected to ground through an internal resistor-divider but they are not internally connected to the receiver.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13080E family of devices have extra protection against static electricity. Maxim’s engineers have devel-oped state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD struc-tures withstand high ESD in all states: normal operation,shutdown, and powered down. After an ESD event, the MAX13080E–MAX13089E keep working without latchup or damage.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13080E–MAX13089E are characterized for protec-tion to the following limits:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13080E family of devices helps you design equip-ment to meet IEC 61000-4-2, without the need for addi-tional ESD-protection components.+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine Model The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Applications Information256 Transceivers on the BusThe standard RS-485 receiver input impedance is 12kΩ(1-unit load), and the standard driver can drive up to 32-unit loads. The MAX13080E family of transceivers has a1/8-unit load receiver input impedance (96kΩ), allowingup to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices,as well as other RS-485 transceivers with a total of 32-unit loads or fewer, can be connected to the line.Reduced EMI and ReflectionsThe MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to250kbps. The MAX13083E/MAX13084E/MAX13085Eoffer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX13089E withSRL = V CC or unconnected are slew-rate limited. WithSRL unconnected, the MAX13089E error-free data transmission is up to 250kbps. With SRL connected toV CC,the data transmit speeds up to 500kbps. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089ELow-Power Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2.8µA of supply current.RE and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 700ns, the devices are guaranteed to enter shutdown.Enable times t ZH and t ZL (see the Switching Characteristics section) assume the devices were not in a low-power shutdown state. Enable times t ZH(SHDN)and t ZL(SHDN)assume the devices were in shutdown state. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t ZH(SHDN), t ZL(SHDN))than from driver/receiver-disable mode (t ZH , t ZL ).Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention.The first, a foldback current limit on the output stage,provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics ). The second, a thermal-shut-down circuit, forces the driver outputs into a high-imped-ance state if the die temperature exceeds +175°C (typ).Line LengthThe RS-485/RS-422 standard covers line lengths up to 4000ft. F or line lengths greater than 4000ft, use the repeater application shown in Figure 11.Typical ApplicationsThe MAX13082E/MAX13085E/MAX13088E/MAX13089E transceivers are designed for bidirectional data commu-nications on multipoint bus transmission lines. F igures 12 and 13 show typical network applications circuits. To minimize reflections, terminate the line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-lim-ited MAX13082E/MAX13085E and the two modes of the MAX13089E are more tolerant of imperfect termination.Chip InformationTRANSISTOR COUNT: 1228PROCESS: BiCMOS+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversFigure 11. Line Repeater for MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E/MAX13089E in Full-Duplex Mode+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089EM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversPin Configurations and Typical Operating CircuitsMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________21Pin Configurations and Typical Operating Circuits (continued)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 22______________________________________________________________________________________Ordering Information (continued)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________23Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

k03b9场效应管参数

k03b9场效应管参数

k03b9场效应管参数
k03b9场效应管参数包括:
1. 夹断电压UP:使漏源间刚截止时的栅极电压。

2. 开启电压UT:增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。

3. 饱和漏源电流IDSS:结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。

4. 跨导gM:表示栅源电压U GS对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。

gM是衡量场效应管放大能力的重要参数。

5. 漏源击穿电压BUDS:栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压。

6. 最大耗散功率PDSM:场效应管性能不变坏时所允许的最大漏源耗散功率。

7. 最大漏源电流IDSM:场效应管(DMP1245UFCL-7)正常工作时,漏源间所允许通过的最大电流。

以上信息仅供参考,如需了解完整的参数,建议查看产品说明书或向专业人士咨询。

MIKOM变频器(产品目录)

MIKOM变频器(产品目录)
MIKOM
变频器
威海麦科电气技术有限公司
威海麦科电气技术有限公司是集研发、生产、销售、服务为一体的高科技企业。注 册 商 标 是MIKOM。 公 司 致 力 于 成 为 工 业 自 动 化 领 域 专 业 供 应 商 , 可 为 行 业 客 户 提 供 全 面、专业的自动控制系统解决方案。
公 司 的 主 要 产 品 包 括 可 编 程 控 制 器 (PLC)、 温 度 控 制 器 、 运 动 控 制 器 、 变 频 器 、 伺 服驱动器等。产品广泛应用于汽车行业、印刷包装行业、印染行业、机械制造行业、电 子行业、电力行业、轮胎行业、动力设备、市政工程等多个自动化相关领域。
0.75
MF10G2S0.75GS MF10G4T0.75GS MV20G4T0.75GS
1.5
MF10G2S1.5GS MF10G4T1.5GS MV20G4T1.5GSM源自30G4T1.5GS2.2
MF10G2S2.2GS MF10G4T2.2GS MV20G4T2.2GS
MV30G4T2.2GS
同步带控制
使用位置伺服控制功能,当位置给定来自另一台电机的编码器输出时,两台电机能够实现高精度的同步 运转控制。
7
维护—键盘
状态指示灯 ∧递增键 ∨递减键 编程键
运行键
单位指示灯
LED
移位键 确认键 停机/
功能
L E D显 示
按键锁定选 择 多 功 能M K键
支持参数上载、下载功能 支持用户自定义菜单
麦科电气依托强大的技术研发队伍,以国际先进产品为标杆,高起点、高要求、持 续 创 新 、 不 断 超 越 , 掌 握 了PLC、 高 性 能 矢 量 变 频 器 、 伺 服 驱 动 器 等 核 心 技 术 。 先 后 开 发 了M X系 列P L C、M V系 列 变 频 器 、M S系 列 伺 服 驱 动 器 等 产 品 , 具 有 全 套 产 品 的 知 识 产 权 。

常熟开关cm1l产品手册

常熟开关cm1l产品手册
公 司全体 员工坚持 “团结、 创新、求 实、争 效”的敬业精神,坚持“永不言满、追求卓越”的 企业精神,秉承“科技兴企业、管理出效益”的宗 旨,贯彻“为顾客创造价值,为员工创造机会,为 社会创造效益”的经营理念。
公司建有博士后科研工作站、省级企业技术中 心和江苏省电器控制工程技术研究中心;具有一支 以博 士 生、 研 究 生、本 科 生为 主 的多层 次 研发队 伍,在产品研究、开发和应用上具有丰富的经验和 技术创新能力;拥有先进的模具制造、零部件自动 化生产、断路器装配检测流水线等一大批先进制造 设备和试验检测设备;并建立和完善了质量/环境/职 业健康 安全体 系(ISO9001/ISO14001/OHSMS18001), 确保提 供客 户 可靠、安 全的 产 品。企业 实施以 ERP管 理为重点 的信息 化、网络 化管理, 开展以 “7S”管理为主的现场生产管理,稳步提高企业的 科学管理水平,打造一个技术领先、品质过硬、管 理先进的电气制造企业。
Changshu Switchgear Mfg. Co., Ltd. (Former Changshu Switchgear Plant), an enterprise with state-owned equity, is a
"National key new high-tech enterprise" and mainly researches, develops and produces HV and LV electric products, electronic products and HV and LV switchgear and controlgear assemblies. It is well known as a researcher and manufacturer for electric components in domestic market. The products are widely used in various fields such as electricity, machinery, metallurgy, petrochemical industry, textile, architecture, and vessel, etc.

MCZ33883EGR2资料

MCZ33883EGR2资料

Document Number: MC33883Rev 9.0, 1/2007Freescale Semiconductor Advance Information* This document contains certain information on a new product.Specifications and information herein are subject to change without notice.© Freescale Semiconductor, Inc., 2007. All rights reserved.H-Bridge Gate Driver ICThe 33883 is an H-bridge gate driver (also known as a full-bridge pre-driver) IC with integrated charge pump and independent high-•V CC •V CC2••••••••Figure 1. 33883 Simplified Application Diagram33883Analog Integrated Circuit Device Data33883INTERNAL BLOCK DIAGRAMINTERNAL BLOCK DIAGRAMFigure 2. 33883 Simplified Internal Block DiagramUndervolt-age/Over-voltageG_ENIN_HS1IN_LS1IN_HS2IN_LS2GATE_LS1SRC_HS1GATE_HS CP_OUTLR_OUTGATE_LS2SRC_HS2GATE_HS Pulse GeneratorV DD / V CC Level ShiftPulse GeneratorV DD / V POS Level ShiftIN OUCon-trol a nd LogicLinearReg V CC2EN GND +5.0 V+14.5 V V DDHIGH- AND LOW-SIDECharge PumpEN GNDC2V POSV CCC1V CC2V CCV CCV CC2VCC VCC2CP_OUTLR_OUT V CC, V CC2V DDC2C1BRG_ENPulse GeneratorV DD / V CC Level ShiftPulse GeneratorV DD / V POS Level ShiftGND CONTROL WITH CHARGE PUMPCP_OUTV CCOutputDriverIN OUCP_OUTV CCOutputDriverIN OULR_OUTOutputDriverIN OULR_OUTOutputDriverCon-trol a nd LogicCon-trol a nd LogicCon-trol a nd LogicBRG_ENBRG_ENBRG_ENHIGH-SIDE CHANNELLOW-SIDE CHANNELHIGH-SIDE CHANNELLOW-SIDE CHANNELGND2GND2GND1GND GND_GND2GND_AT SD 1Thermal ShutdownT SD 1T SD 1T SD 2Thermal ShutdownT SD 2T SD 2Analog Integrated Circuit Device Data 33883TERMINAL CONNECTIONSFigure 3. 33883 20-SOICW Terminal ConnectionsTable 1. 20-SOICW Terminal DefinitionsA functional description of each terminal can be found in the FUNCTIONAL TERMINAL DESCRIPTION section beginning on page 10.TerminalTerminal Name Formal Name Definition1VCC Supply Voltage 1Device power supply 1.2C2Charge Pump Capacitor External capacitor for internal charge pump.3CP_OUT Charge Pump Out External reservoir capacitor for internal charge pump.4SRC_HS1Source 1 Output High Side Source of high-side 1 MOSFET 5GATE_HS 1Gate 1 Output High Side Gate of high-side 1 MOSFET.6IN_HS1Input High Side 1 Logic input control of high-side 1 gate (i.e., IN_HS1 logic HIGH = GATE_HS1 HIGH).7IN_LS1Input Low Side 1Logic input control of low-side 1 gate (i.e., IN_LS1 logic HIGH = GATE_LS1 HIGH).8GATE_LS1Gate 1 Output Low Side Gate of low-side 1 MOSFET. 9GND1Ground 1Device ground 1.10LR_OUT Linear Regulator Output Output of internal linear regulator.11VCC2Supply Voltage 2Device power supply 2.12GND_A Analog GroundDevice analog ground.13C1Charge Pump Capacitor External capacitor for internal charge pump.14GND2Ground 2Device ground 2.15GATE_LS2Gate 2 Output Low Side Gate of low-side 2 MOSFET.16IN_LS2Input Low Side 2Logic input control of low-side 2 gate (i.e., IN_LS2 logic HIGH = GATE_LS2 HIGH). 17IN_HS2Input High Side 2 Logic input control of high-side 2 gate (i.e., IN_HS2 logic HIGH = GATE_HS2 HIGH).18GATE_HS 2Gate 2 Output High Side Gate of high-side 2 MOSFET. 19SRC_HS2Source 2 Output High Side Source of high-side 2 MOSFET.20G_ENGlobal EnableLogic input Enable control of device (i.e., G_EN logic HIGH = Full Operation, G_EN logic LOW = Sleep Mode).Analog Integrated Circuit Device Data33883ELECTRICAL CHARACTERISTICS MAXIMUM RATINGSELECTRICAL CHARACTERISTICSMAXIMUM RATINGSTable 2. Maximum RatingsAll voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.RatingSymbolValueUnitELECTRICAL RATINGS Supply Voltage 1V CC -0.3 to 65V Supply Voltage 2 (1)V CC2-0.3 to 35V Linear Regulator Output VoltageV LR_OUT -0.3 to 18V High-Side Floating Supply Absolute Voltage V CP_OUT -0.3 to 65V High-Side Floating Source VoltageV SRC_HS-2.0 to 65V High-Side Source Current from CP_OUT in Switch ON State I S 250mA High-Side Gate VoltageV GATE_HS -0.3 to 65V High-Side Gate Source Voltage (2)V GATE_HS - V SRC_HS -0.3 to 20V High-Side Floating Supply Gate Voltage V CP_OUT - V GATE_HS -0.3 to 65V Low-Side Gate Voltage V GATE_LS -0.3 to 17V Wake-Up Voltage V G_EN -0.3 to 35V Logic Input VoltageV IN -0.3 to 10V Charge Pump Capacitor Voltage V C1-0.3 to V LR_OUTV Charge Pump Capacitor Voltage V C2-0.3 to 65V ESD Voltage (3)Human Body Model on All Pins (V CC and V CC2 as Two Power Supplies) Machine ModelV ESD1V ESD2±1500±130VNotes1.V CC2 can sustain load dump pulse of 40 V, 400 ms,2.0 Ω.2.In case of high current (SRC_HS >100 mA) and high voltage (>20 V) between GATE_HSX and SRC_HS an external zener of 18 V isneeded as shown in Figure 14.3.ESD1 testing is performed in accordance with the Human Body Model (C ZAP =100 pF, R ZAP =1500 Ω), ESD2 testing is performed inaccordance with the Machine Model (C ZAP =200 pF, R ZAP =0Ω).Analog Integrated Circuit Device Data 33883ELECTRICAL CHARACTERISTICSMAXIMUM RATINGSPower Dissipation and Thermal Characteristics Maximum Power Dissipation @ 25°C Thermal Resistance (Junction to Ambient)Operating Junction Temperature Storage TemperatureP D R θJA T J T STG 1.25100-40 to 150-65 to 150W °C / W °C °C Peak Package Reflow Temperature During Reflow (4), (5)T PPRTNote 5°CNotes4.Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits maycause malfunction or permanent damage to the device.5.Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package ReflowTemperature and Moisture Sensitivity Levels (MSL),Go to , search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.Table 2. Maximum RatingsAll voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.RatingSymbolValueUnitAnalog Integrated Circuit Device Data33883ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSTable 3. Static Electrical CharacteristicsCharacteristics noted under conditions V CC = 12 V, V CC2 = 12 V, C CP = 33 nF, G_EN = 4.5 V unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbolMinTypMaxUnitOPERATING CONDITIONSSupply Voltage 1 for Output High-Side Driver and Charge Pump V CC 5.5–55V Supply Voltage 2 for Linear Regulation V CC2 5.5–28V High-Side Floating Supply Absolute VoltageV CP_OUTV CC +4–V CC + 11 but < 65VLOGICLogic 1 Input Voltage (IN_LS and IN_HS) V IH 2.0–10V Logic 0 Input Voltage (IN_LS and IN_HS) V IL ––0.8V Logic 1 Input Current V IN = 5.0 VI IN+200–1000µAWake-Up Input Voltage (G_EN)V G_EN 4.55.0V CC2V Wake-Up Input Current (G_EN) V G_EN = 14 VI G_EN–200500µAWake-Up Input Current (G_EN) V G_EN = 28 V I G_EN2––1.5mALINEAR REGULATOR Linear RegulatorV LR_OUT @ V CC2 from 15 V to 28 V, I LOAD from 0 mA to 20 mA V LR_OUT @ I LOAD = 20 mAV LR_OUT @ I LOAD = 20 mA, V CC2 = 5.5 V, V CC = 5.5 V V LR_OUT12.5V CC2 - 1.54.0–––16.5––VCHARGE PUMPCharge Pump Output Voltage, Reference to VCC V CC = 12 V, I LOAD = 0 mA, C CP_OUT = 1.0 µF V CC = 12 V, I LOAD = 7.0 mA, C CP_OUT = 1.0 µF V CC2 = V CC = 5.5 V, I LOAD = 0 mA, C CP_OUT = 1.0 µF V CC2 = V CC = 5.5 V, I LOAD = 7.0 mA, C CP_OUT = 1.0 µF V CC = 55 V, I LOAD = 0 mA, C CP_OUT = 1.0 µF V CC = 55 V, I LOAD = 7.0 mA, C CP_OUT = 1.0 µFV CP_OUT7.57.02.31.87.57.0––––––––––––VPeak Current Through Pin C1 Under Rapidly Changing VCC Voltages (see Figure 13, page 17)I C1-2.0– 2.0AMinimum Peak Voltage at Pin C1 Under Rapidly Changing VCC Voltages (see Figure 13, page 17)V C1MIN -1.5––VAnalog Integrated Circuit Device Data 33883ELECTRICAL CHARACTERISTICSSTATIC ELECTRICAL CHARACTERISTICSSUPPLY VOLTAGEQuiescent VCC Supply Current V G_EN = 0 V and V CC = 55 V V G_EN = 0 V and V CC = 12 V IV CCSLEEP––––1010µAOperating VCC Supply Current (6)V CC = 55 V and V CC2 = 28 V V CC = 12 V and V CC2 = 12 VIV CCOP––2.20.7––mAAdditional Operating V CC Supply Current for Each Logic Input Terminal ActiveV CC = 55 V and V CC2 = 28 V (7)IV CCLOG––5.0mAQuiescent VCC2 Supply Current V G_EN = 0 V and V CC = 12 V V G_EN = 0 V and V CC = 28 V IV CC2SLEEP––––5.05.0µAOperating VCC2 Supply Current (6) V CC = 55 V and V CC2 = 28 V V CC = 12 V and V CC2 = 12 VIV CC2OP––––129.0mA Additional Operating VCC2 Supply Current for Each Logic Input Terminal ActiveV CC = 55 V and V CC2 = 28 V (7) IV CC2LOG–– 5.0mAUndervoltage Shutdown VCC UV 4.0 5.0 5.5V Undervoltage Shutdown VCC2 (8)UV2 4.0 5.0 5.5V Overvoltage Shutdown VCC OV 576165V Overvoltage Shutdown VCC2OV229.53135VOUTPUTOutput Sink Resistance (Turned Off)I discharge LSS = 50 mA , V SRC_HS = 0 V (8)R DS––22ΩOutput Source Resistance (Turned On)I charge HSS = 50 mA, V CP_OUT = 20 V (8)R DS––22ΩCharge Current of the External High-Side MOSFET Through GATE_HSn Terminal (9)I CHARGE HSS–100200mAMaximum Voltage (V GATE_HS - V SRC_HS ) INH = Logic 1, I S max = 5.0 mAVMAX––18VNotes6.Logic input terminal inactive (high impedance).7.High-frequency PWM-ing (» 20 kHz) of the logic inputs will result in greater power dissipation within the device. Care must be taken to remain within the package power handling rating.8.The device may exhibit predictable behavior between 4.0 V and 5.5 V.9.See Figure 5, page 12, for a description of charge current.Table 3. Static Electrical Characteristics (continued)Characteristics noted under conditions V CC = 12 V, V CC2 = 12 V, C CP = 33 nF, G_EN = 4.5 V unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbol Min Typ Max UnitAnalog Integrated Circuit Device Data33883ELECTRICAL CHARACTERISTICSDYNAMIC ELECTRICAL CHARACTERISTICSDYNAMIC ELECTRICAL CHARACTERISTICSTable 4. Dynamic Electrical CharacteristicsCharacteristics noted under conditions 7.0 V ≤ V SUP ≤ 18 V, -40°C ≤ T A ≤ 125°C, GND = 0.0 V unless otherwise noted. Typical values noted reflect the approximate parameter means at T A = 25°C under nominal conditions unless otherwise noted.CharacteristicSymbolMinTypMaxUnitTIMING CHARACTERISTICSPropagation Delay High Side and Low SideC LOAD = 5.0 nF, Between 50% Input to 50% Output (10) (see Figure 4) t PD–200300nsTurn-On Rise TimeC LOAD = 5.0 nF, 10% to 90% (10), (11) (see Figure 4) t R–80180ns Turn-Off Fall TimeC LOAD = 5.0 nF, 10% to 90% (10), (11) (see Figure 4)t F–80180ns10.C LOAD corresponds to a capacitor between GATE_HS and SRC_HS for the high side and between GATE_LS and ground for low side. 11.Rise time is given by time needed to change the gate from 1.0 V to 10 V (vice versa for fall time).Analog Integrated Circuit Device Data 33883TIMING DIAGRAMSTIMING DIAGRAMSFigure 4. Timing Characteristics50%50%t fIN_HS GATE_HS 50%50%t pdt pdt ror IN_LS or GATE_LSAnalog Integrated Circuit Device Data33883FUNCTIONAL DESCRIPTION INTRODUCTIONFUNCTIONAL DESCRIPTIONINTRODUCTIONThe 33883 is an H-bridge gate driver (or full-bridge pre-driver) with integrated charge pump and independent high- and low-side driver channels. It has the capability to drivelarge gate-charge MOSFETs and supports high PWM frequency. In sleep mode its supply current is very low.FUNCTIONAL TERMINAL DESCRIPTIONSUPPLY VOLTAGE TERMINALS (VCC AND VCC2)The VCC and VCC2 terminals are the power supply inputs to the device. V CC is used for the output high-side drivers and the charge pump. V CC2 is used for the linear regulation. They can be connected together or independent with different voltage values. The device can operate with V CC up to 55 V and V CC2 up to 28 V.The VCC and VCC2 terminals have undervoltage (UV) and overvoltage (OV) shutdown. If one of the supply voltage drops below the undervoltage threshold or rises above the overvoltage threshold, the gate outputs are switched LOW in order to switch off the external MOSFETs. When the supply returns to a level that is above the UV threshold or below the OV threshold, the device resumes normal operationaccording to the established condition of the input terminals.INPUT HIGH- AND LOW-SIDE TERMINALS (IN_HS1, IN_HS2, AND IN_LS1, IN_LS2)The IN_HSn and IN_LSn terminals are input control terminals used to control the gate outputs. These terminals are 5.0 V CMOS-compatible inputs with hysteresis. IN_HSn and IN_LSn independently control GATE_HSn and GATE_LSn, respectively.During wake-up, the logic is supplied from the G_EN terminal. There is no internal circuit to prevent the external high-side and low-side MOSFETs from conducting at the same time.SOURCE OUTPUT HIGH-SIDE TERMINALS (SRC_HS1 AND SRC_HS2)The SRC_HSn terminals are the sources of the external high-side MOSFETs. The external high-side MOSFETs are controlled using the IN_HSn inputs.GATE HIGH- AND LOW-SIDE TERMINALS (GATE_HS1, GATE_HS2, AND GATE_LS1, GATE_LS2)The GATE_HSn and GATE_LSn terminals are the gates of the external high- and low-side MOSFETs. The external high- and low-side MOSFETs are controlled using the IN_HSn and IN_LSn inputs.GLOBAL ENABLE (G_EN)The G_EN terminal is used to place the device in a sleep mode. When the G_EN terminal voltage is a logic LOW state, the device is in sleep mode. The device is enabled and fully operational when the G_EN terminal voltage is logic HIGH, typically 5.0 V.CHARGE PUMP OUT (CP_OUT)The CP_OUT terminal is used to connect an external reservoir capacitor for the charge pump.CHARGE PUMP CAPACITOR TERMINALS (C1 AND C2)The C1 and C2 terminals are used to connect an external capacitor for the charge pump.LINEAR REGULATOR OUTPUT (LR_OUT)The LR_OUT terminal is the output of the internal regulator. It is used to connect an external capacitor.GROUND TERMINALS (GND_A, GND1 AND GND2)These terminals are the ground terminals of the device. They should be connected together with a very low impedance connection.FUNCTIONAL DESCRIPTIONFUNCTIONAL TERMINAL DESCRIPTIONTable 5. Functional Truth TableConditions G_EN IN_HSn IN_LSn Gate_HSn Gate_LSn Comments Sleep0x x00Device is in Sleep mode. The gates are at low state.Normal11111Normal mode. The gates are controlled independently.Normal10000Normal mode. The gates are controlled independently. Undervoltage1x x00The device is currently in fault mode. The gates are atlow state. Once the fault is removed, the 33883 recoversits normal mode.Overvoltage1x x00The device is currently in fault mode. The gates are atlow state. Once the fault is removed, the 33883 recoversits normal mode.Overtemperatureon High-Side Gate Driver 11x0x The device is currently in fault mode. The high-side gateis at low state. Once the fault is removed, the 33883recovers its normal mode.Overtemperatureon Low-Side Gate Driver 1x1x0The device is currently in fault mode. The low-side gateis at low state. Once the fault is removed, the 33883recovers its normal mode.x = Don’t care.FUNCTIONAL DEVICE OPERATIONFUNCTIONAL DEVICE OPERATIONDRIVER CHARACTERISTICSFigure 5 represents the external circuit of the high-side gate driver. In the schematic, HSS represents the switch that is used to charge the external high-side MOSFET through the GATE_HS terminal. LSS represents the switch that is used to discharge the external high-side MOSFET through the GATE_HS terminal. A 180K Ω internal typical passivedischarge resistance and a 18 V typical protection zener are in parallel with LSS. The same schematic can be applied to the external low-side MOSFET driver simply by replacing terminal CP_OUT with terminal LR_OUT, terminal GATE_HS with terminal GATE_LS, and terminal SRC_HS with GND.Figure 5. High-Side Gate Driver Functional SchematicThe different voltages and current of the high-side gate driver are illustrated in Figure 6. The output driver sources a peak current of up to 1.0 A for 200 ns to turn on the gate. After 200 ns, 100 mA is continuously provided to maintain the gate charged. The output driver sinks a high current to turn off the gate. This current can be up to 1.0 A peak for a 100 nF load.Note G ATE_HS is loaded with a 100 nF capacitor in thechronograms. A smaller load will give lower peak and DC charge or discharge currents.Figure 6. High-Side Gate Driver ChronogramsHSSCP_OUTI GATE_HSI charge HSS I discharge LSSGATE_HS1LSSSRC_HS1180k Ω18VHSSpulse_IN LSS_INHSSDC_ININ_HS11.0 A Peak1.0 A Peak100 mA Typical1.0 A Peak100 mA Typical-1.0 A PeakIN_HS1HSSpulse_INHSS DC_INLSS_INI discharge LSSI GATE_HSI charge HSSFUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESOPERATIONAL MODESTURN-ONFor turn-on, the current required to charge the gate source capacitor C iss in the specified time can be calculated as follows:I P = Q g / t r = 80 nC/ 80 ns ≈ 1.0 A Where Q g is power MOSFET gate charge and t r is peakcurrent for rise time.TURN-OFFThe peak current for turn-off can be obtained in the same way as for turn-on, with the exception that peak current for fall time, t f , is substituted for t r :I P = Q g / t f = 80 nC/ 80 ns ≈ 1.0 A In addition to the dynamic current required to turn off or onthe MOSFET, various application-related switching scenarios must be considered. These scenarios are presented in Figure 7. In order to withstand high dV/dt spikes, a low resistive path between gate and source is implemented during the OFF-state.Figure 7. OFF-State Driver RequirementDriver Requirement:Low Resistive Gate-Source Path DuringOFF-StateFlyback spike charges low-side gate via C rss charge current I rss up to 2.0 A. Causes increased uncon-trolled turn-on of low-sideMOSFET.C issC iss C rss C rssV BATDriver Requirement: Low Resistive Gate-Source Path During OFF-State. High Peak Sink Current CapabilityFlyback spike pulls down high-side source V GS .Delays turn-off of high-side MOSFET.C issC issC rssC rssV BATDriver Requirement:High Peak Sink CurrentCapabilityFlyback spike charges low-side gate via C rss charge current I rss up to 2.0 A.Delays turn-off of low-sideMOSFET.C issC issC rss C rssV BATDriver Requirement:Low Resistive Gate-Source Path DuringOFF-StateC issC issC rssC rssV BATFlyback spike pulls down high-side source V GS .Causes increased uncon-trolled turn-on of high-sideOFFOFFOFFOFFGATE_LSI LOADL1I LOAD L1I LOAD L1I LOAD L1I rssV GATEV GATE -V DRNGATE_HSGATE_LSGATE_HS GATE_HS GATE_LSGATE_HSGATE_LSFUNCTIONAL DEVICE OPERATION OPERATIONAL MODESLOW-DROP LINEAR REGULATORThe low-drop linear regulator is supplied by V CC2. If V CC2 exceeds 15.0 V, the output is limited to 14.5 V (typical).The low-drop linear regulator provides the 5.0 V for the logic section of the driver, the V gs_ls buffered at LR_OUT, and the +14.5 V for the charge pump, which generates theCP_OUT The low-drop linear regulator provides 4.0 mA average current per driver stage.In case of the full bridge, that means approximately16 mA —8.0 mA for the high side and 8.0 mA for the low side.Note: The average current required to switch a gate with a frequency of 100 kHz is:I CP = Q g * f PWM = 80 nC * 100 kHz = 8.0 mAIn a full-bridge application only one high side and one low side switches on or off at the same time.CHARGE PUMPThe charge pump generates the high-side driver supply voltage (CP_OUT), buffered at C CP_OUT. Figure 8 shows the charge pump basic circuit without load.Figure 8. Charge Pump Basic CircuitWhen the oscillator is in low state [(1) in Figure 8], C CP is charged through D2 until its voltage reaches V CC - V D2. When the oscillator is in high state (2), C CP is discharged though D1 in C CP_OUT, and final voltage of the charge pump, V CP_OUT, is V cc+ V LR_OUT - 2V D. The frequency of the 33883 oscillator is about 330 kHz.EXTERNAL CAPACITORS CHOICEExternal capacitors on the charge pump and on the linear regulator are necessary to supply high peak current absorbed during switching.Figure 9 represents a simplified circuitry of the high-side gate driver. Transistors Tosc1 and Tosc2 are the oscillator-switching MOSFETs. When Tosc1 is on, the oscillator is at low level. When Tosc2 is on, the oscillator is at high level. The capacitor C CP_OUT provides peak current to the high-sideFUNCTIONAL DEVICE OPERATIONOPERATIONAL MODESC CPC CP choice depends on power MOSFET characteristics and the working switching frequency. Figure 10 contains two diagrams that depict the influence of C CP value on V CP_OUT average voltage level. The diagrams represent two different frequencies for two power MOSFETs, MTP60N06HD and MPT36N06V.Figure 10. V CP_OUT Versus C CPThe smaller the C CP value is, the smaller the V CP_OUT value is. Moreover, for the same C CP value, when the switching frequency increases, the average V CP_OUT level decreases. For most of the applications, a typical value of 33 nF is recommended.C CP_OUTFigure 11 depicts the simplified C CP_OUT current and voltage waveforms. f PWM is the working switching frequency.CP_OUTWaveformsAs shown above, at high-side MOSFET turn-on V CP_OUTvoltage decreases. This decrease can be calculatedaccording to the C CP_OUT value as follows:Where Q g is power MOSFET gate charge.C LR_OUTC LR_OUT provides peak current needed by the low-sideMOSFET turn-on. V LR_OUT decrease is as follows:TYPICAL VALUES OF CAPACITORSIn most working cases the following typical values arerecommended for a well-performing charge pump:C CP = 33 nF, C CP_OUT = 470 nF, and C LR_OUT = 470 nFThese values give a typical 100 mV voltage ripple onV CP_OUT and V LR_OUT with Q g = 50 nC.g∆V CP_OUT =C CP_OUTQ g∆V LR_OUT =C LR_OUTQ gFUNCTIONAL DEVICE OPERATIONPROTECTION AND DIAGNOSTIC FEATURESPROTECTION AND DIAGNOSTIC FEATURESGATE PROTECTIONThe low-side driver is supplied from the built-in low-drop regulator. The high-side driver is supplied from the internal charge pump buffered at CP_OUT.The low-side gate is protected by the internal linear regulator, which ensures that V GATE_LS does not exceed the maximum V GS. Especially when working with the charge pump, the voltage at CP_OUT can be up to 65 V. The high-side gate is clamped internally in order to avoid a V GS exceeding 18 V.Gate protection does not include a fly-back voltage clamp that protects the driver and the external MOSFET from a fly-back voltage that can occur when driving inductive load. This fly-back voltage can reach high negative voltage values and needs to be clamped externally, as shown in Figure 12.Figure 12. Gate Protection and Flyback Voltage Clamp LOAD DUMP AND REVERSE BATTERYV CC and V CC2 can sustain load a dump pulse of 40 V and double battery of 24 V. Protection against reverse polarity is ensured by the external power MOSFET with the free-wheeling diodes forming a conducting pass from ground to V CC. Additional protection is not provided within the circuit. To protect the circuit an external diode can be put on the battery line. It is not recommended putting the diode on the ground line.TEMPERATURE PROTECTIONThere is temperature shutdown protection per each half-bridge. Temperature shutdown protects the circuitry against temperature damage by switching off the output drivers. Its typical value is 175°C with an hysteresis of 15°C.DV/DT AT V CCV CC voltage must be higher than (SRC_HS voltage minus a diode drop voltage) to avoid perturbation of the high-side driver.In some applications a large dV /d t at terminal C2 owing to sudden changes at V CC can cause large peak currents flowing through terminal C1, as shown in Figure 13.For positive transitions at terminal C2, the absolute value of the minimum peak current, I C1min, is specified at 2.0 A for a t C1min duration of 600 ns.For negative transitions at terminal C2, the maximum peak current, I C1max, is specified at 2.0 A for a t C1max duration of 600 ns. Current sourced by terminal C1 during a large dV /d t will result in a negative voltage at terminal C1 (Figure 13). The minimum peak voltage V C1min is specified at -1.5 V for a duration of t C1max = 600 ns. A series resistor with the charge pump capacitor (Ccp) capacitor can be added in order to limit the surge current.Output DriverOUTOutput Driver OUTINL1M2GATE_LSSRC_HSGATE_HSInductiveFlyback VoltageClampIND c l M1VCCCP_OUTLR_OUTV GS < 14 VUnder AllConditionsFUNCTIONAL DEVICE OPERATIONPROTECTION AND DIAGNOSTIC FEATURESFigure 13. Limits of C1 Current and Voltage with Large Values of dV/dtIn the case of rapidly changing V CC voltages, the large dV/dt may result in perturbations of the high-side driver, thereby forcing the driver into an OFF state. The addition ofcapacitors C3 and C4, as shown in Figure 14, reduces the dV/dt of the source line, consequently reducing driverperturbation. Typical values for R3 / R 4 and C3 / C 4 are 10 Ω and 10 nF, respectively.DV/DT AT V CC2When the external high-side MOSFET is on, in case of rapid negative change of V CC2 the voltage (V GATE_HS -V SRC_HS ) can be higher than the specified 18 V. In this case a resistance in the SRC line is necessary to limit the current to 5.0 mA max. It will protect the internal zener placed between GATE_HS and SRC terminals.In case of high current (SRC_HS >100 mA) and high voltage (>20 V) between GATE_HSX and SRC_HS an external zener of 18 V is needed as shown in Figure 14.t C1maxt C1minV CCI (C1+C2)I C1maxI C1minV (LR_OUT)0 VV (C1)0 AV C1minTYPICAL APPLICATIONSTYPICAL APPLICATIONSFigure 14. Application Schematic with External Protection CircuitIN_LS2IN_HS2IN_LS1IN_HS1V BAT G_ENC1C2C CPC LR_OUT C CP_OUT MCUVCC2VCC V BOOST33883M1M2M3M4R1R2470nF 470nF 50Ω50Ω50Ω50Ω33nFDC MotorR310Ω10nFC310nFC410ΩR4IN_LS2IN_HS2IN_LS1IN_HS1G_EN C1C2VCC2VCC GNDGATE_LS2SRC_HS2GATE_HS2GATE_LS1SRC_HS1GATE_HS1LR_OUT CP_OUT 18 V18 V。

VFS6045型产品特性说明书

VFS6045型产品特性说明书

VFS6045SA102VFS6045SA151VFS6045SA451VFS6045VA031VFS6045VA102 VFS6045VA121VFS6045VA201VFS6045VA301E M C C o m p o n e n t sNoise suppression filterFor home appliances (conductive noise countermeasure) VFS seriesVFS6045 typeFEATURESAPPLICATIONPART NUMBER CONSTRUCTIONCHARACTERISTICS SPECIFICATION TABLEMeasurement equipmentEquivalent measurement equipment may be used.VFS6045V A031Series nameL×W×H dimensions V: at 10MHzS: at 1MHzInternal codeImpedance6.0×6.0×4.5 mm(Ω)Type Impedance DC resistance Rated current Part No.(Ω)Typ.(Ω)Min.(Ω)typ.(Ω)max.(A)max.6045VA[at 10MHz]57300.0120.0156 6.0VFS6045VA0311451200.0190.0247 5.1VFS6045VA1212422000.0230.0299 4.95VFS6045VA2014683000.0360.0468 3.6VFS6045VA301127510000.0750.0975 2.5VFS6045VA102 6045SA[at 1MHz]1881500.1750.2275 1.5VFS6045SA1515524500.470.6110.9VFS6045SA45112321000 1.15 1.4950.5VFS6045SA102Measurement item Product No.ManufacturerImpedance4294A Keysight T echnologiesDC resistance34420A Hewlett-PackardE M C C o m p o n e n t sVFS6045 typeZ FREQUENCY CHARACTERISTICSINSERTION LOSS VS. FREQUENCY CHARACTERISTICSE M C C o m p o n e n t s VFS6045 typeSHAPE & DIMENSIONSRECOMMENDED LAND PATTERNRECOMMENDED REFLOW PROFILEPACKAGING STYLETEMPERATURE RANGE, INDIVIDUAL WEIGHT *Operating temperature range includes self-temperature rise.**The storage temperature range is for after the assembly.Dimensions in mmDimensions in mmT ype A B KVFS6045 6.3 6.3 4.7Package quantity1500 pcs/reelOperating temperature range*Storagetemperature range**Individualweight–40 to +105 °C–40 to +105 °C0.6 gE M C C o m p o n e n t sREMINDERS FOR USING THESE PRODUCTSBefore using these products, be sure to request the delivery specifications.SAFETY REMINDERSPlease pay sufficient attention to the warnings for safe designing when using this products.The storage period is less than 12 months. Be sure to follow the storage conditions (temperature: 5 to 30°C, humidity: 10 to 75% RH or less).If the storage period elapses, the soldering of the terminal electrodes may deteriorate.Do not use or store in locations where there are conditions such as gas corrosion (salt, acid, alkali, etc.).Before soldering, be sure to preheat components.The preheating temperature should be set so that the temperature difference between the solder temperature and chip temperature does not exceed 150°C.Soldering corrections after mounting should be within the range of the conditions determined in the specifications.If overheated, a short circuit, performance deterioration, or lifespan shortening may occur.When embedding a printed circuit board where a chip is mounted to a set, be sure that residual stress is not given to the chip due to the overall distortion of the printed circuit board and partial distortion such as at screw tightening portions.Self heating (temperature increase) occurs when the power is turned ON, so the tolerance should be sufficient for the set thermal design.Carefully lay out the coil for the circuit board design of the non-magnetic shield type.A malfunction may occur due to magnetic interference.Use a wrist band to discharge static electricity in your body through the grounding wire.Do not expose the products to magnets or magnetic fields.Do not use for a purpose outside of the contents regulated in the delivery specifications.The products listed on this catalog are intended for use in general electronic equipment (AV equipment, telecommunications equip-ment, home appliances, amusement equipment, computer equipment, personal equipment, office equipment, measurement equip-ment, industrial robots) under a normal operation and use condition.The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or qual-ity require a more stringent level of safety or reliability, or whose failure, malfunction or trouble could cause serious damage to society,person or property.If you intend to use the products in the applications listed below or if you have special requirements exceeding the range or conditions set forth in the each catalog, please contact us.(1) Aerospace/aviation equipment(2) T ransportation equipment (cars, electric trains, ships, etc.)(3) Medical equipment(4) Power-generation control equipment (5) Atomic energy-related equipment (6) Seabed equipment(7) T ransportation control equipment(8) Public information-processing equipment (9) Military equipment(10) Electric heating apparatus, burning equipment (11) Disaster prevention/crime prevention equipment(12) Safety equipment(13) Other applications that are not considered general-purposeapplicationsWhen designing your equipment even for general-purpose applications, you are kindly requested to take into consideration securing pro-tection circuit/device or providing backup circuits in your equipment.REMINDERSVFS6045SA102VFS6045SA151VFS6045SA451VFS6045VA031VFS6045VA102 VFS6045VA121VFS6045VA201VFS6045VA301。

C310T-SC 3.6 mm x 10 mm 时延型,轴向导线玻璃瓷管吊合罐电流保护器数据手册说明

C310T-SC 3.6 mm x 10 mm 时延型,轴向导线玻璃瓷管吊合罐电流保护器数据手册说明

Product features• Time-delay• Designed to IEC60127-3• Nickel-plated brass single end cap construction • 3.6 mm x 10 mm compact design utilizes lessboard space ApplicationsPrimary circuit protection:• Power supplies• LED and general lighting• Consumer electronics• Desktop, laptop and notebook• T est equipmentAgency information• cURus Recognition file number: E19180, Guide JDYX2/JDYX8• CCC: 2019010207248211• KC-Mark: File SU05011-13001, SU05030-13006• TUV: J50247281, J50235242• VDE: 40036716Ordering• Use ordering number (see page 6 for details) Packaging suffixes• -TR1 (1500 parts per 10” diameter reel, tape width 60 mm)•-TR2 (1500 parts per 10” diameter reel, tape width 52 mm)C310T-SC3.6 mm x 10 mm Time-delay, axial lead ceramic tube fusesPb HALOGENHFFREE2Technical Data 10404Effective December 2019C310T -SC3.6 mm x 10 mm T ime-delay, axial lead ceramic tube fuses/electronicsElectrical characteristicsl n1.5l n min minute2.1l n max minute2.75l n min msmax s 4l n min msmax s 10l n min msmax ms2A- 6.3A 60240010150320150l n1.5l n min minute 3l n min msmax s10l n min msmax ms8A 604001020150Product specificationsPart number 1Current rating (A)Voltage rating (Vac)Interrupting rating atrated voltage (A)Typical DC cold resistance (mΩ )Typical melting l 2t (A 2s)Maximum voltage drop (mV)Part marking:engraved on end cap 1st endPart marking:engraved on end cap 2nd endcURus KC CCC TUV VDEC310T-SC-2-R 22503526.512100T2A L 250V BUSS C310T-SC x x x x x C310T-SC-2.5-R 2.52503519.518.5100T2.5A L 250V BUSS C310T-SC x x x x x C310T-SC-3.15-R 3.152503514.738100T3.15A L 250V BUSS C310T-SC x x x x x C310T-SC-4-R 42504010.658100T4A L 250V BUSS C310T-SC x x x x x C310T-SC-5-R 5250507.357.5100T5A L 250V BUSS C310T-SC x x x x x C310T-SC-6.3-R 6.3250637.1123100T6.3A L 250V BUSS C310T-SC x xxxxC310T-SC-8-R8250803.720080T8A L 250VBUSS C310T-SCxDimensions–mm1. Part Number Definition: C310T-SCxxx-R C310T = Product code SC = Single cap xxx = Ampere rating-R suffix = RoHS compliant3Technical Data 10404Effective December 2019C310T -SC3.6 mm x 10 mm T ime-delay, axial lead ceramic tube fuses/electronics Time vs. current curveT i m e (s )Current (A)4Technical Data 10404Effective December 2019C310T -SC3.6 mm x 10 mm T ime-delay, axial lead ceramic tube fuses/electronicsI 2t vs. current curvel 2t (A 2s )Current (A)5Technical Data 10404Effective December 2019C310T -SC3.6 mm x 10 mm T ime-delay, axial lead ceramic tube fuses/electronics I 2t vs. time curvel 2t (A 2s )Time (s)6Technical Data 10404Effective December 2019C310T -SC3.6 mm x 10 mm T ime-delay, axial lead ceramic tube fuses/electronicsT emperature derating curveGeneral specificationsOperating temperature: -55 °C to +125 °C (with derating)Thermal shock: MIL-STD- 202G, Method 107G, test condition B (5 cycles -65 °C to +125 °C)Vibration: MIL-STD- 202G, Method 201AHumidity: MIL-STD- 202G, Method 103B, test condition A Salt spray: MIL-STD- 202G, Method 101D, Test condition BOrdering codesThe ordering code is the part number replacing the “.” with a “-” plus adding the packaging suffix.Packaging suffixes• -TR1 (1500 parts per 10” diameter reel, tape width 60 mm)• -TR2 (1500 parts per 10” diameter reel, tape width 52 mm)Ordering codesPart number-TR1 option-TR2 optionC310T-SC-2-R C310T-SC-2-R-TR1C310T-SC-2-R-TR2C310T-SC-2.5-R C310T-SC-2-5-R-TR1C310T-SC-2-5-R-TR2C310T-SC-3.15-R C310T-SC-3-15-R-TR1C310T-SC-3-15-R-TR2C310T-SC-4-R C310T-SC-4-R-TR1C310T-SC-4-R-TR2C310T-SC-5-R C310T-SC-5-R-TR1C310T-SC-5-R-TR2C310T-SC-6.3-R C310T-SC-6-3-R-TR1C310T-SC-6-3-R-TR2C310T-SC-8-RC310T-SC-8-R-TR1C310T-SC-8-R-TR2P e r c e n t a g e o f R a t i n gTemperature in Degrees CEatonElectronics Division 1000 Eaton Boulevard Cleveland, OH 44122United States/electronics© 2019 EatonAll Rights Reserved Printed in USAPublication No. 10404 PCN19017M December 2019Technical Data 10404Effective December 2019C310T -SC3.6 mm x 10 mm T ime-delay, axial lead ceramic tube fuses Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express writtenapproval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.T e m p e r a t u r eTimeT T T T Wave solder profileReference EN 61760-1:2006Profile featureStandard SnPb solderLead (Pb) free solderPreheat • Temperature min. (T smin )100 °C 100 °C • Temperature typ. (T styp )120 °C 120 °C • Temperature max. (T smax )130 °C 130 °C • Time (T smin to T smax ) (t s )70 seconds 70 seconds D preheat to max Temperature150 °C max.150 °C max.Peak temperature (T P )*235 °C – 260 °C 250 °C – 260 °C Time at peak temperature (t p )10 seconds max5 seconds max each wave 10 seconds max5 seconds max each wave Ramp-down rate~ 2 K/s min ~3.5 K/s typ ~5 K/s max ~ 2 K/s min ~3.5 K/s typ ~5 K/s maxTime 25 °C to 25 °C4 minutes4 minutesManual solder+350 °C (4-5 seconds by soldering iron), generally manual/hand soldering is not recommendedEaton is a registered trademark.All other trademarks are property of their respective owners.Follow us on social media to get the latest product and support information.。

法国溯高美低压产品介绍

法国溯高美低压产品介绍
SWITCHING RANGE GB 10/2005
熔断器开关 Fuserbloc 32 – 1250 A
• Fuserbloc 32 – 1250 A
主要特点:
• 模块化设计,每极1个模块 • 63A 以下导轨固定 • IP2 (熔断器盖和端子盖) • 试验位子为标准配置 ( 400A以下 ) • 1 至 21 极 • 直接操作 • 正面柜外操作 • 侧面操作 (左侧和右侧) • 可设置辅助触点 • 熔断指示 • 背面连接
正常 / 应急控制 器
ATyS 6
ATyS 3
ATyS C20/C30/C40
SWITCHING RANGE GB 10/2005
ATyS 系列电流等级
ATyS 3:
ATyS 3s : 125 – 1800A,3P/4P 10个电流等级 ATyS 3e : 2000 – 3200A,3P/4P 3个电流等级
SWITCHING RANGE GB 10/2005
熔断器开关 Fuserbloc CD 25 – 32 A
Disconnectable Neutral
GB/DIN:
25A 和 32A (熔断器尺寸: 10x38 和 14x51) 3 极和 3极+ 开关或固定中心极
附件:
• 直接和柜外手柄 • 可断开中性极 • 熔断器熔断指示( DIN 尺寸14x51) • U 型辅助触点模块 • 模块化辅助触模块 • 2x2 可设置 U 型辅助触点
SWITCHING RANGE GB 10/2005
熔断器开关
FUSERBLOC 系列 25 – 1250 A
SWITCHING RANGE GB 10/2005
熔断器开关 Fuserbloc CD 25 – 32 A

便携式产品的供电设计

便携式产品的供电设计

便携式产品的供电设计Maxim公司北京办事处魏智摘要本文简单介绍了几种便携式产品供电电路的设计要求和供电方案关键词DC-DC转换器线性稳压器电池供电便携式产品对供电电路的要求越来越复杂它不仅要求电压监测电源管理功能还要满足持续不断的小型化要求延长电池寿命的要求以及因便携式系统中使用无线Modem 和笔输入装置而必须进行噪音抑制等的要求从而使问题更加复杂化手持终端的设计中由于受尺寸成本的限制往往在着手设计供电电路之前就已经确定了电池的节数和电池种类这对于电源设计是一个潜在的制约因为电池节数限制了电源的工作电压范围直接影响电源管理电路的成本和复杂程度对于电池节数较多的系统可选用线性稳压器电路设计简单成本较低但转换效率相对较低电池节数较少的系统则需选用成本较高的开关电源电路设计较为复杂但由于减少了电池节数或许对电源成本有一定的补偿由于便携式产品的设计需要考虑尺寸重量成本上电时序工作效率电池工作时间等诸多因素不同产品对以上指标的要求会有不同的侧重点例如只是偶尔处于工作状态的产品比较注重电源在空载时的静态电流并不十分重视满负荷下电源的工作效率蜂窝电话则注重考虑电源所能提供的峰值电流和转换效率因此很难研制出一种电源芯片适应不同的产品需求便携式产品的多样化导致了电源管理芯片的多样化近年来半导体厂商针对各种产品的需求综合开关型DC-DC转换器线性稳压器电荷泵电路的特点研制生产了非常具有针对性的电源芯片本文列举了几种常见的手持终端的电源解决方案供设计人员参考一寻呼机电源管理芯片寻呼机大多采用一节电池供电需要电池电压监测功能当电池接近放电完毕时产生报警信号为延长电池寿命便于携带对电源的转换效率尺寸要求很高MAX1678升压型稳压器即是针对这种应用设计的它采用1至2节电池供电封装形式为超小型8引脚MAX不需要外接MOSFET和肖特基二极管图一a降低了系统成本和尺寸另外该芯片内还包括一个独立的比较器可用于电池低电压检测EMI抑制电路降低了系统噪声MAX1678采用恒峰值电流控制原理使其不仅保持了传统PFM转换器的低静态电流而且在满负荷下效率可达90%具有极低的输出电压纹波工作电压可低至0.7V0.85V保证启动将1.2V电压升至3.3V时最高输出电流为45mA max1678具有关断功能但在关断时输入与输出之间仍有直流通路输出电压为电池电压 - 二极管导通压降若后续电路工作电压很低时会有少量电池能量损耗Maxim最新推出的MAX1795功能与MAX1678基本相同图一b在关断状态下电源电流为2A内部同步整流器将输出与输入断开使输出处于高阻态节省电池能量二PDA GPS接收机电源管理芯片电池供电的PDA GPS接收机和笔输入设备中通常需要将电池升压为主电路供电由于大屏幕LCD的使用还需要一个LCD偏压电路在传统的电路设计中一般由两个独立芯片实现MAX1677是针对上述问题的一个单片解决方案图二它可提供一路3.3V或2.5V至5.5V可调的主输出电流达350mA另外还可提供一个可调节的第二路输出作为LCD偏压电压可高达+28V或-28V该款为PDA和GPS接收机提供的电源系统采用16引脚QSOP封装尺寸仅相当于一片8引脚SO不需要外接场效应管同步整流技术省去了外部肖特基二极管使其结构极为紧凑效率达95%另外其低噪声300kHz固定频率PWM工作模式能够满足无线应用的要求三数字相机电源管理芯片数字相机中的CCD图像传感器和彩色LCD监视器背光源等均需要与逻辑电路电源不同的供电电压高分辨率多功能数字相机多采用3至4节碱性电池或2节Li+电池供电有些低端数字相机采用2至3节碱性电池或1节Li+电池供电因此主电源结构有降压型升压型两种MAX1802内部包括两组高效降压型DC-DC转换器和三组升压型辅助DC-DC控制器主电源降压控制器输入电压范围为+2.5V至+11V输出电压范围+2.7V至+5.5V采用同步整流结构转换效率高达94%内核降压控制器输入电压范围为+2.7V至+5.5V输出电压范围+1.25V至+5.5V输出电流达500mA转换效率同样高达94%其它三组辅助电源为数字相机的CCD LCD及背光提供电源MAX1800主电源高效升压型DC-DC转换器转换效率为95%辅助电源为三路升压控制器内置放大器可用于驱动外部P沟道MOSFET 构成线性稳压器两款芯片为不同市场定位的数字相机提供完备的供电方案当系统由于产品更新需要额外增加电源时MAX1800/MAX1802能够为MAX1801提供电源电压振荡信号和基准电压MAX1801驱动一个外部N沟道MOSFET构成升压型降压型或SEPIC DC-DC控制器作为一个附属DC-DC控制器添加到原有系统中避免重复设计缩短产品的研发周期图三是由MAX1800/MAX1801构成的数字相机供电方案四移动电话电源管理芯片移动电话中RF电路对供电电源的输出纹波要求较高为避免电源开关噪声的影响防止RF各部分电路之间相互干扰需要用几个低压差线性稳压器LDO分别为发送器接收器频率合成器等供电MAX1727内部包括四组LDO LDO1--LDO4两个高速运算放大器和三组开关四组LDO提供手机射频部分的供电其中LDO1 2.9V@100mA为发送器接收器频率合成器供电LDO2 2.75V@50mA为TCXO及GSM/PCN的大功率VCO供电LDO3 2.75V@20mA为UHF频率合成器供电可通过内部开关精确控制VCO的上电时间LDO4 2.95V@20mA为芯片内部基准电压源供电为LDO3提供预稳压宽带高速运算放大器用于构成PA的功率控制环路典型应用电路如图四所示设计便携式产品的供电电路时可以选择单片式解决方案也可以按照具体要求选择分布式解决方案首先根据输入电压的范围有电池类型节数确定和输出电压初步确定电压转换器的形式升压降压升/降压或反相根据系统对转换效率输出纹波成本尺寸电磁干扰等参数的要求确定具体的实现方案开关型PWM PFM DC-DC转换器电荷泵低压差线性稳压器LDO。

ADI电路笔记 CN-0359说明书

ADI电路笔记 CN-0359说明书

电路笔记CN-0359Circuits from the Lab® reference designs are engineered and tested for quick and easy system integration to help solve today’s analog, mixed-signal, and RF design challenges. For more information and/or support, visit /CN0359.连接/参考器件AD825310 MHz、20 V/μs、G = 1、10、100、1000、i CMOS可编程增益仪表放大器ADuCM360集成双通道Σ-Δ型ADC和ARM Cortex-M3的低功耗精密模拟微控制器ADA4627-1 30 V、高速、低噪声、低偏置电流JFET运算放大器AD8542CMOS轨到轨通用放大器ADA4000-1 低成本、精密JFET输入运算放大器ADP2300 1.2 A、20 V、700 kHz/1.4 MHz异步降压型稳压器ADA4638-1 30 V、零漂移、轨到轨输出精密放大器ADP1613 650 kHz/1.3 MHz升压PWM DC-DC开关转换器ADA4528-2 精密、超低噪声、RRIO、双通道、零漂移运算放大器ADG1211低电容、低电荷注入、±15 V/+12 V iCMOS四通道单刀单掷开关ADA4077-2 4 MHz、7 nV/√Hz、低失调和漂移、高精度放大器ADG1419 2.1 Ω导通电阻、±15 V/+12 V/±5 V、iCMOS单刀双掷开关AD8592 CMOS、单电源、轨到轨输入/输出运算放大器,具有关断功能ADM3483 3.3 V限摆率、半双工、RS-485/RS-422收发器全自动高性能电导率测量系统Rev. 0Circuits from the Lab® reference designs from Analog Devices have been designed and built by AnalogDevices engineers. Standard engineering practices have been employed in the design andconstruction of each circuit, and their function and performance have been tested and veri ed in a labenvironment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or punitive damages due to any cause whatsoever connected to the use of any Circuits from the Lab circuits. (Continued on last page)One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2015 Analog Devices, Inc. All rights reserved.评估和设计支持电路评估板CN-0359电路评估板(EVAL-CN0359-EB1Z)设计和集成文件原理图、源代码、布局文件、物料清单电路功能与优势图1中的电路是一个完全独立自足、微处理器控制的高精度电导率测量系统,适用于测量液体的离子含量、水质分析、工业质量控制以及化学分析。

更多难得资料请到江南家电维修论坛下载!

更多难得资料请到江南家电维修论坛下载!

一:机芯介绍机芯功能介绍在功能上可以实现模拟PAL制式电视信号的60HZ逐行、100HZ两种扫描模式,高清信号可以显示1080P/60,1080I/60,1080I/50,720P/60和逐行DVD 信号(图像)。

VGA方式支持640*480/60 800*600/60 1024*768/60三种模式。

产品外观介绍HDP2433为33系列外观二、机芯概述HDP2433机芯是采用华亚公司的芯片HTV180单芯片的视频处理方案,HTV180集成了ADC ,解码器,OSD 产生器,行场频转换处理芯片以及CPU 。

采用了东芝的TB1306,其功能是预视放、行场激励输出、EW 输出、EHT 、ABL 。

解码板板号是RSAG7.820.947A 。

主板是RSAG7.820.983,主板伴音切换芯片采用HEF4052BP ,伴音功放电路为ST 的TFA9842AJ ,其功能是3路声音输入,总线用两个I/O 口控制切换实现一路输出到伴音功放芯片TFA9842AJ ,总线用一路PWM 控制TFA9842AJ 的VOLUME 脚(7脚)实现音量控制。

视放板板号RSAG7.820.954,采用美国国家半导体的LM2451视放电路。

更多难得资料请到江南家电维修论坛下载!三、原理说明电源部分1:电源框图电源部分工作原理介绍本电源控制芯片采用FAIRCHILD公司的开关电源集成电路FSCQ1265,这是一种内置功率MOSFET和控制器的回扫型开关电源集成电路,且具有过流、过压、过热保护电路。

交流220V经过整流、稳压后提供给开关变压器T501,开关变压器共有5路输出:+B(130V)、+15V、+17V和+8V,10V。

+17V输出开关变压器16脚输出经整流后给N601(TFA9842AJ)第9脚提供电压+10V输出:通过变压器14脚整流输出10V给7805给解码板CPU供电5V-1,给光藕提供参考电压。

+8V输出:通过变压器18脚整流输出8V给3852调制5V 给解码板供电5V-2。

常用功率管参数

常用功率管参数

有刷/无刷电调常用功率管参数大全(若以上无你所需型号请留言)08年8月21日更新A2700 N型管(贴片)耐压:30V电流:9A导通电阻:7.3mΩSI4336 N型管(贴片)耐压:30V电流:22A导通电阻:4.2mΩSI4404 N型管(贴片)耐压:30V电流:17A导通电阻:8mΩSI4410 N型管(贴片)耐压:30V电流:10A导通电阻:14mΩSI4420 N型管(贴片)耐压:30V电流:10A导通电阻:10mΩSI4812 N型管(贴片)耐压:30V电流:7.3A导通电阻:28mΩSI9410 N型管(贴片)耐压:30V电流:6.9A导通电阻:50mΩIRF7313 N型管(贴片)耐压:30V电流:6A导通电阻:29mΩIRF7413 N型管(贴片) 耐压:30V电流:12A导通电阻:18mΩIRF7477 N型管(贴片) 耐压:30V电流:11A导通电阻:20mΩIRF7805Z N型管(贴片) 耐压:30V电流:16A导通电阻:6.8mΩIRF7811 N型管(贴片) 耐压:30V电流:11A导通电阻:12mΩIRF7831 N型管(贴片) 耐压:30V电流:16A导通电阻:0.004ΩIRF7832 N型管(贴片) 耐压:30V电流:20A导通电阻:4mΩIRF8113 N型管(贴片)耐压:30V电流:17A导通电阻:5.6mΩTPC8003 N型管(贴片) 耐压:30V电流:12A导通电阻:6mΩFDS6688 N型管(贴片) 耐压:30V电流:16A导通电阻:0.006ΩFDD6688 TO-252贴片耐压:30V电流:84A导通电阻:5mΩA2716 P型管(贴片)耐压:30V电流:7A导通电阻:11.3mΩSI4405 P型管(贴片) 耐压:30V电流:17A导通电阻:7.5mΩSI4425 P型管(贴片)耐压:30V电流:9A导通电阻:19mΩSI4435 P型管(贴片) 耐压:30V电流:8A导通电阻:20mΩSI4463 P型管(贴片)耐压:20V电流:12.3A导通电阻:16mΩSI9435 P型管(贴片) 耐压:30V电流:5.3A导通电阻:50mΩIRF7424 P型管(贴片)电流:8.8A导通电阻:22mΩSTM4439A P型管(贴片) 耐压:30V电流:14A导通电阻:18mΩFDS6679 P型管(贴片) 耐压:30V电流:13A导通电阻:9mΩBUZ111S N型管(直插) 耐压:55V电流:80A导通电阻:8mΩ5N05 N型管(直插)耐压:50V电流:75A导通电阻:0.0095Ω6N60 N型管(直插)耐压:600V电流:5.5A导通电阻:0.75Ω50N03L N型管(直插)耐压:25V电流:28A导通电阻:21mΩ60N06 N型管(直插)耐压:60V电流:60A导通电阻:14mΩBTS110 N型管(直插) 耐压:100V导通电阻:200mΩBTS120 N型管(直插)耐压:100V电流:19A导通电阻:100mΩIRF15 0 N型管(铁壳非直插) 耐压:100V电流:40A导通电阻:55mΩIRF1405 N型管(直插)耐压:55V电流:131A导通电阻:5.3mΩIRF2804 N型管(直插)耐压:40V电流:75A导通电阻:2mΩIRF3205 N型管(直插)耐压:55V电流:110A导通电阻:8mΩIRF3703 N型管(直插)耐压:30V电流:210A导通电阻:2.3mΩIRL3803 N型管(直插)耐压:30V电流:140A导通电阻:6mΩ。

研祥集团 PMM-1583 Atom 平台 15 寸制动过程监控机 说明书

研祥集团 PMM-1583 Atom 平台 15 寸制动过程监控机 说明书

PMM-1583
-3-
第二章 安装说明 产品外观图
第二章 安装说明
产品外形及安装尺寸图
-4-
PMM-1583
第二章 安装说明
外部控制接口图
1 2
1、指示灯
正面外部控制图 2、USB
1
背面接口图 1、电源接口
PMM-1583Βιβλιοθήκη -5-第二章 安装说明
1
侧面接口图 1、CF 卡接口
1、LAN 3、VGA 5、PCI 扩展
第三章 驱动程序安装说明
本产品的驱动程序可依据整机配套光盘内容安装,在此不做介绍。
欲获更多信息请访问研祥网站:
- 10 -
PMM-1583
研祥智能科技股份有限公司©2009,版权所有,违者必究。未经许可,不得 以机械、电子或其它任何方式进行复制。
安全使用小常识
1. 产品使用前,务必仔细阅读产品说明书; 2. 为避免人体被电击或产品被损坏,在每次对板卡进行拔插、重新装配或配
置前,须先关闭交流电源或将交流电源线从电源插座中拔掉; 3. 在需对产品进行搬动时,务必先将交流电源线从电源插座中拔掉; 4. 当需连接或拔除任何信号线前,须确定所有的电源线事先已被拔掉; 5. 为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等待 30 秒后
再开机; 6. 如果要进行升级或拆装等动作,须在静电放电工作台上完成所有操作,因
为有些精密器件对静电放电(ESD)很敏感; 7. 如果没有静电放电工作台,可通过以下方法降低 ESD 可能造成的危害:
a) 戴上一条防静电腕带并与相应产品的金属部分相连; b) 在触摸产品部件前,先触摸相应产品机箱上的金属壳; c) 当插拔部件时,身体最好与产品的金属机箱保持接触,以释放静电; d) 避免不必要的走动; e) 拿产品部件(尤其是板卡)时仅拿住边缘; f) 将产品部件置于一个接地的无静电的操作平台上。如果可能的话,使

cmfa103f3435hant规格书

cmfa103f3435hant规格书

一、产品概述1.产品编号:CMFA103F3435HANT2.产品名称:CMFA103F3435HANT规格书3.产品分类:电子元器件4.产品品牌:暂无5.产品型号:CMFA103F3435HANT6.产品材质:暂无7.产品尺寸:暂无8.产品颜色:暂无9.产品特性:高性能、稳定可靠二、产品详细参数1.工作温度:-40℃~+85℃2.存储温度:-40℃~+125℃3.额定电压:5V4.额定电流:1A5.抗击穿电压:100V6.绝缘电阻:100MΩ7.震动等级:10~2000Hz8.可靠性等级:符合工业标准三、产品特性1.高性能:CMFA103F3435HANT具有出色的性能表现,能够稳定运行在恶劣的环境条件下,适用于各种工业应用场景。

2.稳定可靠:产品经过严格的质量控制和测试,具有长寿命、高可靠性的特点,可以满足用户对产品稳定性的需求。

3.适用范围广:CMFA103F3435HANT适用于各种电子设备,如通信设备、工控设备、医疗设备、汽车电子等领域。

四、产品应用领域1.通信设备:CMFA103F3435HANT可用于通信设备的电源模块、线性调节器等部分。

2.工控设备:产品具有稳定的性能和可靠的品质,适用于各类工控设备的电源供应等方面。

3.医疗设备:CMFA103F3435HANT符合医疗设备的使用标准,可用于医疗设备的电源模块等方面。

4.汽车电子:产品可在汽车电子领域发挥稳定可靠的作用,满足汽车电子设备对产品性能的要求。

五、产品质量保证1.质量控制:产品符合国际质量标准,并经过严格的质量控制流程,确保产品质量稳定可靠。

2.质量保证:公司提供长达一年的质量保证期,针对非人为损坏的产品,提供全额免费维修或更换服务,确保客户利益。

六、产品售后服务1.客户服务:公司提供24小时客户服务交流,为客户解答使用中遇到的问题,提供技术支持和交流服务。

2.售后服务:公司提供快速的售后服务响应时间,确保客户在使用产品过程中的任何问题能够得到及时解决。

美达顿低压电力电路断路器 MPS6203HEAXX2S 产品说明说明书

美达顿低压电力电路断路器 MPS6203HEAXX2S 产品说明说明书

Eaton MPS6203HEAXX2SEaton Magnum low voltage power circuit breaker, Magnum PXR,Standard frame, 2000 A, 65 kA, Three-pole, Fixed horizontalmounting, PXR25 LSIGAM trip unitGeneral specificationsEaton Magnum low voltage power circuitbreakerMPS6203HEAXX2S78668962324114.6 in16.8 in16.2 in118 lbCE Marked SABA Listed CCC Marked NEMA Compliant Lloyd's Register Certified CSA CertifiedKEMA CertifiedANSIUL ListedDNV GL CertifiedABS CertifiedProduct Name Catalog NumberUPCProduct Length/Depth Product Height Product Width Product Weight Compliances CertificationsStandard Three-pole Magnum PXRStandard Magnum PXR25 LSIG ARMSThree-pole2000 A65 kAIC65 kAIC2000 AZone selective interlocking application paper Magnum circuit breakers with Power Xpert Release trip units product aid Selevctive coordination application paper - IA0120000E3Magnum PXR and PD-SB standard and narrow frame UL Certificate of ComplianceMagnum PXR and PD-SB double and double narrow frame UL Certificate of CompliancePower Xpert Release trip unit for Magnum PXR circuit breakers PXR 20/25 user manualMicrosoft Word - Power Xpert Protection Manager Quick Start Guide.docxFrame Number of poles TypeFrame Series Trip TypeNumber of poles Rated uninterrupted current (Iu)Interrupt rating Interrupt rating Rated uninterrupted current (Iu)Application notesBrochuresCatalogsCertification reportsManuals and user guidesEaton Corporation plc Eaton House30 Pembroke Road Dublin 4, Ireland © 2023 Eaton. All Rights Reserved. Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners./socialmediaMagnum PXR low voltage power circuit breakers user manual Power Xpert Protection Manager x32 22.06 1 Power Xpert Protection Manager x64 22.6 1 Eaton Specification Sheet - MPS6203HEAXX2S Low voltage circuit breakers guide spec Magnum PXR 20/25 electronic trip units time current curves Molded case and low-voltage power circuit breaker health Cyber security white paperSafer by design: arc energy reduction techniquesSoftware, firmware, and applications Specifications and datasheetsTime/current curvesWhite papers。

ru7788r场效应管参数

ru7788r场效应管参数

ru7788r场效应管参数1. 场效应管的基本知识嘿,朋友们,今天咱们聊聊一个可能听起来有点高深的东西——ru7788r场效应管。

这东西是电子电路里的一个小明星,虽然不常被大家提起,但它可有不少的戏份呢!首先,场效应管就像是一扇控制电流的窗户,你可以通过它来调节电流的大小。

你想啊,咱们平时调空调、调音量都是在“控制”嘛,场效应管就是给电流“调音”的高手。

1.1 ru7788r的基本参数那么,ru7788r这个型号又是什么鬼呢?简单说,这是一种特别类型的场效应管,主要用于放大和开关的功能。

它的主要参数包括漏源电压(V_DS)、漏电流(I_D)和栅源电压(V_GS)等。

想象一下,这些参数就像是你的一组朋友,每个人都有自己的性格和特长,合作起来才能形成一个强大的团队。

漏源电压(V_DS):这个参数表示场效应管在工作时的电压情况,就像是你开车时的油门,油门踩得多,车速就快。

漏电流(I_D):这可是个重要的参数,表示通过管子的电流量,就像是你家里水管的水流量,流得越大,生活越舒心。

栅源电压(V_GS):栅极就像是你给朋友下达的命令,调高这个电压,场效应管就会“听话”,电流流动得更加顺畅。

1.2 参数的重要性这些参数就像是你人生的座右铭,缺一不可。

了解它们,可以让你更好地应用场效应管,发挥出它的最大性能。

要是忽视了这些参数,就像是上课时没听讲,考试时一头雾水,结果肯定不会好到哪儿去。

2. ru7788r的应用场景好了,咱们扯了那么多参数,接下来咱们聊聊ru7788r场效应管的“身世背景”以及它的应用场景。

其实,这家伙可以说是现代电子产品里的一员猛将,广泛应用于各种电路中。

2.1 放大器首先,它在放大器里可是一把好手。

比如说,你在听音乐,想要音量更大一点,ru7788r就像是你身边的那个“喇叭哥”,把微弱的声音放大,给你一场震撼的听觉盛宴。

很多音频设备中,都少不了它的身影。

2.2 开关电路其次,它在开关电路中也发挥着重要作用。

建筑电气电缆穿线标准符号

建筑电气电缆穿线标准符号

SR:沿钢线槽敷设BE:沿屋架或跨屋架敷设CLE:沿柱或跨柱敷设WE:沿墙面敷设CE:沿天棚面或顶棚面敷设ACE:在能进入人的吊顶内敷设BC:暗敷设在梁内CLC:暗敷设在柱内WC:暗敷设在墙内CC:暗敷设在顶棚内ACC:暗敷设在不能进入的顶棚内FC:暗敷设在地面内SCE:吊顶内敷设,要穿金属管一,导线穿管表示SC-焊接钢管MT-电线管PC-PVC塑料硬管FPC-阻燃塑料硬管CT-桥架MR-金属线槽M-钢索CP-金属软管PR-塑料线槽RC-镀锌钢管二,导线敷设方式的表示DB-直埋TC-电缆沟BC-暗敷在梁内CLC-暗敷在柱内WC-暗敷在墙内CE-沿天棚顶敷设CC-暗敷在天棚顶内SCE-吊顶内敷设F-地板及地坪下SR-沿钢索BE-沿屋架,梁WE-沿墙明敷三,灯具安装方式的表示CS-链吊DS-管吊W-墙壁安装C-吸顶R-嵌入S-支架CL-柱上沿钢线槽:SR沿屋架或跨屋架:BE沿柱或跨柱:CLE穿焊接钢管敷设:SC穿电线管敷设:MT穿硬塑料管敷设:PC穿阻燃半硬聚氯乙烯管敷设:FPC电缆桥架敷设:CT金属线槽敷设:MR塑料线槽敷设:PR用钢索敷设:M穿聚氯乙烯塑料波纹电线管敷设:KPC穿金属软管敷设:CP直接埋设:DB电缆沟敷设:TC导线敷设部位的标注沿或跨梁(屋架)敷设:AB暗敷在梁内:BC沿或跨柱敷设:AC暗敷设在柱内:CLC沿墙面敷设:WS暗敷设在墙内:WC沿天棚或顶板面敷设:CE暗敷设在屋面或顶板内:CC吊顶内敷设:SCE地板或地面下敷设:FCHSM8-63C/3PDTQ30-32/2P 这两个应该是两种塑壳断路器的型号,HSM8-63C/3P 适用于照明回路中,为3极开关,额定电流为63A(3联开关)DTQ30-32/2P 也是塑壳断路器的一种,额定电流32A,2极开关其他那些符号都是关于导线穿管和敷设方式的一些表示方法,你对照着查一下矿用铠装控制电缆;MKVV22,MKVV32 2*0.5,3*0.75,4*4,------37*1.5mm 铠装控制电缆;KVV22,KVV32,KVVR22 2*0.5,3*0.75,4*4,------37*1.5mm 铠装屏蔽控制电缆KVVP-22,RVVP-22,KVVRP-22,KVVP2-22,KVVRP2-222*0.5,3*0.75,4*4,------37*1.5mm铠装阻燃控制电缆;ZR-KVV22,ZR-KVV32,ZR-KVVR222*0.5,3*0.75,4*4,------37*1.5mm铠装阻燃屏蔽控制电缆;ZR-KVVP22,ZR-KVVRP22,ZR-KVVP2-22,ZR-KVVRP2-222*0.5,3*0.75,4*4,------37*1.5mm铠装通信电缆;HYA22,HYA23,HYA53,HYV22,HYV23 5对,10对------2400 对,0.4-0.5-0.6-0.7-0.8-0.9线径铠装充油通信电缆;HYAT22,HYAT23,NYAT53 5对,10对------800对0.4-0.5-0.6-0.7-0.8-0.9线径铠装阻燃通信电缆;ZR-HYA22,ZR-HYA23,ZR-HYA53,WDZ-HYA23,WDZ-HYA535对,10对------2400对,0.4-0.5-0.6-0.7-0.8-0.9线径矿用铠装阻燃通信电缆;MHYA22,MHYV22,MHYA32,MHYV325对,10对------200对,0.5-0.6-0.7-0.8-0.9-1.0线径铠装计算机电缆;DJYVP22,ZR-DJYVP22,DJYVRP22,DJYPV22,ZR-DJYPV22DJYPVR22DJYPVP22,DJYPVRP22,ZR-DJYPVP22,ZR-DJYPVPR221*2*0.75 2*2*1.0 3*2*1.5 ------30*2*1.5mm铠装铁路信号电缆;PZY23,PTY23,PZY22,PTY22,PZYH23,PTYH23PZYA23,PZYA22,PZYAH22,PTYAH22,PTYAH32,PZY324芯-6芯-8芯-9芯------6型号含义:R-连接用软电缆(电线),软结构。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Liquid crystal displaysMOSAIC DISPLAY UNITRCM1583U-AThanks to the high contrast and wide viewing angle of the RCM1583U-A, which is provided by its unique design technology , this module brings forth new applications in brand new LCD fields. ROHM large-sized LCD units are perfect displays for information or sign boards. As a media for informational display , large-sized LCD units must possess high visibility , wide viewing angles, and other such superior qualities. ROHM large-sized LCDs boast an excellent track record and possess guaranteed functionality for assured satisfaction in a variety of situations.!ApplicationsIndoor information board (airport, train station, bus depot), In-hall or in-store display , public message board.!Features1) Most suitable for the alphabet and number display .2) Wide viewing angle and high contrast.3) Compact and light weight for easy assembly .4) Low power consumption.!External dimensions (Units : mm)−1.0+1.53256.75M a x .53.75M a x .30.25M i n .33.25M i n .+0.15−0Hole 2−φ3.96(40)51±0.55±0.541±0.1 2.75±0.3121(8.54)(1.6)(1.3)48.4±0.3(27)(17)(7.0)39.0±0.3UV REGINUV REGINUV REGIN (2.27)21340.363.5101038.1(6:00)V IE W IN G A N G L E 4.7±0.70.7±0.70.7±0.70.7±0.71.1±0.11.1±0.127.94(P2.54×11)11.53±0.565.0±0.582M i n .12.17±0.3(63.5)5M a x .38.5M i n .48.5M a x .(87.0)91.0±0.30.3Max.1Max.53.0±0.351Min.7.45±0.3(38.1)2Max.0.80.80.80.80.80.80.87.24.54.5107.24.5118.58.5 4.3118.5 4.34−HoleLiquid crystal displays!Block diagram!Pin functions (1) Input (CN1)123−4IN 5IN 6IN 7IN 89101112V DD M CL1CL2DI GND V DDM CL1CL2DO GND −−OUT OUT OUT OUT −IN / OUTPin No.SymbolFunctionCharge 5VoltAlternating signal of LCD operating output Data latch signal (display at descending edge)Shift resistor signal (displayed at descending edge)Display data signal (1: Lighting 0: Non-Lighting)Ground electric potential Ground electric potential Display data signal Shift resistor signal Data latch signal Alternating signal 5Volt!PinLiquid crystal displays!Absolute maximum ratings (T a = 25°C)ParameterSymbol Limits Unit V DDTopr TstgV V V °C°C Circuit Operating temperature Storage temperature−0.3 ~ +7.0−0.3 ~ +7.0−0.3 ~ V DD +0.3−40 ~ +85−20 ~ +70LCD operationInput voltageV DD −V EEV IN Power supply voltage !Electrical characteristics (V DD = 5.0V , GND = 0V , T a = 25°C)ParameterV OH V OL I DDVLCD V DD −0.4−−−V IH 0.8V DD−V V V V V mAI OH = −0.4mA I OL = +0.4mAf CL = 1MHz, f M = 100HzV IL −−−0.46.05.0V DD 0.2V DD−−−−Symbol Min.Typ.Max.Unit ConditionsInput high level voltage Input low level voltage Output high level voltage Output low level voltage Input LCD voltage Comsumpting current!AC characteristics (V DD = 5.0V , GND = 0V , T a = 25°C)Parametert CWL t SU t SL t LS t DH t ct t pd DO f MMCL1DI CL1, CL2220120−−50−−−−100−−50250150ns ns ns ns Hzf CL t CWH 470120220−470Symbol Min.−−−−−Typ.−−−1−Max.ns ns ns MHz ns Unit CL2CL1, CL2CL2DI CL2Applicable terminalData shift flequency Clock high level width Clock low level width Data setup time Clock setup time 1Clock setup time 2Data hold time Clock rise / fall timeOutput delay time Alternating signal!Timing characteristicsCL2DI DOCL1Fig.1Liquid crystal displays!Optical characteristics (T a = 25°C)ParameterNo.312θφKTrTd252525250025ms deg (Note 2)φ = 180°, θ =10°Symbol Temperature (°C)Unit (Note 3)K ≥3Note6545150400−−50Typ.Max.−−−−0903580010030010060270−−Min.Viewing RangeContrast ratioResponse timeVertical horizontal(Note 1) Driving pulse (Note 2) Response time definition and conditionTr : The time required to activate from non-selectingwave pattern to selecting wave pattern and to change 90% for darken. φ = 180°, θ = 10°Td : The time required to activate from selecting wave pattern to non-selecting wave pattern and to change 90% for darken. φ = 180°, θ= 10°(Note 3) Definition of viewing angle (φ, θ)270°)(φ =XViewing angle 6:00(1) φ : Angle which an obsever will become Z Z’.(2) θ : When obsevers position is consideres as flat X,Y over a projector angle which makes Y Y’.(3) Greatest viewing angle derection : Time axis which represent best contrast ratio.(Note 4) Definition of contrast ratio <Definition >Contrast ratio =Positive type n = 1, Negative type n = -1 <Measurement conditions >Drive conditions: Specific value conditionViewing angle: φ = 180°, θ = 10°(Note 5) Optical measuring equipment theory planLiquid crystal displays!Data format (data and display mapping)32313334434430295677766263727573743635423745505153616471657038394041effective data invalid data4649484753545258576059666968672726252824788180792120222319181782898887838684851698310310241019790151072110498969112131411651051009995949293D1D2D3D103D104D105D106D107D159D160FIRST DATA LAST DATALiquid crystal displays!Timing chart110GND 0GND V DD V DD1010COM VoltageMDATASEG VoltageV DD GND GND V DDNote) LCD operation output voltageMCL1CL1CL2DATASEGCOMLiquid crystal displays!Operation notes(1) Handling instruction•Attention must be paid to avoid external shock, which will cause operational failure.•Polarizer on the surface is gentle and can be damaged easily by scratch, thus please take extra care when handling.For surface termination, please wipe off with alcohol.• The liquid used in the LCD panel is a harmful substance and must not be licked or awallowed. If you touch this liquid, wash it out completely.• Do not touch IC lead and terminal.• Do not expose to direct sunlight for a long period of time and if it will be used at direct sunlight, recommend to use UV cut filter.• For storage please avoid in high temperature, high humidity. When long-term storage is required, keep the panels in low temperature (5°C ∼ 25°C) and low humidity.• T o prevent T AB damage, T AB bent time must be up to twice.(2) Operational instruction• Please do not connect or take away the LCD module to the system in the condition of power on.• Please input signal after LCD module power is turned on when turning off. Please turn off from input signal. In worst case IC can be broken by ratch up phenomenon.(3) Mounting instruction• In the circuit CMOS-IC is used. Please be careful for ESD.• Protection sheet is put on LCD module surface and back side. At removing the sheet, electric static is generated. So it must be removed slowly and recommend to use Ion blower etc.(4) Cautions for LCD with FPC• Do not pend nor pull FPC.• Do not hold FPC with fingers directly nor suspend FPC.• When bending FPC, keep 5mm from the edge of grass (FPC joint) and bend toward mother board side.(5) Production• Production in Japan or China.。

相关文档
最新文档