ICHQ3C一类二类三类溶剂
ICH Q3(R7)四类溶剂划分标准
ICHQ3C R7现行第四阶段版本2018年10月15日本指导原则由相应的ICH专家工作组制定,并根据ICH 进程已提交给管理当局征询意见。
在ICH进程的第四阶段,最后的草案被推荐给欧盟、日本、美国、加拿大和瑞士的管理机构采纳。
编码历史日期母指导原则:杂质:残留溶剂的指导原则Q3C 指导委员会经第二阶段后批准,并发布以便向公众征求意见。
1996年11月6日Q3C指导委员会经第四阶段后批准,并建议ICH的三个监管机构采纳。
1997年7月17日对母指导原则所含THF的PDE信息的修订Q3C(R1)注:2005年11月修订前本版本命名为Q3C (M):THF 四氢呋喃(THF)的每日允许暴露量(PDE):根据新的毒理学数据修订PDE。
指导委员会经第二阶段后批准THF的新PDE,并发布以便向公众征求意见。
2000年7月20日Q3C(R1)注:2005年11月修订前本版本命名为Q3C (M):THF 指导委员会经第四阶段后批准,并建议ICH的3个监管机构采纳。
2002年9月12日对母指导原则所含NMP的PDE信息的修订母指导原则:杂质:残留溶剂的指导原则对母指导原则所含异丙基苯的PDE信息的修订修订母指导原则所含甲基异丁基酮的PDE信息,并纳入三乙胺的PDE更正了乙二醇的PDE信息ICH第一部分: (1)1.引言 (1)2.指导原则的适用范围 (2)3.通则 (3)3.1 基于风险评估的残留溶剂的分类 (3)3.2 建立暴露限度的方法 (4)3.32类溶剂限度的表示方法 (4)3.4分析方法 (6)3.5残留溶剂的报告水平 (6)4.残留溶剂的限度 (7)4.1应避免的溶剂 (7)4.2应限制的溶剂 (8)4.3低潜在毒性的溶剂 (9)4.4没有足够毒理学数据的溶剂 (10)词汇表 (11)附录1:指导原则中包括的溶剂列表 (13)附录2:其他背景 (17)A2.1环境领域对有机挥发性溶剂的监管 (17)A2.2药物中的残留溶剂 (17)附录3:建立暴露限度的方法 (19)第二部分: (24)四氢呋喃的PDE (24)第三部分: (27)N-甲基吡咯烷酮(NMP)的PDE (27)第四部分: (30)异丙基苯的PDE (30)第五部分: (35)三乙胺的PDE和甲基异丁基酮的PDE (35)在1997年7月17日的ICH指导委员会会议上进入ICH进程第四阶段,并建议ICH的三方监管机构采纳该指导原则。
ICH 杂质:残留溶剂的指导原则 Q3C(R6)
人用药品注册技术要求国际协调会ICH协调指导原则杂质:残留溶剂的指导原则Q3C(R6)现行第四阶段版本2016年10月20日本指导原则由相应的ICH专家工作组制定,并根据ICH进程已提交给管理当局征询意见。
在ICH进程的第四阶段,最后的草案被推荐给欧盟、日本、美国、加拿大和瑞士的管理机构采纳。
Q3C(R5)文件历史母指导原则:杂质:残留溶剂的指导原则对母指导原则所含THF的PDE信息的修订修订母指导原则所含NMP的PDE信息母指导原则:杂质:残留溶剂的指导原则对母指导原则所含异丙基苯的PDE信息的修订修订母指导原则所含甲基异丁基酮的PDE信息,并纳入三乙胺的PDE杂质:残留溶剂的指导原则ICH协调指导原则目录第一部分:1. 引言 (1)2. 指导原则的适用范围 (1)3. 通则 (2)3.1 基于风险评估的残留溶剂的分类 (2)3.2 建立暴露限度的方法 (2)3.3 2类溶剂限度的表示方法 (2)3.4 分析方法 (4)3.5 残留溶剂的报告水平 (4)4. 残留溶剂的限度 (4)4.1 应避免的溶剂 (4)4.2 应限制的溶剂 (5)4.3 低潜在毒性的溶剂 (6)4.4 没有足够毒理学数据的溶剂 (7)词汇表 (8)附录1:指导原则中包括的溶剂列表 (9)附录2:其他背景 (13)A2.1 环境领域对有机挥发性溶剂的监管 (13)A2.2 药物中的残留溶剂 (13)附录3:建立暴露限度的方法 (14)第二部分:四氢呋喃的PDE (17)第三部分:N-甲基吡咯烷酮(NMP)的PDE (19)第四部分:异丙基苯的PDE (21)第五部分:三乙胺的PDE和甲基异丁基酮的PDE (24)第一部分:杂质:残留溶剂的指导原则在1997年7月17日的ICH指导委员会会议上进入ICH进程第四阶段,并建议ICH的三方监管机构采纳该指导原则1. 引言本指导原则旨在建议为保证患者安全而应规定的药物中残留溶剂的可接受量。
ICH常用有机溶剂分类及残留限度
ICH常用有机溶剂分类及残留限度国际药品管理机构ICH(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use)在药品的质量控制方面,制定了一系列规定。
其中,ICH Q3C Guideline for Residual Solvents是针对制药过程中可能存在的残留有机溶剂进行限制和规定的。
该指南中将有机溶剂分为三类:类1、类2和类3。
本文将详细介绍ICH常用的有机溶剂分类及其残留限度。
类1有机溶剂类1有机溶剂是指在制药工业中使用频率最高、风险最低的有机溶剂。
这类有机溶剂在制药过程中的使用应该越少越好,但即使在非常规制造情况下,其残留量也应该受到限制。
以下是ICH对类1有机溶剂的限制:有机溶剂残留限度(mg/每日剂量单位)苯 2甲苯50二氯甲烷601,2-二氯乙烷 41,1,1-三氯乙烷0.61,1-二氯乙烷 61,1,2-三氯乙烷 11,1,2,2-四氯乙烷0.62-氯乙酸乙酯2002-乙醇5000甲醇3000丙酮300乙酸丁酯300乙酸乙酯900甲醛30N,N-二甲基甲酰胺390乙酸乙酰胺600乙醇5000类2有机溶剂类2有机溶剂与类1有机溶剂相比,使用的风险略高一些。
类2有机溶剂的使用应该尽量避免,但如果使用,其残留也应该受到限制。
以下是ICH对类2有机溶剂的限制:有机溶剂残留限度(mg/每日剂量单位)丁酮0.81-丁醇802-丁醇50叔丁醇600溴丁烷 3正丁烷3000甲苯500乙苯420乙醇3000乙酸异丙酯500乙腈20二甲苯150二甲醚3000二氯乙烷 5甲酸甲酯 3甲酸乙酯300甘油正丁醚690甘油乙二醇正丁醚690甘油乙醚/环已醚840马来酸酐30甲酸300三氯乙烯 4类3有机溶剂类3有机溶剂的使用量和风险都比类1和类2更高。
这类有机溶剂在制药过程中必须严格控制,在常规制药过程中尽可能避免使用。
ICH杂质残留溶剂的指导原则QCR
ICH杂质残留溶剂的指导原则QCRICH杂质残留溶剂的指导原则QCR(Quality Control Residual Solvents)是国际药品监管机构-国际药品注册、技术和质量控制委员会(ICH)发布的一项指南,用于规范药品制造过程中的溶剂残留物的质量控制。
溶剂残留物是指在药品生产过程中添加的溶剂,但在制剂中未完全蒸发或被移除的溶剂。
导言溶剂在药品生产过程中广泛应用,包括分离、提取、结晶和纯化等步骤。
然而,溶剂中的残留物可能对人体产生毒性或对药品质量产生影响。
因此,在药品开发和生产过程中,需要对残留溶剂进行必要的质量控制。
溶剂分类ICHQCR指导原则将溶剂分为类1、类2A和类2B三类。
类1溶剂是无毒、无致畸、无致癌和生殖毒性的溶剂,如水、乙醇、甘油等。
这些溶剂的使用一般没有限制。
类2A溶剂是有潜在毒性或限制使用的溶剂,但在限定剂量下不会对人体产生危害。
这类溶剂的最大可容许残留量取决于药物用量、剂型和给药途径。
一些常见的类2A溶剂包括氯仿、氯化甲烷、二氯甲烷等。
类2B溶剂是有潜在毒性,并且在制剂中的残留量应尽量减少的溶剂。
这类溶剂的最大可容许残留量取决于药物用量和给药途径。
一些常见的类2B溶剂包括苯、乙酸乙酯、二甲基甲醚等。
质量控制要求ICHQCR指导原则确定了三种质量控制要求来管理溶剂残留物。
1. 可容许残留量(Permitted Daily Exposure, PDE):PDE是指人体每日接触该溶剂残留量的最大可容许量。
它可以通过毒理学评估和毒性数据来确定。
对于类1溶剂,PDE通常设置为无限大。
对于类2A和类2B 溶剂,PDE被用来确定最大可容许残留量。
2.可容许残留量限度:可容许残留量限度是指药品中残留溶剂的最大可容许浓度。
它根据预期剂量、给药途径和药物性质等因素来确定。
通过使用PDE和剂量预设的数学公式,可以计算出每种溶剂的可容许残留量限度。
3.分析方法:为了确保溶剂残留物的质量控制,需要使用适当的分析方法进行检测和分析。
ich残留溶剂限度表
ICHQ3C将残留溶剂分为四类:
1.1类为应避免使用,包括已知的人体致癌物,或者有较大致癌嫌疑,以及环
境危害物,1类溶剂采用浓度限度(ppm)来控制。
2.2类为应限制使用,包括非遗传毒性致癌物质,可能引起神经中毒或畸变等
不可逆毒性的溶剂,可能具有严重但可逆的毒性的溶剂,2类溶剂一般采用PDE(每日允许暴露量)(mg/天)或浓度限度(ppm)控制。
3.3类为低潜在毒性的溶剂,无须制定基于健康的暴露程度,应该由GMP或其
它基于质量的要求进行限度。
4.4类为未知毒性,没有足够毒性资料,使用较少的溶剂,如果使用该类溶剂
需论证合理性。
此外,某些特定的化合物在特定条件下可能被归为更具体的类别。
因此,建议在制定具体的残留溶剂限度时,结合化合物性质和用途,参考最新版残留溶剂指导原则和指导原则附录。
医药中常用有机溶剂分类及残留限度
医药中常用有机溶剂分类及残留限度医药中常用有机溶剂分类及残留限度药品的残留溶剂无治疗作用并可能对人体的健康和环境造成危害,本文对国际协调大会(ICH)制订的指导原则及各国执行情况作了较为详尽的介绍。
药品的残留溶剂,又称有机挥发性杂质,是指在活性药物成分、辅料和药品生产过程中使用和产生的有机挥发性化学物质。
药品还可被来自包装、运输、仓储中的有机溶剂污染。
药品生产商有责任确保终产品中的任何一种残留溶剂对人体无害。
各国药监部门曾使用不同的药品残留溶剂指导原则,为此国际组织展开了协调工作。
经相关程序讨论和审查后,国际协调大会的指导原则于1997年7月17日获得通过,被推荐至国际协调大会(ICH)的指导委员会采用。
该指导原则要求,如果某个药品的生产或纯化过程可导致溶剂残留,就应对这个药品进行检测,并且只检测生产过程或纯化中使用或产生的那种溶剂。
根据使用量的多少,可采用累加的方法计算药品中残留溶剂的量。
如果累加量低于或等于指导原则中的推荐量,则该药品无需进行残留溶剂检测;如果累加量高于推荐量,则必须对该药品进行残留溶剂检测。
该指导原则适用于颁布以后上市的所有剂型和给药途径,但不适用于在临床研究阶段使用的潜在新药和新辅料,也不适用于已上市的现有药物。
在某些情况如短期(小于30天)或局部应用下,视具体情况,溶剂的高残留量也可接受。
按照毒性大小和对环境的危害程度,该指导原则将溶剂分成三类(所列举的溶剂并不完全,应对合成和生产过程所有可能的残留溶剂进行评估):第一类溶剂是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。
在可能的情况下,应避免使用这类溶剂。
如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如:苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。
第二类溶剂是指无基因毒性但有动物致癌性的溶剂。
ich 溶剂分类
ich 溶剂分类
ich(国际化学家联合会)是一个专门从事化学领域研究的组织,该组织制定了一种溶剂分类系统,以方便化学家在研究中使用。
这种分类系统包括三个主要分类,分别是极性、极性-非极性和非极性。
极性溶剂
极性溶剂是指在分子中带有极性键的溶剂,它们与其他带有极性键的化合物容易发生反应。
这类溶剂通常具有较高的介电常数和比表面积,使它们在溶液中具有强烈的溶剂能力。
常见的极性溶剂包括:水、醇类、酮类、醛类、羧酸类、酰胺类、亚胺类、硫醇类等。
极性-非极性溶剂
极性-非极性溶剂是指既有极性键又有非极性键的溶剂,可在溶液中扮演两种不同的角色。
它们既可以溶解极性化合物,又可以溶解非极性化合物。
常见的极性-非极性溶剂包括:丙酮、乙醚、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、甲醇和乙醇等。
非极性溶剂
非极性溶剂是指在分子中没有极性键的溶剂,它们可以与其他非极性化合物溶解。
这类溶剂通常具有较低的介电常数和比表面积,因此它们在溶液中溶解非极性化合物时效果更好。
常见的非极性溶剂包括:石油醚、氯仿、二氯甲烷、乙酸乙酯、环己烷、正己烷、苯和甲苯等。
总之,ich 溶剂分类是化学家在研究中常用的一种分类方式,不
同的溶剂在不同的研究领域中扮演着不同的角色。
对化学家来说,熟练掌握ich 溶剂分类对于化学研究的开展有着重要的意义。
医药中常用有机溶剂分类和残留限度
医药中常用有机溶剂分类与残留限度医药中常用有机溶剂分类与残留限度药品的残留溶剂无治疗作用并可能对人体的健康和环境造成危害,本文对国际协调大会〔ICH〕制订的指导原如此与各国执行情况作了较为详尽的介绍。
药品的残留溶剂,又称有机挥发性杂质,是指在活性药物成分、辅料和药品生产过程中使用和产生的有机挥发性化学物质。
药品还可被来自包装、运输、仓储中的有机溶剂污染。
药品生产商有责任确保终产品中的任何一种残留溶剂对人体无害。
各国药监部门曾使用不同的药品残留溶剂指导原如此,为此国际组织展开了协调工作。
经相关程序讨论和审查后,国际协调大会的指导原如此于1997年7月17日获得通过,被推荐至国际协调大会〔ICH〕的指导委员会采用。
该指导原如此要求,如果某个药品的生产或纯化过程可导致溶剂残留,就应对这个药品进展检测,并且只检测生产过程或纯化中使用或产生的那种溶剂。
根据使用量的多少,可采用累加的方法计算药品中残留溶剂的量。
如果累加量低于或等于指导原如此中的推荐量,如此该药品无需进展残留溶剂检测;如果累加量高于推荐量,如此必须对该药品进展残留溶剂检测。
该指导原如此适用于颁布以后上市的所有剂型和给药途径,但不适用于在临床研究阶段使用的潜在新药和新辅料,也不适用于已上市的现有药物。
在某些情况如短期〔小于30天〕或局部应用下,视具体情况,溶剂的高残留量也可承受。
按照毒性大小和对环境的危害程度,该指导原如此将溶剂分成三类〔所列举的溶剂并不完全,应对合成和生产过程所有可能的残留溶剂进展评估〕:第一类溶剂是指可以致癌并被强烈怀疑对人和环境有害的溶剂。
在可能的情况下,应防止使用这类溶剂。
如果在生产治疗价值较大的药品时不可防止地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的X围内,如:苯〔2ppm〕、四氯化碳〔4ppm〕、1,2-二氯乙烷〔5ppm〕、1,1-二氯乙烷〔8ppm〕、1,1,1-三氯乙烷〔1500ppm〕。
第二类溶剂是指无基因毒性但有动物致癌性的溶剂。
医药中常用有机溶剂分类及残留限度
医药中常用有机溶剂分类及残留限度医药中常用有机溶剂分类及残留限度药品的残留溶剂无治疗作用并可能对人体的健康和环境造成危害,本文对国际协调大会(ICH)制订的指导原则及各国执行情况作了较为详尽的介绍。
药品的残留溶剂,又称有机挥发性杂质,是指在活性药物成分、辅料和药品生产过程中使用和产生的有机挥发性化学物质。
药品还可被来自包装、运输、仓储中的有机溶剂污染。
药品生产商有责任确保终产品中的任何一种残留溶剂对人体无害。
各国药监部门曾使用不同的药品残留溶剂指导原则,为此国际组织展开了协调工作。
经相关程序讨论和审查后,国际协调大会的指导原则于1997年7月17日获得通过,被推荐至国际协调大会(ICH)的指导委员会采用。
该指导原则要求,如果某个药品的生产或纯化过程可导致溶剂残留,就应对这个药品进行检测,并且只检测生产过程或纯化中使用或产生的那种溶剂。
根据使用量的多少,可采用累加的方法计算药品中残留溶剂的量。
如果累加量低于或等于指导原则中的推荐量,则该药品无需进行残留溶剂检测;如果累加量高于推荐量,则必须对该药品进行残留溶剂检测。
该指导原则适用于颁布以后上市的所有剂型和给药途径,但不适用于在临床研究阶段使用的潜在新药和新辅料,也不适用于已上市的现有药物。
在某些情况如短期(小于30天)或局部应用下,视具体情况,溶剂的高残留量也可接受。
按照毒性大小和对环境的危害程度,该指导原则将溶剂分成三类(所列举的溶剂并不完全,应对合成和生产过程所有可能的残留溶剂进行评估):第一类溶剂是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。
在可能的情况下,应避免使用这类溶剂。
如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如:苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。
第二类溶剂是指无基因毒性但有动物致癌性的溶剂。
ICH Q3c 中文版)
第 5 页 共 18 页
杂质:残留溶剂的指导原则
此例制剂中乙睛限度总量既不符合方法 1 也不符合方法 2。生产 厂可先测定制剂,以确定在处方工艺中能否降低已睛水平,如果不能 将乙腈水平降至允许范围,生产厂应采取措施降低制剂中的乙腈量; 若所有措施均不能降低残留溶剂的水平,厂方应提供其尝试降低残留 溶剂以符合指导原则所做工作的总结报告,并以利弊分析报告证明允 许该制剂存在的较高水平的残留溶剂。 3.4 分析方法
方法 2:制剂中的每一种成分不必符合方法 1 的限度。药物中允 许的残留溶剂限度水平,可根据表 2 中 PDE mg/天及已知最大日剂 量,用方程(1)来计算。只要证明已降低至实际最低水平,便可以 认为这种限度是可接受的、该限度能说明分析方法的精度、生产能力 和生产工艺的合理变异,并能反映当前生产的标准水平。
建议值。
乙睛作为残留溶剂的另一例子,曰最大给药量 5 刀 g,制剂中含
两种赋形剂,各组分及计算得到的最大残留的乙睛最见
下表:
成分
处方量
乙睛量
日(摄人)量
原料药
0.3g
800ppm
0.24mg
辅料 1
0.9g
2000ppm
1.80mg
辅料
3.8g
800ppm
3.04mg
药物制剂
5.0g
1016ppm
5.08mg
杂质:残留溶剂的指导原则
杂质:残留溶剂的指导原则
1.介绍 本指导原则旨在介绍药物中残留溶剂在保证人体安全条件下的
可接受量,指导原则建议使用低毒的溶剂,提出了一些残留溶剂毒理 学上的可接受水平。
药物中的残留溶剂在此定义为在原料药或赋形剂的生产中,以 及在制剂制备过程中产生或使用的有机挥发性化合物,它们在工艺中 不能完全除尽。在合成原料药中选择适当的溶剂可提高产量或决定药 物的性质,如结晶型。纯度和溶解度。因此.有时溶剂是合成中非常 关键的因素。本指导原则所指的溶剂不是谨慎地用作赋形剂的溶剂, 也不是溶剂化物,然而在这些制剂中的溶剂含量也应进行测定,并作 出合理的判断。
溶剂分级
溶剂分级
发表于:2014-02-13 07:58:16
第一类溶剂:
是应该避免使用的溶剂,一般为致癌物或危害环境的物质。
如苯、四氯化碳、1,2-二氯乙烷、1,1-二氯乙烯、1,1,1-三氯乙烷。
第二类溶剂:
是应限制使用的溶剂,一般具有非基因毒性,不可逆或可逆毒性。
如甲苯、甲醇、正己烷、环己烷、吡啶、四氢呋喃,乙腈、DMF、DCM、氯仿、二氧六环,乙二醇、吡啶,硝基甲烷。
第三类溶剂:
是毒性低,对人体危害较小的溶剂。
限度0.5%。
甲酸、乙酸、乙醇、丙醇、丁醇、乙醚、丙酮、DMSO、EA、正戊烷,正庚烷
第四类溶剂:
是目前尚无足够毒理学资料的溶剂。
如石油醚、异丙醚、三氯醋酸、三幅醋酸。
ICH常用有机溶剂分类及残留限度
ICH常用有机溶剂分类及残留限度2009-12-0411:50??????残留溶剂无防治作用并可能对人体的健康和环境造成危害,本文对国际协调大会(ICH)制订的指导原则及各国执行情况作了较为详尽的介绍。
????药品的残留溶剂,又称有机挥发性杂质,是指在活性药物成分、辅料和药品生产过程中使用和产生的有机挥发性化学物质。
药品还可被来自包装、运输、仓储中的有机溶剂污染。
药品生产商有责任确保终产品中的任何一种残留溶剂对人体无害。
????各国药监部门曾使用不同的药品残留溶剂指导原则,为此国际组织展开了协调工作。
经相关程序讨论和审查后,国际协调大会的指导原则于1997年7月17日获得通过,被推荐至国际协调大会(ICH)的指导委员会采用。
该指导原则要求,如果某个药品的生产或纯化过程可导致溶剂残留,就应对这个药品进行检测,并且只检测生产过程或纯化中使用或产生的那种溶剂。
根据使用量的多少,可采用累加的方法计算药品中残留溶剂的量。
如果累加量低于或等于指导原则中的推荐量,则该药品无需进行残留溶剂检测;如果累加量高于推荐量,则必须对该药品进行残留溶剂检测。
该指导原则适用于颁布以后上市的所有剂型和给药途径,但不适用于在临床研究阶段使用的潜在新药和新辅料,也不适用于已上市的现有药物。
在某些情况如短期(小于30天)或局部应用下,视具体情况,溶剂的高残留量也可接受。
???按照毒性大小和对环境的危害程度,该指导原则将溶剂分成三类(所列举的溶剂并不完全,应对合成和生产过程所有可能的残留溶剂进行评估):第一类溶剂是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。
在可能的情况下,应避免使用这类溶剂。
如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如:苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。
Q3C 溶剂残留和分类
摘自Q3C-残留溶剂的指导选择一类溶剂:应避免致癌物;备受怀疑的致癌物;环境危害物二类溶剂:设定残余量,限量使用非基因性动物致癌物;可能导致不可逆中毒,比如神经性中毒,畸形;可能导致其他可逆性中毒三类溶剂: 低毒对人体有潜在毒性,可以接触,但不超过50mg/day。
If Class 1 solvents are likely to be present, they should be identified and quantified."Likely to be present" refers to the solvent used in the final manufacturing step and to solvents that are used in earlier manufacturing steps and not removed consistently by a validated process.ICH规定3类只要干失小于0.5, 但1,2类并不是不能出现。
按照毒性大小和对环境的危害程度,该指导原则将溶剂分成三类(所列举的溶剂并不完全,应对合成和生产过程所有可能的残留溶剂进行评估):第一类溶剂是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。
在可能的情况下,应避免使用这类溶剂。
如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如:苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。
第二类溶剂是指无基因毒性但有动物致癌性的溶剂。
按每日用药10克计算的每日允许接触量如下:2-甲氧基乙醇(50ppm)、氯仿(60ppm)、1,1,2-三氯乙烯(80ppm)、1,2-二甲氧基乙烷(100ppm)、1,2,3,4-四氢化萘(100ppm)、2-乙氧基乙醇(160ppm)、环丁砜(160ppm)、嘧啶(200ppm)、甲酰胺(220ppm)、正己烷(290ppm)、氯苯(360ppm)、二氧杂环己烷(380ppm)、乙腈(410ppm)、二氯甲烷(600ppm)、乙烯基乙二醇(620ppm)、N,N-二甲基甲酰胺(880ppm)、甲苯(890ppm)、N,N-二甲基乙酰胺(1090ppm)、甲基环己烷(1180ppm)、1,2-二氯乙烯(1870ppm)、二甲苯(2170ppm)、甲醇(3000ppm)、环己烷(3880ppm)、N-甲基吡咯烷酮(4840ppm)、。
ICH Q C一类二类三类溶剂
一类溶剂:已知可致癌且对人和环境有害的溶剂,尽可能避免使用(事实上很多大公司如罗氏等已将这些甚至包括某些二类溶剂打入“黑名单”),如果实在无法避免,残留量必须控制在规定限度:苯(2ppm)四氯化碳(4ppm)1,2-二氯乙烷(5ppm)(我注意到隆莱还有使用)1,1-二氯乙烯(8ppm)1,1,1-三氯乙烷(1500ppm)二类溶剂:有动物致癌性的溶剂,按每日允许接触量计算的规定限度如下:乙腈(410ppm)氯苯(360ppm)氯仿(60ppm)(罗氏禁用)环己烷(3880ppm)1,2-二氯乙烯(1870ppm)二氯甲烷(600ppm)1,2-二甲氧乙烷(100ppm)N,N-二甲基乙酰胺(1090ppm)DMF(880ppm)二氧六环(380ppm)2-乙氧基乙醇(160ppm)乙二醇(620ppm)甲酰胺(220ppm)正己烷(290ppm)甲醇(3000ppm)乙二醇甲醚(50ppm)甲丁酮(50ppm)甲基环己烷(1180ppm)N-甲基吡咯烷酮(4840ppm)硝基甲烷(50ppm)吡啶(200ppm)环丁砜(160ppm)1,2,3,4-四氢化萘(100ppm)甲苯(890ppm)1,1,2-三氯乙烯(80ppm)二甲苯(2170ppm)三类溶剂:低毒溶剂,限度为≤0.5%,即5000ppm,如我们常用的乙醇、EA、TBME、丙酮、THF、庚烷、异丙醇等除上述三类溶剂外,还有一些溶剂如我们用过的石油醚、甲基四氢呋喃等尚无毒理资料,必须证明其残留量的合理性。
尤其石油醚,建议今后避免使用,尤其在后道反应最好避免,由于其成分复杂,无法测定准确残留量。
总之,在工艺开发阶段应优先选择三类溶剂,控制二类溶剂,尽量避免一类溶剂的使用。
ICH Q3c 杂质:残余溶剂的指导原则(中文版)
杂质:残留溶剂的指导原则杂质:残留溶剂的指导原则1.介绍 本指导原则旨在介绍药物中残留溶剂在保证人体安全条件下的 可接受量,指导原则建议使用低毒的溶剂,提出了一些残留溶剂毒理 学上的可接受水平。
药物中的残留溶剂在此定义为在原料药或赋形剂的生产中,以 及在制剂制备过程中产生或使用的有机挥发性化合物, 它们在工艺中 不能完全除尽。
在合成原料药中选择适当的溶剂可提高产量或决定药 物的性质,如结晶型。
纯度和溶解度。
因此.有时溶剂是合成中非常 关键的因素。
本指导原则所指的溶剂不是谨慎地用作赋形剂的溶剂, 也不是溶剂化物,然而在这些制剂中的溶剂含量也应进行测定,并作 出合理的判断。
出于残留溶剂没有疗效,故所有残留溶剂均应尽可能.去,以 符合产品规范、GMP 或其他基本的质量要求。
制剂所含残留溶剂的 水平不能高于安全值,已知一些溶剂可导致不接受的毒性(第一类, 表 1) ,除非被证明特别合理,在原药、赋形剂及制剂生产中应避免 使用。
一些溶剂毒性不太大(第二类,表 2)应限制使用,以防止病 人潜在的不良反应。
使用低毒溶剂(第三类,表 3)较为理想。
附录 1 中列出了指导原则中的全部溶剂。
第 1 页 共 18 页杂质:残留溶剂的指导原则表中所列溶剂并非详尽无遗, 其他可能使用的溶剂有待日后补充 列人。
第一、二类溶剂的建议限度或溶剂的分类会随着。
新的安全性 资料的获得而调整。
含有新溶剂的新药制剂、其上市申请的安全性资 料应符合本指导原则或原料药指导原则(Q3A 新原料药中的杂质) 或新药制剂(Q3B 新药制剂中的杂质)中所述的杂质控制原则,或者 符合上述三者。
2. 指导原则的范围 指导原则范围包括原料药、 赋形剂或制剂中所含残留溶剂. 因此, 当生产或纯化过程中会出现这些溶剂时。
应进行残留溶剂的检验。
也 只有在上述情况下,才有必要作溶剂的检查。
虽然生产商可以选择性 地测定制剂, 但也可以从制剂中各成分的残留溶液水平来累积计算制 剂中的残留溶剂。
ICH Q3c 中文版)
药、赋形剂及制剂生产中不应该使用。但是,为了生产一种有特殊疗
效的药品而不得不使用时,除非经过其他论证,否则应按表 1 控制,
1,1,1-三氯乙烷因会造成环境公害列人表 1,其限度 1500ppm 是
基于安全性数据而定的。
杂质:残留溶剂的指导原则
杂质:残留溶剂的指导原则
1.介绍 本指导原则旨在介绍药物中残留溶剂在保证人体安全条件下的
可接受量,指导原则建议使用低毒的溶剂,提出了一些残留溶剂毒理 学上的可接受水平。
药物中的残留溶剂在此定义为在原料药或赋形剂的生产中,以 及在制剂制备过程中产生或使用的有机挥发性化合物,它们在工艺中 不能完全除尽。在合成原料药中选择适当的溶剂可提高产量或决定药 物的性质,如结晶型。纯度和溶解度。因此.有时溶剂是合成中非常 关键的因素。本指导原则所指的溶剂不是谨慎地用作赋形剂的溶剂, 也不是溶剂化物,然而在这些制剂中的溶剂含量也应进行测定,并作 出合理的判断。
四氢呋喃
4.4 没有足够毒性资料的溶剂
以下溶剂(表4)在赋形剂、原料药和制剂生产中也许会被生产
商采用,但尚无足够的毒理学数据,故无PDE值,生产厂在使用时
应提供这些溶剂在制剂中残留水平的合理性论证报告。
表4 无足够毒理学数据的溶剂
1,1-二乙氧基丙烷 1,1-二甲基甲烷 2,2-二甲丙烷 异辛烷 异丙醚
表 1 药物制剂中含第一类溶剂的限度(应避免使用)
溶剂
浓度限度(ppm)
备注
苯
2
致癌物
四氯化碳
4
毒性及环境公害
1,2-二氯乙烷
5
毒性
1,1-二氯乙烯
8
毒性
ICHQ3C一类二类三类溶剂
ICHQ3C一类二类三类溶剂;.一类溶剂:已知可致癌且对人和环境有害的溶剂,尽可能避免使用(事实上很多大公司如罗氏等已将这些甚至包括某些二类溶剂打入“黑名单”),如果实在无法避免,残留量必须控制在规定限度:苯(2ppm )四氯化碳(4ppm )1,2- 二氯乙烷(5ppm )(我注意到隆莱还有使用)1,1- 二氯乙烯(8ppm )1,1,1- 三氯乙烷(1500ppm )二类溶剂:有动物致癌性的溶剂,按每日允许接触量计算的规定限度如下:乙腈(410ppm )氯苯(360ppm )氯仿(60ppm )(罗氏禁用)环己烷(3880ppm )1,2- 二氯乙烯(1870ppm )二氯甲烷(600ppm )1,2- 二甲氧乙烷(100ppm )N,N- 二甲基乙酰胺(1090ppm )DMF (880ppm )二氧六环(380ppm )2-乙氧基乙醇(160ppm )乙二醇(620ppm )甲酰胺(220ppm )正己烷(290ppm )甲醇(3000ppm )乙二醇甲醚(50ppm )甲丁酮(50ppm )甲基环己烷(1180ppm )N- 甲基吡咯烷酮(4840ppm )硝基甲烷(50ppm )吡啶(200ppm )环丁砜(160ppm )1,2,3,4- 四氢化萘(100ppm )甲苯(890ppm )1,1,2- 三氯乙烯(80ppm )二甲苯(2170ppm )三类溶剂:低毒溶剂,限度为≤0.5% ,即5000ppm ,如我们常用的乙醇、EA 、TBME 、丙酮、THF 、庚烷、异丙醇等除上述三类溶剂外,还有一些溶剂如我们用过的石油醚、甲基四氢呋喃等尚无毒理资料,必须证明其残留量的合理性。
尤其石油醚,建议今后避免使用,尤其在后道反应最好避免,由于其成分复杂,无法测定准确残留量。
总之,在工艺开发阶段应优先选择三类溶剂,控制二类溶剂,尽量避免一类溶剂的使用。
;. .。
Q3C-残留溶剂的指导选择
European Medicines Agency7 Westferry Circus, Canary Wharf, London, E14 4HB, UKTel. (44-20) 74 18 85 75 Fax (44-20) 75 23 70 40E-mail: mail@emea.eu.int http://www.emea.eu.intMarch 1998 CPMP/ICH/283/95ICH Topic Q 3 C (R3)Impurities: Residual SolventsStep 5NOTE FOR GUIDANCE ONIMPURITIES: RESIDUAL SOLVENTS(CPMP/ICH/283/95)TRANSMISSION TO CPMP November 1996 TRANSMISSION TO INTERESTED PARTIES November 1996 COMMENTS REQUESTED BEFORE May 1997 FINAL APPROVAL BY CPMP September 1997 DATE FOR COMING INTO OPERATION March 1998ICH Harmonised Tripartite GuidelineTable of Contents1. INTRODUCTION (3)2. SCOPE OF THE GUIDELINE (3)3. GENERAL PRINCIPLES (4)3.1 Classification of Residual Solvents by Risk Assessment (4)3.2 Methods for Establishing Exposure Limits (4)3.3 Options for Describing Limits of Class 2 Solvents (4)3.4 Analytical Procedures (6)3.5 Reporting levels of residual solvents (6)4. LIMITS OF RESIDUAL SOLVENTS (7)4.1 Solvents to Be Avoided (7)4.2 Solvents to Be Limited (7)4.3 Solvents with Low Toxic Potential (8)4.4 Solvents for which No Adequate Toxicological Data was Found (9)GLOSSARY (10)APPENDIX 1. LIST OF SOLVENTS INCLUDED IN THE GUIDELINE (11)APPENDIX 2. ADDITIONAL BACKGROUND (16)A2.1 Environmental Regulation of Organic Volatile Solvents (16)A2.2 Residual Solvents in Pharmaceuticals (16)APPENDIX 3. METHODS FOR ESTABLISHING EXPOSURE LIMITS (16)PART II: (21)IMPURITIES : RESIDUAL SOLVENTS (MAINTENANCE) (21)PART III: (23)IMPURITIES : RESIDUAL SOLVENTS (MAINTENANCE) (23)PART I:1. INTRODUCTIONThe objective of this guideline is to recommend acceptable amounts for residual solvents in pharmaceuticals for the safety of the patient. The guideline recommends use of less toxic solvents and describes levels considered to be toxicologically acceptable for some residual solvents.Residual solvents in pharmaceuticals are defined here as organic volatile chemicals that are used or produced in the manufacture of drug substances or excipients, or in the preparation of drug products. The solvents are not completely removed by practical manufacturing techniques. Appropriate selection of the solvent for the synthesis of drug substance may enhance the yield, or determine characteristics such as crystal form, purity, and solubility. Therefore, the solvent may sometimes be a critical parameter in the synthetic process. This guideline does not address solvents deliberately used as excipients nor does it address solvates. However, the content of solvents in such products should be evaluated and justified.Since there is no therapeutic benefit from residual solvents, all residual solvents should be removed to the extent possible to meet product specifications, good manufacturing practices, or other quality-based requirements. Drug products should contain no higher levels of residual solvents than can be supported by safety data. Some solvents that are known to cause unacceptable toxicities (Class 1, Table 1) should be avoided in the production of drug substances, excipients, or drug products unless their use can be strongly justified in a risk-benefit assessment. Some solvents associated with less severe toxicity (Class 2, Table 2) should be limited in order to protect patients from potential adverse effects. Ideally, less toxic solvents (Class 3, Table 3) should be used where practical. The complete list of solvents included in this guideline is given in Appendix 1The lists are not exhaustive and other solvents can be used and later added to the lists. Recommended limits of Class 1 and 2 solvents or classification of solvents may change as new safety data becomes available. Supporting safety data in a marketing application for a new drug product containing a new solvent may be based on concepts in this guideline or the concept of qualification of impurities as expressed in the guideline for drug substance (Q3A, Impurities in New Drug Substances) or drug product (Q3B, Impurities in New Drug Products), or all three guidelines.2. SCOPE OF THE GUIDELINEResidual solvents in drug substances, excipients, and in drug products are within the scope of this guideline. Therefore, testing should be performed for residual solvents when production or purification processes are known to result in the presence of such solvents. It is only necessary to test for solvents that are used or produced in the manufacture or purification of drug substances, excipients, or drug product. Although manufacturers may choose to test the drug product, a cumulative method may be used to calculate the residual solvent levels in the drug product from the levels in the ingredients used to produce the drug product. If the calculation results in a level equal to or below that recommended in this guideline, no testing of the drug product for residual solvents need be considered. If, however, the calculated level is above the recommended level, the drug product should be tested to ascertain whether the formulation process has reduced the relevant solvent level to within the acceptable amount. Drug product should also be tested if a solvent is used during its manufacture.This guideline does not apply to potential new drug substances, excipients, or drug products used during the clinical research stages of development, nor does it apply to existing marketeddrug products. The guideline applies to all dosage forms and routes of administration. Higher levels ofresidual solvents may be acceptable in certain cases such as short term (30 days or less) or topical application. Justification for these levels should be made on a case by case basis.See Appendix 2 for additional background information related to residual solvents.3. GENERAL PRINCIPLES3.1 Classification of Residual Solvents by Risk AssessmentThe term "tolerable daily intake" (TDI) is used by the International Program on Chemical Safety (IPCS) to describe exposure limits of toxic chemicals and "acceptable daily intake" (ADI) is used by the World Health Organization (WHO) and other national and internationalhealth authorities and institutes. The new term "permitted daily exposure" (PDE) is defined in the present guideline as a pharmaceutically acceptable intake of residual solvents to avoidconfusion of differingvalues for ADI's of the same substance.Residual solvents assessed in this guideline are listed in Appendix 1 by common names and structures. They were evaluated for their possible risk to human health and placed into one ofthree classes as follows:Class 1 solvents: Solvents to be avoided Known human carcinogens, strongly suspected human carcinogens, and environmentalhazards.Class 2 solvents: Solvents to be limited Non-genotoxic animal carcinogens or possible causative agents of other irreversible toxicitysuch as neurotoxicity or teratogenicity. Solvents suspected of other significant but reversible toxicities.Class 3 solvents: Solvents with low toxic potential Solvents with low toxic potential to man; no health-based exposure limit is needed. Class 3solvents have PDEs of 50 mg or more per day.3.2 Methods for Establishing Exposure LimitsThe method used to establish permitted daily exposures for residual solvents is presented inAppendix 3. Summaries of the toxicity data that were used to establish limits are published in Pharmeuropa, Vol. 9, No. 1, Supplement, April 1997.3.3 Options for Describing Limits of Class 2 SolventsTwo options are available when setting limits for Class 2 solvents.Option 1: The concentration limits in ppm stated in Table 2 can be used. They were calculated using equation (1) below by assuming a product mass of 10 g administered daily.dose PDE x 1000(ppm)ion Concentrat :(1) =Here, PDE is given in terms of mg/day and dose is given in g/day.These limits are considered acceptable for all substances, excipients, or products. Therefore this option may be applied if the daily dose is not known or fixed. If all excipients and drugsubstances in a formulation meet the limits given in Option 1, then these components may be used in any proportion. No further calculation is necessary provided the daily dose does notexceed 10 g. Products that are administered in doses greater than 10 g per day should be considered under Option 2. Option 2: It is not considered necessary for each component of the drug product to complywith the limits given in Option 1. The PDE in terms of mg/day as stated in Table 2 can be used with the known maximum daily dose and equation (1) above to determine theconcentration of residual solvent allowed in drug product. Such limits are considered acceptable provided that it has been demonstrated that the residual solvent has been reducedto the practical minimum. The limits should be realistic in relation to analytical precision, manufacturing capability, reasonable variation in the manufacturing process, and the limitsshould reflect contemporary manufacturing standards.Option 2 may be applied by adding the amounts of a residual solvent present in each of the components of the drug product. The sum of the amounts of solvent per day should be lessthan that given by the PDE.Consider an example of the use of Option 1 and Option 2 applied to acetonitrile in a drug product. The permitted daily exposure to acetonitrile is 4.1 mg per day; thus, the Option 1limit is 410 ppm. The maximum administered daily mass of a drug product is 5.0 g, and the drug product contains two excipients. The composition of the drug product and the calculated maximum content of residual acetonitrile are given in the following table.Component Amount in formulation Acetonitrile contentDaily exposure Active substance0.3 g 800 ppm 0.24 mg Excipient 10.9 g 400 ppm 0.36 mg Excipient 23.8 g 800 ppm 3.04 mg Medicinal product 5.0 g 728 ppm 3.64 mgExcipient 1 meets the Option 1 limit, but the drug substance, excipient 2, and drug product do not meet the Option 1 limit. Nevertheless, the product meets the Option 2 limit of 4.1 mg per day and thus conforms to the recommendations in this guideline.Consider another example using acetonitrile as residual solvent. The maximumadministered daily mass of a drug product is 5.0 g, and the drug product contains two excipients. Thecomposition of the drug product and the calculated maximum content of residual acetonitrile is given in the following table.Component Amount in formulation AcetonitrilecontentDaily exposure Active substance0.3 g 800 ppm 0.24 mg Excipient 10.9 g 2000 ppm 1.80 mg Excipient 23.8 g 800 ppm 3.04 mg Medicinal product 5.0 g 1016 ppm 5.08 mgIn this example, the product meets neither the Option 1 nor the Option 2 limit according to this summation. The manufacturer could test the drug product to determine if the formulationprocess reduced the level of acetonitrile. If the level of acetonitrile was not reduced during formulation to the allowed limit, then the manufacturer of the drug product should take othersteps to reduce the amount of acetonitrile in the drug product. If all of these steps fail to reduce the level of residual solvent, in exceptional cases the manufacturer could provide asummary of efforts made to reduce the solvent level to meet the guideline value, and provide a riskbenefit analysis to support allowing the product to be utilised with residual solvent atahigher level.3.4 Analytical ProceduresResidual solvents are typically determined using chromatographic techniques such as gas chromatography. Any harmonised procedures for determining levels of residual solvents as described in the pharmacopoeias should be used, if feasible. Otherwise, manufacturers wouldbe free to select the most appropriate validated analytical procedure for a particular application. If only Class 3 solvents are present, a nonspecific method such as loss on dryingmay be used.Validation of methods for residual solvents should conform to ICH guidelines Text on Validation of Analytical Procedures and Extension of the ICH Text on Validation ofAnalytical Procedures .3.5 Reporting levels of residual solventsManufacturers of pharmaceutical products need certain information about the content of residual solvents in excipients or drug substances in order to meet the criteria of thisguideline. The following statements are given as acceptable examples of the information that could be provided from a supplier of excipients or drug substances to a pharmaceuticalmanufacturer. The supplier might choose one of the following as appropriate:• Only Class 3 solvents are likely to be present. Loss on drying is less than 0.5%.• Only Class 2 solvents X, Y, ... are likely to be present. All are below the Option 1 limit. (Here the supplier would name the Class 2 solvents represented by X, Y, ...)• Only Class 2 solvents X, Y, ... and Class 3 solvents are likely to be present. Residual Class 2 solvents are below the Option 1 limit and residual Class 3 solvents are below0.5%.If Class 1 solvents are likely to be present, they should be identified and quantified."Likely to be present" refers to the solvent used in the final manufacturing step and tosolvents that are used in earlier manufacturing steps and not removed consistently by avalidated process.If solvents of Class 2 or Class 3 are present at greater than their Option 1 limits or 0.5%, respectively, they should be identified and quantified.4. LIMITS OF RESIDUAL SOLVENTS4.1 Solvents to Be AvoidedSolvents in Class 1 should not be employed in the manufacture of drug substances, excipients,and drug products because of their unacceptable toxicity or their deleterious environmentaleffect. However, if their use is unavoidable in order to produce a drug product with asignificant therapeutic advance, then their levels should be restricted as shown in Table 1,unless otherwise justified. 1,1,1- Trichloroethane is included in Table 1 because it is an environmental hazard. The stated limit of 1500 ppm is based on a review of the safety data.ConcernLimitSolvent Concentration(ppm)Benzene 2 Carcinogen Carbon tetrachloride 4 Toxic and environmentalhazard1,2-Dichloroethane 5 Toxic1,1-Dichloroethene 8 Toxic1,1,1-Trichloroethane 1500 Environmentalhazard4.2 Solvents to Be LimitedSolvents in Table 2 should be limited in pharmaceutical products because of their inherenttoxicity. PDEs are given to the nearest 0.1 mg/day, and concentrations are given to the nearest10 ppm. The stated values do not reflect the necessary analytical precision of determination.Precision should be determined as part of the validation of the method.TABLE 2. Class 2 solvents in pharmaceutical products.Solvent PDE (mg/day) Concentration Limit(ppm)Acetonitrile 4.1 410 Chlorobenzene 3.6 360 Chloroform 0.6 60 Cyclohexane 38.8 3880 1,2-Dichloroethene 18.7 1870 Dichloromethane 6.0 600 1,2-Dimethoxyethane 1.0100 N,N-Dimethylacetamide 10.91090 N,N-Dimethylformamide 8.8 8801,4-Dioxane 3.8 380 2-Ethoxyethanol 1.6 160 Ethylene glycol 6.2 620Formamide 2.2 220 Hexane 2.9 290 Methanol 30.0 3000 2-Methoxyethanol 0.5 50 Methylbutylketone 0.5 50 Methylcyclohexane 11.8 1180 N-Methylpyrrolidone 48.4 4840Nitromethane 0.5 50Pyridine 2.0 200 Sulfolane 1.6 160 Tetralin 1.0 100 Toluene 8.9 8901,1,2-Trichloroethene 0.8 80 Xylene* 21.7 2170 * usually 60% m-xylene, 14% p-xylene, 9% o-xylene with 17% ethyl benzene.4.3 Solvents with Low Toxic PotentialSolvents in Class 3 (shown in Table 3) may be regarded as less toxic and of lower risk to human health. Class 3 includes no solvent known as a human health hazard at levels normallyaccepted in pharmaceuticals. However, there are no long-term toxicity or carcinogenicity studies for many of the solvents in Class 3. Available data indicate that they are less toxic inacute or short-term studies and negative in genotoxicity studies. It is considered that amounts of these residual solvents of 50 mg per day or less (corresponding to 5000 ppm or 0.5% underOption 1) would be acceptable without justification. Higher amounts may also be acceptable provided they are realistic in relation to manufacturing capability and good manufacturingpractice.Table 3. Class 3 solvents which should be limited by GMP or other qualitybased requirements.Acetic acid Heptaneacetate Acetone IsobutylAnisole Isopropylacetateacetate1-Butanol Methyl2-Butanol 3-Methyl-1-butanol Butyl acetate Methylethyl ketonetert-Butylmethyl ether Methylisobutyl ketoneCumene 2-Methyl-1-propanol Dimethylsulfoxide PentaneEthanol 1-PentanolEthyl acetate 1-PropanolEthyl ether 2-PropanolEthyl formate Propyl acetateFormic acid Tetrahydrofuran4.4 Solvents for which No Adequate Toxicological Data was FoundThe following solvents (Table 4) may also be of interest to manufacturers of excipients, drug substances, or drug products. However, no adequate toxicological data on which to base aPDE was found. Manufacturers should supply justification for residual levels of these solvents in pharmaceutical products.Table 4. Solvents for which no adequate toxicological data was found.1,1-Diethoxypropane Methylisopropylketone1,1-Dimethoxymethane Methyltetrahydrofuranether2,2-Dimethoxypropane PetroleumIsooctane Trichloroaceticacid Isopropyl ether Trifluoroacetic acidGLOSSARYGenotoxic Carcinogens:Carcinogens which produce cancer by affecting genes or chromosomes.LOEL:Abbreviation for lowest-observed effect level.Lowest-Observed Effect Level:The lowest dose of substance in a study or group of studies that produces biologically significant increases in frequency or severity of any effects in the exposed humans or animals.Modifying Factor:A factor determined by professional judgment of a toxicologist and applied to bioassay data to relate that data safely to humans.Neurotoxicity:The ability of a substance to cause adverse effects on the nervous system.NOEL:Abbreviation for no-observed-effect level.No-Observed-Effect Level:The highest dose of substance at which there are no biologically significant increases in frequency or severity of any effects in the exposed humans or animals.PDE:Abbreviation for permitted daily exposure.Permitted Daily Exposure:The maximum acceptable intake per day of residual solvent in pharmaceutical products.Reversible Toxicity:The occurrence of harmful effects that are caused by a substance and which disappear after exposure to the substance ends.Strongly Suspected Human Carcinogen:A substance for which there is no epidemiological evidence of carcinogenesis but there are positive genotoxicity data and clear evidence of carcinogenesis in rodents.Teratogenicity:The occurrence of structural malformations in a developing fetus when a substance is administered during pregnancy.APPENDIX 1. LIST OF SOLVENTS INCLUDED IN THE GUIDELINESolvent OtherNames Structure Class Acetic acid Ethanoic acid CH3COOH Class3Acetone 2-Propanone CH3COCH3 Class 3Propan-2-oneAcetonitrile CH3CN Class2Anisole Methoxybenzene OCH3Class3Benzene Benzol Class11-Butanol n-Butyl alcohol CH3(CH2)3OH Class3Butan-1-ol2-Butanol sec-Butyl alcohol CH3CH2CH(OH)CH3 Class 3Butan-2-olButyl acetate Acetic acid butyl ester CH3COO(CH2)3CH3 Class3tert-Butylmethyl ether 2-Methoxy-2-methyl-propane (CH3)3COCH3 Class3Carbon tetrachloride Tetrachloromethane CCl4 Class1Chlorobenzene ClClass2Chloroform Trichloromethane CHCl3 Class 2Cumene IsopropylbenzeneCH(CH 3)2Class 3(1-Methyl)ethylbenzeneCyclohexane Hexamethylene Class 21,2-Dichloroethane sym -Dichloroethane CH 2ClCH 2Cl Class 1Ethylene dichloride Ethylene chloride 1,1-Dichloroethene 1,1-Dichloroethylene H 2C=CCl 2 Class 1 Vinylidene chloride 1,2-Dichloroethene 1,2-Dichloroethylene ClHC =CHCl Class 2Acetylene dichloride Dichloromethane Methylene chlorideCH 2Cl 2Class 21,2-Dimethoxyethane Ethyleneglycol dimethyl ether H 3COCH 2CH 2OCH 3 Class 2 Monoglyme Dimethyl Cellosolve N,N-Dimethylacetamide DMACH 3CON(CH 3)2 Class 2 N,N-Dimethylformamide DMFHCON(CH 3)2 Class 2Dimethyl sulfoxide Methylsulfinylmethane (CH 3)2SO Class 3 Methyl sulfoxide DMSO1,4-Dioxane p-DioxaneOO Class 2[1,4]Dioxane Ethanol Ethyl alcoholCH 3CH 2OH Class 32-Ethoxyethanol Cellosolve CH3CH2OCH2CH2OH Class 23Ethyl acetate Acetic acid ethyl ester CH3COOCH2CH3 Class2 Ethyleneglycol 1,2-Dihydroxyethane HOCH2CH2OH Class1,2-Ethanediol3Ethyl ether Diethyl ether CH3CH2OCH2CH3 ClassEthoxyethane1,1’-Oxybisethane3Ethyl formate Formic acid ethyl ester HCOOCH2CH3 Class2 Formamide Methanamide HCONH2 Class Formic acid H C O O H Class 33 Heptane n-Heptane CH3(CH2)5CH3 Class2 Hexane n-Hexane CH3(CH2)4CH3 Class Isobutyl acetate Acetic acid isobutyl ester CH3COOCH2CH(CH3)2 Class 33Isopropyl acetate Acetic acid isopropyl ester CH3COOCH(CH3)2 Class2alcohol CH3OH Class Methanol MethylCellosolve CH3OCH2CH2OH Class22-Methoxyethanol Methyl3 Methyl acetate Acetic acid methyl ester CH3COOCH3 Classalcohol (CH3)2CHCH2CH2OH Class 33-Methyl-1-butanol IsoamylalcoholIsopentyl3-Methylbutan-1-ol2 Methylbutyl ketone 2-Hexanone CH3(CH2)3COCH3 ClassHexan-2-oneMethylcyclohexane Cyclohexylmethane CH3Class2Methylethyl ketone 2-Butanone CH3CH2COCH3 Class3 MEKButan-2-oneMethylisobutyl ketone 4-Methylpentan-2-one CH3COCH2CH(CH3)2 Class 34-Methyl-2-pentanoneMIBK2-Methyl-1-propanol Isobutyl alcohol (CH3)2CHCH2OH Class3 2-Methylpropan-1-olN-Methylpyrrolidone 1-Methylpyrrolidin-2-one N OCH3 Class21-Methyl-2-pyrrolidinoneNitromethane CH3NO2 Class2 Pentane n-Pentane CH3(CH2)3CH3 Class31-Pentanol Amylalcohol CH3(CH2)3CH2OH Class3Pentan-1-olPentylalcohol1-Propanol Propan-1-ol CH3CH2CH2OH Class3Propylalcohol2-Propanol Propan-2-ol (CH3)2CHOH Class3IsopropylalcoholPropyl acetate Acetic acid propyl ester CH3COOCH2CH2CH3 Class 3Pyridine NClass2Sulfonane Tetrahydrothiophene1,1-dioxideSO OClass2Tetrahydrofuran Tetramethyleneoxide O Class3 OxacyclopentaneTetralin 1,2,3,4-Tetrahydro-naphthalene Class2Toluene Methylbenzene CH3Class21,1,1-Trichloroethane Methylchlororoform CH3CCl3 Class1 1,1,2-Trichloroethene Trichloroethene HClC=CCl2 Class2Xylene* Dimethybenzene CH3CH3Class2Xylol* usually 60 % m-xylene, 14 % p-xylene, 9 % o-xylene with 17 % ethyl benzeneAPPENDIX 2. ADDITIONAL BACKGROUNDA2.1 Environmental Regulation of Organic Volatile SolventsSeveral of the residual solvents frequently used in the production of pharmaceuticalsare listed as toxic chemicals in Environmental Health Criteria (EHC) monographs andthe Integrated Risk Information System (IRIS). The objectives of such groups as theInternational Programme on Chemical Safety (IPCS), the United States EnvironmentalProtection Agency (USEPA), and the United States Food and Drug Administration(USFDA) include the determination of acceptable exposure levels. The goal is protectionof human health and maintenance of environmental integrity against the possible deleterious effects of chemicals resulting from long-term environmental exposure. The methods involved in the estimation of maximum safe exposure limits are usually based on long-term studies. When long-term study data are unavailable, shorter term study data can be used with modification of the approach such as use of larger safety factors. The approach described therein relates primarily to long-term or life-time exposure of the general population in the ambient environment, i.e. ambient air, food, drinking water and other media.A2.2 Residual Solvents in PharmaceuticalsExposure limits in this guideline are established by referring to methodologies and toxicity data described in EHC and IRIS monographs. However, some specific assumptions about residual solvents to be used in the synthesis and formulation of pharmaceutical products should be taken into account in establishing exposure limits. They are:1) Patients (not the general population) use pharmaceuticals to treat their diseases or forprophylaxis to prevent infection or disease.2) The assumption of life-time patient exposure is not necessary for mostpharmaceuticalproducts but may be appropriate as a working hypothesis to reduce risk to human health3) Residual solvents are unavoidable components in pharmaceutical production and willoften be a part of drug products.4) Residual solvents should not exceed recommended levels except in exceptionalcircumstances.5) Data from toxicological studies that are used to determine acceptable levels forresidual solvents should have been generated using appropriate protocols such as those described for example by OECD, EPA, and the FDA Red Book.APPENDIX 3. METHODS FOR ESTABLISHING EXPOSURE LIMITSThe Gaylor-Kodell method of risk assessment (Gaylor, D. W. and Kodell, R. L.: Linear Interpolation algorithm for low dose assessment of toxic substance. J Environ. Pathology, 4, 305, 1980) is appropriate for Class 1 carcinogenic solvents. Only in cases where reliable carcinogenicity data are available should extrapolation by the use of mathematical models be applied to setting exposure limits. Exposure limits for Class 1 solvents could be determined with the use of a large safety factor (i.e., 10,000 to 100,000) with respect to the no-observed-effect level (NOEL). Detection and quantitation of these solvents should be by state-of-the-art analytical techniques.Acceptable exposure levels in this guideline for Class 2 solvents were established by calculation of PDE values according to the procedures for setting exposure limits in pharmaceuticals (Pharmacopeial Forum, Nov-Dec 1989), and the method adopted by IPCS for Assessing Human Health Risk of Chemicals (Environmental Health Criteria 170, WHO, 1994). These methods are similar to those used by the USEPA (IRIS) and the USFDA (Red Book) and others. The method is outlined here to give a better understanding of the origin of the PDE values. It is not necessary to perform these calculations in order to use the PDE values tabulated in Section 4 of this document.PDE is derived from the no-observed-effect level (NOEL), or the lowest-observed effect level (LOEL) in the most relevant animal study as follows:PDE =NOEL x Weight Adjustment F1x F2x F3x F4x F5The PDE is derived preferably from a NOEL. If no NOEL is obtained, the LOEL may be used. Modifying factors proposed here, for relating the data to humans, are the same kind of "uncertainty factors" used in Environmental Health Criteria (Environmental Health Criteria 170, World Health Organization, Geneva, 1994), and "modifying factors" or "safety factors" in Pharmacopeial Forum. The assumption of 100% systemic exposure is used in all calculations regardless of route of administration.The modifying factors are as follows:F1 = A factor to account for extrapolation between speciesF1 = 5 for extrapolation from rats to humansF1 = 12 for extrapolation from mice to humansF1 = 2 for extrapolation from dogs to humansF1 = 2.5 for extrapolation from rabbits to humansF1 = 3 for extrapolation from monkeys to humansF1 = 10 for extrapolation from other animals to humansF1 takes into account the comparative surface area:body weight ratios for the species concerned and for man. Surface area (S) is calculated as:S = kM0.67in which M = body mass, and the constant k has been taken to be 10. The body weights used in the equation are those shown below in Table A3.1.F2 = A factor of 10 to account for variability between individuals.A factor of 10 is generally given for all organic solvents, and 10 is used consistently in this guideline.F3 = A variable factor to account for toxicity studies of short-term exposureF3 = 1 for studies that last at least one half lifetime (1 year for rodents or rabbits; 7 years for cats, dogs and monkeys).F3 = 1 for reproductive studies in which the whole period of organogenesis is covered.F3 = 2 for a 6-month study in rodents, or a 3.5-year study in non-rodents.F3 = 5 for a 3-month study in rodents, or a 2-year study in non-rodents.F3 = 10 for studies of a shorter duration.。
一二三类有机溶剂分类
一二三类有机溶剂分类集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
第一类有机溶剂
是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。
苯、四氯化碳、1,2-二氯乙烷、、1,1,1-三氯乙烷
第二类有机溶剂
是指无基因毒性但有动物致癌性的溶剂。
2-甲氧基乙醇、氯仿、1,1,2-三氯乙烯、1,2-二甲氧基乙烷、1,2,3,4-四氢化萘、2-乙氧基乙醇、环丁砜、嘧啶、甲酰胺、正己烷、氯苯、二氧杂环己烷、乙腈、二氯甲烷、乙烯基乙二醇、N,N-二甲基甲酰胺、甲苯、N,N-二甲基乙酰胺、甲基环己烷、1,2-二氯乙烯、二甲苯、甲醇、环己烷、N-甲基吡咯烷酮。
第三类有机溶剂
是指对人体低毒的溶剂。
这类溶剂包括:
戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、乙酸丁酯、三丁甲基乙醚、乙酸异丙酯、甲乙酮、二甲亚砜、异丙基苯、乙酸乙酯、甲酸乙酯、乙酸异丁酯、乙酸甲酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯。
精心搜集整理,只为你的需要。
Q3C
行业指导说明Q3c——附录与列表美国药品食品管理局健康与人类服务部药物评价与研究中心(CDER)生物制剂评价与研究中心(CBER)2012年2月ICH第二修订版行业指导说明Q3c——附录与列表Additional copies are available from:Office of Communications Division of Drug Information, WO51, Room 2210 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave. Silver Spring, MD 20993 Phone: 301-796-3400; Fax: 301-847-8714druginfo@/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/de fault.htmand/orOffice of Communication, Outreach and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike,Rockville, MD 20852-1448/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm(Tel) 800-835-4709 or 301-827-1800美国药品食品管理局健康与人类服务部药物评价与研究中心(CDER)生物制剂评价与研究中心(CBER)2012年2月ICH第二修订版包含无约束力的指导行业指导说明Q3c1——附录与列表Ⅰ.说明该文件用于ICH生产指导Q3c杂质:溶剂残留(1997)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;.
一类溶剂:已知可致癌且对人和环境有害的溶剂,尽可能避免使用(事实上很多大公司
如罗氏等已将这些甚至包括某些二类溶剂打入“黑名单”),如果实在无法避免,残留
量必须控制在规定限度:
苯(2ppm )
四氯化碳(4ppm )
1,2- 二氯乙烷(5ppm )(我注意到隆莱还有使用)
1,1- 二氯乙烯(8ppm )
1,1,1- 三氯乙烷(1500ppm )
二类溶剂:有动物致癌性的溶剂,按每日允许接触量计算的规定限度如下:
乙腈(410ppm )
氯苯(360ppm )
氯仿(60ppm )(罗氏禁用)
环己烷(3880ppm )
1,2- 二氯乙烯(1870ppm )
二氯甲烷(600ppm )
1,2- 二甲氧乙烷(100ppm )
N,N- 二甲基乙酰胺(1090ppm )
DMF (880ppm )
二氧六环(380ppm )
2-乙氧基乙醇(160ppm )
乙二醇(620ppm )
甲酰胺(220ppm )
正己烷(290ppm )
甲醇(3000ppm )
乙二醇甲醚(50ppm )
甲丁酮(50ppm )
甲基环己烷(1180ppm )
N- 甲基吡咯烷酮(4840ppm )
硝基甲烷(50ppm )
吡啶(200ppm )
环丁砜(160ppm )
1,2,3,4- 四氢化萘(100ppm )
甲苯(890ppm )
1,1,2- 三氯乙烯(80ppm )
二甲苯(2170ppm )
三类溶剂:低毒溶剂,限度为≤0.5% ,即5000ppm ,如我们常用的乙醇、EA 、TBME 、丙酮、THF 、庚烷、异丙醇等
除上述三类溶剂外,还有一些溶剂如我们用过的石油醚、甲基四氢呋喃等尚无毒理资料,
必须证明其残留量的合理性。
尤其石油醚,建议今后避免使用,尤其在后道反应最好避
免,由于其成分复杂,无法测定准确残留量。
总之,在工艺开发阶段应优先选择三类溶剂,控制二类溶剂,尽量避免一类溶剂的使用。
;. .。