原子物理学总结
原子物理学总结
E
(ih
t
)
drv
本征方程、本征函数与本征值
若用一个算符作用在函数上等于一个数值 乘以该函数本身,则这个方程称作该算符 的本征方程,这个数就是算符的本征值。 该函数称为算符的本征函数。该函数对应 的态称为本征态
定态Schrödinger方程例子
无限深势阱
V (x)
II
I
III
1 2 态叠加原理
I
|
|2
(
1
2
)(
1
2)
|1 |2 | 2 |2 1 2 21
干涉项
1
2
21
干涉实际上是电子的两个态之间的干涉
Schrödinger方程
处于势场V中的粒子
ih (rv,t) [ h2 2 V (rv,t)] (rv,t)
动能算符:Eˆk
Tˆ
h2 2 2m
位矢算符:rˆ rv
只与坐标有关的势能算符:Vˆ V (rv)
能量(哈密顿量)算符:Hˆ h2 2 V (rv) 2m
角动量算符
L
r
p
Lˆ rˆ (i)
在直角坐标系中
Lˆx
ypx
zpy
ih( y
z
波函数的统计解释
Born的统计解释 微观体系的波粒二象性,可以用统计的观点理解 • 用波的表达式描述粒子的行为 • 波的强度或复振幅,反映的是粒子在时刻t、空
间点P处出现、或被发现的几率或几率幅 • 复振幅就是几率波幅 • 则经典意义下的描述波动的函数或复振幅就成了
原子物理_总结
n =1 n=+1
0 -1
n =2 n=+2
+1
n=+3
+2 +1
n=3
p
0 -1 -2
0 -1 -2 -3
轨道的方向量子化 角动量空间取向的量子化
史特恩—盖拉赫实验
N
银原子
S
无磁场
有磁场
1 2 1 f L S at 2 2 m v
2
2
1 dB L 1 dB L z cos 2m dZ v 2m dZ v
E T (n,n ) hc RZ 2 RZ 4 2 n 3 2 ( ) 4 n n n 4
RhcZ RhcZ n 3 E (n, n ) 2 ( )+... 4 n n n 4
2 4 2
说明:第一项是玻尔理论的结果,第二项起是相 对论效应的结果,与 n 有关。所以同一n的那些 轨道并不是简并的。
能量的表达式只和主量子数n相关,说明同一主量 子数对应的n种轨道运动的能量是相同的。这种情 况称为n重简并。但是后面我们会发现能量的表达 式是更加复杂的形式,同一n的那些状态并不简并。
相对论修正 椭圆轨道运动时电子的轨道不 是闭合的,而是连续的进动。
•
一个电子轨道的进动
索末菲按相对论力学原理推得:
现在我们要求在能级 2 和能级 1 之间,辐射大于吸收, 就必须使,也就是使原子数发生反转。再加上自发辐 射足够强的话,就可以自己触发受激发射,成为一个 强的辐射源,这就是一种激光器。 三能级法实现粒子数反转。
第四章 碱金属原子
§4.1 碱金属原子光谱
一、碱金属原子光谱的实验规律
原子物理学知识点总结
原子物理学知识点总结一、理论知识基础1。
离子化合物原子的结构是由原子核和电子组成,原子核又由质子和中子组成,而质子与中子又可以有不同的结合能状态,但其最稳定的结合方式是结合成带正电荷的原子核,所以质子与中子便有不同的能量状态,而根据原子的能级知识,高能级原子会向低能级原子转变,因此在实验室中经常观察到了同种元素的气态氢化物比其固态氢化物稳定。
除此之外,原子的能级状态还与其带电的状态有关。
如上述气态氢化物因为同种元素的原子核带同种电荷,因此它们的结合能最大,所以也就更加稳定。
而根据电荷守恒,气态非金属元素的阳离子由于失去一个电子,所以其结合能比其阴离子小,因此更加稳定。
2。
共价化合物 2。
共价化合物1。
配位化合物配位化合物是含有共用电子对的分子。
其实质是在形成配位键时,电子云必须重新排布。
两种元素的原子只有各自得到两个电子才形成稳定的配位键,因此元素原子的核电荷数等于零,它们的原子彼此形成的是共价键。
2。
配位多面体( NaFeCl3, Cl2)配位多面体指的是元素间形成配位键时,有四个原子与另一元素形成四个共价键的情况。
配位多面体是平面正方形的对角线围城的封闭区域,该区域具有平行于对角线的一组相互垂直的平面,因此每条边长为1, 3。
1。
钠原子Na的结合能比较低,与水作用放出大量的热,水的结合能比钠的低,放出的热也少,反应速度很快,这说明钠原子只能和活泼金属反应,那么钠原子能否与活泼金属钠和碱反应呢?从微观角度来看,一般认为钠原子具有8电子,和氯原子的外层电子差不多,但钠原子比氯原子小,所以钠原子的能级与氯原子相近,故钠原子也只能与活泼金属反应。
2。
锂原子Li与活泼金属反应的时候能放出大量的热,这些热是由Li原子内层2电子与2个原子核形成共价键的热运动放出的,可见锂原子内部能级比较高,所以锂原子也不容易与活泼金属反应。
2。
锂原子Li的结合能比钠原子小,所以Li能与活泼金属锂发生置换反应, 2Li+3H2O=LiCl2+2H2↑,或者2Li+Li2O2=Li2CO3+2H2↑。
张东海原子物理学考点总结
原子物理学考点总结第一章 原子的基本状况(总结)一、 原子的大小和质量1、 原子的大小各种原子有不同的半径,其数量级均为10-10m.2、 原子的质量在化学和物理学上原子的质量通常用它们的相对质量来表示,质量单位为12C 的质量的1/12。
二、 原子的组成1、E. Rutherford 原子核式结构模型原子是由原子核和核外电子组成:原子核处于原子的中心位置,其半径在10-15m 到10-14m 之间,原子核带正电荷,其数值为原子序数乘单位电荷数值;电子分布在原子核外,分布半径为10-10m 。
2、E. Rutherford 原子核式结构模型的验证1)、库仑散射公式(1)式中:M 为α粒子的质量,v 为α粒子的速度,Z 为原子核的电荷数,θ为散射角,b 为碰撞参数。
公式(1)无法直接和实验进行比较。
2)、E. Rutherford 散射公式2sin )()41(422220θπεσΩ=d Mv Ze d (2)式中:d σ称为微分散射截面,其物理意义是α粒子散射到θ-θ+d θ之间立体角为d Ω内每个原子的有效散射截面。
公式的实用范围θ=450-1500.3、 原子核的大小估计利用E. Rutherrford 散射理论可以估计出原子核的大小,即α粒子距原子核的最近距离:))2s i n (11(241220θπε+=Mv Ze r m 由于E. Rutherford 散射公式在θ=1500时仍有效,所以取θ=1500。
第二章、原子的能级和辐射(玻尔氢原子理论)一、 玻尔理论1、玻尔理论的基础1)、氢原子光谱的经验规律氢原子光谱的波数的一般规律:)11(~22nm R v H -= (1) 式中:m=1,2,3,…;对每一个m,n=m+1,m+2,m+3,….4354) 、原子的核式结构模型2、玻尔理论电子绕原子核运动体系的总能量:r Ze E 24120πε-= (2) 考虑到光谱的一般规律,(1)式两边同乘hc 则有:)()11(~2222m hcR n hcR n m hcR h v hc H H H ---=-==ν (3) 如果原子辐射前的能量E 2,辐射后的能量为E 1(E 1<E 2),辐射放出的能量为:12E E h -=ν (4)比较(3),(4)式,原子的能量取负数,则有:2nhcR E H -= (5) 考虑到原子的结构,玻尔提出下列假定:假定1:原子中能够实现的电子轨道必须符合下列条件6.131-=E eV由氢原子波数公式,可以得出氢原子的里德伯常数:ch me R H 32042)4(2πεπ= 考虑到原子核的质量不是无限大的,原子核也是运动的,则里德伯常数变为:M m R Mm c h me R A +=+=∞1111)4(232042πεπ 10973731=∞R m -13、玻尔理论的验证1)氢原子的第一玻尔半径的理论值为a 1=0.529×10-10m ,这与原子的大小的数量级是一致的。
高中物理 原子物理知识总结 新人教版选修3
高中物理 原子物理知识总结 新人教版选修3一、原子模型1.汤姆生模型(枣糕模型)汤姆生发现了电子,使人们认识到原子有复杂结构。
2.卢瑟福的核式结构模型(行星式模型)α粒子散射实验是用α粒子轰击金箔,结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。
这说明原子的正电荷和质量一定集中在一个很小的核上。
卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。
由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。
3.玻尔模型(引入量子理论,量子化就是不连续性,整数n 叫量子数。
) ⑴玻尔的三条假设(量子化)①轨道量子化r n =n 2r 1 r 1=0.53×10-10m ②能量量子化:21nE E n E 1=-13.6eV③原子在两个能级间跃迁时辐射或吸收光子的能量h ν=E m -E n⑵从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。
原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。
(如在基态,可以吸收E ≥13.6eV 的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。
⑶玻尔理论的局限性。
由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。
但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。
4.光谱和光谱分析⑴炽热的固体、液体和高压气体发出的光形成连续光谱。
⑵稀薄气体发光形成线状谱(又叫明线光谱、原子光谱)。
根据玻尔理论,不同原子的结构不同,能级不同,可能辐射的光子就有不同n E /eV∞ 0 -13.6-3.44 -0.85的波长。
原子物理学知识点总结
原子物理学知识点总结原子物理学是研究原子结构和性质的一门物理学科,它是现代物理学的分支之一。
原子理论自古希腊时代就已经存在,但直到19世纪末到20世纪初,人们才开始对原子的结构和性质有了深入的了解。
本文将介绍原子物理学的基本知识点,包括原子的结构、原子核、原子的性质以及原子与分子之间的相互作用等内容。
1. 原子的结构原子是一切物质的基本单位,它主要由电子、质子和中子组成。
根据基本粒子理论,电子、质子和中子是构成原子的基本粒子。
电子是带负电荷的粒子,质子是带正电荷的粒子,中子是不带电的粒子。
在原子结构模型中,质子和中子集中在原子核中,而电子则绕核轨道运动。
根据量子力学理论,电子在轨道上的运动是离散的,即只能位于某些特定的能级上。
这些能级被称为电子壳层,不同的电子壳层对应不同的能量。
2. 原子核原子核是原子的中心部分,它由质子和中子组成,质子和中子统称为核子。
质子和中子是由夸克组成的,它们之间通过强相互作用相互吸引。
在原子核中,质子带正电,中子不带电,它们通过强相互作用相互结合在一起。
原子核的直径通常在10^-15米的数量级上,而原子的直径通常在10^-10米的数量级上,原子核的大小远远小于原子的大小。
3. 原子的性质原子的性质主要包括原子的质量、原子的电荷、原子的半径、原子的稳定性等。
原子的质量主要取决于原子核中质子和中子的质量,而电子的质量可以忽略不计。
原子的电荷等于质子数减去电子数,因此原子的电荷通常为正数或负数。
原子的半径通常用原子量子半径或科学常数玻尔半径来描述。
原子的稳定性与原子核的内部结构有关,对于较轻的原子来说,稳定的原子核通常满足质子数和中子数之比在1:1附近,而对于较重的原子来说,稳定的原子核通常含有更多的中子以保持稳定。
4. 原子与分子之间的相互作用原子与分子之间的相互作用是原子物理学研究的另一个重要内容。
原子和分子之间存在分子间力,包括范德华力、静电吸引力、静电斥力等。
范德华力是由于分子极化而产生的吸引力,静电吸引力是由于正负电荷之间的相互作用而产生的吸引力,静电斥力则是由于同性电荷之间的相互作用而产生的斥力。
高三物理原子物理学知识点
高三物理原子物理学知识点原子物理学是围绕原子结构和原子性质的科学领域,是物理学的重要分支之一。
在高三物理学习中,学生需要掌握一些基本的原子物理学知识点,如原子结构、元素周期表和原子核结构等。
本文将围绕这些知识点展开,并进一步深入探讨一些相关的内容。
1. 原子结构原子是物质的最小单位,由质子、中子和电子组成。
质子和中子都在原子核内,而电子则围绕原子核运动。
质子带有正电荷,中子不带电,而电子带有负电荷。
原子的质量主要由质子和中子的质量决定,而原子的电性则由电子的运动状态决定。
通过学习原子结构,我们可以更好地理解如何描述原子的基本特性。
2. 元素周期表元素周期表是原子物理学中非常重要的工具。
它将元素按照一定的规律排列,反映了元素的特性和性质。
根据元素周期表,我们可以了解到元素的原子序数、原子量、电子排布等信息。
此外,元素周期表还可以帮助我们预测元素的性质,如金属性、非金属性等。
通过学习元素周期表,我们可以更好地理解元素及其组成的物质在自然界中的分布和化学性质。
3. 原子核结构原子核是原子的重要组成部分,包含了质子和中子。
质子和中子集中在原子核内部,形成原子核的结构。
质子带正电荷,中子不带电,因此原子核带有正电荷。
原子核的大小非常小,但它集中了原子的大部分质量。
原子核的质量与元素的同位素有关,同一元素的不同同位素具有相同的质子数,但中子数不同。
通过研究原子核结构,我们可以更深入地了解原子内部粒子的组成和相互作用。
4. 放射性衰变放射性衰变是某些原子核经历的自发性变化过程。
放射性元素具有不稳定的核结构,通过放射性衰变来达到更稳定的状态。
放射性衰变主要包括α衰变、β衰变和γ射线。
α衰变是指原子核放出α粒子,即由2个质子和2个中子组成的氦核;β衰变是指原子核放出电子或正电子,以改变核内的中子质子比例;γ射线是高能量光子的释放。
放射性衰变的研究对核物理和医学都具有重要意义。
5. 能量观念在原子物理学中的应用能量观念在原子物理学中有着广泛的应用。
原子的物理知识点总结
原子的物理知识点总结一、原子的历史1. 原子的起源和发展古代人们对原子的概念最早可以追溯到古希腊时期。
古希腊哲学家德谟克利特认为宇宙是由原子构成的,这种叫做“原子论”的哲学思想对后来化学、物理学的发展产生了深远的影响。
公元前5世纪,古希腊哲学家德谟克利特提出了原子理论,他认为世界上的一切物质都是由不可分割的原子组成的。
公元前4世纪,古希腊哲学家柏拉图和亚里士多德分别论述了原子学说,使原子学说得到发展。
17世纪,英国科学家伽利略和泰勒独立提出了原子理论。
1803年,英国科学家道尔顿提出了原子假说,并提出了道尔顿原子论。
19世纪末,英国科学家汤姆逊发现了电子,为原子结构的研究奠定了基础。
20世纪初,爱因斯坦和布朗尼根发现原子运动规律。
2. 原子的实质古时候,人们认为原子是世界上的最小粒子,因此名称“原子”。
20世纪初,随着量子力学的发展,人们逐渐认识到原子是由更小的粒子组成的。
至今为止,已经证明原子是由质子、中子和电子组成的。
质子和中子构成原子的核,电子绕核运动。
质子的电荷为正电荷,中子没有电荷,电子的电荷为负电荷。
质子和中子的质量大致相等,约为1.67×10^-27千克,而电子的质量比质子和中子小很多,约为9.11×10^-31千克。
在原子中,电子的质量可以忽略不计,因此原子的质量主要来自于质子和中子。
3. 原子的结构原子的结构是由实验证实的。
经典的原子结构模型是由英国科学家汤姆逊提出的,称为“西瓜核模型”。
这个模型认为原子是一个带正电的基底,电子均匀分布在其中,就像西瓜核和果肉一样。
然而,经过实验证实,汤姆逊的模型是不正确的。
20世纪初,英国科学家卢瑟福发现了原子的核,并提出了“卢瑟福核模型”。
这个模型认为原子是由一个带正电的核和围绕核运动的电子组成的。
电子围绕核运动的轨道上,根据不同能级排列。
根据量子力学理论,电子的位置是不确定的,只能给出概率分布。
因此,电子云模型认为电子不是沿着确定轨道运动的,而是以一定概率分布在原子核周围。
原子物理学知识要点总结
E s
仍与
j
有关。
能量E由
n, l , j 三个量子数决定。
碱金属原子能级的分裂 当
0
时,
1 j 2
当 0 时,
j
1 2
1 j 能级不分裂 2 2 *4 Rhc Z El , s 1 3 2n (l )(l 1) 2 Rhc 2 Z *4 El , s 1 3 2n l (l ) 2
第一章 原子的基本状况 主要内容:原子的质量和大小、原子的核式结构、α粒子散 射实验(重点)。 基本要求: (1)掌握估算原子大小的方法、理解原子量的定义和原子量、 原子质量的计算。 (2)了解汤姆逊模型的要点和遇到的困难;理解卢瑟福核式 结构的要点和提出核式结构的实验依据;
原子的质量
原子质量单位和原子量 各种原子的质量各不相同,常用它们的相对值原子量。 原子质量单位:
表
自旋多重度,表示原子态的多重数。对碱原子 2 s 1 S 态虽然是单层(重)能级,仍表示为:2 S
2
例: 3 2 P 表示: n 3, 1, j 3/ 2 的原子态,多重度:2 3/ 2
Li原子能级图(考虑精细结构,不包括相对论修正)
单电子辐射跃迁选择定则
1、选择定则 单电子辐射跃迁(吸收或发射光子)只能在下列条件下发生:
l
: 量子数亏损
能级图
0 5 4
s
=0 5 4 3 3
p =1 5 4 3
d =2 5 4
f =3 H 7 6 5 4 3
10000
柏 格 曼 系
20000 2
30000
2
40000
厘米-1
2
锂原子能级图
锂的四个线系
原子物理学知识点总结
原子物理学知识点总结1.原子的定义:在化学变化中,保持其他物理性质不变,仅仅由于最外层电子数目发生变化而引起的一种微粒叫做原子。
原子的构成:由带正电荷的原子核和绕其周围运动的带负电荷的电子组成。
正电荷数量较多的原子核具有很强的吸引力,使得大量的电子云都集中到它周围。
放射性:具有放射性的元素称为放射性元素。
发生放射性衰变时,原子核里面的一个核子转变为另一个核子的过程。
如果不控制反应条件,那么一部分原子可以通过多次核衰变,最终转变为另一种新的元素。
放射性元素是核素。
其它的元素也可以由自发的衰变过程变成放射性元素。
比如钾元素就是由镭通过自发衰变变成的。
具有放射性的同位素有三种,即镭-226、钍-232、锕-233。
这些原子核内都含有中子,并且都是稳定的。
一般说来,放射性元素有时候会失去一个或几个中子,有时则会增加。
具有放射性的元素,除了具有稳定性之外,还会发出一定的射线。
它们能用作示踪剂,以便研究原子核内部的结构,核物质的组成,元素的衰变规律及其在宇宙中的行踪。
例如: 60S核素是人工放射性元素,具有热中子俘获截面高、热中子发射截面低等优点。
它在反应堆中的半衰期约为1~100年。
特别是60S能够转变为稳定的铀-233,故它是有用的中子源,可用来制造同位素,进行中子活化分析。
因此,它对核燃料循环起着重要作用。
而60S的放射性又可使一些金属的原子核发生裂变,如40S、 39S、36S,这些裂变产物对提取某些稀有金属有利,也是人工制备核燃料的重要原料。
如何认识这个问题:要从分子、原子、离子等微观层面来认识物质的属性,因为物质都是由分子、原子、离子等微粒构成的。
2.原子序数、相对原子质量与核电荷数之间的关系:核电荷数=质子数+中子数=n-n_m例如: H的相对原子质量为14,核电荷数为14,它的核电荷数和质子数的乘积就是它的相对原子质量。
3.元素周期表的建立:对大量已知元素的性质、元素符号、原子序数、原子量、相对原子质量等数据统计整理而成。
原子物理学 记忆要点
名词解释1 光谱:光谱是复色光经过色散系统分光后,被色散开的单色光按波长或频率大小而依次排列的图案,全称为光学频谱。
2 氢原子线系:氢原子的光谱满足一定的关系构成的线系。
3 类氢离子:原子序数大于1,核外电子只有1个的离子。
4 电离(激发)电势:电子加速与原子发生碰撞,使之电离(激发),加速电子所需的电势称为电离(激发)电势。
5 原子空间取向量子化:在磁场中原子的角动量或磁矩沿外场分量的取值是不连续的,是量子化的。
6 原子实极化:原子中除价电子以外的内层电子与原子核构成原子实,原子实内部正负电荷中心重合。
在价电子作用下,原子实的正负电荷中心发生偏离形成电偶极子的现象称为原子实极化。
7 轨道贯穿:在主量子数n较大,角量子数l较小的情况下,电子绕核做椭圆轨道运动且轨道较扁。
在轨道靠近原子核时,轨道有可能会进入到原子实内部,这一现象叫轨道贯穿。
8 有效电荷数:由于原子实极化和轨道贯穿的影响,价电子实际感受到的原子实对其产生引力作用的正电荷数目称为有效电荷数。
9 电子自旋:电子本身所固有的绕自身轴转动的运动状态称为自旋。
它固有的角动量S=大根号s(s+1)h杠,其中自旋量子数s=1/2.10 磁矩:描述载流线圈或微观粒子磁性的物理量。
平面载流线圈的磁矩定义为μ=isn 分别为电流强度线圈面积与电流方向成右手螺旋关系的单位矢量。
11 旋磁比:原子中电子绕核运动的磁矩μ与电子的轨道角动量L比值的绝对值γ称为旋磁比。
12 朗德g因子:测量到的磁矩在磁场方向的投影μz(以μg为单位)与角动量在z方向投影(以h杠为单位)的比值。
13电子态:电子所处的状态,可以用量子数n,l,m1,ms来描述。
14 原子态:原子所处的状态,L-S耦合可表示为()J-J耦合可表示为()。
15 塞曼效应:塞曼效应实原子的光谱线在外磁场中出现分裂的现象。
16 电子组态:原子中各个电子状态的总和,用()表示。
17 L-S耦合:对多电子体系,电子相互之间作用比较强时,电子各自的自旋运动合成一个总的自旋运动,各自的轨道角动量,因最后是S和L合成J,故称其为L-S耦合。
原子物理复习总结
原子物理学总复习总结一、原子物理学发展中重大事件1.1897年汤姆孙通过阴极射线管实验发现电子,从而打破了原子不可分的神话,并提出关于原子结构的“葡萄干面包”模型。
2.1900年普朗克提出能量量子化假说,解释黑体辐射问题。
3.1905年爱因斯坦提出光量子假说,并用以解释光电效应。
4.1910年密立根采用“油滴实验”方法精确地测定了电子的电荷,并发现电荷是量子化的。
5.1908年卢瑟福的学生盖革-马斯顿在 粒子散射实验中发现大角度散射现象,1911年卢瑟福基于此实验提出原子的核式结构模型,从而否认了汤姆孙的模型。
但是这种核式结构模型不能解释原子的稳定性、同一性和再生性。
6.1913年波尔为了解释氢原子光谱提出氢原子理论模型,提出三个基本假设:定态理论、能级跃迁条件和轨道量子化条件,可以解释氢原子和类氢原子的光谱。
7.1914年为了验证波尔的能级理论,弗兰克-赫兹实验用电子轰击汞原子,证明了能级的存在,即原子内部定态的能量是量子化的。
8.1916年索末菲将波尔的圆形轨道推广为椭圆轨道理论,并引入相对论修正.9.1921年施特恩-盖拉赫提出一个能直接显示原子轨道角动量空间量子化的实验方案,用银原子束通过不均匀磁场,原子磁矩在不均匀磁场中受磁力,力的大小和方向与原子磁矩空间取向有关。
10.1925年乌伦贝克和古兹密特提出电子自旋假设,电子自旋的引入可以解释碱金属双线结构、赛曼效应和施特恩-盖拉赫实验。
11.1925年泡利提出泡利不相容原理。
提出了多电子原子中电子的排列规则问题。
此定理对费米子系统成立,但是对于玻色子系统不成立。
二、 基本物理规律、定理和公式1.库仑散射公式:,22θctg a b = 为库仑散射因子其中Ee Z Z a 02214πε≡,为散射角参数,为瞄准距离,或者碰撞θb 2.卢瑟福公式:微分散射截面:2sin 16')()(42θθσθσa Nntd dN d d C =Ω=Ω=物理意义:α粒子散射到θ方向单位立体角内每个原子的有效散射截面.3.原子核大小的估计(即入射粒子与原子核的最小距离):a r =min4.光电效应:221m mv h +=φν 其中00λνφc h h ==为金属的结合能(脱出功),0ν和0λ分别为金属的红限频率和波长,2021m mv eV =,0V 为遏制电压。
原子物理知识点总结全
原 子 物 理一、卢瑟福的原子模型-—核式结构1.1897年,_________发现了电子.他还提出了原子的______________模型。
2。
物理学家________用___粒子轰击金箔的实验叫__________________。
3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4。
实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷;极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构:卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转.例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果:A.α粒子穿过金箔时都不改变运动方向B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹C.绝大多数α粒子穿过金箔时有较大的偏转 D 。
α粒子穿过金箔时都有较大的偏转。
例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。
如图1—1所示表示了原子核式结构模型的α粒子散射图景.图中实线表示α粒子的运动轨迹。
其中一个α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小B .α粒子的电势能先增大后减小C .α粒子的加速度先变小后变大D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。
原子物理知识点总结
原子物理一、波粒二象性1、热辐射:一切物体均在向外辐射电磁波。
这种辐射与温度有关。
故叫热辐射。
特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温度有关。
2)温度一定时,不同物体所辐射的光谱成分不同。
2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。
若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。
在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔。
注意,黑体并不一定是黑色的。
热辐射特点吸收反射特点一般物体辐射电磁波的情况与温度,材料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关黑体辐射电磁波的强度按波长的分布只与黑体温度有关完全吸收各种入射电磁波,不反射黑体辐射的实验规律:1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。
2)温度升高时,各种波长的辐射强度均增加。
3)温度升高时,辐射强度的极大值向波长较短方向移动。
4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。
普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.νεh=)1063.6(34叫普朗克常量sJh⋅⨯=-。
由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性。
5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象。
发射出来的电子叫光电子。
光电效应由赫兹首先发现。
爱因斯坦指出:① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=h ν,其中h=6.63×10-34 J ·s 叫普朗克常量,ν是光的频率;② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9s )。
原子物理学褚圣麟总结
原子物理学褚圣麟总结原子物理学是研究原子结构、性质和相互作用的科学,它是物理学的一个重要分支,也是现代科学技术的基础。
在这篇文档中,我将对原子物理学的一些基本概念和重要内容进行总结,希望能够帮助读者更好地了解这一领域的知识。
首先,我们需要了解原子的基本结构。
原子由原子核和围绕核运动的电子组成。
原子核由质子和中子组成,质子带正电荷,中子不带电荷。
电子带负电荷,数量与质子相等,使得原子整体呈电中性。
在原子物理学中,我们经常用原子序数Z表示原子核中质子的数量,用核电荷数A表示原子核中质子和中子的总数。
其次,原子物理学研究的一个重要内容是原子的能级结构和谱线。
原子的电子围绕原子核运动,其运动状态由能级来描述。
电子在不同的能级上具有不同的能量,当电子从一个能级跃迁到另一个能级时,会吸收或发射特定的能量,形成谱线。
原子的能级结构和谱线是原子物理学研究的重要内容,也是许多实际应用的基础,比如光谱分析和激光技术等。
另外,原子物理学还涉及原子核的结构和性质。
原子核由质子和中子组成,其结构和性质对于原子的稳定性和放射性具有重要影响。
通过研究原子核的结构,可以揭示核力的作用机制,了解核衰变和核反应等现象,这对于核能的利用和核武器的研发具有重要意义。
此外,原子物理学还包括了原子的相互作用和原子的性质。
原子之间存在着静电作用力,使得原子可以形成分子和晶体等化学物质。
同时,原子内部的电子结构和原子核的性质也决定了原子的化学性质和物理性质。
研究原子的相互作用和性质,有助于我们理解物质的结构和性质,为材料科学和化学工程提供理论基础。
总的来说,原子物理学是一个涉及广泛、内容丰富的学科,它对于我们理解物质的微观结构和性质,以及应用于科技领域具有重要意义。
通过对原子物理学的研究,我们可以更好地认识自然界的规律,推动科学技术的发展,促进人类社会的进步。
希望本文所述内容能够对读者有所帮助,引发更多对原子物理学的兴趣和思考。
高中物理原子物理知识点总结
高中物理原子物理知识点总结高中物理中的原子物理部分是物理学的重要组成部分,它帮助我们理解微观世界的奥秘。
以下是对这部分知识点的详细总结。
一、原子的结构1、汤姆孙的枣糕模型汤姆孙认为原子是一个球体,正电荷均匀分布在整个球内,电子像枣糕里的枣子一样镶嵌在原子里。
2、卢瑟福的核式结构模型卢瑟福通过α粒子散射实验,提出了原子的核式结构模型。
他认为原子的中心有一个很小的原子核,几乎集中了原子的全部质量和所有正电荷,电子在核外绕核高速旋转。
3、玻尔的原子模型玻尔在卢瑟福模型的基础上,引入了量子化的概念。
他认为电子只能在一些特定的轨道上运动,这些轨道的能量是量子化的,电子在不同轨道间跃迁时会吸收或放出光子。
二、天然放射现象1、天然放射现象的发现贝克勒尔发现了天然放射现象,使人们认识到原子核具有复杂的结构。
2、三种射线α射线:本质是高速运动的氦核,带正电,穿透能力最弱,但电离作用最强。
β射线:本质是高速电子流,带负电,穿透能力较强,电离作用较弱。
γ射线:本质是波长很短的电磁波,不带电,穿透能力最强,电离作用最弱。
3、半衰期放射性元素的原子核有半数发生衰变所需的时间叫做半衰期。
半衰期的大小由原子核内部自身的因素决定,与原子所处的物理、化学状态无关。
三、原子核的衰变1、衰变的类型α衰变:原子核放出一个α粒子,变成新核。
β衰变:原子核放出一个β粒子,变成新核。
2、衰变方程α衰变:\(_{Z}^{A}X \rightarrow _{Z 2}^{A 4}Y +_{2}^{4}He\)β衰变:\(_{Z}^{A}X \rightarrow _{Z + 1}^{A}Y +_{ 1}^{0}e\)四、原子核的人工转变1、质子的发现卢瑟福用α粒子轰击氮原子核,发现了质子,其反应方程为:\(_{2}^{4}He +_{7}^{14}N \rightarrow _{8}^{17}O +_{1}^{1}H\)2、中子的发现查德威克用α粒子轰击铍原子核,发现了中子,其反应方程为:\(_{2}^{4}He +_{4}^{9}Be \rightarrow _{6}^{12}C +_{0}^{1}n\)五、核能1、爱因斯坦质能方程\(E = mc^2\),其中\(E\)表示能量,\(m\)表示物体的质量,\(c\)表示真空中的光速。
原子物理学知识点总结
原子物理学知识点总结原子物理学是一门关于原子结构、原子核、原子能级等的研究领域。
在这篇文章中,我将总结一些常见的原子物理学知识点,希望能够为读者提供一些基础的了解。
1. 原子结构:原子是由质子、中子和电子组成的。
质子和中子位于原子核中心,负电子则围绕原子核运动。
原子的质量主要来自质子和中子,而电子质量非常小,可以忽略不计。
原子的大小通常用原子半径来表示,一般情况下,原子半径约为0.1纳米。
2. 原子核:原子核由质子和中子组成。
质子带有正电荷,中子则没有电荷。
质子和中子的质量约为1.67×10-27千克。
原子核的半径远小于整个原子的大小,大约为10-15米。
3. 原子能级:原子中的电子存在于不同的能级上。
电子的能量与其所处的能级有关,能级越高,电子的能量越大。
当电子从一个能级跃迁到另一个能级时,会吸收或释放一定的能量。
这个能量被称为光子,它的波长和频率与能级差有关。
4. 光谱:原子的光谱是原子发射或吸收光的特征。
原子在受到激发后,会从低能级跃迁到高能级,或从高能级跃迁到低能级,产生特定波长的光。
这些波长被称为光谱线。
根据光谱线的分布可以推断原子的能级结构。
5. 泡利不相容原理:泡利不相容原理是指在一个原子中,每个电子的四个量子数必须有一个不同。
这意味着每个原子轨道最多只能容纳两个电子,且这两个电子的自旋方向相反。
6. 量子力学:量子力学是研究微观粒子行为的理论。
它描述了原子和分子等微观粒子的运动和相互作用。
量子力学的基本原理包括波粒二象性、不确定性原理、波函数和薛定谔方程等。
7. 电离:原子的电离是指从原子中移除一个或多个电子,使其失去电中性。
电离通常发生在高能粒子撞击原子或原子受到强电场的作用下。
电离过程具有重要的应用,例如在放射治疗中用于杀灭癌细胞。
8. 辐射:原子在激发态或电离态下可以发射辐射,包括光辐射和粒子辐射。
光辐射通常是指电磁波的发射,包括可见光、紫外线、X 射线和γ射线。
关于原子物理的知识点总结
关于原子物理的知识点总结1. 原子结构原子是物质的基本单位,它由原子核和围绕原子核运动的电子构成。
根据量子力学的理论,电子围绕原子核的轨道是量子化的,即电子只能占据特定的能级。
这些能级又被称为原子的轨道,它们分别对应着不同的能量。
根据波尔理论,原子轨道的能量级数由主量子数决定,而轨道的形状由角量子数和磁量子数决定。
此外,每个轨道还有自旋量子数。
原子的轨道可以分为s、p、d、f等不同的子壳,每个子壳又可以分为不同的轨道。
2. 原子核原子核是原子的中心部分,它由质子和中子组成。
质子和中子有着相同的质量,但是它们的电荷正负相反。
根据现代原子模型,质子和中子是由更小的粒子——夸克构成的。
原子核的直径大约只有10^-15米,而原子整体的直径则大约为10^-10米,因此原子核是原子的重要组成部分。
原子核的结构是非常复杂的,其中包含着大量的核子相互作用和核力。
在原子核中,质子和中子之间的作用力非常强大,能够保持原子核的稳定性。
3. 元素周期表元素周期表是化学中的重要工具,它将所有已知的元素按照其原子序数和化学性质排列在一张表格上。
元素周期表的排列方式使得化学家可以快速地找到元素之间的联系和规律。
元素周期表以不断重复的周期性性质为基础,其中每个周期都代表一种化学行为规律。
原子序数自然地反映了元素的电子排布和原子结构。
元素周期表的周期性规律性质是由原子结构和电子排布的规律性所决定的,因此元素周期表的排列方式和元素的性质之间存在着内在的联系。
4. 原子激发和原子能级当原子受到外部能量的激发时,其电子可能会跃迁到更高能级的轨道上,这种现象被称为原子的激发。
原子的激发能够产生出各种不同的现象,比如光子的辐射和吸收,原子光谱和激光等。
原子的能级结构是由原子内部的电子排布所决定的,不同的能级对应着不同的轨道和能量。
当电子从高能级跃迁到低能级时,会释放出一定的能量。
这些特定的能量级被称为原子的能级,它是原子物理研究的重要内容之一。
原子物理学(杨福家)总结
原子物理学四、五、六、七、八章总结第四章1、定性解释电子自旋定性解释电子自旋和和轨道运动相互作用的物理机制。
原子内价电子的自旋磁矩与电子轨道运动所产生的磁场间的相互作用,是磁相互作用。
电子自旋对轨道磁场有两个取向,导致了能级的双重分裂,这就是碱金属原子能级双重结构的由来这种作用能通常比电子与电子之间的静电库仑能小(在LS 耦合的情况下),因此是产生原子能级精细结构即多重分裂(包括双重分裂)的原因。
2、原子态55D 4的自旋和轨道角的自旋和轨道角动量动量动量量子数是多少?总角量子数是多少?总角量子数是多少?总角动量动量动量在空间有几在空间有几个取向,如何实验证实?自旋量子数:s=2轨道量子数:l=2角动量量子数:J=4总角动量在空间有9个取向。
由于J J J m J −−=,,1,⋯,共12+J 个数值,相应地就有12+J 个分立的2z 数值,即在感光片上就有12+J 个黑条,它代表了12+J 个空间取向。
所以,从感光黑条的数目,就可以求出总角动量在空间有几个取向。
3、写出碱金属原子的能级公式,说明各写出碱金属原子的能级公式,说明各量量含义含义。
22jl njl n Rhc Z E ∆−−=其中,Z:原子序数,R:里德堡常数,h:普朗克常量,c:光速,n:主量子数,jl ∆:量子数亏损。
4、朗德间隔定则德间隔定则::在三重态中,一对相邻的能级之间的间隔与两个J 值中较大的那个成正比。
5、同科电子:n 和l 二量子数相同的电子。
6、Stark 效应效应::原子能级在外加电场中的移位和分裂。
7、塞曼效应效应::一条谱线在外磁场作用下一分为三,彼此间间隔相等,且间隔值为B B µ。
反常塞曼效应:光谱线在磁场中分裂的数目可以不是三个,间隔也不尽相同。
8、帕邢帕邢--巴克效应:在磁场非常强的情况下,反常塞曼效应会重新表现为正常塞曼效应,即谱线的多重分裂会重新表现为三重分裂,这是帕邢和巴克分别于1912和1913年发现的,故名帕邢-巴克效应。
原子物理知识点总结
第17章 光电效应 波粒二象性一.能量子(1)定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.(2)能量子的大小:ε=h ν,其中ν是电磁波的频率,h 称为普朗克常量.h =6.63×10-34 J ·s. 二、光电效应 1.光电效应现象光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做光电子. 2.光电效应实验规律(1)每种金属都有一个极限频率.(2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大. (3)光照射到金属表面时,光电子的发射几乎是瞬时的. (4)光电流的强度与入射光的强度成正比. 3.爱因斯坦光电效应方程(1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=h ν,其中h 是普朗克常量,其值为6.63×10-34 J ·s. (2)光电效应方程:E k =h ν-W 0.其中h ν为入射光的能量,E k 为光电子的最大初动能,W 0是金属的逸出功. 4.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U c .(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.(3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功.5.由E k -ν图象(如图)可以得到的信息 (1)极限频率:图线与ν轴交点的横坐标νc .(2)逸出功:图线与E k 轴交点的纵坐标的绝对值E =W 0. (3)普朗克常量:图线的斜率k =h . 6.用光电管研究光电效应(两条线索 ①通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大. ②通过光的强度分析:入射光强度大→光子数目多→产生的光电子多→光电流大. 三、光的波粒二象性与物质波 1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性. (2)光电效应和康普顿效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性.2.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卢瑟福散射公式
d
1
4 0
2
Ze2 mv02
2
d
sin 4
2
Rutherford公式
dn d
sin 4
2
1
4
0
2
Nnt
Ze2 mv02
2
1、在同一粒子源和同一散射物:dn d 1 sin4
2、相同散射角:dn d t
2
3、同一散射物,相同散射角: dn d E2
4、同一源、散射角,相同N t,不同靶材:dn d Z 2
发射电磁辐射,而且各层电子绕球心转动时
也会发光。这对于解释当时已有的实验结果、
元素的周期性以及原子的线光谱,似乎是成
功的。
Thomson模型的失败:与α粒子散射实验结果不符合。
卢瑟福核式模型
α粒子散射实验否定了汤姆逊的原子模型,根据实验结 果,卢瑟福于1911年提出了原子的核式模型。
原子中心有一个极小的原子核,它集中了全部的正电荷 和几乎所有的质量,所有电子都分布在它的周围。
频率规则
hv En Em
En Em
c hc
Tn
En hc
En
h
h
Em 吸收 发射
(3) 角动量量子化假设
电子定态轨道角动量满足量子化条件:
mernvn n n 1,2,3,4
角动量量子化来自电子的波动性 首尾位相相同的环波才能稳定存在, 否则会由于波的相干叠加而消失
2πr n L rp r h n
玻尔半径
e2 1 精细结构常数 4π0 c 137
rn n2a0
vn
c
n
n 1, 2, 3,
非相对论近似
赖曼系
巴耳末系 帕邢系
n12 3
4
氢原子的玻尔轨道
氢原子的定态能量
En
1 2n2
e2
4π 0 a0
1 2n2
me 2c2
n 1, 2, 3,
能量的量子化Βιβλιοθήκη n 1 E1 13.6 eV r1 a0 能量最低: 基态(ground state)
原子模型 之 Thomson原子模型
汤姆逊(Thomson)发现电子之后,对于原子中正负电荷的分布他提
出了一个模型:原子中带正电荷的部分均匀分布在整个原子空间,
电子镶嵌在其中。
葡萄干布丁模 型或西瓜模型
同时该模型还进一步假定,电子分布在分离
的同心环上,每个环上的电子容量都不相同,
电子在各自的平衡位置附近做微振动。可以
n
n 2 激发态(excited state) 3
2
一般用能级图表示原子 量子化的能量值。 在能级图上用一条横线 一个能级
能级(energy level)
1
n ,自由电子,相应的势能为零 基 态的能 量为 -13.6ev, 所 以将一 个基 态电子 电离 至少需 要 13.6ev的能量(电离能)
弗兰克-赫兹实验
1914年,Franck和Hertz实验发现原子经电子碰撞后吸收能量 的分立性
K
GA
Hg
V
A
0.5 V
K:热阴极,发射电子
KG区:电子加速,与Hg 原子碰撞
Balmer公式只是Rydberg公式的一个特例
~
1
1 B
n2 22 n2
41 B [22
1 n2
]
1 RH [ 22
1 n2
],
n
3,4,5......
玻尔氢原子理论
1.原子行星模型的困难
me mN
r
me
v2 r
Ze2
4π 0 r 2
1 2
mev2
1 2
Ze2
4π 0 r
E
1 2
mev2
(
可以由此结合行星模型导出诸如轨 道半径、能量(能级)、 Rydberg 常数,等等
P
v
rn
轨道半径
mevrn n
mev2rn2
(n)2 me
Ze2
4 0rn2
mev2 rn
mev2rn
Ze2
4 0
H 原子Z 1
4 2 n2
r 0 n m e2 Z
e
电子轨道
a0
4π0 2
mee2
0.53 Å
关于小角散射
的问题
0,d
氢原子光谱
1885年Balmer对已观察到的14条谱线,给出:
(Å )
H 6562.8 H 4861.3 H 4340.5 H 4101.7 H 3970.1
H 3645.6
Balmer经验公式
B
n2 n2
4
n 3, 4, 5,
B 3645.6 Å
n 3 B线系中波长最长的谱线H线 n 该线系中短波长的极限值,线系限
1896年,对于氢原子的Rydberg公式
1
RH
1 m2
1 n2
m 1, 2, 3, n m 1, 2, 3,
RH 1.0967758107 m1
1916年 莱曼(Lyman)系(紫外区) m 1 n 2, 3, 4, 1885年 巴耳末(Balmer)系(可见光区m) 2 n 3, 4, 5, 1908年 帕邢(Paschen)系(近红外区)m 3 n 4, 5, 6, 1922年 布喇开(Brackett)系(红外区)m 4 n 5, 6, 7, 1924年 普丰德(Pfund)系(远红外区)m 5 n 6, 7, 8,
一个自由电子与原子核 结合为一个基态氢原子时,至少释放 13.6ev的能量(氢原子的结合能)
Rydberg常数
En
2 2mee4 (4 0 )2 h2
1 n2
~ En Em
hc
2 2mee4 (4 0 )2 h3c
1 ( m2
1 n2
)
与Rydberg方程联系起来,可以得到Rydberg常数
R
背景:能量子和光子假设、核式模型、原子线光谱
(1) 定态(stationary state)假 设
电子只能在一系列分立的轨道上绕核运动,且不辐射电 磁波,能量稳定。
电子轨道和能量分立(能级)
1 e2
En 2 4π0rn
n 1, 2, 3,
(2) 跃迁(transition)假设 原子在不同定态之间跃迁,吸收或发射能量。
Ze2
4π 0 r
)
1 2
Ze2
4π 0 r
•原子的大小不能确定
•原子稳定性困难 电子加速运动辐射电磁波,能量不断损失,电子回转半径 不断减小,最后落入核内,原子塌缩。
光谱分立性困难 电子绕核运动频率
v e
2πr 2π
1
4π 0 me r 3
电磁波频率等于电子回转频率,发射光谱为连续谱。
2.玻尔模型(1913年)
2π2mee4
4π0 2 h3c
1 RM R 1 me / M
弗兰克-赫兹实验
原子内部能量量子化证据
除了光谱学方法之外,可否用其它方法证明原子中分 立能级的存在 ?
➢ 基本思想 利用加速电子碰撞原子,使之激发。测量电子所损失 的能量,即是原子所吸收的能量
加速电子 原子
吸收能量,产生跃迁
不能激发,不吸收能量