高二数学《概率》测练题()

合集下载

(易错题)高中数学必修第二册第五单元《概率》检测(有答案解析)

(易错题)高中数学必修第二册第五单元《概率》检测(有答案解析)

一、选择题1.下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则P(A ∪B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A ,B 满足P(A)+P(B)=1,则A 与B 是对立事件. 其中正确命题的个数是( ) A .1B .2C .3D .42.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2、0.4、0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击两次,则他能击落敌机的概率为( ) A .0.23B .0.2C .0.16D .0.13.下列命题正确的是( )A .用事件A 发生的频率()n f A 估计概率()P A ,重复试验次数n 越大,估计的就越精确.B .若事件A 与事件B 相互独立,则事件A 与事件B 相互独立.C .事件A 与事件B 同时发生的概率一定比A 与B 中恰有一个发生的概率小.D .抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性就比反面大. 4.随机抛掷一枚质地均匀的骰子,记正面向上的点数为a ,则函数()224f x x ax =++至多有一个零点的概率为( ) A .13B .12C .23D .565.在如图所示的电路中,5个格子表示保险匣,格子中所示数据表示通电时保险丝被熔断的概率,则当开关合上时,电路畅通的概率是( )A .2936B .551720C .2972D .291446.某城市有连接8个小区A 、B 、C 、D 、E 、F 、G 、H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率是( )A.13B.23C.14D.347.如图茎叶图表示的是甲.乙两人在5次综合测评中的成绩,其中乙中的两个数字被污损,且已知甲,乙两人在5次综合测评中的成绩中位数相等,则乙的平均成绩低于甲的概率为()A.29B.15C.310D.138.袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是()A.恰有1个白球和全是白球B.至少有1个白球和全是黑球C.至少有1个白球和至少有2个白球D.至少有1个白球和至少有1个黑球9.从1,2,3,4,5这5个数中任取两数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③10.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13,那么甲、乙两人至少有一人拿到该技能证书的概率是()A.1315B.1115C.23D.3511.《易经》是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),现有3人各自随机的从八卦中任取两卦,恰有2人两卦的六根线中有四根阳线和两根阴线的概率为()A.297 2744B.992744C.67521952D.2252195212.如图所示,1,2,3表示三个开关,若在某段时间内它们每个正常工作的概率都是0.9,那么此系统的可靠性是()A.0.999 B.0.981 C.0.980 D.0.72913.自新型冠状病毒爆发以来,全国各地医护人员勇当“逆行者”支援湖北.重庆第一批共派出甲、乙、丙、丁4支医疗队分成三组奔赴三个地方,每组至少一支医疗队,则甲、乙分在同一组的概率为()A.13B.12C.29D.16二、解答题14.在新高考中我市采用了“3+1+2”模式,对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.我校高二年级在期末考试后,政治、化学两选考科目的原始分分布如表:等级A B C D E比例约15%约35%约35%约13%约2%政治学科各等级对应的原始分区间[81,98][72,80][66,71][63,65][60,62]化学学科各等级对应的原始分区间[90,100][77,89][69,76][66,68][63,65]政治:64,72,66,92,78,66,82,65,76,67,74,80,70,69,84,75,68,71,60,79化学:72,79,86,75,83,89,64,98,73,67,79,84,77,94,71,81,74,69,91,70并根据上述数据制作了如下的茎叶图:(1)茎叶图中各序号位置应填写的数字分别是:①应填___________,②应填___________,③应填___________,④应填___________,⑤应填___________,⑥应填___________.(2)甲同学选考政治学科,其原始分为82分,乙同学选考化学学科,其原始分为91分.基于新高考实测的转换赋分模拟,试分别探究这两位同学的转换分,并从公平性的角度谈谈你对新高考这种“等级转换赋分法”的看法.(3)若从我校政治、化学学科等级为A 的学生中,随机挑选2人次(两科都选,且两科成绩都为A 等的学生,可有两次被选机会),试估计这2人次挑选,其转换分都不少于91分的概率.附1:等级转换的等级人数占比与各等级的转换分赋分区间. 等级A B C D E 原始分从高到低排序的等级人数占比约15% 约35%约35%约13% 约2% 转换分T 的赋分区间[86,100][71,85] [56,70][41,55][30,40]附2:计算转换分T 的等比例转换赋分公式:2211Y Y T TY Y T T --=--(其中:Y 1,Y 2别表示原始分Y 对应等级的原始分区间下限和上限;T 1,T 2分别表示原始分对应等级的转换分赋分区间下限和上限.T 的计算结果按四舍五入取整).15.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为帮助某村巩固扶贫成果,该村的结对帮扶共建企业在该村建立了一座精米加工厂,并对粮食原料进行深加工,研发出一种新产品,已知该产品的质量以某项指标值()60100k k ≤<为衡量标准,质量指标的等级划分如表: 质量指标值k 90100k ≤< 8090k ≤<7080k ≤<6070k ≤<产品等级ABCD件产品的指标值,得到如下的产品质量指标值的频率分布直方图;设M =频率组距,当[)()10,101068,k n n n n N∈+≤≤∈时,满足52200nM-=.(1)试估计样本质量指标值k的中位数m;(2)从样本质量指标值不小于80的产品中采用分层抽样的方法抽取7件产品,然后从这7件产品中任取2件产品,求至少有1件A级品的概率.16.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把四个小球逐个随机放入四个盒子里.(1)小球全部放入盒子中有多少种不同的放法?(2)在(1)的条件下求恰有一个盒子没放球的概率?(3)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?17.某医院首批援鄂人员中有2名医生,3名护士和1名管理人员.采用抽签的方式,从这六名援鄂人员中随机选取两人在总结表彰大会上发言.(Ⅰ)写出发言人员所有可能的结果构成的样本空间;(Ⅱ)求选中1名医生和1名护士发言的概率;(Ⅲ)求至少选中1名护士发言的概率.18.2018年2月9~25日,第23届冬奥会在韩国平昌举行,4年后,第24届冬奥会将在中国北京和张家口举行,为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看奥运会开幕式进行了问卷调查,统计数据如下:收看没收看男生6020女生2020(1)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(2)现从参与收看了开幕式的学生中,采用分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.①问男、女学生各选取多少人?②若从这8人中随机选取2人到校广播站宣传冬奥会,求恰好选到一名男生为主播一名女生为副播的概率P .附:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥ 0.1000.050 0.025 0.010 0.005 0k2.7063.8415.0246.6357.87919.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩,这50名学生的成绩都在[50,100]内,按成绩分为[50,60),[60,70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图.(1)求图中的a 值;(2)根据频率分布直方图估计该校高一年级本次考试成绩的中位数;(3)用分层抽样的方法从成绩在[80,100]内的学生中抽取6人,再从这6人中随机抽取2名学生进行调查,求月考成绩在[90,100]内至少有1名学生被抽到的概率.20.随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑电视.为了了解某高校学生平均每天使用手机的时间与性别是否有关,某调查小组随机抽取了30名男生,20名女生进行为期一周的跟踪调查,调查结果如表所示:平均每天使用手机超过3小时 平均每天使用手机不超过3小时 合计 男生 25 5 30 女生 10 10 20 合计351550(1)能否在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关?(2)在这20名女生中,调查小组发现共有15人使用国产手机,在未使用国产手机的人中,平均每天使用手机不超过3小时的共有2人.从未使用国产手机的人中任意选取3人,求至多有一人使用手机不超过3小时的概率.()20P K k ≥ 0.500 0.400 0.250 0.150 0.100 0.050 0.025 0.010 0k0.4550.7081.3232.0722.7063.8415.0246.635参考公式:()()()()()22n ad bc K a c b d a b c d -=++++(n a b c d =+++).21.为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图.若尺寸落在区间(2x s -,2x s +)之外,则认为该零件属“不合格”的零件,其中x ,s ,分别为样本平均数和样本标准差,计算可得:15s ≈(同一组中的数据用该组区间的中点值作代表).(1)若一个零件的尺寸是97cm ,试判断该零件是否属于“不合格”的零件;(2)工厂利用分层抽样的方法从样本的前3组中抽出6个零件,标上记号,并从这6个零件中再抽取2个,求再次抽取的2个零件中恰有1个尺寸不超过50cm 的概率. 22.为普及抗疫知识、弘扬抗疫精神,某学校组织防疫知识竞赛.比赛共分为两轮,每位参赛选手均须参加两轮比赛,若其在两轮比赛中均胜出,则视为赢得比赛.已知在第一轮比赛中,选手甲、乙胜出的概率分别为35,34;在第二轮比赛中,甲、乙胜出的概率分别为23,25.甲、乙两人在每轮比赛中是否胜出互不影响. (1)从甲、乙两人中选取1人参加比赛,派谁参赛赢得比赛的概率更大? (2)若甲、乙两人均参加比赛,求两人中至少有一人赢得比赛的概率.23.某组织在某市征集志愿者参加志愿活动,现随机抽出60名男生和40名女生共100人进行调查,统计出100名市民中愿意参加志愿活动和不愿意参加志愿活动的男女生比例情况,具体数据如图所示.(1)完成下列22⨯列联表,并判断是否有99%的把握认为愿意参与志愿活动与性别有关?愿意 不愿意 总计男生 女生 总计(2)现用分层抽样的方法从愿意参加志愿活动的市民中选取7名志愿者,再从中抽取2人作为队长,求抽取的2人至少有一名女生的概率. 参考数据及公式:()20P K k ≥ 0.1 0.05 0.025 0.010k2.7063.8415.0246.635()()()()()()22n ad bc K n a b c d a b c d a c b d -==+++++++.24.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出200人,并将这200人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图如图所示:(1)求出样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组中抽到2人的概率.25.北京市政府为做好APEC 会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.(1)求该海产品不能销售的概率.(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有该海产品4件,记一箱该海产品获利X 元,求X 的分布列,并求出数学期望()E X .26.某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[)25,30,第2组[)30,35,第3组[)35,40,第4组[)40,45,第5组[]45,50,得到的频率分布直方图如图所示. 区间 [)25,30 [)30,35 [)35,40 [)40,45 []45,50人数5050a150b(1)上表是年龄的频数分布表,求正整数,a b 的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A【分析】根据互斥之间和对立事件的概念,及互斥事件和对立事件的关系和概率的计算,即可作出判断,得到答案.【详解】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A与B是互斥事件时,才有P(A∪B)=P(A)+P(B),对于任意两个事件A,B满足P(A∪B)=P(A)+P(B)-P(AB),所以是不正确的;③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A={摸到红球或黄球},事件B={摸到黄球或黑球},显然事件A与B不互斥,但P(A)+P(B)=+=1.【点睛】本题主要考查了互斥事件和对立事件的基本概念、互斥事件与对立时间的关系及其应用,其中熟记互斥事件和对立事件的概念和关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.A解析:A【解析】A每次射击,命中机首、机中、机尾的概率分别为0.20.40.1、、,未命中敌机的概率为0.3,且各次射击相互独立,若A射击一次就击落敌机,则他击中利敌机的机尾,故概率为0.1;若A射击2次就击落敌机,则他2次都击中利敌机的机首,概率为0.20.20.04⨯=;或者A第一次没有击中机尾、且第二次击中了机尾,概率为0.90.1?0.09⨯=,若A至多射击两次,则他能击落敌机的概率为0.1?0.04?0.09?0.23++= ,故选A.3.B解析:B【分析】根据概率的定义,事件的独立性概念判断各选项.【详解】在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率.当试验次数n很大时,频率将稳定在一个常数附近. n越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率,并不是说n越大,估计的精度越精确,A错;事件A与事件B相互独立,即A是否发生与B是否发生无关,∴事件A是否发生与事件B是否发生也无关,它们相互独立,B正确;抛一枚骰子,出现的点数不大于5记为事件A,出现的点为不小于2记为事件B,则事件A与事件B同时发生是指点数为2,3,4,5,概率为4263=,而事件A与B中恰有一个发生是指点为1或6,概率为212633=<.C 错; 抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性与出现反面的可能性还是一样.D 错. 故选:B . 【点睛】本题考查概率的定义,考查事件的独立性.掌握概念的定义是解题关键.4.A解析:A 【分析】由函数()f x 至多有一个零点,求得22a -≤≤,得到a 的取值有1,2,共2个可能结果,结合古典概型及概率的计算公式,即可求解. 【详解】由题意,抛掷一枚质地的均匀的骰子,正面向上的点数包含6个可能结果,又由函数()224f x x ax =++至多有一个零点,则24160a ∆=-≤,解得22a -≤≤,又因为a 为正整数,故a 的取值有1,2,共2个可能结果, 所以函数()224f x x ax =++至多有一个零点的概率为13. 故选:A . 【点睛】本题主要考查的是古典概型及其概率计算公式,解题时准确找出试验包含的基本事件的个数,求得函数至多一个零点所包含的的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.A解析:A 【分析】先求出A 至B 畅通的概率,再求出B 至C 畅通的概率,再利用独立事件的概率求法求出电路通畅的概率. 【详解】当开关合上时,电路畅通即表示A 至B 畅通且B 至C 畅通,A 至B 畅通的概率1111511114236P ⎡⎤⎛⎫⎛⎫=-⨯--⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, B 至C 畅通的概率2112915630P =-⨯=, 所以电路畅通的概率125292963036P PP =⨯==, 故选:A. 【点睛】本题考查求独立事件的概率,需要学生有一定的计算分析能力,属于中档题.6.B解析:B 【分析】列举出所有的基本事件,记“此人经过市中心O ”为事件M ,确定事件M 所包含的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】此人从小区A 前往H 的所有最短路径为:A B C E H →→→→,A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,A D F G H →→→→,共6条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件为:A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,共4条.()4263P M ∴==,即他经过市中心的概率为23. 故选:B. 【点睛】本题考查概率的应用,是中等题.解题时要认真审题,仔细解答,注意列举法的灵活运用.7.A解析:A 【解析】 【分析】根据茎叶图分别求出甲、乙的中位数,平均数,得到模糊成绩的值,利用古典概型求解即可 【详解】由题意可得:甲的成绩为:84、86、91、98、98;中位数为91,平均数为4575; 乙的成绩为:86,88,90+x ,90+y ,99 (x ≤y ); ∵甲,乙中位数相同;∴90+x =91⇒x =1; 乙的平均数为4545y+; ∵乙的平均成绩低于甲; ∴1≤y <3;⇒y =1或2. ∴乙的平均成绩低于甲的概率p 29=; 故选:A . 【点睛】本题考查了茎叶图,以及中位数、平均数的性质及古典概型,考查了学生的计算能力,属于基础题.8.B解析:B【分析】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,进而可分析四个事件的关系;【详解】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,故①恰有1个白球和全是白球,是互斥事件,但不是对立事件,②至少有1个白球和全是黑球是对立事件;③至少有1个白球和至少有2个白球不是互斥事件,④至少有1个白球和至少有1个黑球不是互斥事件,故选B.【点睛】本题考查互斥事件和对立事件的关系,对于题目中出现的两个事件,观察两个事件之间的关系,这是解决概率问题一定要分析的问题,本题是一个基础题.9.C解析:C【解析】【分析】依照对立事件的概念,依次判断即可.【详解】∵在①恰有一个是偶数和恰有一个是奇数中,这两个事件是同一个事件,在②至少有一个是奇数和两个都是奇数中,至少有一个是奇数包括两个都是奇数,在③至少有一个是奇数和两个都是偶数中,至少有一个是奇数包括有一个奇数和有两个奇数,同两个都是偶数是对立事件,在④至少有一个是奇数和至少有一个是偶数中,都包含一奇数和一个偶数的结果,∴只有第三所包含的事件是对立事件故选C.【点睛】本题主要考查对立事件的概念,意在考查学生的数学抽象能力.10.D解析:D【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项.【详解】由已知得甲拿到该技能证书的概率为412525⨯=,则甲,乙两人都没有拿到证书的概率为:21211535⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以甲、乙两人至少有一人拿到该技能证书的概率是23155-=, 故选:D. 【点睛】方法点睛:在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.11.A解析:A 【分析】求出3人每个人任取2卦的方法总数,确定3人中哪一个人的两卦中六根线不是4阳2阴,并求出方法数,另外2人分别取两卦且满足题意的方法,相乘可得基本事件的个数,从而可得概率. 【详解】8卦可分为四类:1阳3阴共3个,3阳1阴共3个,3阳共1个,3阴共1个,3人各取2卦的法为222388828C C C =,2卦的六根线中有四根阳线和两根阴线的方法数为21336C C +=,因此3人中恰有2人两卦的六根线中有四根阳线和两根阴线方法为123338(6)662311C C ⨯-⨯⨯=⨯⨯,∴所求概率为3332311297282744P ⨯⨯==. 故选:A . 【点睛】方法点睛:本题考查古典概型,解题关键是求茁基本事件的个数.解题步骤:第一步分清8卦中阳线和阴线的条件,同类(相同阴线和阳线)的个数,第二步求出任取两卦时,两卦的六根线中有四根阳线和两根阴线方法,第三步用分步乘法原理求出3人中恰有2人两卦的六根线中有四根阳线和两根阴线方法数.这样条理清晰,不易出错.12.B解析:B 【分析】求出开关1、2均正常工作的概率及开关3正常工作的概率,由相互独立事件概率公式、对立事件的概率公式即可得解. 【详解】由题意,开关1、2在某段时间内均正常工作的概率10.90.90.81P =⨯=, 开关3正常工作的概率20.9P =,故该系统正常工作的概率()()()()12111110.8110.90.981P P P =---=--⨯-=,所以该系统的可靠性为0.981.故选:B.13.D解析:D【分析】列出所有分成三组的情况,共有6种,进而可得概率.【详解】4支队伍分成三组,有(甲乙、丙、丁),(甲丙、乙、丁),(甲丁、乙、丙),(乙丙、甲、丁),(乙丁、甲、丙),(丙丁、甲、乙),共6种情况,而甲乙在一组共1种情况,∴16P=.故选: D.【点睛】本题考查了古典概型,考查了计算能力,属于一般题目.二、解答题14.(1)①6,②7,③8,④9,⑤8,⑥9;(2)甲乙两位同学的转换分都为87分,看法答案见解析;(3)1 5 .【分析】(1)根据已知数据与茎叶图的关系得出答案.(2)根据高考实测的转换赋分模拟公式及结果得出答案.(3)列举法写出所有基本事件,然后按概率公式计算.【详解】解:(1)由题意知①6②7③8④9⑤8⑥9(2)甲同学选考政治学科可以的等级A,根据等比例转换赋分公式:9882100 828186TT--=--得T=87乙同学选考化学学科可以的等级A,根据等比例转换赋分公式:10091100 919086TT--=--得T=87故甲乙两位同学的转换分都为87分.从公平性的角度谈谈你对新高考这种“等级转换赋分法”的看法:一,从茎叶图可得甲乙同学原始分都排第三,转换后都是87分,因此高考这种“等级转换赋分法”具有公平性与合理性.二,甲同学与乙同学原始分差9分,但转换后都是87分,高考这种“等级转换赋分法”对尖子生不利.(3)政治学科等级为A的学生有82,84,92根据等比例转换赋分公式:87,88,95该校化学学科等级为A 的学生有91,94,98根据等比例转换赋分公式:87,92,97 设转换分都不少于91分为M法一:(列举法)所有基本事件:(82,84)(82,92)(82,91)(82,94))(82,98)(84,92)(84,91)(84,94)(84,98)(92,91)(92,94)(92,98)(91,94) (91,98)(94,98)共15个基本事件,时间M 包含3个基本事件 所以P (M )=31155= 法二:政治学科等级为A 的学生有82,84,92三人,转换分不少于91分有1人;政治学科等级为A 的学生有91,94,98三人,转换分不少于91分有2人.由古典概型23261()5C P M C ==.【点睛】思路点睛:此题是概率统计综合题,需要理清题目信息,正确理解相关概念. 15.(1)85m =;(2)57. 【分析】(1)计算出各产品等级的频率,利用中位数左边的矩形面积之和为0.5可求得m 的值; (2)计算得出7件产品中A 级品共3件,分别记为1A 、2A 、3A ,B 级品共4件,分别记为1B 、2B 、3B 、4B ,列举出所有的基本事件,并确定事件“所抽的2件产品中至少有1件A 级品”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)当6n =时,[)60,70k ∈,1100M =,频率为11100.1100p =⨯=; 当7n =时,[)70,80k ∈,150M =,频率为21100.250p =⨯=; 当8n =时,[)80,90k ∈,125M =,频率为31100.425p =⨯=. 各产品等级的频率如下表所示:0.10.20.50.10.20.4+<<++,80,90m ∴∈,所以,800.10.20.40.510m -++⨯=,解得85m =; (2)所抽取的7件产品中,A 级品的数量为0.3730.30.4⨯=+,分别记为1A 、2A 、3A ,B 级品的数量为4,分别记为1B 、2B 、3B 、4B ,从这7件产品中任取2件产品,所有的基本事件有:12A A 、13A A 、11A B 、12A B 、13A B 、14A B 、23A A 、21A B 、22A B 、23A B 、24A B 、31A B 、32A B 、33A B 、34A B 、12B B 、13B B 、14B B 、23B B 、24B B 、34B B ,共21个基本事件,其中,事件“所抽的2件产品中至少有1件A 级品”包含15个基本事件, 因此,所求事件的概率为155217P ==. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)数状图法; (4)排列组合数的应用. 16.(1)256种;(2)916;(3)23种. 【分析】(1)用分步乘法计数原理计算,考虑每个球的放法可得;(2)选取2球放在一起作为一个球,共3个球放到3个盒子中,用排列求得放法后由古典概型概率公式可计算出概率;(3)4个球的全排列数减去编号全相同的排法1即可得. 【详解】(1)每个球都有4种方法,故有4444256⨯⨯⨯=种(2)从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有2344144C A =种不同的放法.概率为:144925616= (3)每个盒子不空,共有4424A =,24123-=种.【点睛】关键点点睛:本题考查计数原理,古典概型,排列的应用.难点是事件“4个盒子中恰有一个盒子没放球”,解题关键是确定完成这件事的方法,4个球放到3个盒子中,其中有一个盒子中必有2个球,由此可选取2个球放在一起作为一个球,4个球看作3个球放入4个盒子中的3个中,用排列知识可求解. 17.(Ⅰ)样本空间见解析;(Ⅱ)25;(Ⅲ)45. 【分析】(Ⅰ)给6名医护人员进行编号,使用列举法得出样本空间;(Ⅱ)列举出符合条件的基本事件,根据古典概型的概率公式计算概率; (Ⅲ)列举出对立事件的基本事件,根据对立事件概率公式计算概率. 【详解】。

高二数学概率与统计练习题及答案

高二数学概率与统计练习题及答案

高二数学概率与统计练习题及答案1. 如下是一个班级学生的数学成绩表:75, 60, 92, 80, 85, 70, 90, 55, 78, 82计算这组数据的平均数。

解答:平均数即为所有数据的总和除以数据的个数。

计算该组数据的平均数:(75 + 60 + 92 + 80 + 85 + 70 + 90 + 55 + 78 + 82) / 10 = 787 / 10 = 78.7因此,班级学生的数学成绩的平均数为78.7。

2. 一副扑克牌中有52张牌,其中有4种花色(黑桃、红心、梅花、方块),每种花色有13张牌(分别是A、2、3、4、5、6、7、8、9、10、J、Q、K)。

从这副扑克牌中随机抽取一张牌,请问抽到的牌是红心的概率是多少?解答:红心牌的数量为13张,整副牌共有52张。

使用概率的定义,即事件发生的次数除以可能发生的总次数。

因此,抽到红心牌的概率为:13/52 = 1/4 = 0.253. 一个骰子有六个面,上面的点数分别为1、2、3、4、5、6。

现在将这个骰子掷三次,请问恰好掷出两次点数为4的概率是多少?解答:掷三次恰好掷出两次点数为4,意味着有两次点数为4,第三次不是点数为4。

第一次掷出点数4的概率为1/6,第二次掷出点数4的概率同样为1/6,而第三次不是4的概率为5/6。

因此,恰好掷出两次点数为4的概率为:(1/6) * (1/6) * (5/6) = 5/2164. 有一个装有20个球的箱子,其中5个球是红色,8个球是蓝色,剩下的是白色。

现在从箱子中随机取出两个球,不放回,问两个球都是红色的概率是多少?解答:第一次取出红色的概率为5/20,取出后不放回,第二次取出红色的概率为4/19。

因此,两个球都是红色的概率为:(5/20) * (4/19) = 1/19 ≈ 0.05265. 在一次考试中,某班级中的学生考试成绩的频数分布如下所示:成绩范围频数60-70 570-80 1280-90 1090-100 3请问这些学生中考试成绩在80分以上的概率是多少?解答:考试成绩在80分以上的学生数为10+3=13人。

2021-2022高二数学北师大版选修2-3单元测评:第二章 概 率 A Word版含解析

2021-2022高二数学北师大版选修2-3单元测评:第二章 概 率 A Word版含解析

其次章测评A(基础过关卷)(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分) 1.离散型随机变量X则c 等于( )A.0.1B.0.24C.0.01D.0.76 解析:c=1-(0.2+0.3+0.4)=0.1. 答案:A2.已知离散型随机变量X 等可能取值1,2,3,…,n ,若P (1≤X ≤3)=15,则n 的值为( )A .3B .5C .10D .15 解析:由于X 等可能取值1,2,3,…,n ,∴P (1≤X ≤3)=P (X=1)+P (X=2)+P (X=3)=1n +1n +1n =3n =15.∴n=15. 答案:D3.正态分布N 1(μ1,σ12),N 2(μ2,σ22),N 3(μ3,σ32)(其中σ1,σ2,σ3均大于0)所对应的密度函数图像如图所示,则下列说法正确的是( )A .μ1最大,σ1最大B .μ3最大,σ3最大C .μ1最大.σ3最大D .μ3最大,σ1最大解析:在正态曲线N (μ,σ2)中,x=μ为正态曲线的对称轴,结合图像可知,μ3最大;又参数σ确定了曲线的外形:σ越大,曲线越“矮胖”,σ越小,曲线越“高瘦”.故由图像知σ1最大.故选D .答案:D4.设听从二项分布X~B (n ,p )的随机变量X 的均值与方差分别是15和454,则n ,p 的值分别是( )A.50,14 B.60,14C.50,34D.60,34解析:由(np =15,np (1-p )=454,得(p =14,n =60.答案:B5.若X 是离散型随机变量,P (X=x 1)=23,P (X=x 2)=13,且x 1<x 2.又已知EX=43,DX=29,则x 1+x 2的值为( ) A.53 B.73C.3D.113解析:∵EX=23x 1+13x 2=43,∴x 2=4-2x 1.DX=(43-x 1)2×23+(43-x 2)2×13=29.∵x 1<x 2, ∴{x 1=1,x 2=2. ∴x 1+x 2=3. 答案:C6.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为( )A.0.9B.0.2C.0.7D.0.5解析:设大事A ,B 分别表示甲、乙飞行员击中敌机,则P (A )=0.4,P (B )=0.5,大事恰有一人击中敌机的概率为P (A B +A B )=P (A )·(1-P (B ))+(1-P (A ))·P (B )=0.5.答案:D7.将三颗骰子各掷一次,设大事A 为“三个点数都不相同”,大事B 为“至少消灭一个6点”,则概率P (A|B )等于( )A .6091B .12C .518D .91216解析:由于P (B )=1-125216=91216,P (AB )=C 52A 33216=60216,所以P (A|B )=P (AB )P (B )=6091.答案:A8.假设每一架飞机的引擎在飞行中消灭故障的概率为1-p ,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4引擎飞机更平安,则p 的取值范围是( )A .(23,1) B .(13,1) C .(0,23)D .(0,13)解析:4引擎飞机正常运行的概率为C 43p 3(1-p )+p 4,2引擎飞机正常运行的概率为C 22p 2,由题意得C 43p 3(1-p )+p 4>C 22p 2,解得13<p<1.答案:B9.如图,三行三列的方阵中有9个数a ij (i ,j=1,2,3),从中任取三个数,则至少有两个位于同行或同列的概率是( )(a 11 a 12 a 13a 21 a 22 a 23a 31 a 32 a 33) A .37 B .47 C .114 D .1314解析:从题图所示的9个数中任取三个数,取法有C 93=84种,这三个数中没有任何两个数同行或同列的取法有6种,故至少有两个位于同行或同列的概率为1-684=1314.答案:D10.一个盒子装有6张卡片,上面分别写着如下6个定义域为R 的函数:f 1(x )=x ,f 2(x )=x 2,f 3(x )=x 3,f 4(x )=sin x ,f 5(x )=cos x ,f 6(x )=2.现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片,则停止抽取,否则连续进行,则抽取次数ξ的均值为()A .74B .7720C .34D .73解析:由于f 2(x ),f 5(x ),f 6(x )为偶函数,所以随机变量ξ可取1,2,3,4. P (ξ=1)=C 31C 61=12,P (ξ=2)=C 31C 31C 61C 51=310, P (ξ=3)=C 31C 21C 31C 61C 51C 41=320,P (ξ=4)=C 31C 21C 11C 31C 61C 51C 41C 31=120.所以ξ的分布列为4故E ξ=1×12+2×310+3×320+4×120=74.答案:A二、填空题(本大题共5小题,每小题5分,共25分)11.如图,A ,B ,C 表示3种开关,设在某段时间内它们正常工作的概率分别是0.9,0.8,0.7,则系统中至少有1个开关能正常工作的概率是 .解析:∵系统中3个开关都不能正常工作的概率为(1-0.9)(1-0.8)(1-0.7)=0.006, ∴系统中至少有1个开关能正常工作的概率为1-0.006=0.994. 答案:0.99412.将一颗骰子连掷100次,则6点消灭次数X 的均值EX= .解析:这是100次独立重复试验,X 符合二项分布,即X~B (100,16),故EX=100×16=503.答案:50313.某离散型随机变量X且EX=1.5,则a-b= .解析:∵{a +b =0.8,a +2b +0.3=1.5,∴{a =0.4,b =0.4. ∴a-b=0. 答案:014.某班有50名同学,一次考试后数学成果ξ(ξ∈N )近似听从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估量该班同学数学成果在110分以上的人数为 .解析:由题意知,P (ξ>110)=1-2P (90≤ξ≤100)2=0.2,所以估量该班同学数学成果在110分以上的人数为0.2×50=10.答案:1015.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则E ξ= (结果用最简分数表示).解析:由题意,ξ的可能取值为0,1,2,则P (ξ=0)=C 52C 72=1021,P (ξ=1)=C 51C 21C 72=1021,P (ξ=2)=C 22C 72=121. ∴ξ的分布列为2∴E ξ=0×1021+1×1021+2×121=1221=47.答案:47三、解答题(本大题共4小题,共25分)16.(6分)袋中有5个大小相同的小球,其中1个白球和4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数X 的分布列.解:取球次数X 是一个随机变量,X 的全部可能值是1,2,3,4,5.P (X=1)=15=0.2,P (X=2)=45×14=0.2,P (X=3)=45×34×13=0.2, P (X=4)=45×34×23×12=0.2, P (X=5)=45×34×23×12×11=0.2. 于是,我们得到随机变量X17.(6分):请小牛同学计算ξ的均值,尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,求小牛给出的正确答案E ξ.解:设P (ξ=1)=P (ξ=3)=a ,P (ξ=2)=b ,则2a+b=1. 于是,E ξ=a+2b+3a=2(2a+b )=2.18.(6分)某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:(1)至少有1株成活的概率; (2)两种大树各成活1株的概率.解:设A k 表示第k 株甲种大树成活,k=1,2;设B l 表示第l 株乙种大树成活,l=1,2,则A 1,A 2,B 1,B 2相互独立,且P (A 1)=P (A 2)=56,P (B 1)=P (B 2)=45.(1)至少有1株成活的概率为1-P (A 1A 2B 1B 2)=1-P (A 1)·P (A 2)·P (B 1)·P (B 2)=1-(16)2×(15)2=899900.(2)由独立重复试验中大事发生的概率公式知,两种大树各成活1株的概率为p=C 21×56×16×C 21×45×15=1036×825=445.19.(7分)A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.依据市场分析,X 1和X 2的分布列分别为X511 % 0%P 0.80.2(1)在A ,B 两个项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差DY 1,DY 2; (2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.〔注:D (aX+b )=a 2DX 〕解:(1)由题设可知Y 1和Y 2的分布列分别为Y15 10 P 0.8.2EY 1=5×0.8+10×0.2=6,DY 1=(5-6)2×0.8+(10-6)2×0.2=4; EY 2=2×0.2+8×0.5+12×0.3=8,DY 2=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.(2)f (x )=D (x 100Y 1)+D (100-x100Y 2) =(x100)2DY 1+(100-x 100)2DY 2=41002[x 2+3(100-x )2] =41002(4x 2-600x+3×1002). 当x=6002×4=75时,f (x )=3为最小值.。

高二数学 概率练习题

高二数学 概率练习题

高二数学 概率练习题(1)1.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )A .1/7B .2/7C .3/7D .4/72.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于 ( )A.2/7B.3/8C.3/7D.9/283.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是 ( )A .5/12B .1/2C .7/12D .5/64.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是 ( ) A .1/22 B .1/11 C .3/22 D .2/11 5.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11 9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( ) (A )1 (B )2 (C )3 (D )46.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。

现分别从甲、乙两袋中各随机抽取1个球,则取出的两球是红球的概率为______(答案用分数表示)7.某篮运动员在三分线投球的命中率是1/2,他投球10次,恰好投进3个球的概率 8.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 . 9.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法有 种10.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是11、在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。

高二数学概率综合试题

高二数学概率综合试题

高二数学概率综合试题1.先后抛掷2枚均匀的一分、二分的硬币,观察落地后硬币的正、反面情况,则下列事件包含3个基本事件的是 ()A.“至少一枚硬币正面向上”;B.“只有一枚硬币正面向上”;C.“两枚硬币都是正面向上”;D.“两枚硬币一枚正面向上,另一枚反面向上”.【答案】A【解析】先后抛掷2枚均匀的一分、二分的硬币的基本事件有{正,正}、{正,反}、{反,正}、{反,反},故“至少一枚硬币正面向上”的目标事件有{正,正}、{正,反}、{反,正},故选A.【考点】做一次试验的基本事件个数.2.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:为了检验“喜欢玩电脑游戏与认为作业多”是否有关系,根据表中数据,得到=4.84值,对照临界值表,有的把握认为“喜欢玩电脑游戏与认为作业多”之间有相关关系.【答案】95%【解析】根据列联表所给的数据,代入求观测值的公式得到=4.84值,因为4.84>3.841,∴喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为95%.【考点】本题考查了独立性检验的运用点评:本题是一个基础题,在计算观测值时,数字比较大,需要认真完成,查表即可.3.为了考察某种中药预防流感效果,抽样调查40人,得到如下数据:服用中药的有20人,其中患流感的有2人,而未服用中药的20人中,患流感的有8人。

(1)根据以上数据建立列联表;(2)能否在犯错误不超过0.05的前提下认为该药物有效?参考0.500.400.250.150.100.050.0250.0100.0050.001()【答案】(1)(1)列联表(2)在犯错误不超过0.05的前提下认为该药物有效【解析】解:(1)列联表患流感未患流感总计………6分(2)根据列联表,计算:所以在犯错误不超过0.05的前提下认为该药物有效 12分【考点】独立性检验点评:主要是考查了独立性检验的思想的运用,属于基础题。

4.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X表示取出竹签的最大号码,则EX的值为 .【答案】4.5【解析】解:从中任取3支共有10种不同的取法,由题意可得:X可能取得数值为:3,4,5,当X=3时表示取出竹签的最大号码为3,其包含的事件有1个,所以P(X=3)=,当X=4时表示取出竹签的最大号码为4,其包含的事件有3个,所以P(X=4)=,当X=5时表示取出竹签的最大号码为5,其包含的事件有6个,所以P(X=5)=,所以EX=3×+4×5×=4.5.故答案为4.5【考点】离散型随机变量点评:本题主要考查离散型随机变量的期望,以及古典概率模型.5.甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.(1)求的值.(2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.【答案】(1)(2)0123【解析】(1)记事件=”只有甲破译出密码”,可解得 3分(2) 的可能取值为0、1,、2、3;分8分10分【考点】独立事件的概率点评:主要是考查了独立事件的概率的公式以及分布列的求解,属于基础题。

高二数学概率试题

高二数学概率试题

高二数学概率试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【答案】A【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.2.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛,答对4题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(Ⅰ)求选手甲回答一个问题的正确率;(Ⅱ)求选手甲可以进入决赛的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】解题思路:(Ⅰ)利用对立事件的概率求解;(Ⅱ)利用相互独立事件同时发生的概率公式求解(Ⅲ)利用二项分布的概率公式和互斥事件的概率公式求解.规律总结:涉及概率的求法,要掌握好基本的概率模型,正确判断概率类型,合理选择概率公式. 试题解析:(1)(Ⅰ)设选手甲答对一个问题的正确率为,则故选手甲回答一个问题的正确率(Ⅱ)选手甲答了4道题进入决赛的概率为;(Ⅲ)选手甲答了5道题进入决赛的概率为;选手甲答了6道题进入决赛的概率为;故选手甲可进入决赛的概率.【考点】1.互斥事件与对立事件;2.二项分布.3.将二颗骰子各掷一次,设事件A=“二个点数不相同”,B=“至少出现一个6点”,则概率等于()A.B.C.D.【答案】A【解析】由条件概率计算公式:,,要求点数至少含有6且点数不同,含有6有11中,而其中相同的就一种,故,【考点】条件概率的计算.4.为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:已知在全班48人中随机抽取1人,抽到关注NBA 的学生的概率为2/3 ⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA 与性别有关?⑵现从女生中抽取2人进一步调查,设其中关注NBA 的女生人数为X ,求X 的分布列与数学期望. 附:,其中【答案】(1)关注NBA 与性别有关;(2)分布列(略),E (X )=1.【解析】(1)本小题独立性检测的应用,本小题的关键是计算出的观测值,和对应的临界值,根据关注NBA 的学生的概率为,可知关注NBA 的学生为32(估计值).根据条件填满表格,然后计算出,并判断其与的大小关系,得出结论.(2)对于分布列问题:首先应弄清随机变量是谁以及随机变量的取值范围,然后就是每个随机变量下概率的取值,最后列表计算期望. 试题解析:(1)将列联表补充完整有:由,计算可得4分因此,在犯错的概率不超过0.05的前提下认为学生关注NBA 与性别有关,即有把握认为关注NBA 与性别有关 6分 (2)由题意可知,X 的取值为0,1,2,,,9分所以X 的分布列为)=1. 12分【考点】(1)独立性检测应用;(2)随机变量的分布列与期望.5.实验北校举行运动会,组委会招墓了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10 人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成以下列联表:(2)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?(3)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率.参考公式:(其中)没有关联90%95%99%【答案】(1)见解析;(2)性别与喜爱运动没有关联;(3).【解析】(1)独立性检验关键是计算出,并同概率表作对比,选择适合的临界值,得出是否具有相关性结论;(2)古典概型概率的计算,间接法:“1”减去既没有甲乙的概率.试题解析:(1)由已知得:喜爱运动不喜爱运动总计(2)由已知得:,则:(选择第一个).则:性别与喜爱运动没有关联. 8分(3)记不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取为事件A,由已知得:从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各抽取1人共有种方法,其中不喜爱运动的女生甲及喜爱运动的女生乙没有一人被选取的共有种方法,则:12分【考点】(1)独立性检测;(2)古典概型.6.一个口袋中装有大小形状完全相同的红色球个、黄色球个、蓝色球个.现进行从口袋中摸球的游戏:摸到红球得分、摸到黄球得分、摸到蓝球得分.若从这个口袋中随机地摸出个球,恰有一个是黄色球的概率是.⑴求的值;⑵从口袋中随机摸出个球,设表示所摸球的得分之和,求的分布列和数学期望.【答案】(1),(2)的分布列为:.【解析】(1)本小题为古典概型,基本事件的种数为:,事件:从口袋中随机地摸出个球,有一个是黄色球的方法数为:,即可构建关于的方程;(2)易知取值为,利用古典概型概率公式,易求的每个取值对应的概率,从而可列出分布列,并求出数学期望.试题解析:⑴由题意有,即,解得;⑵取值为.则,,,,的分布列为:故.【考点】古典概型概率公式,分布列,数学期望公式.7.设随机变量服从,则的值是()A.B.C.D.【答案】A【解析】因为随机变量服从,所以,故选A.【考点】二项分布.8.某学校从4名男生和2名女生中任选3人作为参加上海世博会的志愿者,设随机变量X表示所选3人中女生的人数,则P(X≥1)=________.【答案】【解析】P(X≥1)=P(X=1)+P(X=2)=+=9.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【答案】(1)76.4 (2)0.7【解析】解:(Ⅰ).(Ⅱ)(i)这100天的平均利润为(ii) 销量为16枝时,利润为75元,故当天的利润不少于75元的概率为【考点】函数与概率点评:主要是考查了分段函数与均值以及概率的求解,属于中档题。

(典型题)高中数学必修三第三章《概率》测试题(包含答案解析)(1)

(典型题)高中数学必修三第三章《概率》测试题(包含答案解析)(1)

一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B .13C .35D .233.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .344.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-5.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4136.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )A .916B .58C .181288D .5127.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35 C .34D .128.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .239.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为 A .25B .35C .38D .5810.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+11.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为26,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为20,现从1、2、3、4、5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .310B .15C .110D .32012.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()3323π- B ()323π-C ()323π+ D ()23323ππ-+二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.15.一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为______.16.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.17.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.18.在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为 .19.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.20.在边长为2的正△ABC 所在平面内,以A 3AB ,AC 于D ,E.若在△ABC 内任丢一粒豆子,则豆子落在扇形ADE 内的概率是________.三、解答题21.某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[)0,10,[)10,20,[)20,30,[)30,40,[]40,50.(1)求频率分布直方图中a的值;(2)从统计学的角度说明学校是否需要推迟5分钟上课;(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求这两个学生的单程时30,40上的概率.间均落在[)22.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?23.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)24.安庆市某中学教研室从高二年级随机抽取了50名学生的十月份语文成绩(满分100分,成绩均为不低于40分的整数),得到如图所示的频率分布直方图.(1)若该校高二年级共有学生1000人,试估计十月份月考语文成绩不低于60分的人数; (2)为提高学生学习语文的兴趣,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲乙恰好被安排在同一小组的概率.25.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a 的值,并由频率分布直方图估计该单位职工一天步行数的中位数; (2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数; (3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.26.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-. (1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭,可以求得sin()1θϕ+=,tan 2ϕ=,求出小正方形的边长和直角三角形两直角边的长,进而得到大正方形的边长,然后根据几何概型概率公式求解即可. 【详解】 由πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭可得sin 2cos 5θθ+=, 即5sin()5θϕ+=,即sin()1θϕ+=,且tan 2ϕ=,所以2πθϕ+=,所以直角三角形较大的锐角为ϕ,较小的锐角为θ,如图,设小正方形的边长为a ,直角三角形较大的锐角为θ、较大的锐角为为ϕ, 较小的直角的边长b ,则直角三角形较大的直角边长为+a b ,∵tan 2a bbϕ+==, ∴a b =,∴22(2)5a a a +=, 由几何概型概率公式可得,所求概率为2215(5)P a ==. 故选:B . 【点睛】解答几何概型概率的关键是分清概率是属于长度型的、面积型的、还是体积型的,然后再根据题意求出表示基本事件的点构成的线段的长度(或区域的面积、空间几何体的体积),最后根据公式计算即可.2.A解析:A 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可. 【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A. 【点睛】本题主要考查了古典概型,基本事件,属于容易题.3.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.4.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-.故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.5.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.6.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=, 这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.7.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.8.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.9.D解析:D 【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。

高二数学概率测试题.

高二数学概率测试题.

2021年高二数学概率测试题单位:乙州丁厂七市润芝学校时间:2022年4月12日创编者:阳芡明一、选择题〔本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的。

〕1.甲、乙、丙3人参加一次考试,他们合格的概率分别为544332、、,那么恰有2人合格的概率是 〔 〕A .52B .127C .3013D . 61 2.甲、乙两人HY 地解答同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是〔 〕A .21p pB .)1()1(1221p p p p -+-C .1-21p pD .)1)(1(121p p ---3.假如A 、B 是互斥事件,那么 〔 〕A .A+B 是必然事件 B .B A + 是必然事件C .B A + 一定不互斥D .A 与B 可能互斥,也可能不互斥4.正六边形的中心和顶点一共7个点,从中取3个点,该三点一共线的概率为 〔 〕A .701 B .353 C .351 D .323 5.甲、乙、丙3人射击命中目的的概率分别为121,41,21,如今3人同时射击同一目的,那么目的被击中的概率是 〔 〕A .961B .9647C .3221D .656.甲、乙、丙3位同学用计算机联网学习数学,每天上课后HY 完成6道自我检测题,甲答及格的概率为108,乙答及格的概率为106,丙答及格的概率为107,3人各答1次,那么3人中只有1人答及格的概率为 〔 〕A .25047B .12542C .203D .51 7.一患者服用某种药品后被治愈的概率为95%,那么患有一样病症的4位患者中至少有3位被治愈的概率为 〔 〕A .0.86B .0.90 C8.有100张卡片〔1号到100号〕,从中任取1张,取到的卡号是7的倍数的概率为〔 〕A .507B .1007C .487D .10015 9.将一枚硬币连掷5次,假如出现k 次正面的概率等出现k +1次正面的概率,那么k 的值是〔 〕A .0B .1C .2D .310.甲、乙、丙、丁四人做互相传球练习,第一次甲传给其他三人中的一人,第二次由拿球者再传给其他三人中的一人,这样一共传了4次,那么第4次仍传回到甲的概率是 〔 〕A .277B .275C .87D .6421 11.某地举行一次民歌大奖赛时,六个各有一对歌手参加决赛,现要选出4名优胜者,那么选出的4名选手中有且只有两人是同一份的歌手的概率为 〔 〕A .3316B .12833C .3332D .114 12.如图1,某电路中有K 1、K 2、K 3、K 4、K 5一共五个焊接点,在闭合电路时,每个焊接点不通电的概率为p ,那么灯泡不亮的概率为〔 〕A .5pB .32p p +C .5)1(1p --D .)1)(1(132p p --- 图1二、填空题〔本大题一一共4小题,每一小题4分,一共16分,把正确答案填在题中横线上。

2022版人教A版高中数学必修第二册练习题--第十章 概率达标检测

2022版人教A版高中数学必修第二册练习题--第十章  概率达标检测

2022版人教A版高中数学必修第二册--本章达标检测(满分:150分;时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是(),则比赛5场,甲胜3场A.甲、乙两人比赛,甲胜的概率为35B.某医院对一种疾病的治愈率为10%,前9个病人没有被治愈,则第10个病人一定被治愈C.随机试验的频率与概率相等D.天气预报中预报某天降水的概率为90%,是指降水的可能性是90%2.一个盒子内装有大小、形状相同的红球、白球和黑球若干个,从中摸出1个球,摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3B.0.55C.0.7D.0.753.若A+B发生的概率为0.6,则A,B同时发生的概率为()A.0.6B.0.36C.0.24D.0.44.2020年,新型冠状病毒引发的疫情牵动着亿万人的心,八方驰援战疫情,众志成城克时难,社会各界支援湖北共抗新型冠状病毒肺炎,重庆某医院派出3名医生,2名护士支援湖北,现从这5名医护人员中任选2名定点支援湖北某医院,则恰有1名医生和1名护士被选中的概率为()A.0.7B.0.4C.0.6D.0.35.采用随机模拟的方法估计某人射击时命中目标的概率,先由计算器给出0~9之间取整数的随机数,指定0,1,2,3,4表示命中目标,5,6,7,8,9表示未命中目标,以5个随机数为1组,代表射击5次的结果,经随机模拟产生10组随机数如下: 74253029514072298574694714698203714261629567442813根据以上数据估计此人射击5次至少命中目标3次的概率为()A.35B.12C.25D.7106.排球比赛的规则是5局3胜制(无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是()A.49B.1927C.1127D.40817.如图是由一个圆、一个三角形和一个长方形构成的组合图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个图形颜色不全相同的概率为()A.34B.38C.14D.188.为了调查某厂2 000名工人生产某种产品的能力,随机抽查了20名工人某天生产该产品的数量(单位:个),产品数量(单位:个)的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20个产品的工人中随机选取2名进行培训,则这2名工人不在同一组的概率是()A.110B.715C.815D.1315二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分) 9.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品,若用C 表示抽到次品这一事件,则下列说法中不正确的是 ( ) A.事件C 发生的概率为110B.事件C 发生的频率为110C.事件C 发生的概率接近110D.每抽10台电视机,必有1台次品10.袋中有大小、形状相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则下列事件的概率不为89的是 ( )A.颜色相同B.颜色不全相同C.颜色全不相同D.无红球 11.从装有2个红球和2个黑球的袋中任取2个小球,则下列结论正确的是( )A.“至少有一个红球”和“至少有一个黑球”是互斥事件B.“恰有一个黑球”和“都是黑球”是互斥事件C.“恰有一个红球”和“都是红球”是对立事件D.“至少有一个黑球”和“都是红球”是对立事件 12.已知事件A ,B ,且P (A )=0.6,P (B )=0.3,则下列结论正确的是 ( )A.如果B ⊆A ,那么P (A ∪B )=0.6,P (AB )=0.3B.如果A 与B 互斥,那么P (A ∪B )=0.9,P (AB )=0C.如果A 与B 相互独立,那么P (A ∪B )=0.9,P (AB )=0D.如果A 与B 相互独立,那么P (A B )=0.28,P (A B )=0.12三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.连续抛掷一枚质地均匀的硬币三次,事件A 为“三次反面向上”,事件B 为“恰有一次正面向上”,事件C 为“至少两次正面向上”,则P (A )+P (B )+P (C )= . 14.某池塘管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘有 条鱼.15.已知三个事件A ,B ,C 两两互斥,且P (A )=0.3,P (B )=0.6,P (C )=0.2,则P (A ∪B ∪C )= .16.甲、乙二人进行射击游戏,目标靶上有三个区域,分别涂有红、黄、蓝三色,已知甲击中红、黄、蓝三区域的概率依次是15,25,15,乙击中红、黄、蓝三区域的概率依次是16,12,14,二人射击情况互不影响,若甲、乙各射击一次,则二人命中同色区域的概率为 ,二人命中不同色区域的概率为 .四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某校参加夏令营的有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其所属年级情况如下表:高一年级高二年级高三年级男同学 A B C女同学XYZ现从这6名同学中随机选出2名参加知识竞赛(每人被选到的可能性相同).(1)用表中字母写出这个试验的样本空间;(2)设M为事件“选出的2名来自不同年级且恰有1名男同学和1名女同学”,写出事件M的样本点,并求事件M发生的概率.18.(本小题满分12分)某企业在生产过程中,测量纤维产品的纤度(表示纤维粗细的一种量),得到100个数据,将数据分组如下表:分组[1.30,1.34)[1.34,1.38)[1.38,1.42)[1.42,1.46)[1.46,1.50)[1.50,1.54]频数425302910 2(1)作出频率分布表,并画出频率分布直方图;(2)估计纤度落在区间[1.38,1.50)内的概率及纤度小于1.40的概率.19.(本小题满分12分)2020年3月20日,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称《意见》),《意见》中确定了劳动教育内容要求,要求普通高中要注重围绕丰富职业体验,开展服务性劳动、参加生产劳动,使学生熟练掌握一定劳动技能,理解劳动创造价值,具有劳动自立意识和主动服务他人、服务社会的情怀.某中学鼓励学生暑假期间多参加社会公益劳动,在实践中让学生利用所学知识技能服务他人和社会,强化社会责任感,为了调查学生参加公益劳动的情况,学校从全体学生中随机抽取100名学生,经统计得到他们参加公益劳动的总时间均在15~65小时内,其数据分组依次为[15,25),[25,35),[35,45),[45,55),[55,65],得到频率分布直方图如图所示,其中a-b=0.028.(1)求a,b的值,并估计这100名学生参加公益劳动的总时间(小时)的平均数(同一组中的数据可用该组区间的中点值作代表);(2)学校要在参加公益劳动总时间(小时)在[35,45)、[45,55)内的学生中用比例分配的分层随机抽样的方法选取5名学生进行感受交流,再从这5名学生中随机抽取2名进行感受分享,求这2名来自不同组的概率.20.(本小题满分12分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还要从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则称该学生的选考方案待确定.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:性别选考方案确定情况物理化学生物历史地理政治选考方案确884211男生定的有8人选考方案待确定的有6人430100女生选考方案确定的有10人896331选考方案待确定的有6人541001(1)估计该学校高一年级选考方案确定的学生中选考生物的人数;(2)假设男、女生选择选考科目是相互独立的.从选考方案确定的8名男生和10名女生中各随机选出1名,试求该男生和女生的选考方案中都含有历史科目的概率.21.(本小题满分12分)已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:yxA B CA144010B a36bC28834若抽取了n名学生,成绩分为A(优秀),B(良好),C(及格)三个等级,设x,y分别表示数学成绩与物理成绩,例如:表中物理成绩为A等级的共有14+40+10=64(人),数学成绩为B等级且物理成绩为C等级的共有8人.已知x与y均为A等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a,b的值;(2)已知a≥7,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.22.(本小题满分12分)某大学生命科学学院为激发学生积极参与科学探索的热情和兴趣,提高学生生物学实验动手能力,举行生物学实验技能大赛.大赛根据理论笔试和实际操作两部分进行初试,初试部分考试成绩只记“合格”与“不合格”,只有理论笔试和实际操作两部分考试都“合格”者才能进入下一轮的比赛.在初试部分,甲、乙、丙三人在理论考试中“合格”的概率依次为56,23,45,在实际操作考试中“合格”的概率依次为23,34,12,所有考试是否合格相互之间没有影响.(1)假设甲、乙、丙三人同时进行理论笔试与实际操作两项考试,谁进入下一轮比赛的可能性最大?(2)这三人进行理论笔试与实际操作两项考试后,求恰有两人进入下一轮比赛的概率.答案全解全析一、单项选择题1.D概率只是说明事件发生的可能性大小,其发生具有随机性.故选D.2.D由题意得摸出黑球的概率是1-(0.45+0.25)=0.3,因为从盒子中摸出1个球为黑球与摸出1个球为红球为互斥事件,所以摸出黑球或红球的概率为0.3+0.45=0.75,故选D.3.D A+B发生指A,B中至少有一个发生,它的对立事件为A,B都不发生,即A,B同时发生.故选D.4.C记2名护士分别为A、B,3名医生分别为a、b、c,所有的基本事件有(A,B)、(A,a)、(A,b)、(A,c)、(B,a)、(B,b)、(B,c)、(a,b)、(a,c)、(b,c),共10个,其中事件“恰有1名医生和1名护士被选中”所包含的基本事件有(A,a)、(A,b)、(A,c)、(B,a)、(B,b)、(B,c),共6个,=0.6.故选C.因此所求事件的概率P=6105.A观察可知,随机数74253,02951,40722,03714,26162,42813满足条件,故所求概率约为610=35.6.B最后乙队获胜包含3种情况:(1)第三局乙胜;(2)第三局甲胜,第四局乙胜;(3)第三局和第四局都是甲胜,第五局乙胜.故最后乙队获胜的概率P=13+23×13+(23)2×13=1927,故选B.7.A每一个图形有2种涂法,总的涂色种数为23=8,三个图形颜色完全相同的有2种(全是红色或全是蓝色),则三个图形颜色不全相同的涂法种数为8-2=6.所以三个图形颜色不全相同的概率为68=34.故选A.8.C根据题中频率分布直方图可知,生产产品数量(单位:个)在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4.设生产产品的数量在[10,15)内的2人分别是A,B,[15,20)内的4人分别为C,D,E,F,则从生产低于20个产品的工人中随机选取2名工人的样本点有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),( E,F),共15个,且这15个样本点发生的可能性相等,其中2名工人不在同一组的样本点有(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),共8个,则选取的2名工人不在同一组的概率为815.二、多项选择题9.ACD事件C发生的频率为110,由于只进行了一次试验,故不能得出概率接近110或概率为110的结论,当然每抽10台电视机,必有1台次品也不一定发生.10.ACD有放回地取球3次,试验的样本空间中共27个样本点,其中颜色相同的样本点有3个,其概率为327=19;颜色不全相同的样本点有24个,其概率为2427=89;颜色全不相同的样本点有6个,其概率为627=29;无红球的样本点有8个,其概率为827.故选ACD.11.BD记两个黑球分别为A1,A2,两个红球分别为B1,B2,从中取出2个小球,则所有基本事件如下:A1A2,A1B1,A1B2,A2B1,A2B2,B1B2.至少有一个红球包括基本事件:A1B1,A1B2,A2B1,A2B2,B1B2,至少有一个黑球包括基本事件:A1A2,A1B1,A1B2,A2B1,A2B2,这两个事件有共同的基本事件,故不是互斥事件,故A错误;恰有一个黑球包括基本事件:A1B1,A1B2,A2B1,A2B2,都是黑球包括基本事件A1A2,这两个事件没有共同的基本事件,故是互斥事件,故B正确;恰有一个红球包括基本事件:A1B1,A1B2,A2B1,A2B2,都是红球包括基本事件:B1B2,除了这两个事件包括的基本事件之外,还有事件A1A2,故不是对立事件,故C错误;至少有一个黑球包括基本事件:A1A2,A1B1,A1B2,A2B1,A2B2,都是红球包括基本事件B1B2,这两个事件没有共同的基本事件,且两者包括的基本事件的并集为全部基本事件,故是对立事件,故D正确.故选BD.12.ABD对于A,如果B⊆A,那么P(A∪B)=P(A)=0.6,P(AB)=P(B)=0.3,故A正确;对于B,如果A与B互斥,那么P(A∪B)=P(A)+P(B)=0.9,P(AB)=0,故B正确;对于C,如果A与B相互独立,那么P(AB)=P(A)P(B)=0.18,P(A∪B)=P(A)+P(B)-P(AB)=0.6+0.3-0.18=0.72,故C错误;对于D ,如果A 与B 相互独立,那么P (AB )=P (A )P (B )=0.4×0.7=0.28,P (A B )=P (A )·P (B )=0.4×0.3=0.12,故D 正确.故选ABD . 三、填空题 13.答案 1解析 事件A ,B ,C 之间两两互斥,且A ∪B ∪C 是一枚硬币连掷三次的所有结果, 所以P (A )+P (B )+P (C )=1. 14.答案 750解析 设池塘有n 条鱼,则带标记的鱼的概率为30n,由题意得30n×50=2,∴n =750.15.答案 0.9解析 ∵P (B )=0.6,∴P (B )=1-0.6=0.4,∵A ,B ,C 两两互斥,∴P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.3+0.4+0.2=0.9. 16.答案1760;920解析 设甲射中红、黄、蓝区域的事件分别为A 1,A 2,A 3,乙射中红、黄、蓝区域的事件分别为B 1,B 2,B 3,则P (A 1)=15,P (A 2)=25,P (A 3)=15,P (B 1)=16,P (B 2)=12,P (B 3)=14.∵二人射击情况互不影响, ∴二人命中同色区域的概率为P (A 1B 1+A 2B 2+A 3B 3)=P (A 1)P (B 1)+P (A 2)P (B 2)+P (A 3)P (B 3)=15×16+25×12+15×14=1760;二人命中不同色区域的概率为P (A 1B 2+A 1B 3+A 2B 1+A 2B 3+A 3B 1+A 3B 2)=P (A 1)P (B 2)+P (A 1)P (B 3)+P (A 2)P (B 1)+P (A 2)P (B3)+P (A 3)P (B 1)+P (A 3)P (B 2)=15×12+15×14+25×16+25×14+15×16+15×12=920.四、解答题17.解析(1)这个试验的样本空间为{(A,B),(A,C),(A,X),(A,Y),(A,Z),(B,C),(B,X),(B,Y),(B,Z),(C,X),(C,Y),(C,Z),(X,Y),(X,Z),(Y, Z)}.(4分)(2)由(1)知样本空间中样本点共15个,事件M包含的样本点有(A,Y),(A,Z),(B,X),(B,Z),(C,X),(C,Y),共6个,(7分)因此事件M发生的概率P(M)=615=25.(10分)18.解析(1)根据题意,作频率分布表如下:分组频数频率[1.30,1.34)40.04[1.34,1.38)250.25[1.38,1.42)300.30[1.42,1.46)290.29[1.46,1.50)100.10[1.50,1.54]20.02合计1001.00(2分)频率分布直方图如图:(6分) (2)由(1)中频率分布表,可得纤度落在区间[1.38,1.42)内的频率为0.30,纤度落在区间[1.42,1.46)内的频率为0.29,纤度落在区间[1.46,1.50)内的频率为0.10,故估计纤度落在区间[1.38,1.50)内的概率为0.30+0.29+0.10=0.69. (9分) 由(1)中频率分布表,可得纤度小于1.40的频率为0.04+0.25+0.30×12=0.44,故估计纤度小于1.40的概率为0.44. (12分)19.解析 (1)依题意(0.005+0.011+b +0.028+a )×10=1,故a +b =0.056, (1分) 因为a -b =0.028,所以a =0.042,b =0.014, (3分)故所求平均数为20×0.11+30×0.14+40×0.42+50×0.28+60×0.05=40.2,(5分)所以估计这100名学生参加公益劳动的总时间的平均数为40.2小时. (6分) (2)由题中频率分布直方图可知,参加公益劳动总时间(小时)在[35,45)和[45,55)内的学生比例为0.42∶0.28=3∶2. (7分)则在[35,45)中抽取5×35=3(名),分别记为a ,b ,c ,在[45,55)中抽取5×25=2(名),分别记为M ,N , (8分)则从这5名学生中随机抽取2名的基本事件有(a ,b ),(a ,c ),(a ,M ),(a ,N ),(b ,c ),(b ,M ),(b ,N ),(c ,M ),(c ,N ),(M ,N ),共10个,(10分)这2名来自不同组的基本事件有(a ,M ),(a ,N ),(b ,M ),(b ,N ),(c ,M ),(c ,N ),共6个, (11分)所以所求概率P =610=35. (12分)20.解析 (1)由题表可知,选考方案确定的男生中选考生物的有4名,选考方案确定的女生中选考生物的有6名. (3分)故估计该学校高一年级选考方案确定的学生中选考生物的人数为1018×1830×420=140.(6分)(2)由题表可知,从选考方案确定的8名男生中选出1名,其选考方案中含有历史科目的概率为28=14,(8分)从选考方案确定的10名女生中选出1名,其选考方案中含有历史科目的概率为310.(10分)所以该男生和女生的选考方案中都含有历史科目的概率为14×310=340.(12分)21.解析(1)由题意知14n=0.07,解得n=200,(2分)所以14+a+28200×100%=30%,解得a=18,(4分)易知a+b=30,所以b=12.(6分)(2)由14+a+28>10+b+34得a>b+2.由a+b=30且a≥7,b≥6,得试验的样本空间Ω={(7,23),(8,22),(9,21),…,(24,6)},共18个样本点,(8分)其中a>b+2包含的样本点有(17,13),(18,12),…,(24,6),共8个,(10分)故所求概率P=818=49.(12分)22.解析(1)设“甲进入下一轮比赛”为事件A,“乙进入下一轮比赛”为事件B,“丙进入下一轮比赛”为事件C,则A、B、C两两相互独立,(2分)则P(A)=56×23=59,P(B)=23×34=12,P(C)=45×12=25,(5分)所以P(A)>P(B)>P(C),所以甲进入下一轮比赛的可能性最大.(6分)(2)设“三人进行理论笔试与实际操作两项考试后恰有两人进入下一轮比赛”为事件D ,则D =AB C +ABC +A BC , (8分) 因为P (AB C )=59×12×(1-25)=16,P (A B C )=59×(1-12)×25=19, P (A BC )=(1-59)×12×25=445, (11分) 所以P (D )=P (AB C )+P (A B C )+P (A BC )=16+19+445=1130. (12分)。

(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)

(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)

一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .182.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8πB .16π C .18π-D .116π-4.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5165.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31456.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .357.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .348.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .389.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.18.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++23.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 24.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.25.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数; (2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表); (3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B. 3.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.4.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.5.A解析:A【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:139 25P=⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:237 59P=⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率.【详解】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:1329 515 2P=⨯=,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:2377 5915P=⨯=,∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P=+=+=,故选:A.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.6.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.7.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.8.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C 【分析】 由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.18.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案 23【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即32R =,即3R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为239π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.19.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:5 6【解析】【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解.【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法,所以取出的2个数之差的绝对值小于或等于2的概率为15166 P=-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.20.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.【解析】试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B ,则()2122139189918P B =+++=. 22.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论; (2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 23.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则。

高二数学概率单元测试试题

高二数学概率单元测试试题

高二数学概率单元测试制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题:〔每一小题5分,一共60分〕1.对某电视机厂消费的电视机进展抽样检测,数据如下:那么该厂消费的电视机优等品的概率为A .0.92B .0.94C .D .2.坛子里放有2个白球,3个黑球,从中进展不放回摸球. A 1表示第一次摸得白球,A 2表示第二次摸得白球,那么A 1与A 2是A .互斥事件B .HY 事件C .对立事件D .不HY 事件3.一个学生宿舍里有6名学生,那么6人的生日都在星期天的概率与6个人生日都不在星期天的概率分别为A .716与766 B .766与(76)6 C .776与(76)6 D .716与(76)64.抛两个各面上分别标有1,2,3,4,5,6的均匀的正方体玩具,“向上的两个数之和为3”的概率是A .31 B .61 C .181 D .3615.有2n 个数字,其中一半是奇数,一半是偶数,从中任取两数,那么所取的两数和为偶数的概率为 A .12 B .12n C .121n n -- D .1221n nn C ++ 6.二人HY 地破译一个密码,它们能译出的概率分别为 0.6,,那么可以将此密码译出的概率为A .0.12B .0.42C .0.46D .7.某人投篮的命中率为32,连续投篮5次,那么“至少投中4次〞的概率为 A .243211 B .243112 C .24380 D .243328.射手甲击中靶心的概率为31,射手乙击中靶心的概率为21,甲乙两人各射击一次,那么65等于 A .甲、乙都击中靶心的概率 B .甲、乙恰有一人击中靶心的概率 C .甲、乙至少有一人击中靶心的概率D .甲、乙不全击中靶心的概率9.将一枚硬币连掷5次,假如出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值是 A .0 B .1 C .2 D .310.HY 器摇出的一组中奖号码为8,2,5,3,7,1。

最新人教版高中数学必修第二册第五单元《概率》检测题(含答案解析)(2)

最新人教版高中数学必修第二册第五单元《概率》检测题(含答案解析)(2)

一、选择题1.某地有A ,B ,C ,D 四人先后感染了传染性肺炎,其中只有A 到过疫区,B 确定是受A 感染的.对于C 因为难以判定是受A 还是受B 感染的,于是假定他受A 和B 感染的概率都是12.同样也假定D 受A ,B 和C 感染的概率都是13.在这种假定下,B ,C ,D 中恰有两人直接受A 感染的概率是( ) A .16B .13C .12D .232.如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合{}1,2,3,4中任取3个互不相同的数字,组成一个三位数,则这个三位数是“凸数”的概率为( ) A .23B .112C .16D .133.袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是( )A .恰有1个白球和全是白球B .至少有1个白球和全是黑球C .至少有1个白球和至少有2个白球D .至少有1个白球和至少有1个黑球4.设集合{0,1,2}A =,{0,1,2}B =,分别从集合A 和B 中随机抽取一个数a 和b ,确定平面上的一个点(,)P a b ,记“点(,)P a b 满足a b n +=”为事件n C (04,)n n N ≤≤∈,若事件n C 的概率最大,则n 的可能值为( ) A .2B .3C .1和3D .2和45.下列说法正确的是( )A .由生物学知道生男生女的概率约为0.5,一对夫妇先后生两小孩,则一定为一男一女B .一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C .10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D .10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.16.一个三位数的百位,十位,个位上的数字依次是,,a b c ,当且仅当a b c b >>且时称为“凹数”,若{},,1234a b c ∈,,,,从这些三位数中任取一个,则它为“凹数”的概率是 A .13B .532C .732D .7127.素数分布是数论研究的核心领域之一,含有众多著名的猜想.19世纪中叶,法国数学家波利尼亚克提出了“广义孪生素数猜想”:对所有自然数k ,存在无穷多个素数对(2)p p k +,.其中当1k =时,称(2)p p +,为“孪生素数”,2k =时,称(4)p p +,为“表兄弟素数”.在不超过30的素数中,任选两个不同的素数p 、q (p q <),令事件(){A p q =,为孪生素数},(){B p q =,为表兄弟素数},{()|4}C p q q p =-≤,,记事件A 、B 、C 发生的概率分别为()P A 、()P B 、(C)P ,则下列关系式成立的是( ) A .()()()P A P B P C = B .()()()P A P B P C += C .()()()P A P B P C +> D .()()()P A P B P C +<8.某普通高校招生体育专业测试合格分数线确定为60分,甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为( ) A .0.015 B .0.005C .0.985D .0.9959.如果从1,2,3,4,5中任取2个不同的数,则这2个数的和能被3整除的概率为( ) A .25 B .310C .15D .1210.六个人排队,甲乙不能排一起,丙必须排在前两位的概率为( ) A .760B .16C .1360D .1411.在20张百元纸币中混有4张假币,从中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率是( ) A .335B .338C .217D .以上都不正确12.今年“五一”小长假期间,某博物馆准备举办-次主题展览,为了引导游客有序参观,该博物馆每天分别在10时,13时,16时公布实时观展的人数.下表记录了5月1日至5日的实时观展人数:通常用实时观展的人数与博物馆的最大承载量(同一时段观展人数的饱和量)之比来表示观展的舒适度,50%以下称为“舒适”,已知该博物馆的最大承载量是1万人.若从5月1日至5日中任选2天,则这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率为( ) A .12B .25C .35D .3413.某校3名教师和5名学生共8人去北京参加学习方法研讨会,需乘坐两辆车,每车坐4人,则恰有两名教师在同一车上的概率( ) A .78B .67C .37D .13二、解答题14.6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗埔中随机地抽测了200株树苗的高度(单位:cm ),得到以下频率分布直方图.(1)求直方图中a 的值及众数、中位数; (2)估计苗埔中树苗的平均高度;(3)在样本中从205cm 及以上的树苗中按分层抽样抽出5株,再从5株中抽出两株树苗,其中含有215cm 及以上树苗的概率.15.某班倡议假期每位学生每天至少锻炼一小时.为了解学生的锻炼情况,对该班全部34名学生在某周的锻炼时间进行了调查,调查结果如下表: 锻炼时长(小时) 5 6 7 8 9 男生人数(人) 1 2 4 3 4 女生人数(人)38621(Ⅱ)若从锻炼8小时的学生中任选2人参加一项活动,求选到男生和女生各1人的概率;(Ⅲ)试判断该班男生锻炼时长的方差21s 与女生锻炼时长的方差22s 的大小.(直接写出结果)16.新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动.开学后,某校采用分层抽样的方法从高中三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查. 已知该校高一年级共有学生660人,高三年级共有540人,抽取的样本中高二年级有50人. 下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表.x y z的值(2)求频率分布表中实数,,(3)已知日睡眠时间在区间[6,6.5)内的5名高二学生中,有2名女生,3名男生,若从中任选3人进行面谈,求选中的3人恰好为两男一女的概率.17.某学习研究机构调研数学学习成绩对物理学习成绩的影响,随机抽取了100名学生的数学成绩和物理成绩(单位:分).率;(2)完成下面的2×2列联表.附()()()()()22n ad bcKa b c d a c b d-=++++18.甲、乙两队举行围棋擂台赛,规则如下:两队各出3人,排定1,2,3号.第一局,双方1号队员出场比赛,负的一方淘汰,该队下一号队员上场比赛.当某队3名队员都被淘汰完,比赛结束,未淘汰完的一方获胜.如图表格中,第m行、第n列的数据是甲队第m号队员能战胜乙队第n号队员的概率.3名队员都淘汰的概率;(2)比较第三局比赛,甲队队员和乙队队员哪个获胜的概率更大一些?19.高考改革后,学生除了语数外三门必选外,可在A类科目:物理、化学、生物和B类科目:政治、地理、历史共6个科目中任选3门.(1)求小明同学选A类科目数X的分布列.(2)求小明同学从A类和B类科目中均至少选择1门科目的概率.20.城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):(1)估计这60名乘客中候车时间少于10分钟的人数;(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.21.某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A 、B 、C .经过引种实验发现,引种树苗A 的自然成活率为0.7,引种树苗B 、C 的自然成活率均为()0.60.8p p ≤≤.(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及其数学期望;(2)将(1)中的数学期望取得最大值时p 的值作为B 种树苗自然成活的概率.该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活. ①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元,该农户为了获利期望不低于10万元,问至少要引种B 种树苗多少棵?22.某社区对安全卫生进行问卷调查,请居民对社区安全卫生服务给出评价(问卷中设置仅有满意、不满意).现随机抽取了90名居民,调查情况如下表:(1)利用分层抽样的方法从对安全卫生服务评价为不满意的居民中随机抽取6人,再从这6人中随机抽取2人,求这2人中男、女居民各有1人的概率;(2)试通过计算判断能否在犯错误的概率不超过0.05的情况下认为男居民与女居民对社区安全卫生服务的评价有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.23.5月4日,修水第二届“放肆青春放肆跑”全民健身彩跑活动在信华城举行,全程约5.4km,共有2500余名参与者.某单位为了解员工参加彩跑活动是否与性别有关,从单位随机抽取30名员工进行问卷调查,得到了如下22⨯列联表:已知在这30人中随机抽取1人抽到参加彩跑活动的员工的概率是8 15.(1)完成答题卡上的22⨯列联表,并判断能否有90%的把握认为参加彩跑活动与性别有关?(2)已知参加彩跑的女性中共有4人跑完了全程,若从参加彩跑的6名女性中任选两人,求选出的两人均跑完了全程的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.现有10道题,其中6道甲类题,4道乙类题,小明同学从中任取3道题解答.(Ⅰ)求小明同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.若小明同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.求小明同学至少答对2道题的概率.25.从4名男生和2名女生中任选2人参加抗疫志愿服务活动.(1)设X 表示所选2人中男生的人数,求X 的分布列和数学期望E (X );(2)已知选出了A ,B 这两人参加此次服务活动,A 的服务满意率为0.87,B 的服务满意率为0.91,用“Y A =1,Y B =1,”分别表示对A ,B 的服务满意,“Y A =0,Y B =0,”分别表示对A ,B 的服务不满意,写出方差D (Y A ),D (Y B )的大小关系.(只需写出结论) 26.某电讯企业为了了解某地区居民对电讯服务质量评价情况,随机调查100 名用户,根据这100名用户对该电讯企业的评分,绘制频率分布直方图,如图所示,其中样本数据分组为[)40,50,[)50,60,……[90,100].(1)估计该地区用户对该电讯企业评分不低于70分的概率,并估计对该电讯企业评分的中位数;(结果保留两位有效数字)(2)现从评分在[)40,60的调查用户中随机抽取2人,求2人评分都在[)40,50的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设,,B C D 直接受A 感染为事件B 、C 、D ,分析题意得出()1P B =,1()2P C =,1()3P D =,B ,C ,D 中恰有两人直接受A 感染为事件CD CD +,利用公式求得结果.【详解】根据题意得出:因为直接受A 感染的人至少是B , 而C 、D 二人也有可能是由A 感染的, 设,,B C D 直接受A 感染为事件B 、C 、D , 则事件B 、C 、D 是相互独立的,()1P B =,1()2P C =,1()3P D =, 表明除了B 外,,C D 二人中恰有一人是由A 感染的, 所以12111()()()23232P CD CD P CD P CD +=+=⨯+⨯=, 所以B 、C 、D 中直接受A 传染的人数为2的概率为12, 故选:C. 【点睛】该题考查的是有关概率的问题,涉及到的知识点有随机事件发生的概率,相互独立事件同时发生的概率公式和互斥事件有一个发生的概率公式,属于简单题目.2.D解析:D 【分析】讨论十位上的数为4,十位上的数为3,共8个,再计算概率得到答案. 【详解】当十位上的数为4时,共有236A =个;当十位上的数为3时,共有222A =个,共8个.故34881243p A ===. 故选:D . 【点睛】本题考查了概率的计算,分类讨论是解题的关键.3.B解析:B 【分析】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,进而可分析四个事件的关系; 【详解】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,故①恰有1个白球和全是白球,是互斥事件,但不是对立事件, ②至少有1个白球和全是黑球是对立事件; ③至少有1个白球和至少有2个白球不是互斥事件,④至少有1个白球和至少有1个黑球不是互斥事件, 故选B . 【点睛】本题考查互斥事件和对立事件的关系,对于题目中出现的两个事件,观察两个事件之间的关系,这是解决概率问题一定要分析的问题,本题是一个基础题.4.A解析:A 【分析】列出所有的基本事件,分别求出事件0C 、1C 、2C 、3C 、4C 所包含的基本事件数,找出其中包含基本事件数最多的,可得出n 的值. 【详解】所有的基本事件有:()0,0、()0,1、()0,2、()1,0、()1,1、()1,2、()2,0、()2,1、()2,2,事件0C 包含1个基本事件,事件1C 包含2个基本事件,事件2C 包含3个基本事件,事件3C 包含2个基本事件,事件4C 包含1个基本事件,所以事件2C 的概率最大,则2n =,故选A . 【点睛】本题考查古典概型概率的计算,解题的关键在于列举所有的基本事件,常用枚举法与数状图来列举,考查分析问题的能力,属于中等题.5.D解析:D 【分析】由概率的意义可判断AB 错误,由随机抽样的概念得到D 正确. 【详解】一对夫妇生两小孩可能是(男,男),(男,女),(女,男),(女,女),所以A 不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B 不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到的奖票的概率都是0.1,所以C 不正确;D 正确. 故答案为D. 【点睛】本题考查了概率的意义以及随机抽样法的概念,性质,属于基础题.6.C解析:C 【解析】 【分析】先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解. 【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有44464⨯⨯=个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有3428C ⨯=种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有2416C ⨯=种方法,所以共有凹数8+6=14个, 由古典概型的概率公式得P=1476432=. 故答案为:C 【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.7.D解析:D 【分析】根据素数的定义,一一列举出不超过30的所有素数,共10个,根据组合运算,得出随机选取两个不同的素数p 、q (p q <),有21045C =(种)选法,从而可列举出事件A 、B 、C的所有基本事件,最后根据古典概率分别求出(),()P A P B 和(C)P ,从而可得出结果. 【详解】解:不超过30的素数有2、3、5、7、11、13、17、19、23、29,共10个,随机选取两个不同的素数p 、q (p q <),有21045C =(种)选法,事件A 发生的样本点为(3)5,、(57),、(1113),、(1719),共4个, 事件B 发生的样本点为(37),、(711),、(1317),、(1923),共4个, 事件C 发生的样本点为(2)3,、(25),、(3)5,、(37),、(57),、 (711),、(1113),、(1317),、(1719),、(1923),,共10个,∴4()()45P A P B ==,102()459P C ==, 故()()()P A P B P C +<.故选:D. 【点睛】关键点点睛:本题考查与素数相关的新定义,考查古典概型的实际应用和利用列举法求古典概型,考查组合数的计算,解题的关键在于理解素数的定义,以及对题目新定义的理解,考查知识运用能力.8.D解析:D 【分析】设出每一个每一个考生达标的事件,并求其对立事件的概率,根据相互独立事件的概率的和事件求解出答案. 【详解】设 “甲考生达标” 为事件A , “乙考生达标” 为事件B , “丙考生达标” 为事件C ,则()0.9P A =,()0.8P B =,()0.75P C =,()10.90.1P A =-=,()10.80.2P B =-=,()10.750.25P C =-=,设 “三人中至少有一人达标” 为事件D ,则()()110.10.20.2510.0050.995P D P ABC =-=-⨯⨯=-=, 故选:D. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.9.A解析:A 【分析】从5个数中任取两个不同数,取法为2510C =,列举和能被3整除的情况有4种,利用古典概型得解 【详解】从1,2,3,4,5中任取两个数,取法总数为2510C =这2个数的和能被3整除的情况有:()()()()1,21,52,44,5,,, ∴这2个数的和能被3整除的概率为:42105= 故选:A 【点睛】本题考查古典概型求概率,属于基础题.10.C解析:C 【分析】根据题意,结合排列组合,利用插空法和特殊位置法,先排丙,再插甲乙,即可得解. 【详解】丙排第一,除甲乙外还有3人,共33A 种排法,此时共有4个空,插入甲乙可得24A ,此时共有3234=612=72A A ⋅⨯种可能;丙排第二,甲或乙排在第一位,此时有1424C A 排法,甲和乙不排在第一位, 则剩下3人有1人排在第一位,则有122323C A A 种排法, 此时故共有1412224323+=84C A C A A 种排法.故概率6672841360P A +==. 故选:C. 【点睛】本题考查了排列组合,考查了插空法和特殊位置法,在解题过程中注意各种情况的不重不漏,有一定的计算量,属于较难题.11.A解析:A 【解析】设事件A 表示“抽到的两张都是假钞”,事件B 表示“抽到的两张至少有一张假钞”, 则所求的概率即P(A|B).又()()()211244164222020,C C C C P AB P A P B C C +===, 由公式()()()24211441663|641635P AB C P A B P B C C C ====++⨯. 本题选择A 选项.点睛:条件概率的求解方法:(1)利用定义,求P (A )和P (AB ),则()()(|)n AB P B A n A =.(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),得()()(|)n AB P B A n A =.12.C解析:C 【分析】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,从5月1日至5日中任选2天,基本事件总数2510n C ==,这2天中,恰有1天这3个时刻的观展舒适度都是"舒适"包含的基本事件个数11236m C C ==,由此能求出这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率. 【详解】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,分别为5月4日和5月5日, 从5月1日至5日中任选2天,基本事件总数2510n C ==,这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”包含的基本事件个数11236m C C ==,所以这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率63105m P n ===. 故选:C 【点睛】本题主要考查了概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于基础题.13.B解析:B 【分析】易得出8人乘车,每车4人的乘车方法是48C ,然后考虑从3名教师中选2人,从5名学生中选2人乘同一辆车,注意有两辆车,求出方法后可得概率. 【详解】8人乘车,每车4人的乘车方法是4870C =,从3名教师中选2人,从5名学生中选2人乘同一辆车的方法娄得2235260C C ⨯=,∴所求概率为606707P ==. 故选:B . 【点睛】本题考查古典概型,解题关键是求出事件“恰有两名教师在同一车上”的方法数,易错点是不考虑两辆车.二、解答题14.(1)0.025a =,众数为190,中位数为190;(2)189.8cm ;(3)25. 【分析】(1)利用频率分布直方图中所有矩形的面积之和为1可求得a 的值,利用最高矩形底边的中点值为众数可求得样本的众数,利用中位数左边矩形的面积和为0.5可求得样本的中位数;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得结果全加可得样本的平均数,即为所求;(3)计算可知5株中在株高205215-这一组抽取的有4株,记为1a 、2a 、3a 、4a ,在株高215225-抽取1株,记为b ,列举出所有的基本事件,并确定事件“抽取的2株中含有215cm 及以上树苗”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)由频率分布直方图中所有矩形的面积之和为1可得()0.00150.0110.02250.030.0080.0015101a ++++++⨯=,解得0.025a =.众数为1851952+=190, 设中位数为x ,因为()0.00150.01100.0225100.350.5++⨯=<,()0.00150.01100.02250.030100.650.5+++⨯=>,则185195x <<, ()()0.00150.01100.0225100.0301850.5x ++⨯+⨯-=,解得190x =;(2)1600.0151700.111800.2251900.32000.252100.082200.02x =⨯+⨯+⨯+⨯+⨯+⨯+⨯()189.8cm =.因此,估计苗埔中树苗的平均高度为189.8cm ; (3)在株高205215-这一组应抽取:0.08540.080.02⨯=+株,在株高215225-这一组应抽取:0.02510.080.02⨯=+株,用1a 、2a 、3a 、4a 表示在株高205215-这一组的4株,用b 表示在株高215225-这一组的1株,从中抽调2株的抽法:12a a 、13a a 、14a a 、1a b 、23a a 、24a a 、2a b 、34a a 、3a b 、4a b ,共10个基本事件,设抽取2株中含有株高215225-这一组1株为A 事件,A 包含4个基本事件,()42105P A ∴==. 【点睛】方法点睛:计算古典概型概率的方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列组合数的应用. 15.(Ⅰ)6.5小时(Ⅱ)35(Ⅲ)2212s s > 【分析】(Ⅰ)由表中数据计算平均数即可;(Ⅱ)列举出任选2人的所有情况,再由古典概型的概率公式计算即可; (Ⅲ)根据数据的离散程度结合方差的性质得出2212s s > 【详解】(Ⅰ)这个班级女生在该周的平均锻炼时长为53687682911306.53862120⨯+⨯+⨯+⨯+⨯==++++小时(Ⅱ)由表中数据可知,锻炼8小时的学生中男生有3人,记为,,a b c ,女生有2人,记从中任选2人的所有情况为{,},{,},{,},{,}a b a c a A a B ,{,},{,},{,}b c b A b B ,{,},{,},{,}c A c B A B ,共10种,其中选到男生和女生各1人的共有6种 故选到男生和女生各1人的概率63105P == (Ⅲ)2212s s > 【点睛】关键点睛:在第二问中,关键是利用列举法得出所有的情况,再结合古典概型的概率公式进行求解.16.(1)600人;(2)8;0.16;10;(3)35. 【分析】(1)利用样本中高二年级人数与高二年级总人数之比=样本中高一年级、高二年级人数之和与高一、高二年级总人数之和之比求解;(2)先根据频率分布表求出z 的值,再根据高二年级学生样本人数计算出x ,从而得到其频率y 的值;(3)记5名高二学生中女生为1a ,2a ,男生为123,,b b b ,先列出从这5名高二学生中任选3人进行面谈的所有可能情况,以及恰好有两男一女的情况数,然后根据古典概率模型概率的计算公式求解. 【详解】解:(1)设该校高二学生的总数为n ,由题意5015050660540n -=+,解得=600n ,所以该校高二学生总数为600人.(2)由题意0.2050z=,解得10z =, 50(57128)8x z =-++++=,0.1650xy ==. (3)记“选中的3人恰好为两男一女”为事件A ,记5名高二学生中女生为1a ,2a ,男生为1b ,2b ,3b ,从中任选3人有以下情况: 121,,a a b ;122,,a a b ;123,,a a b ;112,,a b b ;113,,a b b ;123,,a b b ;212,,a b b ;213,,a b b ;223,,a b b ;123,,b b b ,共10种情况,基本事件共有10个,它们是等可能的,事件A 包含的基本事件有6个,分别为:112,,a b b ;113,,a b b ;123,,a b b ;212,,a b b ;213,,a b b ;223,,a b b ,故63()105P A ==,所以选中的3人恰好为两男一女的概率为35.(1)解决分层抽样问题时,常用的公式有:①nN=样本容量该层抽取的个体数总体个数该层个体数;②总体中某两层的个数比等于样本中这两层抽取的个体数之比;(2)求解古典概率模型时,基本步骤如下:①利用列举法、列表法、树状图等方法求出基本事件总数n;②求出事件A所包含的基本事件个数m;③代入公式mPn=,求出概率值.17.(1)0.42;(2)见解析;(3)有99%把握认为学生的数学成绩对物理成绩有影响.【分析】(1)先求得“数学考分不低于60分,且物理考分不低于50分的学生”的人数,再由古典概率公式可求得所求的概率;(2)由已知的数据可得出2×2列联表;(3)由(2)中的数据,计算210.5306>6.6354K≈,可得结论.【详解】(1)数学考分不低于60分,且物理考分不低于50分的学生有:12+16+6+842=人,所以“数学考分不低于60分,且物理考分不低于50分”的概率为420.42100P==;(2)2×2列联表如下表所示:(3)由(2)中的数据,得:()210010.5306>6.63544852442102246436K⨯-⨯⨯⨯=≈⨯⨯,所以有99%把握认为学生的数学成绩对物理成绩有影响.【点睛】关键点点睛:本题考查求古典概率,独立性检验的问题,关键在于对数据处理,准确地运用相应的公式,并且理解其数据的实际意义.18.(1)0.045;(2)甲队队员获胜的概率更大一些.【分析】(1)甲队2号队员把乙队3名队员都淘汰这个事件的发生应是甲队1号输给乙队1号,然后甲队2号上场,三场全胜,由独立事件概率公式计算可得;(2)第三局比赛甲胜可分为3个互斥事件:甲队1号胜乙队3号,甲队2号胜乙队2号,甲队3号胜乙队1号,分别计算概率后相加可得.然后由对立事件概率得出乙队胜的概率,比较后要得结论. 【详解】解:(1)甲队2号队员把乙队3名队员都淘汰的概率为0.50.60.50.30.045⨯⨯⨯= (2)第3局比赛甲队队员获胜可分为3个互斥事件 (i )甲队1号胜乙队3号,概率为0.50.30.20.03⨯⨯=;(ii )甲队2号胜乙队2号,概率为0.50.70.50.50.60.50.325⨯⨯+⨯⨯=; (iii )甲队3号胜乙队1号,概率为0.50.40.80.16⨯⨯= 故第3局甲队队员胜的概率为0.030.3250.160.515++=. 则第3局乙队队员胜的概率为10.5150.485-= 因为0.5150.485>,故甲队队员获胜的概率更大一些. 【点睛】关键点点睛:本题考查相互独立事件的概率公式和互斥事件的概率公式.解题关键是把事件“第3局比赛甲队队员获胜”分斥成3个互斥事件,然后分别求得概率后易得出结论. 19.(1)分布列见解析;(2)910. 【分析】(1)确定X 的所有取值为0,1,2,3,X 服从超几何分布,代入超几何分布的概率公式,计算每个X 的取值对应的概率,列出X 的分布列即可;(2)即两门A 类科目一门B 类科目或者一门A 类科目两门B 类科目的概率,则概率()()12P P X P X ==+=,从而计算可得;【详解】解:(1)小明同学选A 类科目数X 可能的取值为0,1,2,3,则X 服从超几何分布,()0333361020C C P X C ===, ()1233369120C C P X C ===,()2133369220C C P X C ===,()3033361320C C P X C ===. X 的分布列为:()()()99912202010P C P X P X ==+==+= 【点睛】本题考查了离散型随机变量的概率分布列,考查了超几何分布,古典概型的概率计算,计数原理.属于中档题. 20.(1)32;(2)815. 【详解】试题分析:(1)根据15名乘客中候车时间少于10分钟频数和为8,可估计这60名乘客中候车时间少于10分钟的人数;(2)将两组乘客编号,进而列举出所有基本事件和抽到的两人恰好来自不同组的基本事件个数,代入古典概型概率公式可得答案. 试题(1)候车时间少于10分钟的概率为2681515+=, 所以候车时间少于10分钟的人数为8603215⨯=人. (2)将第三组乘客编号为1234,,,a a a a ,第四组乘客编号为12,b b .从6人中任选两人包含以下基本事件:1213141112(,),(,),(,),(,),(,)a a a a a a a b a b ,23242122(,),(,),(,),(,)a a a a a b a b ,343132(,),(,),(,)a a a b a b ,4142(,),(,)a b a b ,12()b b ,,10分其中两人恰好来自不同组包含8个基本事件,所以,所求概率为815. 考点:频率分布表;古典概型及其概率计算公式.21.(1)分布列见解析,()20.7E X p =+;(2)①0.92;②277棵. 【分析】(1)根据题意得出随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得随机变量X 的数学期望; (2)①由(1)知当0.8p =时,()E X 最大,然后分一棵B 种树苗自然成活和非自然成活两种情况,可求得所求事件的概率;②记Y 为n 棵树苗的成活棵数,由题意可知(),0.92Y B n ~,利用二项分布的期望公式得出()0.92E Y n =,根据题意得出关于n 的不等式,解出n 的取值范围即可得解. 【详解】(1)依题意,X 的所有可能值为0、1、2、3, 则()()2200.310.30.60.3P X p p p ==-=-+,()()()2210.710.3210.10.80.7P X p p p p p ==-+⨯-=-+,()()22220.710.3 1.1 1.4P X p p p p p ==⨯-+=-+, ()230.7P X p ==.所以,随机变量X 的分布列为:。

高二数学 条件概率练习题 试题

高二数学 条件概率练习题 试题

高二数学条件概率练习题班级某某1、袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是( ). A.53 B.43 C.21 D.103 2、设A 、B 是两个随机事件,且,0)(,1)(0><<B P A P )|()|(A B P A B P =,则必有( ). A.)|()|(B A P B A P = B.)|()|(B A P B A P ≠C.)()()(B P A P AB P =D.)()()(B P A P AB P ≠3、已知p(AB)=103, P(A)=53, 则P(B|A)=( ) A.509 B.21 C.109 D.41 4、已知P(B|A) =21, P(A)=53, 则p(AB)=( ) A.65 B.109 C. 103 D.101 5、下列正确的是( )A.)|()|(A B P B A P =B.)()|(B P A B A P ≠C.)|()())A B P B P AB P =D.)()()|(B n AB n B A P = 6、在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为( )A.53B.52C.101D.95 7、把一枚硬币任意掷两次,事件A={第一次出现正面},事件B={第二次出现正面},则P(BA)=( )A.41B.21C.61D.81 8、当掷五枚硬币时,已知至少出现两个正面向上,则正好出现3个正面向上的概率为( ) A.135B.136C.261 D.41 9、设有10件产品,其中有4件次品,依次从中不放回地抽取一件产品,直到将次品取完为止.则抽取次数为7的概率为.10、甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率是。

11、从1—100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率是.12、袋中装有2n —1个白球,2n 个黑球,一次取出n 个球,发现都是同一种颜色的,问这种颜色是黑色的概率是。

四川师范大学附属中学必修第二册第五单元《概率》测试题(含答案解析)

四川师范大学附属中学必修第二册第五单元《概率》测试题(含答案解析)
A.0.23B.0.2C.0.16D.0.1
4.一个不透明的袋子中装有4个完全相同的小球,球上分别标有数字为0,1,2,3.现甲从中摸出1个球后放回,乙再从中摸出1个球,谁摸出的球上的数字大谁获胜,则甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数的概率为()
A. B. C. D.
5.在如图所示的电路中,5个格子表示保险匣,格子中所示数据表示通电时保险丝被熔断的概率,则当开关合上时,电路畅通的概率是()
15.某校高一年级组织“知识竞答”活动.每位参赛者第一关需回答三个问题,第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得 分;第三个问题回答正确得30分,回答错误得 分.规定,每位参赛者回答这三个问题的总得分不低于30分就算闯关成功.若某位参赛者回答前两个问题正确的概率都是 ,回答第三个问题正确的概率是 ,且各题回答正确与否相互之间没有影响.
一、选择题
1.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”.下图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形 内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为同一片“风叶”的概率为()
A. B. C. D.
(1)求这个样本数据的中位数和众数;
(2)从样本数据用时不超过 分钟的工人中随机抽取 个,求至少有一个工人是优秀员工的概率.
25.为了解学生“课外阅读日”的活动情况,某校以 的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如下:
(1)分别估计该校高二年级选修物理和选修历史的人数;
4.A
解析:A
【分析】

高二数学概率测试题试题

高二数学概率测试题试题

2021年4月高二数学概率测试题单位:乙州丁厂七市润芝学校时间:2022年4月12日创编者:阳芡明一、选择题〔每一小题5分,一共40分〕1.从6名选手中,选取4个人参加奥林匹克竞赛,其中某甲被选中的概率是[ ]A、13B、12C、23D、352.在100张奖券中,有4 张中奖,从中任取两张,那么两张都中奖的概率是[ ]A、150B、125C、1825D、149503.箱中有5个黑球,4个白球,每次随机取出一个球,假设取出黑球,那么放回箱中,重新取球;假设取出白球,那么停顿取球,那么在第四次取球之后停顿的概率为〔〕A.C35·C14C45B.(59)3×(49) C.35×14D.C14(59)3×(49)4.某射手命中目的的概率为P,那么在三次射击中至少有1次未命中目的的概率为〔〕A、P3B、(1—P)3C、1—P3D、1—(1-P)35.种植某种树苗,成活率为0.9,假设种植这种树苗5棵,那么恰好成活4棵的概率是[ ]B、6.一射手对同一目的HY地射击四次,至少命中一次的概率为8081,那么此射手每次击中的概率是[ ]A、13 B、23C、14D、257.一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这种型号的自动机床各自HY工作,那么在一小时内至多有2台机床需要工人照看的概率是( ) 1536.0.A1808.0.B5632.0.C9728.0.D8.在6个电子元件中,有2个次品,4个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都找到为止,那么经过4次测试恰好将2个次品全部找出的概率〔 〕A.51 B.154 C.52 D.1514 二、填空题〔每一小题5分,一共20分〕9.将一枚硬币连掷三次,出现“2个正面,1 个反面〞的概率是__________;出现“1个正面、2个反面〞的概率是___________。

10.某自然保护区内有n 只大熊猫,从中捕捉t 只体检并加上标志再放回保护区,1年后再从这个保护区内捕捉m 只大熊猫〔设该区内大熊猫总数不变〕那么其中有s 只大熊猫是第2次承受体检的概率是 。

高二数学概率试题

高二数学概率试题

高二数学概率试题1.为弘扬民族古典文化,巿电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正分,否则记负分,根据以往统计,某参赛选手能答对每一个问题的概率为;现记“该选手在回答完个问题后的总得分为”.(1)求且的概率;(2)记,求的分布列,并计算数学期望.【答案】(1);(2)故的分布列为:.【解析】本题属于独立重复试验问题,求概率的关键是发生的次数,(1) ,说明回答个问题后,正确个,错误个.要满足,则第一题回答正确,第2题如果正确,则后面4题2对2错,第2题如果错误,则第3题正确,后面3题2对1错,由此可计算出概率;(2)由可知的取值为.按概率公式计算概率可得分布列,可计算出数学期望.试题解析:(1)当时,即回答个问题后,正确个,错误个. 若回答正确个和第个问题,则其余个问题可任意回答正确个问题;若第一个问题回答正确,第个问题回答错误,第三个问题回答正确,则其余三个问题可任意回答正确个.故所求概率为:.(2)由可知的取值为.,.故的分布列为:.【考点】次独立重复试验恰好发生次的概率,随机变量的分布列,数学期望.2.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.【答案】C【解析】5点中任选2点的选法有,距离不小于该正方形边长的选法有【考点】古典概型概率3.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率【答案】【解析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|6<x<7,6<y<7}做出集合对应的面积是边长为1的正方形的面积,写出满足条件的事件对应的集合和面积,根据面积之比得到概率试题解析:设甲到达时间为x,乙到达的时间为y则全部结果构成的区域:设“甲乙能会面”的事件记为A则事件A的结果构成的区域:∴P(A)=【考点】几何概型概率4.已知关于的二次函数.(1)设集合和,分别从集合中随机取一个数作为和,求函数在区间上是增函数的概率;(2)设点是区域内的随机点, 求函数在区间上是增函数的概率.【答案】(1);(2).【解析】(1)本题是一个等可能事件的概率,试验发生包含的事件是,满足条件的事件是函数在区间上为增函数,根据二次函数的对称轴,写出满足条件的结果,得到概率;(2)本题是一个等可能事件的概率问题,根据第一问做出的函数是增函数,得到试验发生包含的事件对应的区域和满足条件的事件对应的区域,做出面积,得到结果.试题解析:要使函数在区间上是增函数, 需,且,即.(1)所有的取法总数为个, 满足条件的有共个, 所以所求概率.(2)如图求得区域的面积为,由,求得,所以区域内满足且的面积为,所以所求概率.【考点】古典概型;几何概型.【方法点晴】古典概型:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能相等.本题中的第一问属于古典概型,对于古典概型,任何事件的概率为:,所以做这类题,的主要方法就是计数;几何概型:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到所述区间内的某个特定区域中的点,这里的区域可以是线段,平面图形,立体图形等,本题就是利用面积比做的.5.下列叙述错误的是()A.若事件发生的概率为,则B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同D.某事件发生的概率是随着试验次数的变化而变化的【答案】D【解析】对于A.若事件发生的概率为,则,那么显然成立。

高二数学频率检测试题(有答案)

高二数学频率检测试题(有答案)

高二数学频率检测试题(有答案)3.1.3频率与概率一、细心填一填(每题3分,共30分)1、任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是_1/2____2、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为=1/3______,小明未被选中的概率为=_2/3_____3、张强得身高将来会长到4米,这个事件得概率为___0______。

4、从一副扑克牌(除去大小王)中任抽一张。

则抽到红心的概率为=1/4;抽到黑桃的概率为=1/4;抽到红心3的概率为=1/525、任意翻一下2004年日历,翻出1月6日的概率为1/366;翻出4月31日的概率为0。

6、单项选择题是数学试题的重要组成部分,当你遇到不懂做的情况时,如果你随便选一个答案(假设每个题目有4个备选答案),那么你答对的概率为1/4。

7、某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图)。

转盘可以自由转动。

参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为1/4。

8、一位汽车司机准备去商场购物,然后他随意把汽车停在某个停车场内,停车场分A、B两区,停车场内一个停车位置正好占一个方格且一个方格除颜色外完全一样,则汽车停在A区蓝色区域的概率是1/2,B 区蓝色区域的概率是4/99、如图表示某班21位同学衣服上口袋的数目。

若任选一位同学,则其衣服上口袋数目为5的概率是4/2110、一个小妹妹将10盒蔬菜的标签全部撕掉了。

现在每个盒子看上去都一样。

但是她知道有三盒玉米,两盒菠菜,四盒豆角,一盒土豆。

她随机地拿出一盒并打开它。

则盒子里面是玉米的概率是3/10,盒子里面不是菠菜的概率是8/10=4/5。

二、耐心选一选(每题3分,共30分)1、实验中学初三年级进行了一次数学测验,参考人数共540人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是(D)A、抽取前100名同学的数学成绩B、抽取后100名同学的数学成绩C、抽取(1)、(2)两班同学的数学成绩D、抽取各班学号为3号的倍数的同学的数学成绩2、从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A 地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,走空中从A地不经B地直接到C地.则从A地到C地可供选择的方案有(D)A、20种B、8种C、5种D、13种3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(B)A、B、C、D、4、下列事件发生的概率为0的是(C)A、随意掷一枚均匀的硬币两次,至少有一次反面朝上;B、今年冬天黑龙江会下雪;C、随意掷两个均匀的骰子,朝上面的点数之和为1;D、一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

2022-2023学年北师大版高二下数学:概率(附答案解析)

2022-2023学年北师大版高二下数学:概率(附答案解析)

2022-2023学年北师大版高二下数学:概率一.选择题(共8小题)1.(2021秋•宜昌期中)某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.55,“抽到二等品”的概率为0.2,则“抽到不合格品”的概率为()A.0.8B.0.75C.0.45D.0.25 2.(2021秋•常州期中)某个班级有55名学生,其中男生35名,女生20名,男生中有20名团员,女生中有12名团员.在该班中随机选取一名学生,如果选到的是团员,那么选到的是男生的概率为()A .B .C .D .3.(2021秋•沙市区校级期中)先后抛掷两枚骰子,甲表示事件“第一次掷出正面向上的点数是1”,乙表示事件“第二次掷出正面向上的点数是2”,丙表示事件“两次掷出的点数之和是7”,丁表示事件“两次掷出的点数之和是8”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丁相互独立D.丙与丁相互独立4.(2021秋•浙江期中)不透明的口袋内装有红色、绿色和蓝色小球各2个,一次任意摸出2个小球,则与事件“2个小球都为红色”互斥而不对立的事件有()A.2个小球不全为红色B.2个小球恰有一个红色C.2个小球至少有一个红色D.2个小球不全为绿色5.(2021秋•仁寿县期中)先后抛掷一颗骰子两次,落在水平桌面后,记正面朝上的点数分别为x,y,事件A为:x+y为偶数,事件B为:xy为奇数,则概率P(B|A)=()A .B .C .D .6.(2021秋•河南期中)如图所示,阴影部分由六个全等的三角形组成,每个三角形是底边为圆的半径,顶角为120°的等腰三角形,若在圆内随机取一点,则该点落到阴影部分内的概率为()第1页(共18页)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学《概率》测练题(8/29/2016)
一 选择题:
1.下列事件 (1)物体在重力作用下会自由下落; (2)方程x 2
+2x+3=0有两个不相等的实根; (3)某传呼台每天某一时段内收到传呼次数不超过10次; (4)下周日会下雨,其中随机事件的个数为 ( )
A.1个
B.2个
C.3个
D.4个
2.5张卡片上分别写有A,B,C,D,E 5个字母,从中任取2张卡片,这两张卡片上的字母恰好是按字母顺序相邻的概率为 ( ) A.
51 B. 52 C.103 D.107 3.掷一枚骰子三次,所得点数之和为10的概率为 ( ) A.
61 B.81 C.121 D.36
1 4.下列不正确的结论是 ( ) A.若P(A) =1.则P(A ) = 0. B.事件A 与B 对立,则P(A+B) =1 C.事件A.B.C 两两互斥,则事件A 与B+C 也互斥 D.若A 与B 互斥,则A 与B 也互斥 5.今有一批球票,按票价分别为:10元票5张,20元票3张,50元票2张.从这10张票中随机抽出3张,则票价之和为70元的概率是 ( ) A.
51 B. 52 C.61 D.4
1 6.在5件产品中,有3件一等品和2张二等品,从中任取2件,那么以
10
7
为概率的事件是( ) A.都不是一等品 B.恰有一件一等品 C.至少有一件一等品 D.至多一件一等品 7.某射手命中目标的概率为P, 则在三次射击中至少有一次未命中目标的概率为 ( ) A.P 3
B.(1-P)3
C.1-P 3
D.1-(1-P)3
8.甲,乙两人独立地解决同一个问题,甲解决这个问题的概率为P 1,乙解决这个问题的概率为P 2,那么两人都没能解决这个问题的概率是 ( ) A.2-P 1-P 2 B.1-P 1 P 2 C.1-P 1-P 2+ P 1 P 2 D1-(1-P 1)(1-P 2) 9设两个独立事件A 和B 都不发生的概率为
9
1
,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P(A)是 ( ) A
32 B.181 C.31 D.43 10.有五根细木棒,长度分别为1,3,5,7,9(cm).从中任取三根,能搭成三角形的概率是 ( ) A.
203 B.52 C.51 D.10
3 二.填空题:(每小题4分共16分)
11.一栋楼房有4个单元, 甲,乙两人住在此楼内 ,则甲,乙两人同住一单元的概率为 . 12.从一筐苹果中任取一个, 质量小于250克的概率为0.25, 质量不小于350克的概率为0.22,则
质量位于[)350,250克范围内的概率是 . 13.若在4次独立重复试验中,事件A 至少发生一次的概率为
81
80
,那么事件A 在一次试验中发生的概率为 .
14.某射手射击一次,击中目标的概率是0.9, 他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论: (1)他第三次击中目标的概率是0.9. (2)他恰好击中目标3次的概率是0.93
×0.1 (3) 他至少击中目标1次的概率是1-0.14
其中正确的是 . 15.(10分) 甲,乙两人参加知识竞答,共有10个不同的题目,其中选择题6个,判断题4个, 甲,乙两人依次各抽一题,(1).甲抽到选择题, 乙抽到判断题的概率是多少?(2).甲,乙两人中至少有一个抽到选择题的概率是多少?
16.(6分)射手张强在一次射击中射中10环,9环,8环,7环,7环以下的概率分别为:0.24,0.28,0.19,0.16,0.13,计算他在一次射击中(1).射中10环或9环的概率.(2).射中环数不足8环的概率.
17.(10分)甲口袋中有大小相同的白球3个,红球5个, 乙口袋中有大小相同的白球4个,黑球8个,从两个口袋中各摸出2个球,求:.甲口袋中摸出的2个球都是红球的概率,.两个口袋中摸出的4个球中恰有2个白球的概率.
18.(9分)在某次考试中, 甲,乙,丙三人合格(互不影响)的概率分别是52,43,3
1
.考试结束后,最容易出现几人合格的情况?
19.(15分) 甲,乙两人各进行3次射击,甲每次击中目标的概率为
21,乙每次击中目标的概率为3
2,求: (1) 甲恰好击中目标2次的概率;(2)乙至少击中目标2次的概率;(3)乙恰好比甲多击中目标
2次的概率.
20(9分)某猎人在距离100米处射击一只野兔,其命中的概率为2
1
,如果第一枪射击没有命中,则猎人进行第二次射击,但距离为150米,命中的概率为4
1
,如果又没有击中,则猎人进行第三次射击,距离为200米,命中的概率为8
1
,求此猎人击中目标的概率.
《概率》测练题参考答案 一、 选择题
二、 填空题 11、
4
1 12、0.53 13.
3
2 14.(1) (3)
三、15、(1)甲抽到选择题、乙抽到填空题的概率是P 1=15
4
191101416=C C C C
(2)甲乙两人中至少有一人抽到选择题的概率是P 2=1-=191101314C C C C 15
13
16、(1)0.24+0.28=0.52
(2) 0.16+0.13=0.29
17.(1)甲口袋中摸出的2个都是红球的概率为P 1=2825C C =14
5
(2).记“两个口袋中摸出的4个球中恰有2 个白球”为事件D,它包括:
事件A :甲口袋摸出2个白球乙口袋摸出2个黑球,则P (A )=22
1
212282823=⋅C C C C
事件B :甲、乙两个口袋各摸出1个白球,则P (B )=7720
2
121814281513=⋅C C C C C C 事件C :甲口袋摸出2个红球乙口袋摸出2个白球,则P (C )=154
5
2122
42825=⋅C C C C
且A 、B 、C 彼此互斥,所以P (D )=P (A )+P (B )+P (C )=
=++1545772022177
26
18.三人都合格的概率为P1=
101 三人都不合格的概率为P2=101
恰有两人合格的概率为P3=60
23
恰有一人合格的概率为P4=1-101-101-6023=
60
25
由于P4>P3>P1=P2 所以最容易出现1人合格的情况。

19、(1)恰好击中目标2次的概率为P1=2
3C (
21)3=8
3
(2)乙至少击中目标2次的概率为P2=27
20)32(31)32(32
23=+⨯C
(3)乙恰好比甲多击中目标2次的概率为
P3==+⨯⨯3133322
3
)21()32()21(31)32(C C 6
1
20、设猎人第一次射击击中兔子为事件A ,第二次射击击中兔子为事件B ,第三次射击击中兔子为事件C ,击中兔子为事件D ,则:P (A )=
2
1
,P (B )=
4
1
,P (C )=
8
1 又D=A+
C B A B A -
-+_
所以P (D )= P (A )+P (B A -
)+P (C B A -
-)=
21+2

41+2

4

81=64
43。

相关文档
最新文档