2019届陕西省西安市莲湖区五校联考九年级上学期期中数学试卷【含答案及解析】

合集下载

西安市九年级上学期期中考试数学试卷及答案解析(共四套)

西安市九年级上学期期中考试数学试卷及答案解析(共四套)

西安市九年级上学期期中考试数学试卷(一)一、选择题(共10小题)1.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=02.如图为主视图方向的几何体,它的俯视图是()A. B. C.D.3.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为()A.18 B.20 C.24 D.284.如图,已知直角三角形ABC中,斜边AB的长为m,∠B=40°,则直角边BC 的长是()A.msin40°B.mcos40°C.mtan40°D.5.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C.D.6.若点(﹣2,y1)、(﹣1,y2)、(1,y3)在反比例函数y=的图象上,则下列结论中的正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y17.在Rt△ABC中,∠C=90°,∠A、∠B的对边分别是a、b,且满足a2﹣ab﹣b2=0,则tanA等于()A.1 B.C.D.8.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠09.如图,正方形ABCD的面积为64,△BCE是等边三角形,F是CE的中点,AE、BF交于点G,连接CG,则CG等于()A.4B.6 C.3D.410.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0)C.(,0)D.(,0)二、填空题11.tan15°=.12.如图,小明同学沿着格线从A点到B点,在路线最短的条件下,经过C点的概率是.13.已知函数的图象如图所示,当x≥﹣1时,y的取值范围是.14.高为2米的院墙正东方有一棵樟树,且与院墙相距3米,上午的太阳和煦灿烂,樟树影子爬过院墙,伸出院墙影子外1米,此时人的影子恰好是人身高的两倍,那么,请你计算这棵樟树的高约为米.15.如图,CD是平面镜,光线从A点射出,经CD上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=11,则tanα的值为.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD 于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题17.用适当的方法解方程(1)2x2﹣4x﹣6=0;(2)(3x+2)(x+3)=x+14.18.(1)cos60°+sin45°+tan30°•cos30°;(2)﹣.19.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次恰好抽取的卡片上的实数之差为有理数的概率.21.大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.22.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于1?若存在,求出k的值;若不存在,说明理由.23.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.(1)求过点D的反比例函数的解析式;(2)求△DBE的面积;(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.24.如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)如图1,若△BPQ∽△BCA,求t的值;(2)如图2,连接AQ,CP,若AQ⊥CP,求的值;(3)证明:PQ的中点在△ABC的一条中位线上.参考答案与试题解析一、选择题(共10小题)1.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=0【考点】A1:一元二次方程的定义.【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:A、x+2y=1是二元一次方程,故错误;B、方程去括号得:2x2﹣2x=2x2+3,整理得:﹣2x=3,为一元一次方程,故错误;C、3x+=4是分式方程,故错误;D、x2﹣2=0,符合一元二次方程的形式,正确.故选D.2.如图为主视图方向的几何体,它的俯视图是()A. B. C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到三个左右相邻的长方形,故选D.3.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为()A.18 B.20 C.24 D.28【考点】X4:概率公式.【分析】首先设黄球的个数为x个,根据题意得: =,解此分式方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得: =,解得:x=24,经检验:x=24是原分式方程的解;∴黄球的个数为24.故选:C.4.如图,已知直角三角形ABC中,斜边AB的长为m,∠B=40°,则直角边BC 的长是()A.msin40°B.mcos40°C.m tan40°D.【考点】T1:锐角三角函数的定义.【分析】根据锐角三角函数的定义解答即可.【解答】解:∵cos40°=,∴BC=AB•cos40°=mcos40°.故选B.5.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C.D.【考点】L8:菱形的性质;KQ:勾股定理.【分析】根据题意可知,AC=2BC,∠B=90°,所以根据勾股定理可知AC2=AB2+BC2,即(2BC)2=32+BC2,从而可求得BC的长.【解答】解:∵AC=2BC,∠B=90°,∴AC2=AB2+BC2,∴(2BC)2=32+BC2,∴BC=.故选:D.6.若点(﹣2,y1)、(﹣1,y2)、(1,y3)在反比例函数y=的图象上,则下列结论中的正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【考点】G6:反比例函数图象上点的坐标特征.【分析】易得此函数图象分布在一、三象限,根据反比例函数的增减性即可比较y 3、y1、y2的大小.【解答】解:k>0,函数图象在一,三象限;由题意可知:横坐标为﹣2,﹣1的在第三象限,横坐标为﹣1的在第一象限.第三象限内点的纵坐标总小于第一象限内点的纵坐标,那么y3最大,在第三象限内,y随x的增大而减小,所以y2<y1.故选C.7.在Rt△ABC中,∠C=90°,∠A、∠B的对边分别是a、b,且满足a2﹣ab﹣b2=0,则tanA等于()A.1 B.C.D.【考点】T7:解直角三角形.【分析】根据a、b之间的等量关系式,可以求出的值,进而得解.【解答】解:∵a、b满足a2﹣ab﹣b2=0,等式两边同时除以b2得:﹣﹣1=0,解得=,∵tanA=>0,故tanA=.故选B.8.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k 的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.9.如图,正方形ABCD的面积为64,△BCE是等边三角形,F是CE的中点,AE、BF交于点G,连接CG,则CG等于()A.4B.6 C.3D.4【考点】LE:正方形的性质;KK:等边三角形的性质.【分析】要求CG的长度,求出∠CGE即可,BF是EC边上的高,根据∠EGF=∠CGF,求∠EGF即可.【解答】解:∵BF是等边△BEC中EC边上的中线,即BF既是中线又是高,又是角平分线,且BE所在直线是EC的垂直平分线;∴∠FBC=30°,∠EGF=∠CGF,GE=GC,∵∠ABE=∠ABC+∠CBE=90°+60°=150°,且AB=BE,∴∠BAG=15°,∴∠BGA=180°﹣∠ABG﹣∠BAG=180°﹣15°﹣120°=45°,∴∠EGF=45°,∠CGF=45°,故∠EGC=90°,且GE=GC,∴△GEC为等腰直角三角形,∴CG=×EC=.故选A.10.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0)C.(,0)D.(,0)【考点】GB:反比例函数综合题;FA:待定系数法求一次函数解析式;K6:三角形三边关系.【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0),故选:D.二、填空题11.tan15°=2﹣.【考点】T7:解直角三角形.【分析】把15°变为45°﹣30°,然后利用两角差的正切函数公式及特殊角的三角函数值化简可得tan15°的值.【解答】解:tan15°=tan(45°﹣30°)===2﹣.故答案为:2﹣.12.如图,小明同学沿着格线从A点到B点,在路线最短的条件下,经过C点的概率是.【考点】X6:列表法与树状图法.【分析】根据题意先求出从A到B的最短路程的情况数,再根据概率公式即可得出答案.【解答】解:从A到B的最短路程的路共有:6种;而经过C的有4种所以经过C点的概率==;故答案为:.13.已知函数的图象如图所示,当x≥﹣1时,y的取值范围是y≤﹣1或y>0 .【考点】G4:反比例函数的性质.【分析】x≥﹣1时,可能在第三象限,也可能在第一象限,可分﹣1≤x<0和x>0两种情况进行解答.【解答】解:∵比例系数大于1,∴图象的两个分支在一、三象限,在每个象限内,y随x的增大而减小.当x=﹣1时,y=﹣1,∴当x≥﹣1且在第三象限时,y≤﹣1,当x≥﹣1在第一象限时,y>0,故答案为:y≤﹣1或y>0.14.高为2米的院墙正东方有一棵樟树,且与院墙相距3米,上午的太阳和煦灿烂,樟树影子爬过院墙,伸出院墙影子外1米,此时人的影子恰好是人身高的两倍,那么,请你计算这棵樟树的高约为 4 米.【考点】SA:相似三角形的应用.【分析】根据相似三角形对应线段成比例求解即可.【解答】解:利用投影知识解题,按此时人的影子恰好是人身高的两倍,即墙的影子当地为4米,而树影子爬过院墙,伸出院墙影子外1米,即树影子全长为(3+4+1)=8米而树高为树影子的一半,即4米.故填4.15.如图,CD是平面镜,光线从A点射出,经CD上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=11,则tanα的值为.【考点】SA:相似三角形的应用;T8:解直角三角形的应用.【分析】利用相似三角形的判定与性质得出EC的长,进而求出tanα的值.【解答】解:由题意可得:∠AEC=∠BED,又∵∠ACE=∠BDE,∴△ACE∽△BDE,∴=,即=,解得:EC=,tanA=tanα===.故答案为:.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD 于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1 .【考点】LE:正方形的性质.【分析】根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【解答】解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D 三点共线时,DH长度最小)故答案为:﹣1.三、解答题17.用适当的方法解方程(1)2x2﹣4x﹣6=0;(2)(3x+2)(x+3)=x+14.【考点】A8:解一元二次方程﹣因式分解法.【分析】(1)整理后因式分解法求解可得;(2)整理成一般式后公式法求解可得.【解答】解:(1)原方程整理得x2﹣2x﹣3=0,左边因式分解可得:(x+1)(x﹣3)=0,则x+1=0或x﹣3=0,解得:x=﹣1或x=3;(2)原方程整理,得:3x2+10x﹣8=0,∵a=3,b=10,c=﹣9,∴△=100﹣4×3×(﹣9)=208>0,则x==.18.(1)cos60°+sin45°+tan30°•cos30°;(2)﹣.【考点】T5:特殊角的三角函数值.【分析】(1)根据特殊角三角函数值,可得答案;(2)根据特殊角三角函数值,可得答案.【解答】解:(1)原式=+×+×=++=;(2)原式=﹣=2﹣++3.19.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.【考点】L9:菱形的判定;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.20.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次恰好抽取的卡片上的实数之差为有理数的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)由在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与两次好抽取的卡片上的实数之差为有理数的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.∴从盒子中随机抽取一张卡片,卡片上的实数是3的概率是:;(2)画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况,∴两次好抽取的卡片上的实数之差为有理数的概率为: =.21.大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点B作BE⊥AD交AD延长线于点E,构造两个直角三角形.设DE=x,分别求解可得AD与DE的值,再利用BC=AD+DE,即可求出答案.【解答】解:过点B作BE⊥AD,交AD延长线于点E.在Rt△BED中,∵D点测得塔顶B点的仰角为30°,∴∠BDE=60度.设DE=x,则BE=x.在Rt△BEA中,∠BAE=30度,BE=x.∴AE=3x.∴AD=AE﹣DE=3x﹣x=2x=10.∴x=5.∴BC=AD+DE=10+5=15(米).答:塔BC的高度为15米.22.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于1?若存在,求出k 的值;若不存在,说明理由.【考点】AB:根与系数的关系;AA:根的判别式.【分析】(1)根据一元二次方程的定义和根的判别式得到k≠0且(k+2)2﹣4k•>0,然后求出两个不等式的公共部分即可;(2)假设存在实数k使方程的两个实数根的倒数和等于0,利用根与系数的关系得出x1+x2=﹣,x1x2=利用两个实数根的倒数和等于0,得出方程的解,结合k的取值范围判定即可.【解答】解:(1)∵关于x的方程kx2+(k+2)x+=0有两个不相等的实数根,∴k≠0且△>0,即(k+2)2﹣4k•>0,∴k>﹣1且k≠0.(2)不存在.理由:假设存在实数k使方程的两个实数根的倒数和等于0,∵x1+x2=﹣,x1x2=,∴+===0,解得:k=﹣2∴不存在实数k使方程的两个实数根的倒数和等于0.23.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.(1)求过点D的反比例函数的解析式;(2)求△DBE的面积;(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【分析】(1)由四边形OABC是矩形,得到BC=OA,AB=OC,根据tan∠COD=,设OC=3x,CD=4x,求出OD=5x=5,OC=3,CD=4,得到D(4,3),代入反比例函数的解析式即可.(2)根据D点的坐标求出点B,E的坐标即可求出结论;(3)分类讨论:当∠OPD=90°时,过D作PD⊥x轴于P,点P即为所求,当∠ODP=90°时,根据射影定理即可求得结果.【解答】解:(1)∵四边形OABC是矩形,∴BC=OA,AB=OC,∵tan∠COD=,∴设OC=3x,CD=4x,∴OD=5x=5,∴x=1,∴OC=3,CD=4,设过点D的反比例函数的解析式为:y=,∴k=12,∴反比例函数的解析式为:y=;(2)∵点D是BC的中点,∴B(8,3),∴BC=8,AB=3,∵E点在过点D的反比例函数图象上,∴E(8,),∴S=BD•BE==3;△DBE(3)存在,∵△OPD为直角三角形,∴当∠OPD=90°时,PD⊥x轴于P,∴OP=4,∴P(4,0),当∠ODP=90°时,如图,过D作DH⊥x轴于H,∴OD2=OH•OP,∴OP==.∴P(,O),∴存在点P使△OPD为直角三角形,∴P(4,O),(,O).24.如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)如图1,若△BPQ∽△BCA,求t的值;(2)如图2,连接AQ,CP,若AQ⊥CP,求的值;(3)证明:PQ的中点在△ABC的一条中位线上.【考点】SO:相似形综合题.【分析】(1)分两种情况讨论:①当△BPQ∽△BAC时,,②当△BPQ∽△BCA时,,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,根据△ACQ ∽△CMP,得出=,即可;(3)作PE⊥AC于点E,DF⊥AC于点F,先得出DF=,再把QC=4t,PE=8﹣BM=8﹣4t代入求出DF,过BC的中点R作直线平行于AC,得出RC=DF,D在过R的中位线上,从而证出PQ的中点在△ABC的一条中位线上【解答】解:(1)在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,∴AB=10cm,由运动知,BP=5t,QC=4t,①当△BPQ∽△BAC时,∵,∴,∴t=1;②当△BPQ∽△BCA时,∵,∴,∴t=,∴t=1或时,△BPQ与△ABC相似;(2)如图1所示,在Rt△ABC中,sinB=,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=PBsinB=3t,由运动知,CQ=4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴==;(3)如图,作PM⊥BC于点M,PQ的中点设为D点,作PE⊥AC于点E,DF⊥AC 于点F,∵∠ACB=90°,∴DF为梯形PECQ的中位线,∴DF=,∵QC=4t,PE=BC﹣BM=8﹣BM=8﹣4t,∴DF==4,∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立,∴D在过R的中位线上,∴PQ的中点在△ABC的一条中位线上.西安市九年级上学期期中考试数学试卷(二)一、选择题1.下列计算正确的是()A.a2•a3=a6 B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab2.不等式组的解集是()A.﹣2≤x≤1 B.﹣2<x<1 C.x≤﹣1 D.x≥23.下列立体图形中,俯视图是正方形的是()A.B.C.D.4.已知关于x方程x2﹣4x+m=0,如果从1、2、3、4、5、6中任选一个数作为方程常数项m,那么所得方程有实数根的概率是()A.B.C.D.5.如图,以点O为位似中心,将△ABC缩小后得到△A'B'C',已知OB=3OB',则△A'B'C'与△ABC的面积的比为()A.1:3 B.1:4 C.1:5 D.1:96.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠57.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A. +=B.﹣=C. +10=D.﹣10=8.已知菱形ABCD的边长是9,点E在直线AD上,DE=3,连接BE与对角线AC 相交于点M,则的值是()A.3:1 B.4:3 C.3:4 D.3:4或3:29.如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有()A.2对B.3对C.4对D.5对10.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④二、填空题11.两三角形的相似比为1:4,它们的周长之差为27 cm,则较小三角形的周长为.12.分解因式:m4﹣16n4= .13.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为.14.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为.三、解答题15.计算:(﹣3)2﹣()﹣1+×﹣|1﹣|.16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)18.化简求值:(x﹣5+)÷,其中x=﹣2.19.在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A﹣﹣结伴步行、B﹣﹣自行乘车、C﹣﹣家人接送、D﹣﹣其它方式,并将收集的数据整理绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图和扇形统计图,并在图中标出“自行乘车”对应扇形的圆心角的度数;(3)如果该校学生有2080人,请你估计该校“家人接送”上学的学生约有多少人?20.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.如图,管中放置着三根同样的绳子AA1、BB1、CC1,小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,请用树状图或列表法求着三根绳子能连结成一根长绳的概率.23.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).24.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.参考答案与试题解析一、选择题1.下列计算正确的是()A.a2•a3=a6 B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.2.不等式组的解集是()A.﹣2≤x≤1 B.﹣2<x<1 C.x≤﹣1 D.x≥2【考点】解一元一次不等式组.【分析】分别解出每个不等式的解集,再求其公共部分.【解答】解:,由①得,x≥﹣2;由②得,x≤1;故不等式组的解集为﹣2≤x≤1.故选A.3.下列立体图形中,俯视图是正方形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:A、球的俯视图是圆,故本选项错误;B、正方体的俯视图是正方形,故本选项正确;C、圆锥的俯视图是圆,故本选项错误;D、圆柱的俯视图是圆,故本选项错误.故选B.4.已知关于x方程x2﹣4x+m=0,如果从1、2、3、4、5、6中任选一个数作为方程常数项m,那么所得方程有实数根的概率是()A.B.C.D.【考点】概率公式;根的判别式.【分析】由判别式判断出m的范围,然后根据概率公式求解可得.【解答】解:∵关于x方程x2﹣4x+m=0有实数根,∴△=16﹣4m≥0,解得:m≤4,在从1、2、3、4、5、6中符合条件的有1、2、3、4这4个数,∴所得方程有实数根的概率是=,故选:B.5.如图,以点O为位似中心,将△ABC缩小后得到△A'B'C',已知OB=3OB',则△A'B'C'与△ABC的面积的比为()A.1:3 B.1:4 C.1:5 D.1:9【考点】位似变换.【分析】根据位似变换的性质得到A′B′∥AB,A′C′∥AC,根据平行线的性质求出△A'B'C'与△ABC的相似比,根据相似三角形的性质得到面积比.【解答】解:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴==,∴==,∴△A'B'C'与△ABC的相似比为1:3,∴△A'B'C'与△ABC的面积的比1:9,故选:D.6.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.7.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A. +=B.﹣=C. +10=D.﹣10=【考点】由实际问题抽象出分式方程.【分析】设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,根据“小军乘小车上学可以从家晚10分钟出发”列出方程解决问题.【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.8.已知菱形ABCD的边长是9,点E在直线AD上,DE=3,连接BE与对角线AC相交于点M,则的值是()A.3:1 B.4:3 C.3:4 D.3:4或3:2【考点】相似三角形的判定与性质;菱形的性质.【分析】首先根据题意作图,注意分为E在线段AD上与E在AD的延长线上,然后由菱形的性质可得AD∥BC,则可证得△MAE∽△MCB,根据相似三角形的对应边成比例即可求得答案.【解答】解:∵菱形ABCD的边长是8,∴AD=BC=9,AD∥BC,如图1:当E在线段AD上时,∴AE=AD﹣DE=9﹣3=6,∴△MAE∽△MCB,∴==;如图2,当E在AD的延长线上时,∴AE=AD+DE=9+3=12,∴△MAE∽△MCB,∴==.∴的值是或.故选D.9.如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有()。

西安市2019-2020学年九年级上学期数学期中考试试卷(II)卷

西安市2019-2020学年九年级上学期数学期中考试试卷(II)卷

西安市2019-2020学年九年级上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九上·中山期末) 下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .2. (2分)(2019·巴中) 在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A . (﹣4,﹣3)B . (4,3)C . (4,﹣3)D . (﹣4,3)3. (2分) (2018九上·盐池期中) 方程 =3x的解为().A . 0B .C .D . 0,4. (2分) (2016九上·呼和浩特期中) 下列方程中,有两个不相等的实数根的是()A . x2+x+1=0B . x2﹣x﹣1=0C . x2﹣6x+9=0D . x2﹣2x+3=05. (2分)(2019·合肥模拟) 直角坐标平面上将二次函数的图像向左平移1个单位,再向上平移2个单位,则其顶点为()A .B .C .D .6. (2分)抛物线y=-3x2-4的开口方向和顶点坐标分别是()A . 向下,(0,4)B . 向下,(0,-4)C . 向上,(0,4)D . 向上,(0,-4)7. (2分)已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为()A . x1=-1,x2=3B . x1=-2,x2=3C . x1=1,x2=3D . x1=-3,x2=18. (2分)把一个正方形的一边增加2cm,另一边增加1cm,所得的长方形的面积比正方形面积增加14cm2 ,那么原来正方形的边长是()A . 3cmB . 5cmC . 4cmD . 6cm9. (2分)如图,若将△ABC绕点C顺时针旋转90°后得到△A'B'C',则A点的对应点A'的坐标是()A . (3,0)B . ( 2,2 )C . (2,1)D . (-3,-2)10. (2分)如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随着x的增大而增大.正确的说法有A . ①②③B . ①②④C . ②③④D . ①③④二、填空题 (共6题;共6分)11. (1分)二次函数y=3(x﹣2)2+4的最小值是________.12. (1分)二次函数y=2(x﹣1)2+3的图象的顶点坐标是________ .13. (1分)(2019·广西模拟) 已知关于x的一元二次方程x2-2 x-k=o有两个相等的实数根,则k值为________14. (1分)如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是________.15. (1分)如图所示,要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,若设AB的长为xm,则矩形的面积y=________.16. (1分)(2012·梧州) 如图,在矩形ABCD中,AB=6,BC=8,以D为旋转中心,顺时针旋转180°后停止,矩形ABCD在旋转过程中所扫过的面积是________.三、解答题 (共9题;共82分)17. (5分) (2017九上·柳江期中) 解下列方程:(1) x2=2x,(2) x2﹣6x+5=0.18. (5分)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.19. (5分)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是几个单位长度;(2)△AOC与△BOD关于直线对称,则对称轴是。

陕西省西安市莲湖区2019届九年级数学中考模拟试卷(一)及参考答案

陕西省西安市莲湖区2019届九年级数学中考模拟试卷(一)及参考答案

陕西省西安市莲湖区2019届九年级数学中考模拟试卷(一)一、单选题1. -2的绝对值是()A .B .C .D . 12. 如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A . 主视图B . 俯视图C . 左视图D . 一样大3. 正比例函数的自变量取值增加2,函数值就相应减少2,则的值为()A . 2B . -2C . -1D . 44. 如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A . 30°B . 40°C . 50°D . 60°5. 计算(1+ )÷ 的结果是()A . x+1B .C .D .6. 在△ABC中,∠BAC=115°,DE、FG分别为AB、AC的垂直平分线,则∠EAG的度数为( )A . 50°B . 40°C . 30°D . 25°7. 已知一次函数y=(m-4)x+2m+1的图象不经过第三象限,则m的取值范围是()A . m<4B . ≤m<4C . ≤m≤4D . m≤8. 填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是( )A . 110B . 158C . 168D . 1789. 如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( )A .B .C .D .10. 在同一平面直角坐标系中,直线=2x+3与y=2x-5的位置关系是()A . 平行B . 相交C . 重合D . 垂直11. 已知二次函数y=(x ﹣1)﹣4,当y <0时,x 的取值范围是( )A . ﹣3<x <1B . x <﹣1或x >3C . ﹣1<x <3D . x <﹣3或x >112. 如图,函数y=ax +bx+c 的图象过点(﹣1,0)和(m ,0),请思考下列判断:①abc <0;②4a+c <2b ;③ =1﹣;④am +(2a+b )m+a+b+c <0;⑤|am+a|= 正确的是( )A . ①③⑤B . ①②③④⑤C . ①③④D . ①②③⑤二、填空题13. 不等式﹣9+3x≤0的非负整数解的和为________.14. 分解因式:m n﹣4mn ﹣4n=________.15. 如图,正五边形 内接于 ,若的半径为 ,则弧 的长为________.16. 如图,在平面直角坐标系中,直线y = x 与双曲线y = (k≠0)交于点A ,过点C (0,2)作AO 的平行线交双曲线于点B ,连接AB 并延长与y 轴交于点D (0,4),则k 的值为________.17. 如图,在边长为1的正方形ABCD 的各边上,截取AE =BF =CG =DH =x ,连接AF 、BG 、CH 、DE 构成四边形PQ RS.用x 的代数式表示四边形PQRS 的面积S.则S =________.三、解答题18. 如图,已知PA 、PB 是⊙O 的切线,A 、B 分别为切点,∠OAB=30°.(1) ∠APB=;(2) 当OA=2时,AP=.19. 计算:(1) | ﹣1|+(3.14﹣π)+ + .22220(2) + ÷20. 解方程:.21. 尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,A B=a.22. 为了解学生参加户外活动的情况,某中学对学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求户外活动时间为1.5小时的学生有多少人?并补全条形统计图(2)每天户外活动时间的中位数是小时?(3)该校共有1800名学生,请估计该校每天户外活动超过1小时的学生人数有多少人?23. 如图,在四边形中,∥ , 交于点 , 交于点 ,且 ;求证:四边形是平行四边形.24. 如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6 m,且AP=QB.(1)求两个路灯之间的距离;(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?25. 在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1) 请写出甲的骑行速度为米/分,点M 的坐标为;(2) 求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3) 请直接写出两人出发后,在甲返回A 地之前,经过多长时间两人距C 地的路程相等.26. 如图,AB 是⊙O 的直径,直线AT 切⊙O 于点A ,BT 交⊙O 于C ,已知∠B =30°,AT =,求⊙O 的直径AB 和弦BC 的长.27. 在平面直角坐标系xOy 中,抛物线y =ax +bx+c 经过点A ,B ,C ,已知A(﹣1,0),B(5,0),C(0,5)(1) 求抛物线与直线BC 的表达式;(2) 如图1,P 为线段BC 上一点,过点P 作y 轴平行线,交抛物线于点D ,当△BCD 的面积最大时,求点P 的坐标;(3) 如图2,抛物线顶点为E ,EF ⊥x 轴于点F ,N 是线段EF 上一动点,M(m ,0)是x 轴上一动点,若∠MNC =90°,直接写出实数m 的取值范围.28. 已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CE B =45°,EB 与对角线AC 相交于点F ,设DE =x.(1) 用含x 的代数式表示线段CF 的长;(2) 如果把△CAE 的周长记作C ,△BAF 的周长记作C ,设=y ,求y 关于x 的函数关系式,并写出它的定义域;(3) 当∠ABE 的正切值是 时,求AB 的长.参考答案1.2.3.4.5.6.2△CA E △BA F7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.。

陕西省西安市莲湖区2023-2024学年九年级上学期期中数学试题

陕西省西安市莲湖区2023-2024学年九年级上学期期中数学试题

陕西省西安市莲湖区2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题B.(7.2x-A.35B.二、填空题9.若m是一元二次方程x10.国庆假期,智慧(6)班的一项创造性设计作业有主学习”三个主题,若智慧(小诗和小语恰好选择同一个主题的概率是11.如图,在正方形ABCD2,6DG CH==,则正方形12.若关于x的一元二次方程等的实数根,则m的值为13.如图,四边形ABCD是正方形,三、解答题14.解方程:220x x -=.15.解方程:22530x x +-=.16.如图,在ABC 中,DE BC ∥,且4=AD ,6DB =,5EC =,求AE 的长.17.如图,ABC 为锐角三角形,请用尺规作图,在AC 上求作一点P ,使得BP 最短.18.如图,在ABC 中,BE 平分ABC ∠,DE BC ∥2EFC ABE ∠=∠.求证:四边形DBFE 是菱形.19.已知关于x 的一元二次方程()22120x m x -+-=.(1)求证:无论m 为何值,方程总有两个不相等的实数根.(2)若方程的两个实数根12,x x 满足12121x x x x ++=,求m 的值.20.杭州亚运会吉祥物“琮琮”“连莲”和“宸宸”,是一组承载深厚底蕴和充满时代活力的机器人,组合名为“江南忆”,出自唐朝诗人白居易的名句“江南忆,最忆是杭州”.三个吉祥物的设计灵感分别来自杭州的三大世界文化遗产——良渚古城遗址、西湖和京杭大运河.小婷同学购买了一些杭州亚运会吉祥物,她想把其中的两只送给小琪和小雨同学,于是,她把“琮琮”“莲莲”和“宸宸”分别写在三张卡片上,三张卡片除了吉祥物的名字以外,其他全部相同,每张卡片被抽到的可能性相同,且每次抽出以后放回,将卡片洗匀继续抽取.请你用画树状图或列表的方法求出小琪和小雨同学抽到不同吉祥物的概率.21.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点C 作CE OB ∥,且CE OB ,连接DE .求证:四边形OCED 是矩形.22.国庆假期,小西和同学小婷去大唐不夜城玩,漂亮的团扇吸引了她们的注意力,团扇上不止有唯美的图案,更有古诗,她们喜欢的四把团扇上印的古诗分别是李白的《闻王昌龄左迁龙标遥有此寄》、《渡荆门送别》,杜甫的《春望》以及崔颢的《黄鹤楼》.因为都非常美,她们想通过随机抽选的方法来确定买哪个,具体方案如下:她们把四首古诗分别写在四张卡片的正面,记为A ,B ,C ,D (这四张卡片的背面都相同),将这四张卡片背面朝上,洗匀.(1)从中随机抽取一张,抽得的卡片所代表的古诗是《黄鹤楼》的概率是______.(2)若小西从这四张卡片中随机抽取一张,不放回,小婷再从剩余的三张中随机抽取一张,请利用画树状图或列表的方法,求这两张卡片所代表的古诗均为李白所写的概率.23.情满月圆,举国同庆.为了让利顾客,某超市计划将进价是每千克16元的莆蛓在双节期间进行降价销售.经过统计分析发现,当售价为每千克26元时,每天可售出320千克.如果每千克每降价1元.那么每天的销售量将会增加80千克.如果超市每天想要获得销售利润3600元,又要尽可能让顾客得到更多实惠,葡萄的售价应为每千克多少元?。

陕西省西安市 九年级(上)期中数学试卷(含答案)

陕西省西安市  九年级(上)期中数学试卷(含答案)

九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.计算cos30°的值为()A. B. C. 1 D. 32.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A.B.C.D.3.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A. B. C. D.4.一元二次方程ax2+bx+c=0,若4a-2b+c=0,则它的一个根是()A. B. C. D. 25.若双曲线y=过两点(-1,y1),(-3,y2),则y1与y2的大小关系为()A. B.C. D. 与大小无法确定6.如图,在△ABC中,点D在AB边上,且AD=2BD,过点D作DE∥BC交AC于点E.若AE=2,则AC的长是()A. 4B. 3C. 2D. 17.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有()A. 6个B. 10个C. 15个D. 30个8.如图,把△COD扩大后得到△AOB,若点C,D,B的坐标分别为C(1,2),D(2,0),B(5,0).则点A的坐标为()A.B.C.D.9.矩形ABCD中,AB=2,AD=1,点M在边CD上,若AM平分∠DMB,则DM的长是()A. B. C. D.10.将抛物线y=x2-1向下平移8个单位长度后与x轴的两个交点之间的距离为()A. 4B. 6C. 8D. 10二、填空题(本大题共6小题,共18.0分)11.一元二次方程x2-8x-1=0的解为______ .12.若△ABC∽△DEF,且对应高线的比为2:3,则它们的面积比为______ .13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是______.14.如图,点P是正比例函数y=x与反比例函数y=(k≠0)在第一象限内的交点,PA⊥OP,交x轴于点A,OA=6,则k的值是______ .15.观察表中数据,则k的值为______ .16.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为______.三、解答题(本大题共4小题,共32.0分)17.计算:()-1-+tan60°+|3-2|.18.如图,四边形ABCD是矩形(AD>AB),请用直尺和圆规在边AD上找一点P,使得BP=2AB.(不写作法,保留作图痕迹)19.求抛物线解析;抛物线顶点D坐标;若物线的对称轴上存在点P使△B=3△PO求此时DP的长.20.如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4-.①求KD的长度;②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S△PMN=时,求m的值.答案和解析1.【答案】B【解析】解:原式=×=,故选:B.根据特殊角三角函数值,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.【答案】D【解析】解:所给图形的俯视图是D选项所给的图形.故选:D.俯视图是从上向下看得到的视图,结合选项即可作出判断.本题考查了简单组合体的三视图,属于基础题,关键掌握俯视图是从上向下看得到的视图.3.【答案】A【解析】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.此题主要考查了锐角三角函数,关键是掌握正弦定义.4.【答案】A【解析】解:将x=-2代入ax2+bx+c=0的左边得:a×(-2)2+b×(-2)+c=4a-2b+c,∵4a-2b+c=0,∴x=-2是方程ax2+bx+c=0的根.故选A.将x=-2代入方程ax2+bx+c=0中的左边,得到4a-2b+c,由4a-2b+c=0得到方程左右两边相等,即x=-2是方程的解.此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.【答案】B【解析】解:∵双曲线y=过两点(-1,y1),(-3,y2),∴-1•y1=2,-3•y2=2,∴y1=-2,y2=-,∴y1<y2.故选B.根据反比例函数图象上点的坐标图特征得到-1•y1=2,-3•y2=2,然后计算出y1和y2比较大小.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.【答案】B【解析】解:∵DE∥BC,AD=2BD,∴=2,∴CE=AE=1,∴AC=AE+CE=3;故选:B.由平行线分线段成比例定理得出比例式求出CE,即可得出结果.本题主要考查了平行线分线段成比例定理;由平行线分线段成比例定理得出比例式求出CE是解决问题的关键关键.7.【答案】C【解析】解:∵共试验400次,其中有240次摸到白球,∴白球所占的比例为=0.6,设盒子中共有白球x个,则=0.6,解得:x=15.故选C.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.8.【答案】B【解析】解:∵把△COD扩大后得到△AOB,点C,D,B的坐标分别为C(1,2),D(2,0),B(5,0),∴△COD与△AOB的位似比为:2:5,则点A的坐标为:(2.5,5).故选:B.利用已知图形结合B,D点坐标得出两三角形的位似比,进而得出A点坐标.此题主要考查了位似变换以及坐标与图形的性质,得出两图形的位似比是解题关键.9.【答案】D【解析】解:∵四边形ABCD是矩形,∴CD=AB=2,AB∥CD,BC=AD=1,∠C=90°,∴∠BAM=∠AMD,∵AM平分∠DMB,∴∠AMD=∠AMB,∴∠BAM=∠AMB,∴BM=AB=2,∴CM===,∴DM=CD-CM=2-;故选:D.由矩形的性质得出CD=AB=2,AB∥CD,BC=AD=1,∠C=90°,由平行线的性质得出∠BAM=∠AMD,再由角平分线证出∠BAM=∠AMB,得出MB=AB=2,由勾股定理求出CM,即可得出DM的长.本题考查了矩形的性质、等腰三角形的判定、平行线的性质、勾股定理;熟练掌握矩形的性质,证明MB=AB是解决问题的关键.10.【答案】B【解析】解:将抛物线y=x2-1向下平移8个单位长度,其解析式变换为:y=x2-9而抛物线y=x2-9与x轴的交点的纵坐标为0,所以有:x2-9=0解得:x1=-3,x2=3,则抛物线y=x2-9与x轴的交点为(-3,0)、(3,0),所以,抛物线y=x2-1向下平移8个单位长度后与x轴的两个交点之间的距离为6抛物线y=x2-1向下平移8个单位长度后的到的新的二次函数的解析式为y=x2-9,令x2-9=0求其解即可知道抛物线与x轴的交点的横坐标,两点之间的距离随即可求.本题考查了抛物线与x轴的交点、二次函数图象与几何变换,解题的关键是掌握抛物线沿着y轴向下平移时解析式的变换规律,难点是二次函数与x轴的交点与对应一元二次方程的解之间的关系11.【答案】x1=4+,x2=4-【解析】解:由原方程,得x2-8x=1,配方,得x2-8x+42=1+42,即(x-4)2=17,开方,得x-4=±,解得x1=4+,x2=4-.故答案是:x1=4+,x2=4-.在本题中,把常数项-1移项后,应该在左右两边同时加上一次项系数-8的一半的平方.本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.【答案】【解析】解:∵△ABC∽△DEF,对应高线的比为2:3,∴它们的相似比为2:3,∴它们的面积比为()2=.故答案为:.根据相似三角形对应高的比等于相似比,面积的比等于相似比的平方进行计算即可得解.本题考查了相似三角形的性质,主要利用了相似三角形对应高的比等于相似比,面积的比等于相似比的平方的性质.13.【答案】24【解析】解:连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,∴BO==3,故BD=6,则菱形的面积是:×6×8=24.故答案为:24.直接利用菱形的性质结合勾股定理得出BD的长,再利用菱形面积求法得出答案.此题主要考查了菱形的性质以及勾股定理,正确求出BD的长是解题关键.14.【答案】9【解析】解:过P作PC⊥OA于点C,∵P点在y=x上,∴∠POA=45°,∴△POA为等腰直角三角形,∴PC=OC=OA=3,∴P(3,3),∴k=3×3=9,故答案为:9.由P在y=x上可知△POA为等腰直角三角形,过P作PC⊥OA于点C,根据等腰直角三角形的性质即可得到结论.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了等腰直角三角形的性质.15.【答案】0【解析】解:由上表可知函数图象经过点(-1,4)和点(1,4),∴对称轴为x==0,即y轴∴当x=2时的函数值等于当x=-2时的函数值,∵当x=-2时,y=0,∴当x=2时,k=0.故答案为:0.根据题目提供的满足二次函数解析式的x、y的值,确定二次函数的对称轴,利用对称轴找到一个点的对称点的纵坐标即可.本题考查了二次函数的图象的性质,利用表格找到二次函数的对称点是解决此题的关键,另外本题还可以先求出函数的解析式,然后代入求值.16.【答案】(,)【解析】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=-x+1,由解得,∴点P坐标(,).故答案为:(,).如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.本题考查菱形的性质、轴对称-最短问题、坐标与图象的性质等知识,解题的关键是正确找到点P位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.17.【答案】解:()-1-+tan60°+|3-2|=3-3+-3+2=0.【解析】本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式化简、特殊角的三角函数值、绝对值等考点的运算.18.【答案】解:如图所示,点P即为所求.【解析】先以A为圆心,AB长为半径画圆,交BA的延长线于E,则BE=2AB,再以B 为圆心,BE长为半径作弧,交AD于P,则BP=2AB.本题主要考查了复杂作图,解决问题的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19.【答案】解:将(-1),B(,0)代入=x2+bx+c得:,设直线BC的析式为y=x+a则,∴E=2,∵△PCB的积=PCF的面积△PB的面=F1+2)=3×,∴DP5-4=;∴DP=4+1;∴直线BC的解析式为y-+,的坐标为(1,2),则点F横标为1,设BC物线的对称轴交点F,如图所:解得:a=k=-1,∴顶点D的坐标,4);x=0时,y3,∴物线析式y=-x2+2x3;-x2+2x+3=-x-1)2+4,解得:PF=,当点P在F的方时,P=PF+E5,上所述:P的长为1或.【解析】利用待定系法即可解析式;求出POC的面积,由三角形面关得F=3,求出直线BC解式,得出F的坐标,分两情况讨,即可得出DP的.题考查待定系数法求和直线的析式;求出抛物线的顶点坐标和与y交点坐是题的关键.20.【答案】解:(1)①∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O是BD的中点∴DO=BO∴△DOK≌△BOG(AAS)②∵四边形ABCD是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK(2)①由(1)得,四边形AFGK是平行四边形∴AK=FG,AF=KG又∵△DOK≌△BOG,且KD=KG∴AF=KG=KD=BG设AB=a,则AF=KG=KD=BG=a∴AK=4--a,FG=BG-BF=a-a∴4--a=a-a解得a=∴KD=a=2②过点G作GI⊥KD于点I由(2)①可知KD=AF=2∴GI=AB=∴S△DKG=×2×=∵PD=m∴PK=2-m∵PM∥DG,PN∥KG∴四边形PMGN是平行四边形,△DKG∽△PKM∽△DPN∴△,即S△DPN=()2△同理S△PKM=()2∵S△PMN=∴S平行四边形PMGN=2S△PMN=2×又∵S平行四边形PMGN=S△DKG-S△DPN-S△PKM∴2×=-()2-()2,即m2-2m+1=0解得m1=m2=1∴当S△PMN=时,m的值为1【解析】(1)①先根据AAS判定△DOK≌△BOG,②再根据等腰三角形ABF和平行四边形AFKG的性质,得出结论BG=AB+AK;(2)①先根据等量代换得出AF=KG=KD=BG,再设AB=a,根据AK=FG列出关于a的方程,求得a的值,进而计算KD的长;②先过点G作GI⊥KD,求得S△DKG的值,再根据四边形PMGN是平行四边形,以及△DKG∽△PKM∽△DPN,求得S△DPN和S△PKM的表达式,最后根据等量关系S=S△DKG-S△DPN-S△PKM,列出关于m的方程,求得m的值即可.平行四边形PMGN本题主要考查了矩形的性质以及平行四边形的性质,解题时需要运用全等三角形的判定与性质.解答此题的关键是运用相似三角形的面积之比等于相似比的平方这一性质,并根据图形面积的等量关系列出方程进行求解,难度较大,具有一定的综合性.。

陕西省西安市莲湖区五校联考九年级数学上学期期中试题(含解析) 新人教版

陕西省西安市莲湖区五校联考九年级数学上学期期中试题(含解析) 新人教版

陕西省西安市莲湖区五校联考2016届九年级数学上学期期中试题一、选择题(每小题3分,计30分.每小题只有一个选项是符合题目要求的)1.一元二次方程x2﹣2x=0的根是( )A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=22.下列事件中,是必然事件的是( )A.打开电视机,正在播放新闻B.父亲年龄比儿子年龄大C.通过长期努力学习,你会成为数学家D.下雨天,每个人都打着雨伞3.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为( )A.10cm B.8cm C.6cm D.5cm4.如果x:(x+y)=3:5,那么x:y=( )A.B.C.D.5.下列命题正确的是( )A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形6.如图,下列条件不能判定△ABC与△ADE相似的是( )A.B.∠B=∠ADE C.D.∠C=∠AED7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是( )A.k>B.k≥C.k>且k≠1D.k≥且k≠18.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为( )A.4.5米B.6米C.3米D.4米9.某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是( )A.B.C.D.10.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为( )A.1 B.C.2 D.二、填空题(每小题3分,共18分)11.已知a=4,b=9,c是a,b的比例中项,则c=__________.12.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是__________.13.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的面积为__________cm2.14.把方程x2+6x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k=__________.15.现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是__________.16.如图,在直角坐标系中,△ABC的各顶点坐标为A(﹣1,1),B(2,3),C(0,3).现以坐标原点为位似中心,作△A′B′C′,使△A′B′C′与△ABC的位似比为.则点A的对应点A′的坐标为__________.三、解答题(共8小题,计72分)17.解方程:(1)x(x﹣2)=x﹣2;(2)(x+8)(x+1)=﹣12.18.如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.(1)求EC的值;(2)求证:AD•AG=AF•AB.19.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.20.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.21.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.22.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?23.小明和小刚做游戏,用一个不透明袋子,里面装有形状、大小完全相同的2个红球和2个白球,并充分搅匀,让小刚从中摸出一个球不放回,再去摸第二个球,如果两次摸出的球颜色相同小刚赢,反之小明赢.你认为这种游戏是否公平?请你借助树状图或列表的方法,运用概率的知识予以说明.24.如图,已知AC,EC分别为正方形ABCD和正方形EFCG的对角线,点E在△ABC内,连接BF,∠CAE+∠CBE=90°.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求CE的长.2015-2016学年陕西省西安市莲湖区五校联考九年级(上)期中数学试卷一、选择题(每小题3分,计30分.每小题只有一个选项是符合题目要求的)1.一元二次方程x2﹣2x=0的根是( )A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.2.下列事件中,是必然事件的是( )A.打开电视机,正在播放新闻B.父亲年龄比儿子年龄大C.通过长期努力学习,你会成为数学家D.下雨天,每个人都打着雨伞【考点】随机事件.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A、C、D选项都是不确定事件;B、是必然事件.故选B.【点评】关键是理解必然事件是一定发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.3.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为( )A.10cm B.8cm C.6cm D.5cm【考点】矩形的性质;等边三角形的判定与性质.【专题】计算题.【分析】根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可.【解答】解:∵四边形ABCD是矩形,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.【点评】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出等边三角形OAB和求出OA的长,题目比较典型,是一道比较好的题目.4.如果x:(x+y)=3:5,那么x:y=( )A.B.C.D.【考点】比例的性质.【分析】首先根据x:(x+y)=3:5可得5x=3x+3y,整理可得2x=3y,进而得到x:y=3:2.【解答】解:∵x:(x+y)=3:5,∴5x=3x+3y,2x=3y,∴x:y=3:2=,故选:D.【点评】此题主要考查了比例的性质,关键是掌握内项之积等于外项之积.5.下列命题正确的是( )A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.【专题】计算题.【分析】A、一组对边相等,另一组对边平行的四边形不一定为平行四边形,例如等腰梯形满足一组对边相等,另一组对边平行,但不是平行四边形;B、对角线相等的四边形不一定为矩形,例题等腰梯形的对角线相等,但不是矩形,应改为对角线相等的平行四边形为矩形;C、对角线互相垂直的四边形不一定为菱形,例如:画出图形,如图所示,AC与BD垂直,但是显然ABCD不是菱形,应改为对角线互相垂直的平行四边形是菱形;D、两条对角线相等且互相垂直平分的四边形是正方形,根据题意画出相应的图形,如图所示,根据对角线互相平分,得到四边形为平行四边形,再由平行四边形的对角线相等,得到平行四边形为矩形,最后根据矩形的对角线互相垂直得到矩形为正方形.【解答】解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选D【点评】此题考查了正方形的判定,平行四边形的判定,矩形的判定,以及菱形的判定,判断一个命题为假命题,只需举一个反例即可;判断一个命题为真命题,必须经过严格的证明.熟练掌握平行四边形、矩形、菱形及正方形的判定是解本题的关键.6.如图,下列条件不能判定△ABC与△ADE相似的是( )A.B.∠B=∠ADE C.D.∠C=∠AED【考点】相似三角形的判定.【专题】常规题型.【分析】本题中已知∠A是公共角,应用两三角形相似的判定定理,即可作出判断.【解答】解:由图得:∠A=∠A∴当∠B=∠ADE或∠C=∠AED或AE:AC=AD:AB时,△ABC与△ADE相似;也可AE:AD=AC:AB.C选项中角A不是成比例的两边的夹角.故选C.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是( )A.k>B.k≥C.k>且k≠1D.k≥且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据判别式的意义得到△=22﹣4(k﹣1)×(﹣2)>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,∴△=22﹣4(k﹣1)×(﹣2)>0,解得k>;且k﹣1≠0,即k≠1.故选:C.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为( )A.4.5米B.6米C.3米D.4米【考点】相似三角形的应用.【专题】应用题.【分析】根据题意画出图形,根据相似三角形的性质即可解答.【解答】解:如图:∵CD∥BE,∴△ACD∽△ABE,∴AC:AB=CD:BE,∴1:4=1.5:BE,∴BE=6m.故选B.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出树的高度,体现了转化的思想.9.某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是( )A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中两名男学生的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,恰好选中两名男学生的有2种情况,∴恰好选中两名男学生的概率是:=.故选A.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为( )A.1 B.C.2 D.【考点】菱形的性质.【专题】动点型.【分析】由菱形的性质,找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,再由勾股定理可求出DE.【解答】解:连接DE、BD,由菱形的对角线互相垂直平分,可得B、D关于AC对称,连接PB.则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∵AE=BE,∴DE⊥AB(等腰三角形三线合一的性质),在Rt△ADE中,DE=.故选:B.【点评】此题是有关最短路线问题,熟悉菱形的基本性质是解决本题的关键.二、填空题(每小题3分,共18分)11.已知a=4,b=9,c是a,b的比例中项,则c=±6.【考点】比例线段;比例的性质.【专题】计算题.【分析】根据比例中项的概念,得c2=ab,再利用比例的基本性质计算得到c的值.【解答】解:∵c是a,b的比例中项,∴c2=ab,又∵a=4,b=9,∴c2=ab=36,解得c=±6.【点评】理解比例中项的概念:当比例式中的两个内项相同时,即叫比例中项.根据比例的基本性质进行计算.12.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是.【考点】概率公式.【分析】从袋中任取一球有4+1+7=12种可能,其中摸出白球有四种可能,利用概率公式进行求解.【解答】解:随机从袋中摸出1个球是白色球的概率是.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.菱形ABCD的一条对角线长为6cm,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的面积为cm2.【考点】菱形的性质;三角形三边关系;勾股定理.【专题】计算题.【分析】根据题意,先求出方程的解,根据三角形的三边关系确定出菱形的边长,再求面积.【解答】解:∵边AB的长是方程x2﹣7x+12=0的一个根,x2﹣7x+12=0,(x﹣3)(x﹣4)=0,解得x1=3,x2=4,当x1=3时,3+3=6,根据三角形的三边关系可知不合题意,所以舍去;当x2=4时,4+4>6,所以菱形的边长为4cm.∵菱形的对角线互相垂直构成直角三角形,利用勾股定理可求另一条对角线的一半长为=cm,∴S菱形ABCD==6cm.故答案为6cm.【点评】本题综合考查了勾股定理与一元二次方程,解这类题的关键是要利用菱形的特性:菱形的对角线互相垂直构成直角三角形,用勾股定理来寻求未知系数的等量关系.14.把方程x2+6x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k=6.【考点】解一元二次方程-配方法.【分析】把常数项移到等号的右边;等式两边同时加上一次项系数一半的平方,再通过比较得到k的值.【解答】解:移项,得x2+6x=﹣3,配方,得x2+6x+9=﹣3+9,所以,(x+3)2=6.故答案是:6.【点评】本题考查了解一元二次方程﹣﹣配方法,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.15.现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.【考点】列表法与树状图法.【分析】列表将所有等可能的结果列举出来,然后求得两次抽出的卡片所标数字不同的情况,再利用概率公式求解即可.【解答】解:列表得:1 2 2 31 11 12 12 132 21 22 22 232 21 22 22 233 31 32 32 33∵共有16种等可能的结果,两次抽出的卡片所标数字不同的有10种,∴两次抽出的卡片所标数字不同的概率是=.故答案为:.【点评】考查了列表与树状图的知识,用到的知识点为:概率=所求情况数与总情况数之比.16.如图,在直角坐标系中,△ABC的各顶点坐标为A(﹣1,1),B(2,3),C(0,3).现以坐标原点为位似中心,作△A′B′C′,使△A′B′C′与△ABC的位似比为.则点A的对应点A′的坐标为(﹣,)或(,﹣).【考点】位似变换;坐标与图形性质.【分析】位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,﹣ky).【解答】解:∵在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,﹣ky)∴A'的坐标为:(﹣,)或(,﹣).故答案为:(﹣,)或(,﹣).【点评】此题主要考查了位似变换,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.三、解答题(共8小题,计72分)17.解方程:(1)x(x﹣2)=x﹣2;(2)(x+8)(x+1)=﹣12.【考点】解一元二次方程-因式分解法.【分析】(1)直接提取公因式(x﹣2),可得到(x﹣2)(x﹣1)=0,再解两个一元一次方程即可;(2)先去括号,然后利用因式分解法解方程即可.【解答】解:(1)∵x(x﹣2)=x﹣2,∴(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,∴x1=2,x2=1;(2)∵(x+8)(x+1)=﹣12,∴x2+9x+20=0,∴(x+4)(x+5)=0,∴x1=﹣4,x2=﹣5.【点评】本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是要掌握因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.18.如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.(1)求EC的值;(2)求证:AD•AG=AF•AB.【考点】平行线分线段成比例.【分析】(1)由平行可得=,可求得AC,且EC=AC﹣AE,可求得EC;(2)由平行可知==,可得出结论.【解答】(1)解:∵DE∥BC,∴=,又=,AE=3,∴=,解得AC=9,∴EC=AC﹣AE=9﹣3=6;(2)证明:∵DE∥BC,EF∥CG,∴==,∴AD•AG=AF•AB.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段所得线段对应成比例是解题的关键.19.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.【考点】相似三角形的应用.【专题】几何图形问题.【分析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC的长,再加上AC即可得解.【解答】解:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m,即树高5.5m.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF和△DBC相似是解题的关键.20.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)根据平行四边形性质得出AB=CD,∠A=∠C.求出∠ABD=∠CDB.推出∠ABE=∠CDF,根据ASA推出全等即可;(2)根据全等得出AE=CF,根据平行四边形性质得出AD∥BC,AD=BC,推出DE∥BF,DE=BF,得出四边形DFBE是平行四边形,根据等腰三角形性质得出∠DEB=90°,根据矩形的判定推出即可.【解答】证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.【点评】本题考查了平行线的性质,平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定,角平分线定义等知识点的应用,主要考查学生综合运用性质进行推理的能力.22.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设路宽为x,则道路面积为30x+20x﹣x2,所以所需耕地面积551=20×30﹣(30x+20x ﹣x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30﹣(30x+20x﹣x2)=551,解得x1=49(舍去),x2=1.答:修建的道路宽为1米.【点评】本题涉及一元二次方程的应用,难度中等.23.小明和小刚做游戏,用一个不透明袋子,里面装有形状、大小完全相同的2个红球和2个白球,并充分搅匀,让小刚从中摸出一个球不放回,再去摸第二个球,如果两次摸出的球颜色相同小刚赢,反之小明赢.你认为这种游戏是否公平?请你借助树状图或列表的方法,运用概率的知识予以说明.【考点】游戏公平性;列表法与树状图法.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与小明和小刚赢的情况,利用概率公式即可求得小明和小刚赢的概率,比较概率的大小,即可得这种游戏是否公平.【解答】解:这种游戏规则不公平.理由是:列表为:红1 红2 白1 白2第一次第二次红1 (红2,红1)(白1,红1)(白2,红1)红2 (红1,红2 )(白1,红2)(白2,红2)白1 (红1,白1 )(红2,白1)(白2,白1)白2 (红1,白2 )(红2,白2 )(白1,白2)∴P(两次颜色相同)==;P(两次颜色不同)==;∵<,∴这种游戏规则不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.如图,已知AC,EC分别为正方形ABCD和正方形EFCG的对角线,点E在△ABC内,连接BF,∠CAE+∠CBE=90°.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求CE的长.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)首先根据四边形ABCD和EFCG均为正方形,可得==,∠ACE=∠BCF;然后根据相似三角形判定的方法,推得△CAE∽△CBF即可;(2)首先根据△CAE∽△CBF,判断出∠CAE=∠△CBF,再根据∠CAE+∠CBE=90°,判断出∠EBF=90°;然后在Rt△BEF中,根据勾股定理,求出EF的长度,再根据CE、EF的关系,求出CE的长是多少即可.【解答】(1)证明:∵四边形ABCD和EFCG均为正方形,∴==,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF.(2)解:∵△CAE∽△CBF,∴∠CAE=∠△CBF,=,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,又∵==,AE=2∴=,∴BF=,∴EF2=BE2+BF2=3,∴EF=,∵CE2=2EF2=6,∴CE=.【点评】此题考查相似三角形的判定和性质,正方形的性质,掌握相似三角形的判定方法是解决问题的前提.。

陕西省西安市莲湖区2019年数学中考模拟试卷及参考答案

陕西省西安市莲湖区2019年数学中考模拟试卷及参考答案
2.449)
24. 已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D.
(1) 求证:△ABE≌△CDF; (2) 若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长. 25. 如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点, 连接AM交CD于点N,连接AC、CM.
17. 18. 19. 20. 21.
22.
23. 24.
25.
26.
27. 28.
学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三
年级的概率. 23. 某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,
B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据: ≈1.414, ≈1.732, ≈
13. 已知一组数据:12,10,8,15,6,8.则这组数据的中位数是________. 14. 计算:( )﹣2+(π﹣3)0﹣ =________.
15. 如图,AB是⊙O的直径,点C、D在圆上,∠D=65°,则∠BAC等于________度.
16. 初2018级某班文娱委员,对该班“肆月”学习小组同学购买不同单价的毕业照(单位:元)情况进行了统计,绘制了 如图所示的条形统计图,则所购毕业照平均每张的单价是________元.
17. 如图,已知抛物线与反比例函数的图象相交于B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线 的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为________.

2019届陕西省西安市九年级上学期期中考试数学试卷【含答案及解析】

2019届陕西省西安市九年级上学期期中考试数学试卷【含答案及解析】

2019届陕西省西安市九年级上学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 比大的数是()A. B. C. D.2. 下列几何体是由个相同的小正方体搭成的,其中主视图和左视图相同的是()A. B. C. D.二、选择题3. 下列运算正确的是()(A) (B)(C) (D)三、单选题4. 如图,在中,点、分别在、边上,且,若,则的值等于()A. B. C. D.5. 如图,过反比例函数的图象上一点作轴于点,连接.若,则的值为()A. B. C. D.6. 如图,菱形的周长为,高长为,则对角线长和长之比为()A. B. C. D.7. 如图,在平面直角坐标系中,直线经过点,作轴于点,将绕点逆时针旋转得到.若点的坐标为,则点的坐标为()A. B. C. D.8. 如图,是斜边上的高.若,,则为()A. B. C. D.9. 如图,四边形和四边形都是矩形,且点恰好在上.若,,则为()A. B. C. D.10. 如图,在矩形中,,,点是边的中点,点是线段边上的动点,将沿所在直线折叠得到,连接,则的最小值是()A. B. C. D.四、填空题11. 一元二次方程的根是.12. 请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面直角坐标系中,线段的两个端点的坐标分别为、,将线段经过平移后得到线段.若点的对应点为,则点的对应点的坐标是__________.B.比较______________.(填“>”、“=”或“<”)13. 如图,平行四边形中,,,顶点、在双曲线上,边交轴于点,若点恰好是的中点,则_________________.14. 如图,在四边形中,,对角线,若,,则四边形面积的最大值是_______________.五、判断题15. 计算:(1);(2).六、解答题16. 解分式方程:七、判断题17. 如图,已知,,请用尺规过点作一条直线,使其将分成两个相似的三角形.(保留作图痕迹,不写作法)八、解答题18. 某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?九、判断题19. 如图,在平行四边形中,的平分线分别与、交于点、.(1)求证:;(2)当,时,求的值.20. 如图,某中学九年级数学兴趣小组测量旗杆的高度,在点测得旗杆顶端的仰角,向前走了米到达点,在点测得旗杆顶端的仰角,求旗杆的高度.(结果保留根号)21. 如图,一次函数的图象与反比例函数(为常数,且)的图象交于,两点.(1)求反比例函数的表达式及点的坐标;(2)在轴上找一点,使的值最小,求满足条件的点的坐标.十、解答题22. 四张小卡片上分别写有数字 1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字 3的概率;(2)随机地从盒子里抽取一张,将数字记为 x,不放回再抽取第二张,将数字记为y.请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数图象上的概率.十一、判断题23. 如图,平面直角坐标系中,在四边形中,,,,,,点是轴上一个动点,点不与点、重合,连接,点是边上一点,连接.(1)求点的坐标;(2)若是等腰三角形,求此时点的坐标;(3)当点在边上,,且时,求此时点的坐标.24. 提出问题在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.探究问题(1)如图①,在中,,,,请你过点画出的一条“等分积周线”,与交于点,并求出的长;(2)如图②,在中,,且,过点画一条直线,其中点为上一点,你觉得可能是的“等分积周线”吗?请说明理由;解决问题(3)西安市区的环境越来越美,随处可见的街心花园成为人们休闲的好去处.在某地的街心花园中有一块如图③所示的空地,其中,,,,现要在这块空地上修建一条笔直的水渠(渠宽不计),使这条水渠所在的直线既平分四边形的周长,又平分四边形的面积,且要求这条水渠必须经过边.请你画出所有满足条件的水渠,说明理由,并求出该水渠与边的交点到点的距离.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

九年级(上)期中数学试卷(含答案解析)

九年级(上)期中数学试卷(含答案解析)

九年级(上)期中数学试卷一、选择(每小题3分,共33分)1.已知=,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=122.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣13.抛物线y=x2向左平移1个单位,再向下平移2个单位,得到新的图象的二次函数表达式是()A.y=(x+1)2+2 B.y=(x﹣1)2﹣2 C.y=(x+1)2﹣2 D.y=(x﹣1)2+24.如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有()A.3个B.2个C.1个D.0个5.如图,▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.1:1 B.1:2 C.1:3 D.2:36.将y=x2+6x+7化为y=a(x﹣h)2+k的形式,h,k的值分别为()A.3,﹣2 B.﹣3,﹣2 C.3,﹣16 D.﹣3,﹣167.如果点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,那么()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y18.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.9.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.10.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.当x<,y随x的增大而减小B.函数有最小值C.a+b+c<0 D.当﹣1<x<2时,y>011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则直线y=ax+b与反比例函数y=在同一坐标系内的大致图象为()A.B.C.D.二、填空题(12-23题每空2分,24题前两空每空1分,最后一空2分共30分)12.请写出一个开口向下,并且与y轴交于点(0,﹣2)的抛物线的表达式.13.若反比例函数y=的图象位于第二、四象限内,则m的取值范围是.14.抛物线y=(x﹣2)2+1的顶点坐标是,对称轴是.15.抛物线y=﹣+3x﹣2与y=ax2的形状相同,而开口方向相反,则a=.16.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.17.如图,点P在反比例函数y=的图象上,且PD⊥x轴于点D.若△POD的面积为3,则k的值是.18.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比等于.19.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.20.如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是(注:只需写出一个正确答案即可).21.如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE与原三角形相似,那么AE=.22.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a的值是.23.初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x …﹣2 ﹣1 0 1 2 …y …﹣4 ﹣2 …根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=.24.在函数的图象上有点P1,P2,P3,…,P n,P n+1,它们的横坐标依次为1,2,3,…,n,n+1.过点P1,P2,P3,…,P n,P n+1分别作x轴、y轴的垂线段,构成如图所示的若干个矩形,将图中阴影部分的面积从左至右依次记为S1,S2,S3,…,S n,则点P1的坐标为;S2=;S n=.(用含n的代数式表示)三、解答题25.根据下列条件,分别求出对应的二次函数表达式.(1)已知图象过点(6,0),顶点坐标为(4,﹣8).(2)已知抛物线与x轴的交点是A(﹣2,0),B(3,0),且经过点C(0,6).26.如图矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长.27.如图,▱ABCD中,E是CB延长线上一点,DE交AB于F.求证:AD•AB=AF•CE.28.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.(3)求△AOB的面积.29.已知二次函数y1=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0),与y轴交于点C,与x 轴另一交点交于点D.(1)求二次函数的表达式;(2)求点C、点D的坐标;(3)画出二次函数的图象;(4)若一条直线y2,经过C、D两点,请直接写出y1>y2时,x的取值范围.30.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿着AB以每秒4cm的速度向点B运动;同时点Q从C点出发,沿着CA以每秒3cm的速度向点A运动.设运动时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.31.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?32.已知:如图,一次函数y=x+2的图象与反比例函数(1,m)的图象交于A、B两点,且点A的坐标为(1,m).(1)求反比例函数C(n,1)的表达式;(2)点C(n,1)在反比例函数AB⊥CD的图象上,求△AOC面积;(3)在x轴上找出点P,使△ABP是以AB为斜边的直角三角形,请直接写出所有符合条件的点P 的坐标.33.在平面直角坐标系xOy中,抛物线y=mx2+2x+m2+2的开口向下,且抛物线与y轴的交于点A,与x轴交于B,C两点(B在C左侧).点A的纵坐标是3.(1)求抛物线的解析式;(2)求直线AB的解析式;(3)将抛物线在点C左侧的图形(含点C)记为G.若直线y=kx+n(n<0)与直线AB平行,且与图形G恰有一个公共点,结合函数图象写出n的取值范围.34.如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2﹣x+n同时经过A(0,3)、B(4,0).(1)求m,n的值.(2)点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.(3)在(2)的条件下,是否存在点N,使△AOB和△NOQ相似?若存在,求出N点坐标,不存在,说明理由.参考答案与试题解析一、选择(每小题3分,共33分)1.已知=,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12【考点】比例的性质.【分析】根据比例的性质:分子分母交叉相乘,可得答案.【解答】解:由=,得4m=3n.A、4m=3n,故A正确;B、4m=3n,故B错误;C、m=,故C错误;D、4m=3n,故D错误;故选:A.【点评】本题考查了比例的性质,利用比例的性质:分子分母交叉相乘是解题关键.2.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.3.抛物线y=x2向左平移1个单位,再向下平移2个单位,得到新的图象的二次函数表达式是()A.y=(x+1)2+2 B.y=(x﹣1)2﹣2 C.y=(x+1)2﹣2 D.y=(x﹣1)2+2【考点】二次函数图象与几何变换.【专题】计算题.【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,﹣2),根据顶点式可确定抛物线解析式.【解答】解:由题意,得平移后抛物线顶点坐标为(﹣1,﹣2),又平移不改变二次项系数,∴得到的二次函数解析式为y=(x+1)2﹣2.故选C.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.4.如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有()A.3个B.2个C.1个D.0个【考点】三角形中位线定理;相似三角形的判定与性质.【分析】若D、E是AB、AC的中点,则DE是△ABC的中位线,可根据三角形中位线定理得出的等量条件进行判断.【解答】解:∵D、E是AB、AC的中点,∴DE是△ABC的中位线;∴DE∥BC,BC=2DE;(故①正确)∴△ADE∽△ABC;(故②正确)∴,即;(故③正确)因此本题的三个结论都正确,故选A.【点评】此题主要考查了三角形中位线定理以及相似三角形的判定和性质.5.如图,▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.1:1 B.1:2 C.1:3 D.2:3【考点】相似三角形的判定与性质;平行四边形的性质.【分析】如图,证明AD∥BC,AD=BC;得到△DEF∽△BCF,进而得到;证明BC=AD=2DE,即可解决问题.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC;∴△DEF∽△BCF,∴;∵点E是边AD的中点,∴BC=AD=2DE,∴.故选B.【点评】该题主要考查了平行四边形的性质、相似三角形的判定及其性质等几何知识点及其应用问题;牢固掌握平行四边形的性质、相似三角形的判定及其性质是关键.6.将y=x2+6x+7化为y=a(x﹣h)2+k的形式,h,k的值分别为()A.3,﹣2 B.﹣3,﹣2 C.3,﹣16 D.﹣3,﹣16【考点】二次函数的三种形式.【分析】将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式,从而得出h,k的值.【解答】解:∵y=x2+6x+7=x2+6x+9﹣9+7=(x+3)2﹣2,∴h=﹣3,k=﹣2.故选:B.【点评】此题考查二次函数的解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).7.如果点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,那么()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1【考点】反比例函数图象上点的坐标特征.【分析】直接把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,∴y1==﹣3,y2=,y3==1.∵﹣3<1<,∴y1<y3<y2.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.9.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【解答】解:已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.【点评】此题考查三角形相似判定定理的应用.10.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.当x<,y随x的增大而减小B.函数有最小值C.a+b+c<0 D.当﹣1<x<2时,y>0【考点】二次函数的性质.【分析】观察可判断函数有最小值;由抛物线可知当﹣1<x<2时,可判断函数值的符号;观察当x=1时,函数值的符号,可判断a+b+c的符号;由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知在对称轴的左侧y随x的增大而减小,故正确;B、由图象可知函数有最小值,故正确;C、当x=1时,y<0,即a+b+c<0,故正确;D、由抛物线可知当﹣1<x<2时,y<0,故错误.故选:D.【点评】本题考查了二次函数图象的性质,解析式的系数的关系.关键是掌握各项系数与抛物线的性质之间的联系.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则直线y=ax+b与反比例函数y=在同一坐标系内的大致图象为()A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【专题】压轴题.【分析】本题形数结合,根据二次函数y=ax2+bx+c(a≠0)的图象位置,可判断a、b、c的符号;再由一次函数y=ax+b,反比例函数y=中的系数符号,判断图象的位置.经历:图象位置﹣系数符号﹣图象位置.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,a<0;与y轴交于正半轴,c>0;对称轴x=﹣<0,故b<0;于是直线y=ax+b过二、三、四象限,反比例函数y=过二、四象限.故选B.【点评】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.二、填空题(12-23题每空2分,24题前两空每空1分,最后一空2分共30分)12.请写出一个开口向下,并且与y轴交于点(0,﹣2)的抛物线的表达式y=﹣x2﹣2x﹣2(答案不唯一).【考点】二次函数的性质.【专题】计算题;开放型.【分析】写出一个二次函数,使其二次项系数为负数,常数项为﹣2即可.【解答】解:根据题意得:y=﹣x2﹣2x﹣2(答案不唯一),故答案为:y=﹣x2﹣2x﹣2(答案不唯一)【点评】此题考查了二次函数的性质,熟练掌握二次函数性质是解本题的关键.13.若反比例函数y=的图象位于第二、四象限内,则m的取值范围是m<1.【考点】反比例函数的性质.【分析】直接根据反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=的图象位于第二、四象限内,∴m﹣1<0,解得m<1.故答案为:m<1.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.14.抛物线y=(x﹣2)2+1的顶点坐标是(2,1),对称轴是x=2.【考点】二次函数的性质.【分析】利用抛物线的顶点式,直接写出顶点坐标与对称轴即可.【解答】解:∵抛物线y=(x﹣2)2+1,∴顶点坐标是(2,1),对称轴是x=2.故答案为:(2,1),x=2.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h.15.抛物线y=﹣+3x﹣2与y=ax2的形状相同,而开口方向相反,则a=.【考点】二次函数的性质.【分析】抛物线的形状与|a|有关,开口方向与a的正负有关.【解答】解:∵抛物线y=﹣x2+3x﹣2与y=ax2的形状相同,∴二次项系数的绝对值相等,都为;∵开口方向相反,∴二次项系数互为相反数,即y=ax2中,a=.故答案为:.【点评】此题考查二次函数的性质,抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.16.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.【考点】相似三角形的应用.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.17.如图,点P在反比例函数y=的图象上,且PD⊥x轴于点D.若△POD的面积为3,则k的值是﹣6.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数比例系数k的几何意义即可直接求解.【解答】解:S△POD=|k|=3,又∵k<0,∴k=﹣6.故答案是:﹣6.【点评】本题考查了反比函数k的几何意义,过图象上的任意一点作x轴、y轴的垂线,所得三角形的面积是|k|,是经常考查的知识点,也体现了数形结合的思想.18.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比等于1:9.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【解答】解:∵AD=1,DB=2,∴AB=AD+DB=3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=1:9.故答案为1:9.【点评】本题考查了三角形的判定和性质:熟练掌握相似三角形的面积比是相似比的平方是解题的关键.19.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为8.【考点】抛物线与x轴的交点.【专题】判别式法.【分析】由抛物线y=2x2+8x+m与x轴只有一个公共点可知,对应的一元二次方程2x2+8x+m=0,根的判别式△=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=82﹣4×2×m=0;∴m=8.故答案为:8.【点评】此题主要考查了二次函数根的判别式的和抛物线与x轴的交点个数的关系.20.如图,∠DAB=∠CAE,要使△ABC∽△ADE,则补充的一个条件可以是∠B=∠D(注:只需写出一个正确答案即可).【考点】相似三角形的判定.【专题】开放型.【分析】已知一组角对应相等,要使△ABC∽△ADE,则可补充∠B=∠D或∠AED=∠ACB、AD:AB=AB:AC.【解答】解:根据相似三角形的判定:两角对应相等,两三角形相似;两边对应成比例且夹角相等,两三角形相似.已知∠DAB=∠CAE,则∠DAE=∠BAC,要使△ABC∽△ADE,则补充的一个条件可以是∠B=∠D 或∠AED=∠ACB、AD:AB=AB:AC.【点评】相似三角形的判定:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.21.如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE与原三角形相似,那么AE=或.【考点】相似三角形的判定.【专题】计算题.【分析】两三角形有一公共角,再求夹此公共角的两边对应成比例即可.点E位置未确定,所以应分别讨论,△ABC∽△ADE或△ABC∽△AED.【解答】解:第一种情况:要使△ABC∽△ADE,∠A为公共角,AB:AD=AC:AE,即8:2=6:AE,∴AE=;第二种情况:要使△ABC∽△AED,∠A为公共角,AB:AE=AC:AD,即8:AE=6:2,∴AE=.故答案为:或.【点评】考查相似三角形的判定定理:两边对应成比例且夹角相等的两个三角形相似.需注意的是边的对应关系.22.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a的值是﹣1.【考点】二次函数的图象.【分析】由图象可知,抛物线经过原点(0,0),二次函数y=ax2﹣3x+a2﹣1与y轴交点纵坐标为a2﹣1,所以a2﹣1=0,解得a的值.再图象开口向下,a<0确定a的值.【解答】解:由图象可知,抛物线经过原点(0,0),所以a2﹣1=0,解得a=±1,∵图象开口向下,a<0,∴a=﹣1.【点评】主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;经过原点a2﹣1=0,利用这两个条件即可求出a的值.23.初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x …﹣2 ﹣1 0 1 2 …y …﹣4 ﹣2 …根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=﹣4.【考点】二次函数的图象.【专题】压轴题;图表型.【分析】由表格可知,(0,﹣2),(2,﹣2)是抛物线上两对称点,可求对称轴x=1,再利用对称性求出横坐标为3的对称点(﹣1,﹣4)即可.【解答】解:观察表格可知,当x=0或2时,y=﹣2,根据二次函数图象的对称性,(0,﹣2),(2,﹣2)是抛物线上两对称点,对称轴为x==1,顶点(1,﹣2),根据对称性,x=3与x=﹣1时,函数值相等,都是﹣4.故答案为:﹣4.【点评】观察二次函数的对应值的表格,关键是寻找对称点,对称轴,利用二次函数的对称性解答.24.在函数的图象上有点P1,P2,P3,…,P n,P n+1,它们的横坐标依次为1,2,3,…,n,n+1.过点P1,P2,P3,…,P n,P n+1分别作x轴、y轴的垂线段,构成如图所示的若干个矩形,将图中阴影部分的面积从左至右依次记为S1,S2,S3,…,S n,则点P1的坐标为(1,8);S2=;S n=.(用含n的代数式表示)【考点】反比例函数系数k的几何意义.【专题】规律型.【分析】先根据反比例函数图象上点的坐标特征得到P1(1,8),P2(2,4),P3(3,),P4(4,2),再利用矩形的面积公式分别计算出S1=,S2=,S3=,观察面积的值得到分子为8,分母为序号数和比序号数大1的数的积,由此得到Sn=.【解答】解:当x=1时,y==8,则P1(1,8);当x=2时,y==4,则P2(2,4);当x=3时,y==,则P3(3,);当x=4时,y==2,则P4(4,2);S1=1×(﹣)=,S2=1×(﹣)=,S3=1×(﹣)=,…,所以Sn=.故答案为(1,8),,.【点评】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题25.根据下列条件,分别求出对应的二次函数表达式.(1)已知图象过点(6,0),顶点坐标为(4,﹣8).(2)已知抛物线与x轴的交点是A(﹣2,0),B(3,0),且经过点C(0,6).【考点】待定系数法求二次函数解析式.【分析】(1)设抛物线顶点式解析式为y=a(x﹣4)2﹣8,然后把点(6,0)代入进行计算即可得解;(2)设抛物线交点式解析式y=a(x+2)(x﹣3),然后把点(0,6)代入计算即可得解.【解答】解:(1)设y=a(x﹣4)2﹣8,则a(6﹣4)2﹣8=0,解得a=2,则y=2(x﹣4)2﹣8;(2)设y=a(x+2)(x﹣3),则a(0+2)(0﹣3)=6,解得a=﹣1,则y=﹣(x+2)(x﹣3).【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.26.如图矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长.【考点】正方形的性质;相似三角形的判定与性质.【分析】(1)△ABE和△DFA都是直角三角形,还需一对角对应相等即可.根据AD∥BC可得∠DAF=∠AEB,问题得证;(2)运用相似三角形的性质求解.【解答】(1)证明:∵DF⊥AE,∴∠AFD=90°.(1分)∴∠B=∠AFD=90°.(2分)又∵AD∥BC,∴∠DAE=∠AEB.(3分)∴△ABE∽△DFA.(4分)(2)解:∵AB=6,BE=8,∠B=90°,∴AE=10.(6分)∵△ABE∽△DFA,∴=.(7分)即=.∴DF=7.2.(8分)【点评】此题考查了相似三角形的判定和性质,以及矩形的性质、勾股定理等知识点,难度中等.27.如图,▱ABCD中,E是CB延长线上一点,DE交AB于F.求证:AD•AB=AF•CE.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】根据已知条件很容易就可推出△ECD∽△DAF,求出对应边的比例式,根据CD=AB,进行相关线段的等量代换即可.【解答】证明:在▱ABCD中,因为AB∥DC,所以∠CDE=∠BFE=∠AFD,又因为∠A=∠C,所以△ECD∽△DAF,所以=,又CD=AB,所以=,故AD•AB=AF•CE.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质,本题的关键是证明△ECD和△DAF相似,根据平行四边形的性质找到相等关系,进行等量代换.28.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.(3)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A和B代入反比例函数解析式即可求得坐标,然后用待定系数法求得一次函数的解析式;(2)不等式>kx+b的解集就是:对于相同的x的值,反比例函数的图象在上边的部分自变量的取值范围;(3)根据三角形的面积公式即可得到结论.【解答】解:(1)∵A(m,3),B(﹣3,n)两点在反比例函数y2=的图象上,∴m=2,n=﹣2.∴A(2,3),B(﹣3,﹣2).根据题意得:,解得:,∴一次函数的解析式是:y1=x+1;(2)根据图象得:0<x<2或x<﹣3.(3)∵一次函数的解析式是y1=x+1;∴直线AB与y轴的交点为(0,1),∴S△AOB=+=.【点评】本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;需注意反比例函数的自变量不能取0.29.已知二次函数y1=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0),与y轴交于点C,与x 轴另一交点交于点D.(1)求二次函数的表达式;(2)求点C、点D的坐标;(3)画出二次函数的图象;(4)若一条直线y2,经过C、D两点,请直接写出y1>y2时,x的取值范围.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数与不等式(组).【专题】计算题.【分析】(1)把A点和B点坐标代入y1=ax2+bx﹣3得到关于a、b的方程组,然后解方程组即可;(2)计算自变量为0所对应的函数值即可得到C点坐标,计算函数值为0所对应的函数值即可得到D点坐标;(3)把解析式配成顶点式,然后利用描点法画出二次函数图象;(4)观察函数图象,写出抛物线在直线上方所对应的自变量的取值范围即可.【解答】解:(1)根据题意得,解得.所以抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3);当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则D(3,0);(3)y=x2﹣2x﹣3=(x﹣1)2﹣4,则抛物线的顶点坐标为(1,﹣4),如图,(4)当x<﹣1或x>3时,y1>y2.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.30.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿着AB以每秒4cm的速度向点B运动;同时点Q从C点出发,沿着CA以每秒3cm的速度向点A运动.设运动时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.【考点】相似三角形的判定与性质.【专题】动点型.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ对应成比例以及AP和BC对应成比例两种情况来求x的值.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=(2)假设两三角形可以相似情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.31.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据待定系数法,可得二次函数解析式,根据顶点坐标,可得答案;(2)根据函数值大于或等于16,可得不等式的解集,可得答案.【解答】解;(1)y=ax2+bx﹣75图象过点(5,0)、(7,16),∴,解得,y=﹣x2+20x﹣75的顶点坐标是(10,25)当x=10时,y最大=25,答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(2)∵函数y=﹣x2+20x﹣75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=﹣x2+20x﹣75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.【点评】本题考查了二次函数的应用,利用待定系数法求解析式,利用顶点坐标求最值,利用对称点求不等式的解集.32.已知:如图,一次函数y=x+2的图象与反比例函数(1,m)的图象交于A、B两点,且点A的坐标为(1,m).(1)求反比例函数C(n,1)的表达式;(2)点C(n,1)在反比例函数AB⊥CD的图象上,求△AOC面积;(3)在x轴上找出点P,使△ABP是以AB为斜边的直角三角形,请直接写出所有符合条件的点P 的坐标.。

陕西省西安市五校九年级上学期期中联考数学试题

陕西省西安市五校九年级上学期期中联考数学试题

西安市五校2014—2015学年第一学期期中联考九年级数学试卷友情提示: 1、本试卷共25题,满分: 120分,考试时间: 100分钟2、请将所有试题的答案写到答题纸相应的位置上.一、选择题(共10小题,每小题3分,共30分)。

1.一元二次方程x2-9=0的解是()A.x1=3,x2=-3 B. x=3 C. x=-3 D. x1=x2=32.顺次连接任意四边形四边中点所得的四边形一定是()A.矩形B.平行四边形C.菱形D.正方形3.班长给张、王、李三人打电话,若打电话的顺序是任意的,则第一个打电话给张的概率为()A. B.C.D.4.如果点C为线段AB的黄金分割点,且AC>BC,则下列各式不正确的是()A.AB:AC=AC:BCB.C.D.BC≈0.618AB5.如图,是一个三棱柱的主视图和左视图,其俯视图是正三角形,则图中a的值为()A.6B.2C.3D.36.若一元二次方程x2﹣2x﹣7=0的两根是x1和x2,则x1+x2- x1x2的值是()A.10 B.9C.7D.87.反比例函数y=的图象上有三点(﹣1,y1),(﹣2,y2),(5,y3),则y1,y2,y3的大小关系正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y3<y1<y28.如图,AB∥CD,AE∥FD,AE,FD分别交BC于点G,H,则图中共有相似三角形( ).A.4对B.5对 C.6对D.7对第8题9.如图,直线y=kx(k>0)与双曲线交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于( ).A.28B.20C.36D.-2010. 如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是()。

A.17B.16C. D、。

二、填空题(共6小题,每小题3分,共18分)11.一个不透明的口袋中只有若干个白球,小颖往袋中又放入8个黑球,它们与袋中白球只有颜色不同,每次从袋中摸出一球后放回摇匀.经过多次摸球实验,她发现摸到黑球的频率稳定在20%,则此口袋中原有白球_________ 个.12.如图,△ABC≌△A′B′C′,点B,C′,C,B′在同一直线上,且B与B′不重合,则以点A,B,A′,B′为顶点的四边形一定是_________ .(填某种特殊四边形的名称)13.如图,,且,若,求的长等于。

【初三数学】西安市九年级数学上期中考试单元测试卷(含答案解析)

【初三数学】西安市九年级数学上期中考试单元测试卷(含答案解析)

新九年级上册数学期中考试试题及答案一、选择题(每小题4分,共48分)1.(4分)﹣6的绝对值是()A.﹣6B.﹣C.D.62.(4分)如图所示的几何体,它的左视图是()A.B.C.D.3.(4分)为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量4.(4分)计算(x﹣1)÷(1﹣)•x的结果是()A.﹣x2B.﹣1C.x2D.15.(4分)下列命题是真命题的是()A.对角线相互垂直的四边形是平行四边形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相等且相互平分的四边形是矩形6.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,……,按此规律排列下去,则第⑤个图案中三角形的个数为()A.14个B.15个C.16个D.17个7.(4分)抛物线y=2(x﹣2)2﹣1关于x轴对称的抛物线的解析式为()A.y=2(x﹣2)2+1B.y=﹣2(x﹣2)2+1C.y=﹣2(x﹣2)2﹣1D.y=﹣(x﹣2)2﹣18.(4分)如图,在等腰△ABC中,AB=AC,tan C=2,BD⊥AC于点D,点G是底边BC 上一点,过点G向两腰作垂线段,垂足分别为E、F,若BD=4,GE=1.5,则BF的长度为()A.0.75B.0.8C.1.25D.1.359.(4分)如图,MN是垂直于水平面的一棵树,小马(身髙1.70米)从点A出发,先沿水平方向向左走10米到B点,再经过一段坡度i=4:3,坡长为5米的斜坡BC到达C点,然后再沿水平方向向左行走5米到达N点(A、B、C、N在同一平面内),小马在线段AB的黄金分割点P处()测得大树的顶端M的仰角为37°,则大树MN 的高度约为()米(参考数据:tan37°≈0.75,sin37°≈0.60,≈2.236,≈1.732).A.7.8米B.8.0米C.8.1米D.8.3米10.(4分)抛物线y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(﹣1,0),则下列结论:①abc>0;②2a﹣b=0;③3a+c>0;④a+b>am2+bm(m为一切实数);⑤b2>4ac;正确的个数有()A.1个B.2个C.3个D.4个11.(4分)如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y 轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣612.(4分)已知关于x的二次函数y=(k﹣1)x2+(2k﹣3)x+k+2的图象在x轴上方,关于m的分式方程有整数解,则同时满足两个条件的整数k值个数()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)13.(4分)计算:﹣10+=.14.(4分)函数y=x2+图象上的点P(x,y)一定在第象限.15.(4分)在二次函数y=ax2+2ax+4(a<0)的图象上有两点(﹣2,y1)、(1,y2),则y1﹣y20(填“>”、“<”或“=”).16.(4分)如图,Rt△ABC中,∠A=90°,AB=4,AC=6,D、E分别是AB、AC边上的动点,且CE=3BD,则△BDE面积的最大值为.17.(4分)周末秋高气爽,阳光明媚,小赵带爷爷到滨江路去散步,祖孙俩在长度为600米的A、B路段上往返行走,他们从A地出发,小赵陪爷爷走了两圈一同回到A地后,就开始匀速跑步,爷爷继续匀速散步,如图反映了他们距离A地的路程s(米)与小赵跑步的时间t(分钟)的部分关系图(他们各自到达A地或B地后立即掉头,调头转身时间忽略不计),则小赵跑步过程中祖孙第四次与第五次相遇地点间距为米.18.(4分)重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A﹣∠B=8°,求∠BDE的度数.20.(8分)在大课间活动中,同学们积极参加体育锻炼,小段同学就本班同学“我最擅长的体育项目”进行了一次调查统计,下面是她通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;补全条形统计图;在扇形统计图中,“其他”部分所对应的圆心角度数为度;(2)学校将举办冬季运动会,该班已推选5位同学参加乒乓球活动,其中有2位男同学(A,B)和3位女同学(C,D,E),现从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.四、解答题(每小题10分,共50分)21.(10分)计算:(1)因式分解:(x﹣2y)2﹣(2x+5y)2;(2)解方程:(公式法)2x(x﹣3)=x2﹣1.22.(10分)在目前万物互联的时代,人工智能正掀起一场影响深刻的技术革命.谷歌、苹果,BAT,华为……巨头们纷纷布局人工智能,有人猜测,互联网+过后,我们可能会迎来机器人+,教育从幼儿抓起,近年来我国国内幼儿教育机器人发展趋势迅猛,市场上出现了满足各类要求的幼教机器人产品.“双十一“当天,某品牌幼教机器人专卖店抓住机遇,对最畅销的A款幼教机器人进行促销.一台A款幼教机器人的成本价为850元,标价为1300元.(1)一台A款幼教机器人的价格最多降价多少元,才能使利润率不低于30%;(2)该专卖店以前每周共售出A款幼教机器人100个,“双十一“狂购夜中每台A款幼教机器人在标价的基础上降价2m元,结果这天晚上卖出的A款幼教机器人的数量比原来一周卖出的A款幼教机器人的数量增加了m%,同时这天晚上的利润比原来一周的利润增加了m%,求m的值.23.(10分)在▱ABCD中,点E为CD边上一点,点F为BC中点,连接BE,DF交于点G,且GA=GD:(1)如图1,若AB=AE=BG=6,AE⊥CD,求AG2的值;(2)如图2,若EM平分∠BEC,且EM∥DF,过点G作GN⊥BE交AE于点N且GN =GE,求证:AE⊥CD.24.(10分)阅读材料:若关于x的一元二次方程ax2+bx+c=0(a≠0,a、b、c为常数)的根均为整数,称该方程为“快乐方程”,我们发现任何一个“快乐方程”的判别式△=b2﹣4ac一定为完全平方数规定F(a,b,c)=为该“快乐方程”的“快乐数”,若有另一个“快乐方程”px2+qx+r=0(p≠0,(p、q、r为常数)的“快乐数”为F(p,q,r)且满足|rF(a,b,c)﹣cF(p,q,r)|=0,则称F(a,b,c)与F(p,q,r)互为“乐呵数”例如“快乐方程”x2﹣2x﹣3=0的两根均为整数,其判别式△=(﹣2)2﹣4×1×(﹣3)=16=42其“快乐数”F(1,﹣2,﹣3)=(1)“快乐方程”x2﹣4x+3=0的“快乐数”为,若关于x的一元二次方程x2﹣(2m ﹣3)x+m2﹣4m﹣5=0(m为整数,且5<m<22)是“快乐方程”,求其“快乐数”(2)若关于x的一元二次方程x2﹣(m﹣1)x+m+1=0与x2﹣(n+2)x+2n=0(m,n 均为整数)都是“快乐方程”,且其“快乐数”互为“乐呵数”,求n的值.五、解答题(共12分)25.(12分)在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC =2OA,OB=3OA.(1)求抛物线与直线的解析式;(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.2018-2019学年重庆一中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【解答】解:|﹣6|=6.故选:D.2.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:C.3.【解答】解:抽出的500名考生的数学成绩是样本,故选:B.4.【解答】解:原式=(x﹣1)÷•x=(x﹣1)••x=x2,故选:C.5.【解答】解:A、对角线相互垂直的四边形是平行四边形,不是真命题;B、对角线相等且相互垂直的四边形是菱形,也可能是正方形,所以,不是真命题;C、四条边相等的四边形是正方形,也可能是菱形,所以,不是真命题;D、对角线相等且相互平分的四边形是矩形,正确,是真命题,故选:D.6.【解答】解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个,则第⑤个图中三角形的个数是4×(5﹣1)=16个,故选:C.7.【解答】解:抛物线y=2(x﹣2)2﹣1的顶点坐标为(2,﹣1),而(2,﹣1)关于x轴对称的点的坐标为(2,1),所以所求抛物线的解析式为y=﹣2(x﹣2)2+1.故选:B.8.【解答】解:连接AG,∵S△CGA+S△BGA=S△ABC,∴+=×AC×BD,∵AC=AB,∴GE+GF=BD,∵BD=4,GE=1.5,∴GF=2.5,∵tan C=2=,BD=4,∴CD=2,由勾股定理得:BC==新人教版九年级(上)期中模拟数学试卷及答案一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)如图,不是中心对称图形的是()A.B.C.D.2.(3分)若y=(m﹣2)x+3x﹣2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定3.(3分)方程x2﹣2x﹣4=0和方程x2﹣4x+2=0中所有的实数根之和是()A.2B.4C.6D.84.(3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 5.(3分)如图,已知在⊙O中,点A,B,C均在圆上,∠AOB=80°,则∠ACB等于()A.130°B.140°C.145°D.150°6.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)方程a (x﹣1)2+b(x﹣1)+c=0的两根是x1=0,x2=6.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.8.(3分)已知A(﹣2,y1),B(﹣1,y2),C(1,y3)两点都在二次函数y=(x+1)2+m 的图象上,则y1,y2,y3的大小关系为.9.(3分)将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB =度.10.(3分)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为.11.(3分)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为.12.(3分)如图,点O是等边△ABC内一点,∠AOB=110°.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.当α为度时,△AOD是等腰三角形?三、(本大题共5小题,每小题12分,共30分)13.(12分)用适当的方法解下列方程:(1)(x﹣3)2=2x﹣6;(2)2x2+5x﹣3=014.(8分)随着港珠澳大桥的顺利开通,预计大陆赴港澳旅游的人数将会从2018年的100万人增至2020年的144万人,求2018年至2020年这两年的赴港旅游人数的年平均增长率.15.(10分)如图,有一座抛物线型拱桥,桥下面水位AB宽20米时,此时水面距桥面4米,当水面宽度为10米时就达到警戒线CD,若洪水到来时水位以每小时0.2米的速度上升,问从警戒线开始,再持续多少小时才能到拱桥顶?(平面直角坐标系是以桥顶点为点O的)16.(6分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,请仅用无刻度的直尺,分别按下列要求画图.(1)如图(1),在抛物线y=ax2+bx+c找一点D,使点D与点C关于抛物线对称轴对称.(2)如图(2),点D为抛物线上的另一点,且CD∥AB,请画出抛物线的对称轴.17.(13分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE 交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.四.(本大题共3小题,每小题10分,共24分)18.(10分)已知一元二次方程x2﹣4x+k=0有两个不相等的实数根(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.19.(8分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?20.(10分)如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过C作CD⊥P A,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.五.(本大题共2小题,每小题9分,共18分)21.(9分)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式的值;(3)若方程ax2+bx+c=0(a≠0)是倍根方程,且不同的两点M(k+1,5),N(3﹣k,5)都在抛物线y=ax2+bx+c上,求一元二次方程ax2+bx+c=0(a≠0)的根.22.(9分)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP 绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.六、(本大题共12分)23.(9分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2018-2019学年江西省赣州市南康区五校九年级(上)期中数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.【解答】解:根据中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,可知A、B、C是中心对称图形;D不是中心对称图形.故选:D.2.【解答】解:由题意,得m2﹣2=2,且m﹣2≠0,解得m=﹣2,故选:A.3.【解答】解:∵方程x2﹣2x﹣4=0的根的判别式△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程x2﹣2x﹣4=0有两个不相等的实数根,两根之和为2;∵方程x2﹣4x+2=0的根的判别式△=(﹣4)2﹣4×1×2=8>0,∴方程x2﹣4x+2=0有两个不相等的实数根,两根之和为4.∵2+4=6,∴两方程所有的实数根之和是6.故选:C.4.【解答】解:将抛物线y=x2向右平移2个单位可得y=(x﹣2)2,再向上平移3个单位可得y=(x﹣2)2+3,故选:B.5.【解答】解:设点E是优弧AB上的一点,连接EA,EB∵∠AOB=80°∴∠E=∠AOB=40°∴∠ACB=180°﹣∠E=140°.故选:B.6.【解答】解:由对称轴为直线x=2,得到﹣=2,即b=﹣4a,∴4a+b=0,故(1)正确;当x=﹣2时,y=4a﹣2b+c<0,即4a+c<2b,故(2)错误;当x=﹣1时,y=a﹣b+c=0,∴b=a+c,∴﹣4a=a+c,∴c=﹣5a,∴5a+3c=5a﹣15a=﹣10a,∵抛物线的开口向下∴a<0,∴﹣10a>0,∴5a+3c>0;故(3)正确;∵方程ax2+bx+c(a≠0)=0的两根为x1=﹣1,x2=5,∴方程a(x﹣1)2+b(x﹣1)+c=0的两根是x1=0,x2=6,故(4)正确.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:20188.【解答】解:∵二次函数y=(x+1)2+m,∴当x>﹣1时,y随x的增大而增大,当x<﹣1时,y随x的增大而减小,函数有最小值,顶点坐标为(﹣1,m),∵点A (﹣2,y 1),B (﹣1,y 2),C (1,y 3)两点都在二次函数y =(x +1)2+m 的图象上,﹣1﹣(﹣2)=1,﹣1﹣(﹣1)=0,1﹣(﹣1)=2, ∴y 2<y 1<y 3, 故答案为:y 2<y 1<y 3.9.【解答】解:由题意可得∠AOB +∠COD =180°,又∠AOB +∠COD =∠AOC +2∠COB +∠BOD =∠AOD +∠COB , ∵∠AOD =110°, ∴∠COB =70°. 故答案为:70.10.【解答】解:设半圆圆心为O ,连OA ,OB ,如图,∵∠ACB =∠AOB ,而∠AOB =86°﹣30°=56°,∴∠ACB =新人教版九年级(上)期中模拟数学试卷(含答案)一、选择题(本大题共14小题,每小题3分,共42分)1.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦 当”图案中既是轴对称图形又是中心对称图形的是( )2.若x =是关于x的一元二次方程22(1)310k x x k +--+=(k 为系数)的根,则k 的值为( ) A .k =1B .k =-1C .k ≠1D .k =±13.某县为解决大班额问题,对学校进行扩建,计划用三年时间对全县学校进行扩建和 改造,2016年县政府已投资5亿元人民币,若每年投资的平均增长率相同,预计2018 年投资7.2亿元人民币,那么每年投资的平均增长率为( ) A .20%、﹣220%B .40%C .﹣220%D .20%4.下列关于圆的叙述正确的有( )①圆内接四边形的对角互补;②相等的圆周角所对的弧相等; ③正多边形内切圆的半径与正多边形的半径相等;④圆内接平行四边形是矩形. A .1个B .2个C .3个D .4个5.二次函数2281y x x =-+的最小值是( ) A .7B .-7C .9D .-96.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A′B′C′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2)D .(2,1)7. 抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y0);②函数2y ax bx c =++的最大值为6;③抛物线的对称轴是直线12x =;④在对称轴左侧,y 随 x 增大而增大.其中正确有( )A .①②B .①③C .①②③D .①③④8.如图,正方形ABCD 的对角线相交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,且 这两个正方形的边长都为2.若正方形A 1B 1C 1O 绕点O 转动,则两个正方形重叠部分的 面积为( ) A .1B .4C .16D .29.若二次函数2y x bx =+的图象的对称轴是经过(1,0)且平行于y 轴的直线,则关 于x 的方程23x bx -=的解是( )A .1213x x =-=-, B .1213x x ==-, C .1213x x ==, D .1213x x =-=, 10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD =4cm ,则球的半径长是( ) A .2cmB .2.5cmC .3cmD .4cm11.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交 PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( ) A .8 B .6 C .12 D .10 12.如图,无论x 为何值,2y ax bx c =++恒为正的条件是( ) A .20,40a b ac >-< B .20,40a b ac <-> C .20,40a b ac >->D .20,40a b ac <-<13.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6D.814.如图,正三角形EFG内接于⊙O,其边长为O的内接正方形ABCD的边长为()A B.3C.4 D.5二、填空题(共1大题,5小题,每小题3分,共15分)15.(1)关于x的方程221)20kx k x k+++=-(有实数根,则k的取值范围是(2)如图,AB是⊙O的直径,C、D是⊙O上的点,且OC∥BD,AD分别与BC、OC相交于点E、F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④△CEF≌△BED.其中一定成立的是(把你认为正确结论的序号都填上).(3)如图,《九章算术》是我国古代数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是步.(4)如图,在同一平面内,将△ABC绕点A逆时针旋转40°到△AED的位置,恰好使得DC∥AB,则∠CAB的大小为.(5)如图,一段抛物线:(2)y x x=--(0≤x≤2)记为C1,它与x轴交于两点O、A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C7,若点P(13,m)在第7段抛物线C7上,则m=.三、解答题(共6小题,共63分)16.(每小题5分,共10分)用合适的方法解一元二次方程: (1)2(4)5(4)x x +=+ (2)231212x x -=-17.(本小题10分)如图,AB 是⊙O 的直径,AP 是⊙O 的切线,点A 为切点,BP 与 ⊙O 交于点C ,点D 是AP 的中点,连结CD . (1)求证:CD 是⊙O 的切线;(2)若AB =2,∠P =30°,求阴影部分的面积.18.(本小题10分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的 长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2 时,裁掉的正方形边长多大?19.(本小题9分)如图,在平面直角坐标系中,Rt △ABC 的顶点分别是A (﹣3,1) B (0,4)C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1; (2)分别连接AB 1,BA 1后,求四边形AB 1A 1B 的面积.20.(本小题11分)如图,∠BAC =60°,AD 平分∠BAC 交⊙O 于点D ,连接OB 、OC 、 BD 、CD .(1)求证:四边形OBDC 是菱形;(2)当∠BAC 为多少度时,四边形OBDC 是正方形?21.(本小题13分)如图,在平面直角坐标系中,二次函数24(0)y ax bx a =+-≠的 图象与x 轴交于点A (﹣2,0)与点C (8,0)两点,与y 轴交于点B ,其对称轴与x 轴 交于点D .(1)求该二次函数的解析式;(2)若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB , PD ,BD ,AB .请问是否存在点P ,使得△BDP 的面积恰好等于△ADB 的面积?若存在请求出此时点P 的坐标,若不存在说明理由.2018—2019学年度上学期期中学业水平质量调研试题九年级数学参考答案 2018.11一、选择题(本大题共14小题,每小题3分,共42分)新九年级(上)数学期中考试试题及答案一、填空题(每小题3分,共30分).1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C.D.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 6.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6 7.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°8.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(3,y3),则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y29.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②二、填空题(每小题4分,共24分)11.把方程3x2=5x+2化为一元二次方程的一般形式是.12.(a+2)x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是.13.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.14.已知实数x,y满足x2﹣6x++9=0,则(x+y)2017的值是.15.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x 的方程为.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程:3(x﹣2)2=2(2﹣x).18.(6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.19.(6分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2015年底的绿地面积为公顷,比2014年底增加了公顷;在2013年,2014年,2015年这三年中,绿地面积增加最多的是年;(2)为满足城市发展的需要,计划到2017年底使城区绿地面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.21.(7分)已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标;(3)设抛物线的顶点为C,试求△CAO的面积.22.(7分)已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC 的周长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.25.(9分)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案一、填空题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)【分析】根据一元一次方程的定义,一元二次方程的定义对各选项分析判断即可得解.解:A、化简可得2x=﹣1,是一元一次方程,故本选项正确;B、未知数在分母上,不是整式方程,故本选项错误;C、没有对常数a、b不等于0的限制,所以不是一元一次方程,也不是一元二次方程,故本选项错误;D、整理得x2+2x+1=2x+2,是一元二次方程,故本选项错误.故选:A.【点评】本题利用了一元二次方程的概念,一元一次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).解:点(2,﹣3)关于原点中心对称的点的坐标是(﹣2,3).故选:C.【点评】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),比较简单.4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点【分析】根据二次函数的性质对各开口方向、顶点坐标、对称轴以及与x轴交点的坐标进行判断即可.解:A、y=(x﹣1)2+2,∵a=1>0,∴图象的开口向上,此选项错误;B、y=(x﹣1)2+2顶点坐标是(1,2),此选项正确;C、对称轴是直线x=1,此选项错误;D、(x﹣1)2+2=0,(x﹣1)2=﹣2,此方程无解,与x轴没有交点,故本选项错误.【点评】本题考查了二次函数的性质,掌握利用顶点式求抛物线的开口方向、顶点坐标、对称轴与x轴交点的判定方法是解决问题的关键.5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 【分析】根据函数图象的平移规律:左加右减,上加下减,可得答案.。

2019年西安市九年级数学上期中试题及答案

2019年西安市九年级数学上期中试题及答案

2019年西安市九年级数学上期中试题及答案一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x = 2.方程x 2+x-12=0的两个根为( ) A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=3 3.若x 1是方程ax 2+2x+c =0(a≠0)的一个根,设M =(ax 1+1)2,N =2﹣ac ,则M 与N 的大小关系为( )A .M >NB .M =NC .M <ND .不能确定 4.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( ) A .(x+3)2=1B .(x ﹣3)2=1C .(x+3)2=19D .(x ﹣3)2=19 5.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .2 6.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1 B .-1 C .±1 D .2 7.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( ) A .﹣1或3 B .﹣3或1C .3D .1 8.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .8 9.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A .120B .19100C .14D .以上都不对10.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ).A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球 11.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( )A .-41B .-35C .39D .45 12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,»»»AC CDDB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.14.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为__________.15.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.16.a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b ____c (用“>”或“<”号填空)17.如图,O e 的半径为2,切线AB 的长为23,点P 是O e 上的动点,则AP 的长的取值范围是_________.18.用半径为12cm ,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______cm .19.如图,正五边形ABCDE 内接于⊙O ,F 是CD 弧的中点,则∠CBF 的度数为_____.20.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是_____°.三、解答题21.(2016内蒙古包头市)一幅长20cm 、宽12cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm ,图案中三条彩条所占面积为ycm 2.(1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.22.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A .“解密世园会”、B .“爱我家,爱园艺”、C .“园艺小清新之旅”和D .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C .“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.23.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率. 24.如图,ABO V 与CDO V 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE . 求证:FD=BE .25.已知关于x 的方程x 2+4x +3-a =0.(1)若此方程有两个不相等的实数根,求a 的取值范围;(2)在(1)的条件下,当a 取满足条件的最小整数,求此时方程的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.D解析:D【解析】试题分析:将x 2+x ﹣12分解因式成(x+4)(x ﹣3),解x+4=0或x ﹣3=0即可得出结论. x 2+x ﹣12=(x+4)(x ﹣3)=0, 则x+4=0,或x ﹣3=0, 解得:x 1=﹣4,x 2=3.考点:解一元二次方程-因式分解法3.C解析:C【解析】【分析】把x 1代入方程ax 2+2x+c=0得ax 12+2x 1=-c ,作差法比较可得.【详解】∵x 1是方程ax 2+2x+c=0(a≠0)的一个根,∴ax 12+2x 1+c=0,即ax 12+2x 1=-c ,则M-N=(ax 1+1)2-(2-ac )=a 2x 12+2ax 1+1-2+ac=a (ax 12+2x 1)+ac-1=-ac+ac-1=-1,∵-1<0,∴M-N <0,∴M <N .故选C .【点睛】本题主要考查一元二次方程的解的概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.4.D解析:D【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:2610x x -=,配方得:26919x x -+=,即2(3)19x -=,故选D . 5.D解析:D【解析】【分析】【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴22222222AB BD +=+=∴⊙O 的半径AO=22AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.6.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,故选:B .【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0. 7.D解析:D【解析】【分析】设x 2﹣2x +1=a ,则(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0化为a 2+2a ﹣3=0,求出方程的解,再判断即可.【详解】解:设x 2﹣2x +1=a ,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,∴a2+2a﹣3=0,解得:a=﹣3或1,当a=﹣3时,x2﹣2x+1=﹣3,即(x﹣1)2=﹣3,此方程无实数解;当a=1时,x2﹣2x+1=1,此时方程有解,故选:D.【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.8.B解析:B【解析】【分析】根据旋转的性质和图形的特点解答.【详解】∵图案绕点O旋转120°后可以和自身重合,∠AOB为120°∴图形中阴影部分的面积是图形的面积的13,∵图形的面积是12cm2,∴图中阴影部分的面积之和为4cm2;故答案为B.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.9.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004,故选C.点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.10.B解析:B【解析】【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.【点睛】本题考查随机事件.11.C解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把22a3ab8b2a++-变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a,b为方程2x5x10--=的两个实数根,∴a2-5a-1=0,a+b=5,ab=-1,∴22a3ab8b2a++-=2(a2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2=39.故选:C.【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1、x2,则x1+x2=ba-,x1·x2=ca;熟练掌握韦达定理是解题关键.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.14.2【解析】【分析】把x=1代入已知方程列出关于k的新方程通过解新方程来求k的值【详解】∵方程x2+kx−3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k =2故答案是:2【点睛】本题考查了解析:2【解析】【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用. 15.240【解析】【分析】根据弧长=圆锥底面周长=28πcm 圆心角=弧长180母线长π计算【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm 扇形的圆心角=弧长×180÷母线长÷π=28π×解析:240【解析】【分析】根据弧长=圆锥底面周长=28πcm ,圆心角=弧长⨯180÷母线长÷π计算.【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm ,扇形的圆心角=弧长×180÷母线长÷π=28π×180÷21π=240°.故答案为:240.【点睛】此题主要考查弧长=圆锥底面周长及弧长与圆心角的关系,熟练掌握公式及关系是解题关键.16.<【解析】试题分析:将二次函数y =x2-2ax +3转换成y =(x-a)2-a2+3则它的对称轴是x=a 抛物线开口向上所以在对称轴右边y 随着x 的增大而增大点A 点B 均在对称轴右边且a+1<a+2所以b<解析:<【解析】试题分析:将二次函数y =x 2-2ax +3转换成y =(x-a)2-a 2+3,则它的对称轴是x=a,抛物线开口向上,所以在对称轴右边y 随着x 的增大而增大,点A 点B 均在对称轴右边且a+1<a+2,所以b <c.17.【解析】【分析】连接OB 根据切线的性质得到∠OBA=90°根据勾股定理求出OA 根据题意计算即可【详解】连接OB∵AB 是⊙O 的切线∴∠OBA=90°∴OA==4当点P 在线段AO 上时AP 最小为2当点P 在解析:26AP ≤≤【解析】【分析】连接OB ,根据切线的性质得到∠OBA=90°,根据勾股定理求出OA ,根据题意计算即可.【详解】连接OB ,∵AB是⊙O的切线,∴∠OBA=90°,∴22AB OB+=4,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,∴AP的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.【点睛】本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18.【解析】【分析】根据扇形的弧长等于圆锥的底面周长利用扇形的弧长公式即可求得圆锥的底面周长然后根据圆的周长公式即可求解【详解】解:圆锥的底面周长是:=6π设圆锥底面圆的半径是r则2πr=6π则r=3故解析:【解析】【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【详解】解:圆锥的底面周长是:9012180π⨯=6π,设圆锥底面圆的半径是r,则2πr=6π,则r=3.故答案为:3.【点睛】本题考查圆锥的计算.19.18°【解析】【分析】设圆心为O连接OCODBD根据已知条件得到∠COD==72°根据圆周角定理即可得到结论【详解】设圆心为O连接OCODBD∵五边形ABCDE为正五边形∴∠COD==72°∴∠CB解析:18°【解析】【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠COD=3605︒=72°,根据圆周角定理即可得到结论.【详解】设圆心为O,连接OC,OD,BD.∵五边形ABCDE 为正五边形,∴∠COD =3605︒=72°, ∴∠CBD =12∠COD =36°. ∵F 是CD 弧的中点, ∴∠CBF =∠DBF =12∠CBD =18°. 故答案为:18°.【点睛】本题考查了正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系是解题的关键.20.【解析】试题分析:连结BC 因为AB 是⊙O 的直径所以∠ACB=90°∠A+∠ABC=90°又因为BDCD 分别是过⊙O 上点BC 的切线∠BDC=110°所以CD=BD 所以∠BCD=∠DB C =35°又∠AB解析:【解析】试题分析:连结BC ,因为AB 是⊙O 的直径,所以∠ACB =90°,∠A+∠ABC =90°,又因为BD ,CD 分别是过⊙O 上点B ,C 的切线,∠BDC =110°,所以CD=BD,所以∠BCD =∠DBC =35°,又∠ABD =90°,所以∠A=∠DBC =35°.考点:1.圆周角定理;2.切线的性质;3.切线长定理.三、解答题21.(1)2354y x x =-+;(2)横彩条的宽度为3cm ,竖彩条的宽度为2cm .【解析】【分析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为32xcm ,根据“三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(2)根据“三条彩条所占面积是图案面积的25”,可列出关于x 的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为32 xcm,∴y=20×32x+2×12•x﹣2×32x•x=﹣3x2+54x,即y与x之间的函数关系式为y=﹣3x2+54x;(2)根据题意,得:﹣3x2+54x=25×20×12,整理,得:x2﹣18x+32=0,解得:x1=2,x2=16(舍),∴32x=3,答:横彩条的宽度为3cm,竖彩条的宽度为2cm.考点:根据实际问题列二次函数关系式;一元二次方程的应用.22.(1) 14;(2)14【解析】【分析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为41 164.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)1440人;(2)20%【解析】【分析】(1)5月份借阅了名著类书籍的人数是1000(1+10%),则6月份借阅了名著类书籍的人数为:5月份借阅了名著类书籍的人数+340人;(2)根据增长后的量=增长前的量×(1+增长率).设平均每年的增长率是x,列出方程求解即可.【详解】解:(1)由题意,得5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为:1100+340=1440(人);(2)设平均增长率为x.1000(1+x)2=1440,解得:x=0.2.答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.【点睛】本题是一道数学应用题中的增长率问题的实际问题,考查了列一元二次方程解实际问题的运用及一元二次方程的解法的运用,解答中对结果验根是否符合题意是解答的关键.24.详见解析【解析】【分析】根据中心对称得出OB=OD,OA=OC,求出OF=OE,根据SAS推出△DOF≌△BOE即可.【详解】证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.∵AF=CE,∴OF=OE.∵在△DOF和△BOE中,OB ODDOF BOEOF OE=⎧⎪∠=∠⎨⎪=⎩,∴△DOF≌△BOE(SAS).∴FD=BE.25.(1)a>-1;(2) x1=-3,x2=-1.【解析】试题分析:(1)方程有两个不相等的实数根,可得△>0,代入后解不等式即可得a的取值范围;(2)把a代入后解方程即可.试题解析:(1)∵方程有两个不相等的实数根∴16-4(3-a)>0,∴a>-1 .(2)由题意得:a=0 ,方程为x2+4x+3=0 ,解得12-3,-1x x == .点睛:本题考查了一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.。

西安市2019-2020学年九年级上学期数学期中考试试卷(I)卷

西安市2019-2020学年九年级上学期数学期中考试试卷(I)卷

西安市2019-2020学年九年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每题4分,共40分) (共10题;共36分)1. (4分)二次函数y=2x(x﹣3)的二次项系数与一次项系数的和为()A . 2B . ﹣2C . ﹣1D . ﹣42. (4分)下列四种说法;①为了了解某批灯泡的使用寿命可以用普查的方式;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一个事件发生的概率只有十亿分之一,那么它是不可能事件.其中,正确的说法是()A . ②④B . ①②C . ③④D . ②③3. (4分)如图,是由绕点0逆时针旋转30后得到的图形,若点D恰好落在AB上,且∠AOC 的度数为100 ,则∠DOB的度数是().A . 45°B . 35°C . 50°D . 40°4. (4分) (2016九上·苍南月考) 抛物线与y轴的交点坐标是()A . (2,5)B . (2,0)C . (0,1)D . (0,5)5. (4分)四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是()A .B .C .D .6. (4分)若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为()A . 2+B .C . 4+2 或2﹣D . 2+ 或2﹣7. (4分)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A . y=(x﹣2)2+1B . y=(x+2)2+1C . y=(x﹣2)2﹣3D . y=(x+2)2﹣38. (4分) (2018九上·瑞安期末) 已知⊙O的半径为4cm,点P到圆心O的距离为3cm,则点P()A . 在圆内B . 在圆上C . 在圆外D . 不能确定9. (2分) (2019九上·大丰月考) 下列说法正确的是()A . 等弧所对的圆周角相等B . 平分弦的直径垂直于弦C . 相等的圆心角所对的弧相等D . 圆是轴对称图形,任何一条直径都是它的对称轴10. (2分)对于函数的图象,下列说法不正确的是()A . 开口向下B . 对称轴是C . 最大值为0D . 与轴不相交二、填空题(本题有6小题,每小题5分,共30分) (共6题;共30分)11. (5分) (2019九上·邗江月考) 已知抛物线图象的顶点为,且过,则抛物线的关系式为________.12. (5分)(2017·天山模拟) 有5张看上去无差别的卡片,上面分别写着0,π,,,1.333.随机抽取1张,则取出的数是无理数的概率是________.13. (5分) (2017九上·乐昌期末) 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为________.14. (5分)(2017·宁波模拟) 直角三角形两直角边为3,4,则其外接圆和内切圆半径之和为________.15. (5分)(2019·营口) 如图,是等边三角形,点D为BC边上一点,,以点D 为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.16. (5分) (2019八下·鄂城期末) 点P是菱形ABCD的对角线AC上的一个动点,已知AB=1,∠ADC=120°,点M,N分别是AB,BC边上的中点,则△MPN的周长最小值是________.三、解答题(本题有8小题,共80分) (共8题;共80分)17. (8分)(2017·浦东模拟) 已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.18. (8分)(2019·合肥模拟) 一艘轮船自西向东航行,在处测得东偏北21.3°方向有一座小岛,继续向东航行60海里到达处,测得小岛此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛最近?(参考数据:,,,)19. (8分) (2018九上·新乡期末) 在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机地摸取一个小球.(1)采用树状图法(或列表法)列出两次摸取小球出现的所有可能结果,并回答摸取两球出现的所以可能结果共有几种;(2)求两次摸取的小球标号相同的概率;(3)求两次摸取的小球标号的和等于4的概率;(4)求两次摸取的小球标号的和是2的倍数或3的倍数的概率.20. (10分) (2019九上·龙湾期中) 如图,已知(1)用直尺和圆规作出,使经过、两点,且圆心在边上.(不写作法,保留作图痕迹)(2)若,,的半径2,求的长.21. (10.0分) (2017·石景山模拟) 在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4a﹣3(a≠0)的顶点为A.(1)求顶点A的坐标;(2)过点(0,5)且平行于x轴的直线l,与抛物线y=ax2﹣4ax+4a﹣3(a≠0)交于B,C两点.①当a=2时,求线段BC的长;②当线段BC的长不小于6时,直接写出a的取值范围.22. (10分)(2019·本溪) 如图,点为正方形的对角线上的一点,连接并延长交于点,交的延长线于点,是的外接圆,连接 .(1)求证:是的切线;(2)若,正方形的边长为,求的半径和线段的长.23. (12分) (2019九上·义乌月考) 某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人.设提价后的门票价格为x(元/人)(x>20),日接待游客的人数为y(人).(1)求y与x(x>20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y.求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入﹣接待成本)24. (14.0分)(2017·锦州) 如图,抛物线y=x2+bx+c经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.(1)求抛物线的解析式;(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?参考答案一、选择题(本题有10小题,每题4分,共40分) (共10题;共36分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题有6小题,每小题5分,共30分) (共6题;共30分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本题有8小题,共80分) (共8题;共80分) 17-1、17-2、17-3、18-1、19-1、19-2、19-3、19-4、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。

2018-2019学年陕西省西安市莲湖区九年级(上)期中数学试卷

2018-2019学年陕西省西安市莲湖区九年级(上)期中数学试卷

2018-2019学年陕西省西安市莲湖区九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题目要求的)1.(3分)关于x 的一元二次方程22(1)10a x x a -++-=的一个根 0 ,则a 值为()A . 1B .1-C .1±D . 02.(3分)已知13a b =,那么a a b+的值为( ) A .13B .23C .14D .343.(3分)矩形具有而菱形不一定具有的性质是( ) A .对角线互相垂直 B .对角线相等C .对角线互相平分D .邻边相等4.(3分)用配方法解一元一次方程2840x x --=,经配方后得到的方程是()A .2(4)20x -=B .2(4)16x -=C .2(4)12x -=D .2(4)4x -=5.(3分) 4 与 9 的比例中项是( ) A . 36B . 6C .6-D .6±6.(3分)下列条件不能判定ADB ABC ∆∆∽的是( )A .ABD ACB ∠=∠B .ADB ABC∠=∠C .2AB AD AC = D .AD DBAC BC= 7.(3分)如图,在ABC ∆中,//DE BC ,//DF AG ,若12AD DB =,则下列结论正确的是( )A .12DE BC = B .12DE DF = C .14ADE ABC S S ∆∆= D .14ADE DECFS S ∆=四边形 8.(3分)如图,已知点P 是线段AB 的黄金分割点,且PA PB >,若1S 表示以PA 为边的正方形的面积,2S 表示以PD ,PB 为边的矩形的面积,且PD AB =,则1S 与2S 的关系是( )A .12S S >B .12S S =C .12S S <D .无法确定9.(3分)20172018-赛季中国男子篮球职业联赛, 采用双循环制 (每 两队之间都进行两场比赛) ,比赛总场数为 380 场, 若设参赛队伍有x 支, 则可列方程为( )A .1(1)3802x x -=B .(1)380x x -=C .1(1)3802x x += D .(1)380x x +=10.(3分)如图, 在直角梯形ABCD 中,//AD BC ,90ABC ∠=︒,7AB =,3AD =,4BC =. 点P 为AB 边上一动点, 若PAD ∆与PBC ∆是相似三角形, 则满足条件的点P 的个数是( )A . 1 个B . 2 个C . 3 个D . 4 个二、填空题(共4小题,每小题3分,计12分)11.(3分)在 0 、 1 、 2 三个数字中, 任取两个, 组成两位数, 则在组成的两位数中, 是奇数的概率是 .12.(3分)如图, 在正方形ABCD 外侧, 作等边三角形ADE ,AC ,BE 相交于点F ,则BFC ∠为 度 .13.(3分)如图, 已知ABC DEF ∆∆∽,且相似比为k ,则k 的值为 .14.(3分)如图,在矩形ABCD 中,10AB =,5BC =,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM MN +的最小值为 .三、解答题(共11小题,计78分.解答应写出过程) 15.(9分)解方程: (1)24(1)36x +=; (2)2560y y --=; (3)22410m m --=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届陕西省西安市莲湖区五校联考九年级上学期期中数学试卷【含答案及解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. 一元二次方程x2-2x=0的根是()
A.x1=0,x2=-2 B.x1=1,x2=2 C.x1=1,x2=-2 D.x1=0,x2=2
2. 下列事件中,是必然事件的是()
A.打开电视机,正在播放新闻
B.父亲年龄比儿子年龄大
C.通过长期努力学习,你会成为数学家
D.下雨天,每个人都打着雨伞
3. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()
A.10cm B.8cm C.6cm D.5cm
4. 如果x:(x+y)=3:5,那么x:y=()
A. B. C. D.
5. 下列命题正确的是()
A.一组对边相等,另一组对边平行的四边形一定是平行四边形
B.对角线相等的四边形一定是矩形
C.两条对角线互相垂直的四边形一定是菱形
D.两条对角线相等且互相垂直平分的四边形一定是正方形
6. 如图,下列条件不能判定△ABC与△ADE相似的是()
A. B.∠B=∠ADE
C. D.∠C=∠AED
7. 若关于x的一元二次方程(k-1)x2+2x-2=0有不相等实数根,则k的取值范围是
()
A.k> B.k≥ C.k>且k≠1 D.k≥且k≠1
8. 如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()
A.4.5米 B.6米 C.3米 D.4米
9. 某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()
A. B. C. D.
10. 如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为()
A.1 B. C.2 D.
二、填空题
11. 已知a=4,b=9,c是a,b的比例中项,则c= .
12. 一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个
球是白色球的概率是.
13. 菱形ABCD的一条对角线长为6cm,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的面积为 cm2.
14. 把方程x2+6x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k= .
15. 现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片
所标数字不同的概率是.
16. 如图,在直角坐标系中,△ABC的各顶点坐标为A(-1,1),B(2,3),C(0,3).现以坐标原点为位似中心,作△A′B′C′,使△A′B′C′与△ABC的位似比为
.则点A的对应点A′的坐标为.
三、解答题
17. 解方程:
(1)x(x-2)=x-2;
(2)(x+8)(x+1)=-12.
18. 如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.
(1)求EC的值;
(2)求证:AD•AG=AF•AB.
19. 如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边
DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.
20. 如图,△ABC中,CD是边AB上的高,且.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.
21. 如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.
(1)求证:△ABE≌△CDF;
(2)若AB=DB,求证:四边形DFBE是矩形.
22. 如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?
23. 小明和小刚做游戏,用一个不透明袋子,里面装有形状、大小完全相同的2个红球和2个白球,并充分搅匀,让小刚从中摸出一个球不放回,再去摸第二个球,如果两次摸出的球颜色相同小刚赢,反之小明赢.你认为这种游戏是否公平?请你借助树状图或列表的方法,运用概率的知识予以说明.
24. 如图,已知AC,EC分别为正方形ABCD和正方形EFCG的对角线,点E在△ABC内,连接BF,∠CAE+∠CBE=90°.
(1)求证:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的长.
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】。

相关文档
最新文档